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Tikhonov-Phillips Regularizations in Linear Models

with Blurred Design

Yu. Golubev∗ and Th. Zimolo†

Abstract

The paper deals with recovering an unknown vector β ∈ R
p based

on the observations Y = Xβ + ǫξ and Z = X + σζ, where X is an
unknown n×p - matrix with n ≥ p, ξ ∈ R

p is a standard white Gaussian
noise, ζ is a n× p - matrix with i.i.d. standard Gaussian entries, and
ǫ, σ ∈ R

+ are known noise levels. It is assumed that X has a large
condition number and p is large. Therefore, in order to estimate β, the
simple Tikhonov-Phillips regularization (ridge regression) with a data-
driven regularization parameter is used. For this estimation method,
we study the effect of noise σζ on the quality of the recovering of Xβ
using concentration inequalities for the prediction error.

Keywords: ridge regression, Tikhonov-Phillips method, data-driven
regularization, blurred design, prediction mean squared error, concen-
tration inequality.

2000 Mathematics Subject Classification: Primary 62C99; sec-
ondary 62C10, 62C20, 62J05.

1 Introduction and main results

This paper deals with recovering an unknown vector β ∈ R
p based on the

noisy observations

Y = Xβ + ǫξ,

Z = X + σζ,
(1)

where X is an unknown n × p - matrix with n ≥ p, ξ ∈ R
n is a standard

white Gaussian noise, ζ is a n × p - matrix with i.i.d. standard Gaussian
entries. For simplicity it is assumed that noise levels ǫ, σ > 0 are known.

Despite a very simple probabilistic structure of this model, estimating β
is a non-trivial statistical problem even in the simple case p = n = 1 (see
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[11]), but real difficulties arise when the condition number of X and p are
large. In this case, the maximum likelihood estimate of β has typically a
large risk and to avoid this drawback one has to make use of an available a
priori information about β andX. Recently some new methods of estimating
β in this situation have been proposed. These approaches rely on specific
statistical interpretations of (1) ranging from ”smooth” models for β [6],
[13], [15], [5] to ”sparse” ones [12], [1], [2].

In this paper, we focus solely on commonly used in practice estimates
based on Tikhonov-Phillips regularization technique [17], often called ridge
regression in statistics. This method relies on the hypothesis that the Eu-
clidean norm of β is bounded and it is usually used when X is known pre-
cisely (σ = 0). The standard ridge regression estimate of β is computed as
follows:

β̂α(Y,X) = argmin
β

{
‖Y −Xβ‖2 + α‖β‖2

}
= (X⊤X + αI)−1X⊤Y,

where here and below ‖·‖ is the Euclidean norm, I is the identity matrix, and
α ∈ R

+ is the regularization parameter. We emphasize that despite the well-
known drawbacks of this regularization technique (see e.g. [7]), it remains
widely used in practice because of the very low numerical complexity.

In applications, the regularization parameter is usually data-driven and
very often [8] it is computed as a minimizer of the unbiased risk estimate of
the mean square prediction risk, i.e.

α̂(Y,X) = argmin
α≥0

{∥∥Y −Xβ̂α(Y,X)
∥∥2 + 2ǫ2tr

[
Hα(X)

]}
, (2)

where
Hα(X) = X(X⊤X + αI)−1X⊤.

Thus, we estimate β with the help of β̂α̂(Y,X)(Y,X). From a mathemat-
ical viewpoint, the most elegant and interesting fact about performance of
this method goes back to Kneip [14].

Theorem 1 For any x ≥ 1

P
{
‖Xβ̂α̂(Y,X)(Y,X) −Xβ‖ ≥

√
min
α≥0

Rα(X,β) + ǫx
}
≤ exp(−Kx2), (3)

where here and in what follows K stands for generic constants and

Rα(β,X)
def
=E‖Xβ̂α(Y,X) −Xβ‖2

=
∥∥[I −Hα(X)]Xβ

∥∥2 + ǫ2tr
[
Hα(X)⊤Hα(X)

]

is the mean square prediction risk.
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In order to understand why this theorem is really surprising, let us chose
α as a minimizer of the prediction error, i.e.

α(β,X) = argmin
α≥0

Rα(β,X). (4)

Notice that α(β,X) depends on β, so it is not a statistical estimate in the
ordinary sense and it cannot be used in practice. It can be interpreted solely
as an oracle regularization parameter. One can check with a rather simple
algebra that for sufficiently large x

P
{
‖Xβ̂α(X,β)(Y,X) −Xβ‖ ≥

√
Rα(β,X)(β,X) + ǫx

}
≥ exp(−K ′x2), (5)

whereK ′ is a constant. So, comparing Equations (5) and (3), we see that the
booth prediction errors ‖Xβ̂α̂(Y,X)(Y,X)−Xβ‖ and ‖Xβ̂α(β,X)(Y,X)−Xβ‖
are close to

√
minα≥0 Rα(β,X) at the same parametric rate ǫ. This is why

Equation (3) is often called oracle inequality.
We emphasize that if the risk of an estimate β̃(Y,X) is measured by

‖β̃(Y,X)−β‖, then mathematical analysis of this risk becomes rather com-
plicated. For instance, to our knowledge nothing similar to Theorem 1 is
known about the distribution of ‖β̂α̂(Y,X)(Y,X) − β‖ despite the fact that
β̂α̂(Y,X)(Y,X) behaves reasonably good in numerous applications [8]. The
principal difficulties in obtaining good upper bounds for ‖β̃α(Y,X) − β‖
are due to the data-driven choice of regularization parameters. During last
years, several new approaches to this fundamental statistical problem have
been proposed (see e.g. [3], [9]), but unfortunately, these methods need the
Singular Value Decomposition of X, thus resulting in hardly computable
statistical methods compared to (2).

The main goal in this paper is to study the case where the design matrix
X is blurred by a white Gaussian noise and to find out how this noise affects
the quality of recovering Xβ. In order to estimate β in this situation, we
make use of the simple plug-in ridge regression estimate

β̂α(Y,Z) = argmin
β

{
‖Y − Zβ‖2 + α‖β‖2

}
= (Z⊤Z + αI)−1Z⊤Y (6)

combined with the data-driven regularization parameter

α̂(Y,Z) = arg min
α≥α◦

{
‖Y − Zβ̂α(Y,Z)‖2 + 2ǫ2tr[Hα(Z)]

}
, (7)

where α◦ > 0 is given, and Hα(Z) = Z(Z⊤Z + αI)−1Z⊤.
In what follows, we are interested in the concentration properties of the

empirical analog of the prediction error ‖Zβ̂α(Y,Z)−Xβ‖.
The next theorem shows that when Z is given, this random variable is

concentrated in the vicinity of
√

minα≥α◦ R
α(β,Z), where

Rα(β,Z)
def
=EZ‖Zβ̂α(Y,Z)−Xβ‖2

=
∥∥[I −Hα(Z)]Xβ

∥∥2 + ǫ2tr
[
Hα(Z)⊤Hα(Z)

]
.
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Here and in what follows EZ and PZ stand for the expectation and prob-
ability measure generated by the observations {Y,Z} from (1) when Z is a
given matrix.

Theorem 2 For any λ ∈ R
+ and any α ≥ α◦

EZ exp
{
λ
∥∥Zβ̂α̂(Y,Z)(Y,Z)−Xβ

∥∥
}
≤ exp

{
λ
√

Rα(β,Z) +Kǫ2λ2
}
. (8)

This theorem permits to control the concentration of the empirical pre-
diction error of the data-driven ridge regression estimate via the concentra-
tion of Rα(β,Z) for given α. More precisely, it says that for any α ≥ α◦

‖Zβ̂α̂(Y,Z)(Y,Z)−Xβ‖
P

≤
√

Rα(β,Z) +Kǫξ+,

where ξ+ is a positive sub-Gaussian random variable and symbol
P

≤ means
that this inequality is interpreted similar to (3).

Therefore, our next step is to study concentration of Rα(β,Z). Unfor-
tunately, in spite of the apparent simplicity, this problem is rather difficult
from a mathematical viewpoint. Therefore, in this paper, we focus solely on
the second order approximation (with respect to σ) of Rα(β,Z). In other
words, we will focus on the random variable R̃α

σ(β,X, ζ) defined by

Rα(β,X + σζ) = R̃α
σ(β,X, ζ) + o(σ2), as σ → 0. (9)

In order to make concentration inequalities simpler and more transpar-
ent, we will assume the following condition.

Condition 1 There exists a constant Q ≥ 1 such that for any α ∈ R
+

tr
[
Hα(X)

]
≤ Q tr

[
Hα(X)⊤Hα(X)

]
.

Roughly speaking, this condition means that eigenvalues λk(X
⊤X) of

X⊤X decrease rather rapidly with k. We emphasize that only in this case
Tikhonov’s regularization may have significant advantages with respect to
the maximum likelihood estimate.

We begin our study of R̃α
σ(β,X, ζ) with the simple case assuming that X

in (1) is a diagonal matrix. So, we have at out disposal the noisy observations

Yi = Xiβi + ǫξi,

Zi = Xi + σζi, i = 1, . . . , p,
(10)

where ζ, ξ are independent standard white Gaussian noises, and we estimate
β ∈ R

p with the help of the ridge regression method.
Notice that this statistical model may be viewed as a simple probabilistic

model describing the famous blind deconvolution problem (see e.g. [4, 11]).
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Theorem 3 Suppose X in (1) is a diagonal matrix and Condition 1 holds.
Then for any given α ≥ α◦ and any λ ∈ R

+

E exp
{
λ

√
[R̃α

σ (β,X, ζ)]+

}
≤ exp

{
λ

[(
1 +

KQσ2

α

)
Rα(β,X)

]1/2

+
9σ2λ2

8
max

[
ǫ2

α
, ‖β‖2∞

]}
.

(11)

Let us briefly discuss this result. If we choose

α = α◦(β,X) = arg min
α≥α◦

Rα(β,X),

then we obtain from (11) the following inequality:

E exp
{
λ
√[

R̃α◦

σ (β,X, ζ)
]
+

}
≤ exp

{
λ

[(
1 +

KQσ2

α◦

)
Rα◦

(β,X)

]1/2

+
9σ2λ2

8
max

[
ǫ2

α◦
, ‖β‖2∞

]}
.

(12)

Thus, we see that compared to (8) the noise in X results in

• strengthening of the oracle risk by the factor of 1 +KQσ2/α◦;

• shifting of the “mean” prediction error by

3

2
max

{
ǫ√
α◦

, ‖β‖∞
}
σξ+,

where ξ+ is a positive sub-Gaussian random variable.

Remark 1. α◦ (see (7)) plays a rather important role when the design
is blurred. It follows from (12) that in order to guarantee the global con-
centration rate similar to (8), α◦ must be of order of ǫ2 and σ2 of order of
ǫ2.

In the general case, the concentration inequality for
[
R̃α

σ (β,X, ζ)
]
+

has
a little bit more complicated form.

Theorem 4 Suppose Condition 1 holds. Then for any given α ≥ α◦ and
any λ ∈ R

+

E exp
{
λ

√
[R̃α

σ(β,X, ζ)]+

}
≤

≤ exp

{
λ

[(
1 +

KQpσ2

α

)
Rα(β,X) +

σ2pSα(β,X)

α2

]1/2

+
Kλ2σ2

α

[
Rα(β,X) + ǫ2 +

Sα(β,X)

α

]}
.

(13)

where Sα(β,X) =
∥∥X⊤

[
I −Hα(X)]Xβ

∥∥2.
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Remark 2. It is easy to see that Sα(β,X) can be bounded from above
as follows:

Sα(β,X) = α2‖X⊤(αI +X⊤X)−1Xβ‖2 ≤ α2‖β‖2.

Remark 3. Equation (13) reveals the principal drawback of the naive
plug-in approach. This method works good solely when pσ2 is small, more
precisely, when this value is of order of the oracle regularization parameter
(4). However, we emphasize here once again that important advantage of
this method is related to its low numerical complexity.

In order to improve the low concentration of the plug-in approach, we
have to incorporate into the estimate of (X⊤X)−1 an a priori information
about X. This may be done in different ways. For instance, in [4] it is
assumed that

X =

p∑

k=1

√
bkϕkϕ

∗⊤
k ,

where

• bk ∈ R
+ are unknown, but such that b1 ≥ b2 ≥ . . . ≥ bp;

• ϕk and ϕ∗
k are known orthonormal systems in R

n and R
p respectively.

It is easy to check that this assumption reduces (1) to diagonal Model (10).
Notice also that this model is equivalent to very specific deconvolution prob-
lems (see [11]). For classical statistical linear models, where usually n ≫ p,
the above hypothesis looks rather restrictive.

A less restrictive assumption would be to suppose

X⊤X =

p∑

k=1

bkϕkϕ
⊤
k , (14)

where bk ∈ R
+ are unknown and ϕk is a known orthonormal system in Rp.

2 Proofs

2.1 Proof of Theorem 2

The proof of the next simple auxiliary lemma can be found in [10].

Lemma 1 I) If for some U, u ≥ 0

U ≤ u+ min
γ∈(0,F ]

{
x2

γ
+ γU

}
, then

√
U ≤

√
r + |x|max

{
2,

√
2

F

}
.

II) If for some U, u ≥ 0

U ≤ u+ min
γ∈(0,F ]

{
x2

γ
+ γu

}
, then

√
U ≤

√
u+ |x|max

{
1,

√
2

F

}
.
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2.1.1 Proof of the theorem

Let
{
sk(Z) ∈ R

+, ϕk(Z) ∈ R
p, k = 1, . . . , p

}
be eigenvalues and eigenvec-

tors of Z⊤Z, i.e.,
Z⊤Zϕk(Z) = sk(Z)ϕk(Z).

It is easy to check that

ϕ∗
k(Z) =

Zϕk(Z)√
sk(Z)

, k = 1, . . . , p,

are the orthonormal vectors in R
n and

Z =

p∑

k=1

√
sk(Z)ϕ∗

k(Z)ϕ⊤
k (Z) ZZ⊤ =

p∑

k=1

√
sk(Z)ϕ∗

k(Z)ϕ∗⊤
k (Z).

Therefore

Hα(Z) = (αI + ZZ⊤)−1ZZ⊤ =

p∑

k=1

hαk (Z)ϕ∗
k(Z)ϕ∗⊤

k (Z),

where

hαk (Z) =
sk(Z)

α+ sk(Z)
.

Projecting the observations Y onto the linear space spanned by vectors
{ϕ∗

k(Z), k = 1, . . . , p}, we arrive at estimating

µ̄k(Z)
def
=

〈
Xβ,ϕ∗

k(Z)
〉
, k = 1, . . . , p

based on the observations

Ȳk(Z)
def
=

〈
Y, ϕ∗

k(Z)
〉
= µ̄k(Z) + ǫξ′k, k = 1, . . . , p. (15)

where ξ′k are i.i.d. standard Gaussian random variables.
It is also easy to check that

‖Zβ̂α(Y,Z)−Xβ‖2 =

p∑

k=1

[
µ̄k(Z)− hαk (Z)Ȳk(Z)

]2
,

‖Zβ̂α(Y,Z)− Y ‖2 =
p∑

k=1

[
Ȳk(Z)− hαk (Z)Ȳk(Z)

]2
,

Therefore, in view of (15), we have

‖Zβ̂α(Y,Z)−Xβ‖2 = L[µ̄(Z), hα(Z)]

+ 2ǫ

p∑

k=1

[
1− hαk (Z)

]
hαk (Z)µ̄k(Z)ξ′k + ǫ2

p∑

k=1

[
hαk (Z)

]2[
(ξ′k)

2 − 1
] (16)
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and

‖Zβ̂α(Y,Z)− Y ‖2 =L[µ̄(Z), hα(Z)]− 2ǫ2
p∑

k=1

hαk (Z) + ǫ2
p∑

k=1

(
ξ′k
)2

+ 2ǫ

p∑

k=1

[
1− hαk (Z)

]2
µ̄k(Z)ξ′k

+ ǫ2
p∑

k=1

{[
hαk (Z)

]2 − 2hαk (Z)
}[

(ξ′k)
2 − 1

]
,

(17)

where here and in what follows

L[µ̄(Z), hα(Z)] =

p∑

k=1

[
1− hαk (Z)

]2
µ̄2
k(Z) + ǫ2

p∑

k=1

[
hαk (Z)

]2
.

In view of the definition of α̂(Y,Z) (see (7)), we have for any given
α ≥ α◦

‖Zβ̂α̂(Y Z)(Y,Z)− Y ‖2 + 2ǫ2
p∑

k=1

h
α̂(Y,Z)
k (Y,Z) ≤‖Zβ̂α(Y,Z)− Y ‖2

+ 2ǫ2
p∑

k=1

hαk (Z)

and using (17), we obtain the following equivalent form of this inequality:

L
[
µ̄(Z), hα̂(Y,Z)(Z)

]
+ 2ǫ

p∑

k=1

[
1− h

α̂(Y,Z)
k (Z)

]2
µ̄k(Z)ξ′k

+ ǫ2
p∑

k=1

{[
h
α̂(Y,Z)
k (Z)

]2 − 2h
α̂(Y,Z)
k (Z)

}[
(ξ′k)

2 − 1
]

≤ L[µ̄(Z), hα(Z)] + 2ǫ

p∑

k=1

[
1− hαk (Z)

]2
µk(Z)ξ′k

+ ǫ2
p∑

k=1

{[
hαk (Z)

]2 − 2hαk (Z)
}[

(ξ′k)
2 − 1

]
.

Let γ, γ′ ∈ (0, 3/16). Then we can rewrite this inequality as follows:

L
[
µ̄(Z), hα̂(Y,Z)(Z)

]
≤ L

[
µ̄(Z), hα(Z)

]

+ ρ1(γ) + γL
[
µ̄(Z), hα̂(Y,Z)(Z)

]
+ ρ2(γ) + γL

[
µ̄(Z), hα̂(Y,Z)(Z)

]

+ ρ3(γ
′) + γ′L

[
µ̄(Z), hα(Z)

]
+ ρ4(γ

′) + γ′L
[
µ̄(Z), hα(Z)

]
.

(18)

where

ρ1(γ) =− 2ǫ

p∑

k=1

[
1− h

α̂(Y,Z)
k (Z)

]2
µ̄k(Z)ξ′k − γ

p∑

k=1

[
1− h

α̂(Y,Z)
k (Z)

]2
µ̄2
k(Z),
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ρ2(γ) =− ǫ2
p∑

k=1

{[
h
α̂(Y,Z)
k (Z)

]2 − 2h
α̂(Y,Z)
k (Z)

}[
(ξ′k)

2 − 1
]

− ǫ2γ

p∑

k=1

[
h
α̂(Y,Z)
k (Z)

]2
,

ρ3(γ
′) =2ǫ

p∑

k=1

[
1− hαk (Z)

]2
µ̄k(Z)ξ′k − γ′

p∑

k=1

[
1− hαk (Z)

]2
µ̄2
k(Z),

and

ρ4(γ
′) =ǫ2

p∑

k=1

{[
hαk (Z)

]2 − 2hαk (Z)
}[

(ξ′k)
2 − 1

]
− γ′ǫ2

p∑

k=1

[
hαk (Z)

]2
.

By Lemma 10 we obtain for any integer m ≥ 1

[
Eρml (γ)

]1/m ≤ Kǫ2m

γ
, l = 1, . . . , 4.

Therefore with (18) we arrive at

{
E
[
L
[
µ̄(Z), hα̂(Y,Z)(Z)

]]m}1/m ≤ L
[
µ̄(Z), hα(Z)

]

+
Kǫ2m

γ
+ γ

{
E
[
L
[
µ̄(Z), hα̂(Y,Z)(Z)

]]m}1/m

+
Kǫ2m

γ′
+ γ′L

[
µ̄(Z), hα(Z)

]
.

So, minimizing the right-hand side at this equation in γ, γ′ ∈ (0, 3/16) and
using Lemma 1, we obtain that for any integer m

{
E
[√

L
[
µ̄(Z), hα̂(Y,Z)(Z)

]]m}1/m
≤

√
L
[
µ̄(Z), hα(Z)

]
+Kǫ

√
m. (19)

The similar technique is used in proving (see (16)) the following inequal-
ity:

{
EZ‖Zβ̂α̂(Y,Z)(Y,Z)−Xβ‖m

}1/m
≤
{
EZ

[√
L
[
µ̄(Z), hα̂(Y,Z)(Z)

]]m}1/m

+Kǫ
√
m.

Finally, combining this equation with (19), we finish the proof. �

2.2 Proof of Theorem 3

Let us first compute R̃α
σ(β,X, ζ). We will make use of the following formula:

Rα(β,Z) = L[β,Hα(Z)]
def
=

p∑

k=1

{[
1−Hα

k (Z)
]2
X2

kβ
2
k + ǫ2

[
Hα

k (Z)
]2}

,

9



where

Hα
k (Z) =

Z2
k

α+ Z2
k

.

We obviously have

∂

∂Zk
L[β,Hα(Z)] =

{
2ǫ2Hα

k (Z)− 2
[
1−Hα

k (Z)
]
X2

kβ
2
k

} ∂

∂Zk
Hα(Z),

∂2

∂Z2
k

L[β,Hα(Z)] =
{
2ǫ2Hα

k (Z)− 2
[
1−Hα

k (Z)
]
X2

kβ
2
k

}∂2

∂Z2
k

Hα
k (Z)

+
(
2X2

k + 2ǫ2
)[ ∂

∂Zk
Hα(Z)

]2
,

and

∂

∂Zk
Hα

k (Z) =
2αZk

(α+ Z2
k)

2
,

∂2

∂Z2
k

Hα
k (Z) =

2α(α − 3Z2
k)

(α+ Z2
k)

3
.

Therefore with the help of Taylor’s expansion we arrive at (see (9))

R̃α
σ (β,X, ζ) = Rα(β,X) + σ∆α

1 (β,X, ζ) +
σ2

2
∆α

2 (β,X, ζ),

where

∆α
1 (β,X, ζ) =

p∑

k=1

ζk
∂

∂Xk
L[β,Hα(X)]

= 4

p∑

k=1

ζk

{
ǫ2Hα

k (X)−
[
1−Hα

k (X)
]
X2

kβ
2
k

}[
1−Hk(X)

]
Xk

α+X2
k

,

(20)

and

∆α
2 (β,X, ζ) =

p∑

k=1

ζ2k
∂2

∂X2
k

L[β,Hα(X)]

=

p∑

k=1

ζ2kX
2
kβ

2
k

[
1−Hα

k (X)
]2 7Hα

k (X)−
[
Hα

X(X)
]2 − 2

α+X2
k

+ 8ǫ2
p∑

k=1

ζ2kH
α
k (X)

[
1−Hα

k (X)
]9− 12Hα

k (X)

α+X2
k

.

(21)
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By (20) we have

E
[
∆α

1 (β,X, ζ)
]2

=

p∑

k=1

{
ǫ2Hα

k (X)−
[
1−Hα

k (X)
]
X2

kβ
2
k

}2
[
1−Hα

k (X)
]2
X2

k

(α+X2
k)

2

≤ǫ4
p∑

k=1

[Hα
k (X)]2[1−Hα

k (X)]2
X2

k

(α+X2
k)

2

+

p∑

k=1

[
1−Hα

k (X)
]4
(X2

kβ
2
k)

2 X2
k

(α+X2
k)

2

≤ǫ2

α
ǫ2

p∑

k=1

[Hα
k (X)]2 +max

k
[1−Hα

k (X)]2X2
kβ

2
k

X2
k

(α+X2
k)

2

×
p∑

k=1

[1−Hα
k (X)]2X2

kβ
2
k ≤ max

{
ǫ2

α
, ‖β‖2∞

}
Rα(β,X).

Since ∆α
1 (β,X, ζ) is a zero mean Gaussian random variable, we obtain from

the above equation

E exp
[
λ
√

Rα(β,X) + σ
[
∆α

1 (β,X, ζ)
]
+

]

≤ exp
[
λ
√

Rα(β,X)
]
E exp

{
λσ

2
max

{
ǫ√
α
, ‖β‖∞

}
ξ+

}

≤ exp

{
λ
√

Rα(β,X) +
λ2σ2

8
max

{
ǫ2

α
, ‖β‖2∞

}}
.

(22)

Next, (see (21))

[
∆α

2 (β,X, ζ)
]
+
≤K

p∑

k=1

{
ǫ2Hα

k (X) +
[
1−Hα

k (X)
]2
X2

kβ
2
k

} ζ2k
α+X2

k

.

Therefore by Condition 1

E
[
∆α

2 (β,X, ζ)
]
+
≤ KQ

α
Rα(β,X). (23)

Next we make use of the following simple algebraic fact:

max
x≥0

{
α2x

(α+ x)3
+

αx

(α+ x)2

}
=

2

3
√
3
<

1

2
.

With this equation we get

max
k

{
ǫ2
Hα

k (X)

α+X2
k

+

[
1−Hα

k (X)
]2
X2

k

α+X2
k

β2
k

}

≤ max

{
ǫ2

α
, ‖β‖2∞

}
max
k

{
αX2

k

(α+X2
k)

2
+

α2X2
k

(α+X2
k)

3

}

≤ max

{
ǫ2

α
, ‖β‖2∞

}
max
x≥0

{
αx

(α+ x)2
+

α2x

(α+ x)3

}
≤ 1

2
max

{
ǫ2

α
, ‖β‖2∞

}

11



and we obtain by (23) and Lemma 11

E exp
[
λ
√

σ2
[
∆α

2 (β,X, ζ)
]
+

]
≤ exp

{
λ

√
KQσ2Rα(β,X)

α

+
σ2λ2

2
max

{
ǫ2

α
, ‖β‖2∞

}}
.

Finally, combining this equation and (22) with the help of Lemma 12,
we complete the proof. �

2.3 Proof of Theorem 4

First, notice (see (6)) that β̂α(Y,Z) is a solution to

Z⊤
[
Y − Zβ̂α(Y,Z)

]
= αβ̂α(Y,Z). (24)

Since we are interested in Zβ̂α(Y,Z), we denote for brevity

µ̂α(Y,Z) = Zβ̂α(Y,Z)

and we obtain from (24)

ZZ⊤
[
Y − µ̂α(Y,Z)

]
= αµ̂α(Y,Z),

or, equivalently,

µ̂α(Y,Z) = Hα(Z)Y, where Hα(Z) = (αI + ZZ⊤)−1ZZ⊤.

Thus, our problem is reduced to estimating µ = Xβ ∈ R
n based on the

noisy data

Y =µ+ ǫξ,

Z =X + σζ

with the help of the plug-in ridge regression estimates

µ̂α(Y,Z) = Hα(Z)Y, α ≥ α◦.

In order to compute R̃α
σ(β,X, ζ), we will need the second order approx-

imation for Hα(Z) which can be obtained with the help of the following
simple formulas:

Hα(Z)−Hα(X) = α(αI +XX⊤)−1 − α(αI + ZZ⊤)−1

= (αI +XX⊤)−1
(
ZZ⊤ −XX⊤

)
[I −Hα(Z)]

= α−1[I −Hα(X)]
(
ZZ⊤ −XX⊤

)
[I −Hα(Z)].

12



and similarly

Hα(Z)−Hα(X) = α(αI +XX⊤)−1 − α(αI + ZZ⊤)−1

= (αI +XX⊤)−1
(
ZZ⊤ −XX⊤

)
[I −Hα(Z)]

= α−1[I −Hα(Z)]
(
ZZ⊤ −XX⊤

)
[I −Hα(X)].

From the above equations we obtain

Hα(Z) =Hα(X) + α−1[I −Hα(X)]
(
ZZ⊤ −XX⊤

)
[I −Hα(Z)]

=Hα(X) + α−1[I −Hα(X)]
(
ZZ⊤ −XX⊤

)
[I −Hα(X)]

− α−1[I −Hα(X)]
(
ZZ⊤ −XX⊤

)
[Hα(Z)−Hα(X)]

=Gα(X, ζ) +
σ2

α
[I −Hα(X)]ζζ⊤[I −Hα(X)]

− α−2[I −Hα(X)]
(
ZZ⊤ −XX⊤

)
[I −Hα(Z)]

×
(
ZZ⊤ −XX⊤

)
[I −Hα(X)],

where

Gα(X, ζ)
def
= Hα(X) +

σ

α
[I −Hα(X)]ζ(X)[I −Hα(X)] (25)

is the first order approximation of Hα(Z) and

ζ(X) = Xζ⊤ + ζX⊤.

So, we arrive at the following second order approximation of Hα(Z):

H̃α(X, ζ) =Gα(X, ζ) +
σ2

α
[I −Hα(X)]ζζ⊤[I −Hα(X)]

− σ2

α2
[I −Hα(X)]ζ(X)[I −Hα(X)]ζ(X)⊤[I −Hα(X)].

(26)

In order to simplify calculations, we will make use of the SVD of X. Let
λk(X) ∈ R

+, ek(X) ∈ R
p, k = 1, . . . , p be eigenvalues and eigenvectors of

X⊤X, i.e.,
X⊤Xek(X) = λk(X)ek(X), k = 1, . . . , p.

Define the orthonormal vectors in R
n

e∗k(X) =
Xek(X)√
λk(X)

, k = 1, . . . , p.

It is well-know and easy to check that

X =

p∑

k=1

√
λk(X)e∗k(X)e⊤k (X),

13



and so,

XX⊤ =

p∑

k=1

λke
∗
k(X)e∗⊤k (X),

Hα(X) =

p∑

k=1

λk(X)

α+ λk(X)
e∗k(X)e∗⊤k (X).

(27)

Therefore, denoting,

hαk (X) =
λk(X)

α+ λk(X)
, (28)

we have

Hα(X) =

p∑

k=1

hαk (X)e∗k(X)e∗⊤k (X),

I −Hα(X) =

p∑

k=1

[1− hαk (X)]e∗k(X)e∗⊤k (X).

We are ready to obtain the spectral representation of Gα(X, ζ). Let

Ḡα
ij(X, ζ) = e∗⊤i (X)Gα(X, ζ)e∗j (X).

Then we get from (25)

Ḡα
ij(X, ζ) = hαi (X)δij +

σ

α

[
1− hαi (X)

][
1− hαj (X)

]
Ξij(X),

where
Ξij(X) = e∗⊤i (X)ζ(X)e∗j (X).

The covariance function of this Gaussian random matrix is computed in the
following lemma.

Lemma 2

EΞks(X)Ξk′s′(X) = [λk(X) + λs(X)](δss′δkk′ + δsk′δks′). (29)

Proof. Let ζ be a random matrix with i.i.d. entries and B be a non-random
matrix. Then

EζBζ = B⊤

since ∑

k,l

BklEζikζlj =
∑

k,l

Bklδilδkj = Bji.

Similarly

Eζ⊤Bζ⊤ = B⊤, EζBζ⊤ = I tr(B), Eζ⊤Bζ = I tr(B).

14



Next, noticing that

X =

p∑

l=1

√
λl(X)e∗l (X)e⊤l (X),

we get

Ξij(X) =e∗⊤i (X)[Xζ⊤ + ζX⊤]e∗j (X) =
√

λi(X)e⊤i (X)ζ⊤e∗j (X)

+
√

λj(X)e∗⊤i (X)ζej(X).

Therefore

EΞij(X)Ξkl(X) =E
[√

λi(X)e⊤i (X)ζ⊤e∗j (X) +
√

λj(X)e∗⊤i (X)ζej(X)
]

×
[√

λk(X)e⊤k (X)ζ⊤e∗l (X) +
√

Λl(X)e∗⊤k (X)ζel(X)
]

=
√

λi(X)Λk(X)e⊤i (X)E
[
ζ⊤e∗j (X)e⊤k (X)ζ⊤

]
e∗l (X)

+
√

λi(X)λl(X)e⊤i (X)E
(
ζ⊤e∗j (X)e∗⊤k (X)ζ

)
el(X)

+
√

λj(X)λk(X)e∗⊤i (X)E
(
ζej(X)e⊤k (X)ζ⊤

)
e∗l (X)

+
√

λj(X)λl(X)e∗⊤i (X)E
[
ζej(X)e∗⊤k (X)ζ

]
el(X)

=
√

λi(X)λk(X)δikδjl +
√

λi(X)λl(X)δjkδil

+
√

λj(X)λk(X)δilδjk +
√

λj(X)λl(X)δikδjl. �

In what follows we will need two concentration inequalities related to
Ξ(X).

Lemma 3 Let D be a p × p-diagonal matrix and u ∈ R
p. Then for any

λ ≥ 0

E exp
{
λ
∥∥DΞ(X)u

∥∥
}
≤ exp

{
λ

√
E
∥∥DΞ(X)u

∥∥2

+ λ2 max
j

[
D2

jjλj(X)‖u‖2 +D2
jj

∥∥√λ(X)u
∥∥2
]

+ 2λ2‖Dλ(X)u‖ × ‖Du‖
}
.

(30)

Proof. For the Gaussian random vector v with components

vi = Dii

p∑

k=1

Ξik(X)uk

15



one easily obtains (see (29))

Rij = Evivj =DiiDjj

p∑

k,l=1

EΞik(X)Ξjl(X)ukul

=DiiDjj

p∑

k,l=1

[λi(X) + λk(X)](δijδkl + δilδjk)ukul

=D2
iiδij

p∑

k=1

[λi(X) + λk(X)]u2k +DiiDjj [λi(X) + λj(X)]uiuj.

Thus

E‖v‖2 =

p∑

k=1

Rkk =

p∑

k=1

D2
kkλk(X)

p∑

s=1

u2s +

p∑

k=1

D2
kk

p∑

s=1

u2sλs(X)

+ 2

p∑

k=1

D2
kkλk(X)u2k.

Next, we make use of the formula

‖v‖2 =

p∑

k=1

sk(R)ξ2k,

where ξk are i.i.d. standard Gaussian random variables and sk(u) are eigen-
values of R, i.e.

Rφk = sk(R)φk, k = 1, . . . , p.

Therefore by Lemma 11

E exp
{
λ‖v‖

}
≤ exp

{
λ
√

E‖v‖2 + λ2s1(R)
}
. (31)

In order to bound from above s1(R), notice that for any φ ∈ R
p

[Rφ]i =D2
iiλi(X)‖u‖2φi +D2

iiφi

p∑

k=1

λk(X)u2k

+Diiλi(X)ui

p∑

k=1

Dkkukφk +Diiui

p∑

k=1

Dkkλk(X)ukφk.

Hence, by the Cauchy-Shwarz inequality we obtain from the above equation

s1(R) = max
‖φ‖≤1

‖Rφ‖ ≤ max
j

{
D2

jjλj

p∑

k=1

u2k +D2
jj

p∑

k=1

λk(X)u2k

}

+ 2

[ p∑

k=1

D2
kku

2
k

]1/2[ p∑

k=1

D2
kkλ

2
k(X)u2k

]1/2

and, so, (30) follows from this inequality and (31). �

16



Lemma 4 Let D be a p× p-diagonal matrix. Then for any λ ∈ R
+

E exp
{
λ
√

tr
[
DΞ(X)D2Ξ(X)D

]}
≤ exp

{
λ
√

E tr
[
DΞ(X)D2Ξ(X)D

]

+Kλ2max
i,j

D2
iiD

2
jjλj(X)

}
.

(32)

Proof. Notice

tr
[
DΞ(X)D2Ξ(X)D

]
=

p∑

i,j=1

D2
iiD

2
jjΞ

2
ij(X).

=

p∑

i=1

D4
iiΞ

2
ii(X) + 2

∑

j<i

D2
iiD

2
jjΞ

2
ij(X).

(33)

It is easy to check with the help of (29) that

EΞii(X)Ξjj(X) = 4λi(X)δij , EΞij(X)Ξij(X) = λi(X) + λj(X), i 6= j,

and when j < i and k < l

EΞij(X)Ξkl(X) = [λi(X) + λj(X)]δilδkj = 0.

So, let ξij, i, j = 1 . . . , p be i.i.d. standard Gaussian random variables.
Then we have

p∑

i=1

D4
iiΞ

2
ii(X)

P
= 4

p∑

i=1

D4
iiλi(X)ξ2ii (34)

and
∑

j<i

D2
iiD

2
jjΞ

2
ij(X) =

∑

j<i

D2
iiD

2
jj[λi(X) + λj(X)]ξ2ij

=
∑

j<i

D2
iiD

2
jjλi(X)ξ2ij +

∑

j<i

D2
iiD

2
jjλj(X)ξ2ij .

(35)

Hence by Lemma 11 we obtain

E exp

{
λ

[ p∑

i=1

D4
iiλi(X)ξ2ii

]1/2}
≤ exp

{
λ

[ p∑

i=1

D4
iiλi(X)

]1/2

+ λ2max
i

D4
iiλi(X)

}
,

E exp

{
λ

[∑

j<i

D2
iiD

2
jjλi(X)ξ2ij

]1/2}
≤ exp

{
λ

[∑

j<i

D2
iiD

2
jjλi(X)

]1/2

+ λ2 max
i,j

D2
jjD

2
iiλi(X)

}
,
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E exp

{
λ

[∑

j<i

D2
jjD

2
iiλjξ

2
ij

]1/2}
≤ exp

{
λ

[∑

j<i

D2
jjD

2
iiλj(X)

]1/2

+ λ2 max
i,j

D2
iiD

2
jjλj(X)

}
.

Therefore, combining the above inequalities and (33)-(35) with the help
of Lemma 12, we arrive at (32). �

In the proof of Theorem 4 the following simple lemma plays an important
role.

Lemma 5 Suppose Condition 1 holds. Then for any given α ∈ R
+ and any

µ ∈ R
n

EL
[
µ,Gα(X, ζ)

]
≤
(
1 +

KQpσ2

α

)
L
[
µ,Hα(X)

]

+
σ2p

α2

∥∥X⊤
[
I −Hα(X)

]
µ
∥∥2.

(36)

where
L[µ,H] = ‖(I −H)µ‖2 + ǫ2tr

(
HH⊤

)
.

Proof. Since L[µ,H] is a quadratic functional in H, we have (see (25))

EL
[
µ,Gα(X, ζ)

]
=L[µ,Hα(X)]

+
σ2

α2
E
∥∥[I −Hα(X)]ζ(X)[I −Hα(X)]µ

∥∥2

+
σ2ǫ2

α2
E tr

{[
I −Hα(X)

]
ζ(X)

[
I −Hα(X)

]

×
[
I −Hα(X)

]⊤
ζ(X)⊤

[
I −Hα(X)

]⊤}
.

(37)

Let µ̄(X) be vector in R
p with componets µ̄k(X) =

〈
µ, e∗k(X)

〉
and h(X)

be the diagonal matrix with the entries hαk (X), k = 1, . . . , p defined by (28).
Then, with the help of Lemma 2, we obtain

E
∥∥[I −Hα(X)

]
ζ(X)

[
I −Hα(X)

]
µ
∥∥2

= µ̄⊤(X)
[
I − hα(X)

]
E
{
Ξ⊤

[
I − hα(X)

]2
Ξ
}[

I − hα(X)
]
µ̄(X)

=

p∑

i=1

[
1− hαi (X)

]2
µ̄2
i (X)

{
2
[
1− hαi (X)

]2
λi(X)

+ λi(X)

p∑

k=1

[1− hαk (X)]2 +

p∑

k=1

[
1− hαk (X)

]2
λk(X)

}

≤ α(2 + p)

p∑

i=1

[
1− hαi (X)

]2
µ̄2
i (X) + p

p∑

i=1

[
1− hαi (X)

]2
µ̄2
i (X)λi(X).
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With the similar arguments and Condition 1 we arrive at

E tr
{
[I −Hα(X)]ζ(X)[I −Hα(X)][I −Hα(X)]⊤ζ(X)⊤[I −Hα(X)]⊤

}

= tr
{
[I − hα(X)]E

{
Ξ[1− hα(X)]2Ξ⊤

}
[I − hα(X)]

}

=

p∑

i=1

[1− hαi (X)]2
[
2[1 − hαi (X)]2λi(X)

+ λi(X)

p∑

k=1

[1− hαk (X)]2 +

p∑

k=1

[1− hαk (X)]2λk(X)

]

≤ 4Qαp

p∑

i=1

[hαi (X)]2.

Thus (36) follows from (37) and the above equations. �

The following lemma controls the concentration of L[µ,Gα(X, ζ)].

Lemma 6 For any given α > 0 and λ ≥ 0

E exp
{
λ
√

L
[
µ,Gα(X, ζ)

]}
≤ exp

{
λ

[(
1 +

KQpσ2

α

)
L
[
µ,Hα(X)

]

+
σ2p

α2

∥∥X⊤
[
I −Hα(X)]µ

∥∥2
]1/2

+
Kλ2σ2

α

{
L
[
µ,Hα(X)

]
+ ǫ2 + α−1

∥∥X⊤
[
I −Hα(X)]µ

∥∥2
}}

.

(38)

Proof. Notice that L
[
µ,Gα(X, ζ)

]
admits the following decomposition:

L
[
µ,Gα(X, ζ)

]
=L

[
µ,Hα(X)

]
+

2σ

α
∆α

1 (µ,X,Ξ) +
σ2

α2
∆α

2 (µ,X,Ξ), (39)

where

∆α
1 (µ,X,Ξ) =µ̄⊤[I − hα(X)]2Ξ[I − hα(X)]2µ̄

+ ǫ2tr
{
hα(X)[I − hα(X)]Ξ[I − hα(X)]

}

and

∆α
2 (µ,X,Ξ) = µ̄⊤[I − hα(X)]Ξ[I − hα(X)]2Ξ⊤[I − hα(X)]µ̄

+ǫ2tr
{
[I − hα(X)]Ξ[I − hα(X)]2Ξ⊤[I − hα(X)]

}
.

Recall that µ̄ ∈ R
p in the above equations has components µ̄k = 〈µ,ϕk(X)〉.
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Notice that ∆α
1 [µ̄,X,Ξ] is a Gaussian random variable with zero mean.

Therefore, we need solely to bound from above its variance. We have by
Lemma 2

E
{
µ̄⊤[I − hα(X)]2Ξ[I − hα(X)]2µ̄

}2

= µ̄⊤[I − hα(X)]2E
{
Ξ[I − hα(X)]2µ̄

× µ̄⊤[I − hα(X)]2Ξ
}
[I − hα(X)]2]µ̄

= 4

p∑

k=1

[1− hαk (X)]4µ̄2
k ×

p∑

k=1

[1− hαk (X)]4λk(X)µ̄2
k

≤ 4α

[ p∑

k=1

[1− hαk (X)]2µ̄2
k

]2
.

With the similar arguments we obtain

E
{
tr
{
hα(X)[I − hα(X)]Ξ[I − hα(X)]

}}2

= E

[ p∑

k=1

hαk (X)[1 − hαk (X)]2Ξkk

]2

=

p∑

k=1

p∑

s=1

hαk (X)[1 − hαk (X)]2hαs (X)[1 − hαs (X)]2EΞssΞkk

= 4

p∑

k=1

p∑

s=1

hαk (X)[1 − hαk (X)]2hαs (X)[1 − hαs (X)]2λs(X)δsk

≤ 4α

p∑

k=1

[hαk (X)]2.

Hence E
[
∆α

1 (µ,X,Ξ)
]2 ≤ KαL

[
µ,Hα(X)

]
, and thus

E exp

{
λ

√
L
[
µ,Hα(X)

]
+

2σ

α

[
∆α

1 (µ,X,Ξ)
]
+

}

≤ exp

{
λ
√

L
[
µ,Hα(X)

]
+

Kσ2λ2

α
L
[
µ,Hα(X)

]}
.

(40)

In order to control ∆α
2 (µ̄,X,Ξ), we make use of Lemmas 3 and 4. With

D = [I − hα(X)] and u = [I − hα(X)]µ̄,

we have

max
j

[
D2

jjλj(X)‖u‖2 +D2
jj‖

√
λ(X)u‖2

]
+ 2‖Dλ(X)u‖ × ‖Du‖

≤ 3α‖[I − hα(X)]µ̄‖2 + ‖[I − hα(X)]
√

λ(X)µ̄‖2,
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and thus by (30)

E exp
{
λ
∥∥[I − hα(X)]Ξ(X)[I − hα(X)]µ̄

∥∥
}

≤ exp
{
λ

√
E
∥∥[I − hα(X)]Ξ(X)[I − hα(X)]µ̄

∥∥2

+ λ2
{
3α‖[I − hα(X)]µ̄‖2 +

∥∥[I − hα(X)]
√

λ(X)µ̄
∥∥2}

}
.

(41)

Similarly, with the help of (32) we obtain

E exp
{
λ
√

tr
{
[I − hα(X)]Ξ(X)[I − hα(X)]2Ξ⊤(X)[I − hα(X)]

}}

≤ E exp
{
λ
√

Etr
{
[I − hα(X)]Ξ(X)[I − hα(X)]2Ξ⊤[I − hα(X)]

}

+Kαλ2
}
.

(42)

Hence, combining (41) and (42) with the help of Lemma 12, we arrive
at

E exp
{
λ
√

∆α
2 (µ,X,Ξ)

}
≤ exp

{
λ
√

E∆α
2 (µ,X,Ξ)

+Kλ2
[
αL

[
µ,Hα(X)

]
+

∥∥X⊤
[
I −Hα(X)

]
µ
∥∥2 + αǫ2

]}
.

Finally, combining (36), (39), (40), and this inequality with the help of
Lemma 12, we complete the proof (38). �

2.3.1 Proof of the theorem

We make use of the following equation (see (26)):

R̃α
σ(β,X, ζ) = L[µ,Gα(X, ζ)]

− 2σ2

α
µ⊤[I −Hα(X)]⊤[I −Hα(X)]ζ(X)ζ⊤(X)[I −Hα(X)]µ

+
2σ2

α2
µ⊤[I −Hα(X)]⊤[I −Hα(X)]ζ(X)[I −Hα(X)]ζ(X)⊤[I −Hα(X)]µ

+
2ǫ2σ2

α
tr
{
Hα⊤

X [I −Hα(X)]ζ(X)ζ⊤(X)[I −Hα(X)]
}

− 2ǫ2σ2

α2
tr
{
Hα⊤

X [I −Hα(X)]ζ(X)(I −Hα(X))ζ(X)⊤[I −Hα(X)]
}
.

Thus, we obviously have

R̃α
σ(β,X, ζ) ≤ L[µ,Gα(X, ζ)] +

2ǫ2σ2

α
tr
{
Hα(X)⊤ζ(X)ζ⊤(X)

}

+
2σ2

α2
µ̄⊤[I − hα(X)]2Ξ(X)[I − hα(X)]Ξ(X)⊤[I − hα(X)]µ̄.

(43)
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Since by (27)

tr
[
Hα(X)⊤ζ(X)ζ⊤(X)

]
=

p∑

k=1

hαk (X)‖e∗⊤k ζ(X)‖2,

and e∗⊤k ζ(X), e∗⊤l ζ(X), k 6= l, are independent Gaussian vectors, we obtain
by Condition 1 and Lemma 11

E exp
{
λ
√

tr
[
Hα(X)⊤ζ(X)ζ⊤(X)

]}

≤ exp

{
λ

[
pQ

p∑

k=1

[hαk (X)]2
]1/2

+ λ2

}
.

(44)

So, our final step is to control the last term at the right-hand side in (43),
but it was already done in (41). Therefore (see (44)) the additional terms at
the right-hand side in (43) do not affect the concentration of L[µ,Gα(X, ζ)]
obtained in Lemma 6. �

3 Appendix

3.1 Ordered processes

Here we collected some auxiliary probabilistic facts used in deriving the
concentration inequality (8).

Let ξ(t, s), t ∈ [0, T ], s ∈ [0, S], be a separable random field and σ2(t, s) :
[0, T ]× [0, S] → R

+ be a continuous function satisfying

Condition 2 For all 0 ≤ t1 ≤ t2 ≤ T and s ∈ [0, S]

0 ≤ σ2(t2, s)− σ2(t1, s) ≤ σ2(t2, S)− σ2(t1, S);

and for all 0 ≤ s1 ≤ s2 ≤ S and t ∈ [0, T ]

0 ≤ σ2(t, s2)− σ2(t, s1) ≤ σ2(T, s2)− σ2(T, s1).

The following lemma generalizes Lemma 1 in [9].

Lemma 7 Suppose Condition 2 holds. Then for any λ > 0

logE exp

{
λ max

t∈[0,T ], s∈[0,S]

ξ(t, s)− ξ(0, 0)√
σ2(T, S)− σ2(0, 0)

}
≤ log(2)

C◦
+

+ C◦ max
0≤t1≤t2≤T, s∈[0,S]

logE exp

{√
2

C◦
λ

ξ(t2, s)− ξ(t1, s)√
σ2(t2, s)− σ2(t1, s)

}

+ C◦ max
0≤s1≤s2≤S, t∈[0,T ]

logE exp

{√
2

C◦
λ

ξ(t, s2)− ξ(t, s1)√
σ2(t, s2)− σ2(t, s1)

}
,

(45)

where C◦ = (
√
2− 1)/2.
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Proof. First, we construct on [0, T ] a family of dyadic set Gk
T , k =

0, 1, . . .. The set G0
T consist of the single point t00 = 0. The set G1

T contains
two points: t10 = t00 and t11 defined by

σ2(t11, S)− σ2(t01, S) = σ2(T, S)− σ2(t11, S),

or, equivalently,

σ2(t11, S) =
σ2(T, S) + σ2(0, 0)

2
.

Next, if the set Gk
T = {tk0 , tk1 , . . . , tk2k−1

} has been constructed, then Gk+1
T =

{tk+1
0 , tk+1

1 , . . . , tk+1
2k+1−1

} is defined as follows:

tk+1
2l = tkl , l = 0, 1, . . . ,

and the points tk+1
2l+1 are computed as

σ2(tk+1
2l+1, S) =

σ2(tkl , S) + σ2(tkl−1, S)

2
.

Doing similarly, we construct also the family of the dyadic sets Gk
S , k =

0, 1, . . . in [0, S].
The set Gk ∈ [0, T ]× [0, S] is defined by

Gk = Gk
T ×Gk

S .

Integer k in this definition is called set level.
For a given set level k define the following function gk(t, s) : [0, T ] ×

[0, S] → Gk by

gk(t, s) = {gk1 (t, s), gk2 (t, s)} = arg min
{u,v}∈Gk :u≤t, v≤s

{
(t− u) + (s− v)

}
.

In other words, this function relates (t, s) from [0, T ]× [0, S] and the nearest
point from Gk with coordinates less than t and s respectively.

Let us fix an integer N and let {tN , sN} be an arbitrary point in GN .
Then descending from the set GN to GN−1, we obtain

ξ(tN , sN )− ξ(0, 0) =ξ(tN , sN )− ξ[gN−1
1 (tN , sN ), gN−1

2 (tN , sN )]

+ ξ[gN−1
1 (tN , sN ), gN−1

2 (tN , sN )]− ξ(0, 0)

and continue the descend, we find a sequence of points such that {tk, sk} ∈
Gk such that

ξ(tN , sN )− ξ(0, 0) =ξ(tN , sN )− ξ(tN−1, sN−1)

+ . . .+ ξ(tk, sk)− ξ(tk−1, sk−1)

+ . . .+ ξ(t1, s1)− ξ(0, 0).

(46)
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Notice that since tk−1 ≤ tk, sk−1 ≤ sk, we have

ξ(tk, sk)− ξ(tk−1, sk−1) =
ξ(tk, sk)− ξ(tk, sk−1)√
σ2(tk, sk)− σ2(tk, sk−1)

×
√

σ2(tk, sk)− σ2(tk, sk−1)

+
ξ(tk, sk−1)− ξ(tk−1, sk−1)√
σ2(tk, sk−1)− σ2(tk−1, sk−1)

×
√

σ2(tk, sk−1)− σ2(tk−1, sk−1).

(47)

From the construction of Gk and Condition 2 we obtain the following
equations:

σ2(tk, sk)− σ2(tk, sk−1) = 2−k+1[σ2(T, S)− σ2(0, 0)],

σ2(tk, sk−1)− σ2(tk−1, sk−1) = 2−k+1[σ2(T, S)− σ2(0, 0)].
(48)

Next, combining Equations (45)-(48), we arrive at

ξ(tN , sN )− ξ(0, 0)√
σ2(T, S)− σ2(0, 0)

≤
√
2

N∑

k=1

2−k/2 max
(t,s)∈Gk

ξ(t, s)− ξ[t, gk−1
2 (t, s)]√

σ2(t, s)− σ2[t, gk−1
2 (t, s)]

≤
√
2

N∑

k=1

2−k/2 max
(t,s)∈Gk

ξ(t, s)− ξ[gk−1
1 (t, s), s)]√

σ2(t, s)− σ2[gk−1
1 (t, s), s]

.

(49)

In order to derive from this equation (45), we make use of the convexity
of exp(x), more precisely, the following inequality:

logE exp

{ N∑

k=1

w(k)ζk

}
≤

N∑

k=1

w(k) logE exp(ζk), (50)

that holds true for any random variables ζk and any non-negative weights
w(k) such that

∑N
k=1w(k) = 1. This equation follows immediately from

E exp

{ N∑

k=1

w(k)[ζk−logE exp(ζk)]

}
≤

N∑

k=1

w(k)E exp[ζk−logE exp(ζk)] = 1.

Applying twice (50) to (49) and using that the cardinality of Gk is 4k,
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we get

2 logE exp

{
λ

ξ(tN , sN )− ξ(0, 0)√
σ2(T, S)− σ2(0, 0)

}

≤ logE exp

{
2
√
2λ

N∑

k=1

2−k/2 max
(t,s)∈Gk

ξ(t, s)− ξ[t, gk−1
2 (t, s)]√

σ2(t, s)− σ2[t, gk−1
2 (t, s)]

}

+ logE exp

{
2
√
2λ

N∑

k=1

2−k/2 max
(t,s)∈Gk

ξ(t, s)− ξ[gk−1
1 (t, s), s)]√

σ2(t, s)− σ2[gk−1
1 (t, s), s]

}

≤ 1

SN

N∑

k=1

2−k/2 log

{
4k max

t,s≥s′
E exp

[
2
√
2SNλ

ξ(t, s)− ξ(t, s′)√
σ2(t, s)− σ2(t, s′)

]}

+
1

SN

N∑

k=1

2−k/2 log

{
4k max

t≥t′,s
E exp

[
2
√
2SNλ

ξ(t, s)− ξ(t′, s)√
σ2(t, s)− σ2(t′, s)

]}
,

(51)

where

SN =

N∑

k=1

2−k/2 = (1 + o(1))
1√
2− 1

, N → ∞.

In view of separability of ξ(t, s), taking the limit as N → ∞ in Equation
(51), we finish the proof of (45). �

Lemma 8 Suppose ζ(t), t ≥ 0 a separable random process and σ2(t), t ≥ 0
be a nondecreasing function such that limt→∞ σ2(t) = ∞ and for all λ ∈
[0,Λ]

E exp
{
λ max

t∈[0,T ]
ζ(t)

}
≤ K exp

[
K◦σ

2(T )λ2
]
, (52)

where K, K◦ are some constants independent of T . Then for all x > 0 and
z ∈ (0,Λ)

P

{
z sup

t≥0

[
ζ(t)− zσ2(t)

]
≥ x

}
≤ KC(q,K◦) exp

[
− x

K◦(1 + q)

]
, (53)

where q > 0 and C(q,K◦) is a function of q and K◦, bounded from above
for all q > 0.

Proof. Let {tk, k = 0, . . .} be a monotone positive sequence such that
limk→∞ tk = ∞.

With the help of the exponential Chebychev inequality and (52) we get
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for any λ ∈ (0,Λ)

P
{
zmax

t≥0

[
ζ(t)− zσ2(t)

]
≥ x

}
≤

∞∑

k=1

P
{

max
t∈[tk−1,tk ]

[
ζ(t)− zσ2(t)

]
≥ x

}

≤
∞∑

k=1

P
{
z max
t∈[0,tk]

{
ζ(t)− zσ2(tk−1)

}
≥ x

}

≤ K
∞∑

k=1

exp

[
−λx

z
− λzσ2(tk−1) +K◦λ

2σ2(tk)

]
.

(54)

Therefore choosing λ = z/[K◦(1 + q)] with q > 0 we obtain by (54)

P
{
zmax

t≥0

[
ζ(t)− zσ2(t)

]
≥ x

}
≤ K exp

[
− x

K◦(1 + q)
+

z2σ2(t1)

K◦(1 + q)2

]

+K exp

[
− x

K◦(1 + q)

] ∞∑

k=2

exp

[
−z2σ2(tk−1)

K◦(1 + q)
+

z2σ2(tk)

K◦(1 + q)2

]
.

(55)

Let us now define points tk as follows:

t1 = max
{
s : σ2(s) ≤ z−1

}
, tk = max

{
s : σ2(s) ≤ (1 + q)pσ2(tk−1)

}
,

where (1 + q)−1 < p < 1. Then it is clear that

−z2σ2(tk−1)

1 + q
+

z2σ2(tk)

(1 + q)2
≤ −(1− p)z2σ2(tk−1)

1 + q
≤ −(1− p)[(1 + q)p]k−1

1 + q
.

Therefore (53) follows from (55) and the above inequality. �

We say that H is a set of ordered sequences hk ∈ [0, 1], k = 1, . . . if for
any h, g ∈ H either

hk ≤ gk, for all k = 1, 2, . . . ;

or
hk ≥ gk, for all k = 1, 2, . . . .

Lemma 9 Let ξk, k = 1, . . . be i.i.d. standard Gaussian random variables
and H, G be sets of ordered sequences. Then for any given z > 0 and all
x ≥ 0

P

{
max
g∈G

max
h∈H

[ p∑

i=1

gihiξiµi − z‖hµ‖2
]
≥ x

}
≤ K exp

(
−K◦zx

)
, (56)

where K◦, K are some generic constants.
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Proof. Consider the following Gaussian random field:

ξ(h, g) =

p∑

i=1

gihiξiµi, h ∈ H, g ∈ G.

Since ξ(h, g) is a Gaussian random variable, we have for any λ ∈ R
+

E exp
{
λ[ξ(h1, g)− ξ(h2, g)]

}
= exp

[
λ2σ2(h1 − h2, g)

2

]
,

E exp
{
λ[ξ(h, g2)− ξ(h, g1)]

}
= exp

[
λ2σ2(h, g2 − g1)

2

]
,

(57)

where

σ2(h, g) =

p∑

k=1

h2kg
2
kµ

2
k.

Notice that for any h1, h2 ∈ H such that h2 ≥ h1

σ2(h2, g)− σ2(h1, g) =

p∑

k=1

[h22,k − h21,k]g
2
kµ

2
k

=

p∑

k=1

[h2,k − h1,k][h2,k + h1,k]g
2
kµ

2
k

≥
p∑

k=1

[h2,k − h1,k][h2,k − h1,k]g
2
kµ

2
k = σ2(h2 − h1, g)

(58)

and similarly for any g1, g2 ∈ G such that g2 ≥ g1

σ2(h, g2)− σ2(h, g1) ≥ σ2(h, g2 − g1). (59)

Therefore we can apply Lemma 7 because Condition 2 for σ2(h, g) is
obviously fulfilled. So, by this lemma and Equations (57)-(59) we obtain
the following inequality:

E exp

{
λ max

h′≥h; g∈G

ξ(h′, g)√
σ2(h, 1)

}
≤ K exp

(
K◦λ

2
)
,

which holds true for any λ ∈ R
+. Here K◦ and K are some constants.

This equation is equivalent to

E exp
{
λ max

h′≤h; g
ξ(h′, g)

}
≤ K exp

[
K◦λ

2σ2(h, 1)
]
, λ ≥ 0. (60)

and thus (56) follows from (60) and Lemma 8. �
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Lemma 10 Suppose H is a set of ordered sequences and ξk, k = 1, . . . are
i.i.d. standard random variables. Then for any γ > 0 and any x ≥ 0

P

{
max
h,g∈H

[ n∑

k=1

gkhk(1− ξ2k)− γ‖h‖2
]
≥ x

}
≤ K exp

(
−K◦γx

)
(61)

and for any γ ∈ (0, 3/16) and any x ≥ 0

P

{
max
h,g∈H

[ n∑

k=1

gkhk(ξ
2
k − 1)− γ‖h‖2

]
≥ x

}
≤ K exp

(
−K◦γx

)
; (62)

where K◦, K are generic constants.

Proof. The proof of (61) is similar to the one of (56). Notice that for the
following random field

ξ−(h, g) =

n∑

k=1

gkhk(1− ξ2k)

and for the following function

σ2(h, g) =
n∑

k=1

g2kh
2
k.

the equations

E exp

[
λ
ξ−(h2, g) − ξ−(h1, g)√

σ2(h2 − h1, g)

]
≤ exp(λ2),

E exp

[
λ
ξ−(h, g2)− ξ−(h, g1)√

σ2(h, g2 − g1)

]
≤ exp(λ2)

(63)

hold true for all λ ≥ 0 and all h2 ≥ h1, g2 ≥ g1. In order to verify (63), we
make use of log(1 + x) ≥ x− x2/2. So, we get

logE exp

[
λ
ξ−(h2, g) − ξ−(h1, g)√

σ2(h2 − h1, g)

]
=

λ√
σ2(h2 − h1, g)

p∑

k=1

gk(h2k − h1k)

− 1

2

p∑

k=1

log

[
1 + 2λ

gk(h2k − h1k)√
σ2(h2 − h1, g)

]
≤ λ2.

The proof of (62) is more delicate since for the random field

ξ+(h, g) =
n∑

k=1

gkhk(ξ
2
k − 1)

Equations (63) do not hold for all λ ≥ 0.
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To overcome this difficulty, notice that by the convexity of exp(x) we
have for any µ ∈ (0, 1)

E exp
{
λ max

h≤H, g
[ξ+(h, g)]

}

≤ µE exp
{
µ−1λ max

h≤H, g
[ξ+(h, g) − ξ+(H, gmax)]

}

+ (1− µ)E exp
{
(1− µ)−1λξ+(H, gmax)

}
,

(64)

where gmax is the maximal element in G.
The main idea in this inequality is that for the following random field

ξ(h, g) = ξ+(h, g) − ξ+(H, gmax)

inequalities

E exp

[
λ
ξ(h1, g)− ξ(h2, g)√

σ2(h1 − h2, g)

]
≤ exp(λ2),

E exp

[
λ
ξ(h, g1)− ξ−(h, g2)√

σ2(h, g1 − g2)

]
≤ exp(λ2)

hold for all λ ≥ 0. Therefore, we have

E exp
{
λµ−1 max

h≤H, g∈G
ξ(h, g)

}
≤ K exp

[
K◦λ

2µ−2σ2
◦(H)

]
, λ ≥ 0, (65)

where

σ2
◦(H) =

p∑

k=1

H2
k , K◦ =

4
√
2√

2− 1
≤ 14.

Next, with the help of the inequality

− log(1− x) ≤ x+ 8x2, x ∈ [0, 3/4],

we obtain

logE exp
{
(1− µ)−1λξ+(H, gmax)

}
= − λ

1− µ

p∑

k=1

Hkg
max
k

−1

2

p∑

k=1

log

[
1− 2λHkg

max
k

1− µ

]
≤ 16λ2

(1− µ)2
σ2
◦(H).

(66)

This inequality holds true if

2λ

1− µ
≤ 3

4
.

Thus, choosing µ = 1/2, we obtain from (64)-(66) that for all λ ∈
[0, 3/16]

logE exp
[
λ max

h≤H, g
ξ+(h, g)

]
≤ 64λ2σ2(H) +K.

Therefore (62) follows from Lemma 8. �
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3.2 Concentration inequalities for quadratic forms in Gaus-

sian random variables

The main idea in the proofs of Theorems 3 and 4 is based on simple facts
about distributions of quadratic forms in Gaussian random variables. They
are undoubtedly known and we provide their proofs here only for reader’s
convenience. We refer interested readers to [16] (Section 4), where more
precise results can be found.

Lemma 11 Let

ζb =

∞∑

k=1

bkχ
2
k(qk),

where χ2
k(q) are i.i.d. standard χ2-random variables with q degrees of free-

dom, bk ≥ 0 and qk ≥ 1 are deterministic sequences. Then for any λ ≥ 0

E exp
(
λ
√
ζb
)
≤ exp

(
λ
√

Eζb + λ2max
k

bk
)
. (67)

Proof. Denote for brevity

B = max
k

bk, M =

∞∑

k=1

bkqk = Eζ2b .

Inequality (67) may be proved with the help of the following simple
inequality

E exp
(
λ
√

ζb
)
=min

µ≥0

∫ ∞

0
exp(λ

√
x− µx) exp(µx)pζb(x) dx

≤min
µ≥0

exp
[
max
x≥0

(√
xλ− µx

)]
E exp(µζb)

= exp

{
min
µ≥0

[
λ2

4µ
+ logE exp(µζb)

]}
.

(68)

Since

E exp(µζb) = exp

{
−1

2

∞∑

k=1

qk log(1− 2bkµ)

}
,

we have

E exp
(
λ
√
ζb
)
≤min

µ≥0

{
λ2

4µ
− 1

2

∞∑

k=1

qk log(1− 2bkµ)

}
(69)

The above minimum is attained obviously at µ◦, which is a solution to

λ2

4µ2
◦

=
∞∑

k=1

bkqk
1− 2µ◦bk

. (70)
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Next notice that

− log(1− t) ≤ t

1− t

and therefore

−1

2
log(1− 2µ◦bk) ≤

µ◦bk
1− 2µ◦bk

.

Thus, we have in view of (70)

λ2

4µ◦
− 1

2

∞∑

k=1

qk log(1− 2hkµ◦) ≤
λ2

4µ◦
+

∞∑

k=1

µ◦hkqk
1− 2µ◦hk

=
λ2

2µ◦
. (71)

On the other hand, it follows from (70) that

λ2

4µ2
◦

≤ M

1− 2Bµ◦

or, equivalently,

µ◦ ≥
[
m

(
1 +

√
1 +

4M

λ2B

)]−1

.

Hence
λ2

2µ◦
≤ λ2B

2
+

λ2B

2

√
1 +

4M

λ2B
≤ λ2B + λ

√
M

and combining this inequality with Equations (71) and (69), we complete
the proof. �

We will need also the following simple fact.

Lemma 12 Let ζi, i = 1, 2, be nonnegative random variables such that for
all λ ≥ 0

E exp
(
λ
√

ζi
)
≤ exp

(
λ
√

Eζi +
σ2
i λ

2

2

)
. (72)

Then

E exp
(
λ
√

ζ1 + ζ2

)
≤ exp

[
λ
√

E(ζ1 + ζ2) +
(σ1 + σ2)

2λ2

2

]
. (73)

If ζ1 and ζ2 are independent, then

E exp
(
λ
√
ζ1 + ζ2

)
≤ exp

[
λ
√

E(ζ1 + ζ2) +
(σ2

1 + σ2
2)λ

2

2

]
. (74)

Proof. Denote
∆i =

[√
ζi −

√
Eζi

]
+
,

where [x]+ = max(x, 0). It follows immediately from (72) that

E exp(λ∆i) ≤ exp

(
σ2
i λ

2

2

)
. (75)
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It is also clear that
ζi ≤ (

√
Eζi +∆i)

2.

and therefore

ζ1 + ζ2 ≤E(ζ1 + ζ2) + 2
√

E(ζ1 + ζ2)max{∆1,∆2}+∆2
1 +∆2

2

≤
[√

E(ζ1 + ζ2) +
√

∆2
1 +∆2

2

]2
.

Hence

√
ζ1 + ζ2 ≤

√
E(ζ1 + ζ2) + ∆1 +∆2. (76)

Next, by Hölder’s inequality and (75),

E exp
{
λ(∆1 +∆2)

}
≤E1/p exp

{
pλ∆1

}
E1/q exp

{
qλ∆2

}

≤ exp

{
λ2

[
pσ2

1 + qσ2
2

]

2

}
,

where 1/p + 1/q = 1. Therefore, minimizing the right-hand side at this
equation in p, we complete the proof of (73) in view of (76). The proof of
(74) is straightforward. �
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