
HAL Id: hal-01292325
https://hal.science/hal-01292325v1

Submitted on 23 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Making Full use of Emerging ARM-based
Heterogeneous Multicore SoCs

Felix Baum, Arvind Raghuraman

To cite this version:
Felix Baum, Arvind Raghuraman. Making Full use of Emerging ARM-based Heterogeneous Multicore
SoCs. 8th European Congress on Embedded Real Time Software and Systems (ERTS 2016), Jan 2016,
TOULOUSE, France. �hal-01292325�

https://hal.science/hal-01292325v1
https://hal.archives-ouvertes.fr

Making Full use of Emerging ARM-based

Heterogeneous Multicore SoCs

Felix Baum
Embedded Systems Division

Mentor Graphics Corporation

Fremont, California USA

felix_baum@mentor.com

Arvind Raghuraman
Embedded Systems Division

Mentor Graphics Corporation

Fremont, California USA

arvind_raghuraman@mentor.com

Abstract— The complexity and pace of heterogeneous SoC

architectures is accelerating at blinding speed. While these

complex hardware architectures enable product vision, they also

create new and difficult challenges for the system architects.

Running and debugging an Operating System and application

code on a single core is child’s play. This is also true for running

Synchronous Multiprocessing (SMP) capable Operating Systems

on homogenous multicore processors.

The modern day SoC combines asymmetric multiple cores,

graphics processing units, offload engines and more on a single

piece of silicon. This paper will discuss opportunities for system

partitioning and consolidation, and some of the key issues and

challenges of architecting, developing and debugging software on

these complex systems.

Keywords— Multicore SoC, Synchronous Multiprocessing,

Asynchronous Multiprocessing, AMP, SMP, ARM, Mentor

Embedded Multicore Framework, MEMF, OpenAMP

I. Introduction

Heterogeneous multicore systems combining two or more
different types of microprocessors (MPUs) and
microcontrollers (MCUs) are quickly becoming the de-facto
architecture in the embedded industry today. The quick
emergence of these systems can be attributed to a number of
factors, with one of the main one being consolidation. Over the
last few years, there have been explosion of adoption in
embedded designs of ARM cores. One of the benefits of using
ARM is the ease with which SoC hardware designers can
efficiently solve computing problems using systems of
heterogeneous cores. Designers are able to allocate the right
amount of compute for a given problem at the point that
compute power is needed. And while Symmetric
Multiprocessor (SMP) operating systems provide the
infrastructure required to balance application workload
symmetrically or asymmetrically across multiple homogeneous
cores present in a multiprocessing system, in order to leverage
the compute bandwidth provided by the heterogeneous
processors present in the system, Asymmetric Multiprocessing
(AMP) software architectures should be employed.

Asymmetric Multiprocessing architectures typically entail a
combination of dissimilar software environments such as
Linux®, a real-time operating system (RTOS), or bare-metal
running on homogeneous or heterogeneous processing cores

present in the SoC – all working in concert to achieve the
design goals of the end application. Typical designs involve a
software context on a master core bringing up a remote
software context on a remote core on a demand-driven basis to
offload computation. The master, remote processors, and their
associated software contexts (i.e., OS environments) could be
homogeneous or heterogeneous in nature. In order to
effectively deal with the complexities of managing life cycle of
several different operating systems on possibly dissimilar
processors, and to provide an enabling Inter Processor
Communications (IPC) infrastructure for offloading compute
workload, new and improved software capabilities and
methods are required.

The Multicore framework presented in this paper is not

limited to work with ARM architecture or heterogeneous

systems only. One can utilize these concepts with PPC or IA

cores, but due to the popularity of the ARM devices in

embedded space and emergence of SoCs with heterogeneous

cores, we focus on those devises. This framework is a

commercial implementation of the OpenAMP - an emerging

API standard managed under the umbrella of Multicore

Association.

To ensure that developers can efficiently solve compute

problems with heterogeneous ARM SoCs, it is important to
standardize some of the frameworks used to engineer various
aspects of heterogeneous ARM systems. The Multicore
Framework described in the paper is a software framework that
provides two key capabilities to AMP system developers: 1) It
provides the remoteproc component and API for life cycle
management of remote processors and their associated
software contexts to enable control the reset, load, execute and
reboot states of the processors and cores; and 2) It provides
remote messaging - rpmsg component and API for Inter-
Processor Communications (IPC) between OS contexts in the
AMP environment.

In Linux Operating system, when user wants to start, stop
or execute another task, the remoteproc command is used.
When one application needs to communicate with another
application, they use the rpmsg APIs which are by now are part
of the mainstream Linux and found in all current kernel
distributions. The Framework hides the complexities of
managing heterogeneous hardware and software environments
providing a simplified application level interface to the user.

mailto:felix_baum@mentor.com
mailto:arvind_raghuraman@mentor.com

II. Origins

Compliance to open standards and adoption by the open

source Linux community are important considerations when

choosing an appropriate API for the multicore framework

outlined in the paper. With these considerations, we choose the

remoteproc and rpmsg API present in the Linux 3.4.x kernel

and newer. The Linux remoteproc and rpmsg infrastructure

was originally conceived and committed to the Linux kernel by

Texas Instruments. The infrastructure allows Linux OS on a

master processor to manage life cycle and communications

with remote software context on a remote processor. However,

the Linux provided infrastructure has some caveats; Linux

rpmsg implicitly assumes that Linux will always be the master

operating system and does not support Linux as remote OS in

an AMP configuration. Further, the remoteproc and rpmsg

APIs are available from Linux kernel space only – there is no

equivalent API or library usable with other OSs and run-times.

We developed a standalone library written in C language that

provides a clean room implementation of the remoteproc and

rpmsg functionality usable with RTOS or Bare-metal software

environments, with API level compatibility and functional

symmetry to its Linux counterpart.

The Multicore Framework is a standalone library written in

the C language. It provides a clean room implementation of the

remoteproc and rpmsg functionality usable with RTOS or bare

metal software environments with API level compatibility and

functional symmetry to its Linux counterpart. Figure 1.a shows

a software stack diagram of the Multicore Framework and its

usage in RTOS or bare metal environments. As shown, the

Framework contains a well abstracted porting layer which

consists of a hardware interface layer and an OS abstraction

(environment) layer allowing users to easily port the

Framework to other processors and operating systems.

Figure 1.b shows the remoteproc and rpmsg infrastructure

present in the Linux kernel. The remoteproc and rpmsg drivers

are kernel space drivers that provide services to the

remoteproc platform driver and rpmsg user device driver. The

remoteproc platform driver allows for remote life cycle

management, and the rpmsg user device driver exposes IPC

services to user-space applications.

In addition to enabling RTOS and bare metal environments

to inter-operate with Linux remoteproc/rpmsg infrastructure in

AMP architectures, the Multicore Framework provides

workflows and runtime infrastructure to package and boot

Linux as a remote OS in AMP configurations. Figure 2 shows

the various AMP configurations supported by the Framework.

In most of the diagrams of this article, the Multicore

Framework is identified as MEMF or Mentor Embedded

Multicore Framework.

Figure 1: Multicore Framework in RTOS and Bare Metal Environments (a) and remoteproc and rpmsg in the Linux kernel (b)

Figure 2: Multicore Framework supported AMP configurations

III. Use Cases and Appliations

The Multicore Framework is well suited for both un-

supervised and supervised AMP architectures. To demonstrate

the use cases below, a Xilinx MPSoC hardware platform will

be used as it has 4 Cortex A53 cores and 2 Cortex R5 cores

along with FPGA fabric.

Un-supervised AMP (uAMP) architecture is applicable to

applications that do not require a strong separation between

the participating operating system contexts. In this

architecture, the participating operating systems run natively

on the processors present in the system. As shown in Figure

3.a, the Multicore Framework provides a simple and effective

infrastructure using which a master software context on a

master (boot) processor can manage the lifecycle and offload

computation to other compute resources present in the SOC in

typical uAMP systems.

Supervised asymmetric multiprocessing (sAMP)

architecture is applicable to applications that require isolation

of software contexts and virtualization of system resources in

an AMP system. In sAMP architecture, the participating guest

operating systems run in guest virtual machines that are

managed and scheduled by a hypervisor (aka virtual machine

monitor). The hypervisor provides isolation and virtualization

services for the virtual machines. The Multicore Framework

enables sAMP architectures to manage computation on

heterogeneous compute resources present in the SoC. As

illustrated in Figure 3.b, the Framework can be used in two

ways; 1) The Framework can be used from the guest OS

context for un-supervised management of heterogeneous

compute resources, and 2) Alternatively, the Framework can

be used from within the hypervisor for supervised

management of heterogeneous compute resources, allowing

the hypervisor to supervise interactions between the guest

operating systems and remote contexts involved.

The Multicore Framework is well-suited for applications

requiring demand driven off-load of compute functions to

specialized cores present on a multiprocessing chip. In case of

power constrained devices, the Framework enables on-demand

bring up and shut down of compute resources allowing for

optimal power usage.

The Framework also provides an easy path for

consolidation of legacy uni-core based embedded systems

onto powerful and more capable multiprocessing SoCs. With

very little effort, the Framework allows for migration of

legacy software originally developed for uni-core silicon to

easily interoperate with enhanced system functionality

developed on newer and more powerful multiprocessing chips.

Lastly, the Framework facilitates implementation of fault

tolerant architectures. For example, the Framework can enable

a certified RTOS context (master) handling critical system

functionality to manage a Linux context handling non-critical

system functions. Upon failure of the Linux-based subsystem,

the RTOS can simply re-boot the failed subsystem without

causing any adverse effects to critical system functions.

IV. System Level Considerations in designing AMP

Systems

Multicore Framework APIs provide the required software

infrastructure to manage computation in AMP systems.

However, in designing AMP systems, certain system level

considerations must be taken into account before developing

application software using the Framework APIs.

During the initial design phase the AMP topology is to be

determined. The Framework can be used in a star topology – a

single master managing multiple remotes, or in chain topology

– with chained master and remote nodes as shown in Figure

4.a.

Figure 3: Multicore Framework use-cases: a) In uAMP architecture, and b) In sAMP architecture.

Once a suitable topology is chosen, the memory layout is

to be determined. Memory regions should be assigned for each

participating OS runtime, and shared memory regions should

be assigned for IPC between the OS instances. Once the

memory layout is finalized, the platform specific configuration

data for the Framework should be updated to reflect the

chosen memory architecture. Figure 4.b shows an example of

a high-level memory architecture layout.

Off-the-shelf operating systems generally assume they

own the entire SoC, and are not readily suited for operation in

unsupervised AMP environments where co-operative usage of

shared resources and mutually exclusive usage of non-shared

resources are key requirements. Each participating OS in an

AMP system needs to be modified so that shared resources are

used in a cooperative fashion. For example; the remote OS

should not reset and re-initialize a shared global interrupt

controller which could already be in use with respect to the

master context, globally used timers cannot be reset, etc.

These changes will typically require modifications to the OS

kernel and/or BSP sources.

Further, system partitioning should be performed. System

resources such as memory and non-shared IO devices

available on the platform should be partitioned between the

participating OSes so that each OS has visibility and access

only resources that are assigned to it. This can be

accomplished by modifying the platform-specific device and

memory definitions provided to the participating OSes. For

example, modify memory and device definitions in: a) Linux

device tree source (DTS) file for Linux OS; b) platform

definition file for Nucleus RTOS; and c) the platform-specific

headers in bare metal environments.

V. Tools for Development of AMP Systems

Development of AMP application software presents a

unique set of challenges. System developers typically find

themselves in situations having to simultaneously debug

several different OS environments deployed on dissimilar

processors on heterogeneous SoCs.

Having a unified debugging environment with awareness

of operating systems involved will not only enhance the debug

experience, but improve productivity. As one of such tools,

Mentor Embedded Sourcery CodeBench tools provide a

unified IDE with OS awareness for all supported OS

environments (including Mentor Embedded Linux, Nucleus

RTOS, and bare metal). Sourcery CodeBench also supports a

multitude of debug options which include: JTAG-based debug

for debugging Linux kernel space, Nucleus RTOS kernel and

applications, and bare metal contexts; GDB-based debug for

Linux user space, and Nucleus RTOS based applications.

While developing AMP systems, software profiling is a

valuable tool to gain insight into how various applications

deployed on heterogeneous operating systems interact with

each other during runtime. Each OS instance is typically based

of an independent clock source, and any profiling data

collected within a given OS context will be based on a time

base that is local to the OS. Mentor Embedded Sourcery

Analyzer host-based tools and Mentor’s operating systems

contain built-in algorithms that enable users to graphically

visualize and analyze trace data collected from disparate OS

sources in a unified time reference. This capability allows

users to gain interesting insights into complex interactions,

and hard to find timing issues typically encountered in

developing AMP software.

Figure 4: Designing AMP: possible topologies (a) and memory architecture (b).

VI. Related Work

While there are other approches to adressing multicore

software chalenges, this particular way is a bit unique. Here is

a short summary of some of them:

OpenCL™ (Open Computing Language) is the industry’s

open standard for writing data-parallel code in heterogeneous

computers. AMD and Intel both promote OpenCL as a

primary approach towards programming their parallel

computing hardware offerings. OpenCL requires a similar

level of low-level understanding and competence to write

efficient parallel software. OpenCL is primarily targeted at

leveraging data-parallelism of devices, and additional

considerations must be made to use the multiple cores

available on the CPUs in the system, for example offloading

cpu intensive algorithms to GPUs. The multicore framework

listed in this paper differs from OpenCL as it does not try to

paralelize processing for the sake of performance but tries to

isolate and separate execution blocks based on performance or

power consumption requirements.

OpenMP (Open Multi-Processing) is an application

programming interface (API) that supports multi-platform

shared memory multiprocessing programming in C, C++, and

Fortran, on most desktop and server platforms, processor

architectures and operating systems. It consists of a set of

compiler directives, library routines, and environment

variables that influence run-time behavior. OpenMP preselects

a set of base-language constructs, for example do-construct, as

a basis for parallel computing. User identifies supported

constructs, and manually inserts directives to assist compiler

for a reconstruction of supported constructs into parallel. User

does not need to create threads, and does not need to consider

the work assigned to threads. OpenMP allows users who do

not have a sufficient knowledge of parallel computing to

explore parallel computing.

VII. Conclusion

The initial implementation of the Multicore Framework

described in this paper was open-sourced under the OpenAMP

open-source project with support for the Zynq 7000 SOC.

OpenAMP as an emerging API standard managed under the

umbrella of Multicore Association. This project is jointly

maintained by Mentor Graphics, Xilinx and other software and

hardware vendors. A current reference implementation of the

proposed OpenAMP standard is available at:

https://github.com/OpenAMP/open-amp. Mentor Embedded

Multicore Framework (MEMF) is a proprietary

implementation of the OpenAMP standard.

MEMF is tightly integrated with and readily supported by

all Mentor provided OS run-times. It supports a diverse set of

ARM based SOCs and platforms. Using MEMF with Mentor’s

tools and operating systems obviates users from having to

design their AMP system from scratch. i.e., perform tasks

discussed under the System level considerations section. Users

can focus on AMP application development with one of the

pre-canned reference configurations and later customize the

system configuration to fit their needs.

https://github.com/OpenAMP/open-amp

