
HAL Id: hal-01292325
https://hal.science/hal-01292325v1

Submitted on 23 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Making Full use of Emerging ARM-based
Heterogeneous Multicore SoCs

Felix Baum, Arvind Raghuraman

To cite this version:
Felix Baum, Arvind Raghuraman. Making Full use of Emerging ARM-based Heterogeneous Multicore
SoCs. 8th European Congress on Embedded Real Time Software and Systems (ERTS 2016), Jan 2016,
TOULOUSE, France. �hal-01292325�

https://hal.science/hal-01292325v1
https://hal.archives-ouvertes.fr


Making Full use of Emerging ARM-based 

Heterogeneous Multicore SoCs 

 

Felix Baum  
Embedded Systems Division 

Mentor Graphics Corporation 

Fremont, California USA 

felix_baum@mentor.com 

Arvind Raghuraman 
Embedded Systems Division 

Mentor Graphics Corporation 

Fremont, California USA 

arvind_raghuraman@mentor.com

 

 
Abstract— The complexity and pace of heterogeneous SoC 

architectures is accelerating at blinding speed.   While these 

complex hardware architectures enable product vision, they also 

create new and difficult challenges for the system architects. 

Running and debugging an Operating System and application 

code on a single core is child’s play.  This is also true for running 

Synchronous Multiprocessing (SMP) capable Operating Systems 

on homogenous multicore processors.   

The modern day SoC combines asymmetric multiple cores, 

graphics processing units, offload engines and more on a single 

piece of silicon.  This paper will discuss opportunities for system 

partitioning and consolidation, and some of the key issues and 

challenges of architecting, developing and debugging software on 

these complex systems. 
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I. Introduction 

Heterogeneous multicore systems combining two or more 
different types of microprocessors (MPUs) and 
microcontrollers (MCUs) are quickly becoming the de-facto 
architecture in the embedded industry today. The quick 
emergence of these systems can be attributed to a number of 
factors, with one of the main one being consolidation. Over the 
last few years, there have been explosion of adoption in 
embedded designs of ARM cores. One of the benefits of using 
ARM is the ease with which SoC hardware designers can 
efficiently solve computing problems using systems of 
heterogeneous cores. Designers are able to allocate the right 
amount of compute for a given problem at the point that 
compute power is needed. And while Symmetric 
Multiprocessor (SMP) operating systems provide the 
infrastructure required to balance application workload 
symmetrically or asymmetrically across multiple homogeneous 
cores present in a multiprocessing system, in order to leverage 
the compute bandwidth provided by the heterogeneous 
processors present in the system, Asymmetric Multiprocessing 
(AMP) software architectures should be employed.  

Asymmetric Multiprocessing architectures typically entail a 
combination of dissimilar software environments such as 
Linux®, a real-time operating system (RTOS), or bare-metal 
running on homogeneous or heterogeneous processing cores 

present in the SoC – all working in concert to achieve the 
design goals of the end application. Typical designs involve a 
software context on a master core bringing up a remote 
software context on a remote core on a demand-driven basis to 
offload computation. The master, remote processors, and their 
associated software contexts (i.e., OS environments) could be 
homogeneous or heterogeneous in nature. In order to 
effectively deal with the complexities of managing life cycle of 
several different operating systems on possibly dissimilar 
processors, and to provide an enabling Inter Processor 
Communications (IPC) infrastructure for offloading compute 
workload, new and improved software capabilities and 
methods are required. 

The Multicore framework presented in this paper is not 

limited to work with ARM architecture or heterogeneous 

systems only. One can utilize these concepts with PPC or IA 

cores, but due to the popularity of the ARM devices in 

embedded space and emergence of SoCs with heterogeneous 

cores, we focus on those devises.  This framework is a 

commercial implementation of the OpenAMP - an emerging 

API standard managed under the umbrella of Multicore 

Association. 

 
To ensure that developers can efficiently solve compute 

problems with heterogeneous ARM SoCs, it is important to 
standardize some of the frameworks used to engineer various 
aspects of heterogeneous ARM systems. The Multicore 
Framework described in the paper is a software framework that 
provides two key capabilities to AMP system developers: 1) It 
provides the remoteproc component and API for life cycle 
management of remote processors and their associated 
software contexts to enable control the reset, load, execute and 
reboot states of the processors and cores; and 2) It provides 
remote messaging - rpmsg component and API for Inter-
Processor Communications (IPC) between OS contexts in the 
AMP environment.  

In Linux Operating system, when user wants to start, stop 
or execute another task, the remoteproc command is used. 
When one application needs to communicate with another 
application, they use the rpmsg APIs which are by now are part 
of the mainstream Linux and found in all current kernel 
distributions. The Framework hides the complexities of 
managing heterogeneous hardware and software environments 
providing a simplified application level interface to the user.  
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II. Origins 

Compliance to open standards and adoption by the open 

source Linux community are important considerations when 

choosing an appropriate API for the multicore framework 

outlined in the paper. With these considerations, we choose the 

remoteproc and rpmsg API present in the Linux 3.4.x kernel 

and newer. The Linux remoteproc and rpmsg infrastructure 

was originally conceived and committed to the Linux kernel by 

Texas Instruments. The infrastructure allows Linux OS on a 

master processor to manage life cycle and communications 

with remote software context on a remote processor. However, 

the Linux provided infrastructure has some caveats; Linux 

rpmsg implicitly assumes that Linux will always be the master 

operating system and does not support Linux as remote OS in 

an AMP configuration. Further, the remoteproc and rpmsg 

APIs are available from Linux kernel space only – there is no 

equivalent API or library usable with other OSs and run-times. 

We developed a standalone library written in C language that 

provides a clean room implementation of the remoteproc and 

rpmsg functionality usable with RTOS or Bare-metal software 

environments, with API level compatibility and functional 

symmetry to its Linux counterpart. 

 

The Multicore Framework is a standalone library written in 

the C language. It provides a clean room implementation of the 

remoteproc and rpmsg functionality usable with RTOS or bare 

metal software environments with API level compatibility and 

functional symmetry to its Linux counterpart. Figure 1.a shows 

a software stack diagram of the Multicore Framework and its 

usage in RTOS or bare metal environments. As shown, the 

Framework contains a well abstracted porting layer which 

consists of a hardware interface layer and an OS abstraction 

(environment) layer allowing users to easily port the 

Framework to other processors and operating systems. 

 

Figure 1.b shows the remoteproc and rpmsg infrastructure 

present in the Linux kernel. The remoteproc and rpmsg drivers 

are kernel space drivers that provide services to the 

remoteproc platform driver and rpmsg user device driver. The 

remoteproc platform driver allows for remote life cycle 

management, and the rpmsg user device driver exposes IPC 

services to user-space applications.   

 

In addition to enabling RTOS and bare metal environments 

to inter-operate with Linux remoteproc/rpmsg infrastructure in 

AMP architectures, the Multicore Framework provides 

workflows and runtime infrastructure to package and boot 

Linux as a remote OS in AMP configurations. Figure 2 shows 

the various AMP configurations supported by the Framework. 

In most of the diagrams of this article, the Multicore 

Framework is identified as MEMF or Mentor Embedded 

Multicore Framework. 

 

Figure 1: Multicore Framework in RTOS and Bare Metal Environments (a) and remoteproc and rpmsg in the Linux kernel (b) 

Figure 2: Multicore Framework supported AMP configurations 



III. Use Cases and Appliations 

The Multicore Framework is well suited for both un-

supervised and supervised AMP architectures. To demonstrate 

the use cases below, a Xilinx MPSoC hardware platform will 

be used as it has 4 Cortex A53 cores and 2 Cortex R5 cores 

along with FPGA fabric. 

 

Un-supervised AMP (uAMP) architecture is applicable to 

applications that do not require a strong separation between 

the participating operating system contexts. In this 

architecture, the participating operating systems run natively 

on the processors present in the system. As shown in Figure 

3.a, the Multicore Framework provides a simple and effective 

infrastructure using which a master software context on a 

master (boot) processor can manage the lifecycle and offload 

computation to other compute resources present in the SOC in 

typical uAMP systems. 

 

Supervised asymmetric multiprocessing (sAMP) 

architecture is applicable to applications that require isolation 

of software contexts and virtualization of system resources in 

an AMP system. In sAMP architecture, the participating guest 

operating systems run in guest virtual machines that are 

managed and scheduled by a hypervisor (aka virtual machine 

monitor). The hypervisor provides isolation and virtualization 

services for the virtual machines. The Multicore Framework 

enables sAMP architectures to manage computation on 

heterogeneous compute resources present in the SoC. As 

illustrated in Figure 3.b, the Framework can be used in two 

ways; 1) The Framework can be used from the guest OS 

context for un-supervised management of heterogeneous 

compute resources, and 2) Alternatively, the Framework can 

be used from within the hypervisor for supervised 

management of heterogeneous compute resources, allowing 

the hypervisor to supervise interactions between the guest 

operating systems and remote contexts involved.  

 

The Multicore Framework is well-suited for applications 

requiring demand driven off-load of compute functions to 

specialized cores present on a multiprocessing chip. In case of 

power constrained devices, the Framework enables on-demand 

bring up and shut down of compute resources allowing for 

optimal power usage. 

 

The Framework also provides an easy path for 

consolidation of legacy uni-core based embedded systems 

onto powerful and more capable multiprocessing SoCs. With 

very little effort, the Framework allows for migration of 

legacy software originally developed for uni-core silicon to 

easily interoperate with enhanced system functionality 

developed on newer and more powerful multiprocessing chips. 

  

Lastly, the Framework facilitates implementation of fault 

tolerant architectures. For example, the Framework can enable 

a certified RTOS context (master) handling critical system 

functionality to manage a Linux context handling non-critical 

system functions. Upon failure of the Linux-based subsystem, 

the RTOS can simply re-boot the failed subsystem without 

causing any adverse effects to critical system functions.  
 

IV. System Level Considerations in designing AMP 

Systems 

Multicore Framework APIs provide the required software 

infrastructure to manage computation in AMP systems. 

However, in designing AMP systems, certain system level 

considerations must be taken into account before developing 

application software using the Framework APIs.  

 

During the initial design phase the AMP topology is to be 

determined. The Framework can be used in a star topology – a 

single master managing multiple remotes, or in chain topology 

– with chained master and remote nodes as shown in Figure 

4.a.  

Figure 3: Multicore Framework use-cases: a) In uAMP architecture, and b) In sAMP architecture. 



Once a suitable topology is chosen, the memory layout is 

to be determined. Memory regions should be assigned for each 

participating OS runtime, and shared memory regions should 

be assigned for IPC between the OS instances. Once the 

memory layout is finalized, the platform specific configuration 

data for the Framework should be updated to reflect the 

chosen memory architecture. Figure 4.b shows an example of 

a high-level memory architecture layout. 

 

 

Off-the-shelf operating systems generally assume they 

own the entire SoC, and are not readily suited for operation in 

unsupervised AMP environments where co-operative usage of 

shared resources and mutually exclusive usage of non-shared 

resources are key requirements. Each participating OS in an 

AMP system needs to be modified so that shared resources are 

used in a cooperative fashion. For example; the remote OS 

should not reset and re-initialize a shared global interrupt 

controller which could already be in use with respect to the 

master context, globally used timers cannot be reset, etc. 

These changes will typically require modifications to the OS 

kernel and/or BSP sources.  

 

Further, system partitioning should be performed. System 

resources such as memory and non-shared IO devices 

available on the platform should be partitioned between the 

participating OSes so that each OS has visibility and access 

only resources that are assigned to it. This can be 

accomplished by modifying the platform-specific device and 

memory definitions provided to the participating OSes. For 

example, modify memory and device definitions in: a) Linux 

device tree source (DTS) file for Linux OS; b) platform 

definition file for Nucleus RTOS; and c) the platform-specific 

headers in bare metal environments.  

 
 

V. Tools for Development of AMP Systems 

 

Development of AMP application software presents a 

unique set of challenges. System developers typically find 

themselves in situations having to simultaneously debug 

several different OS environments deployed on dissimilar 

processors on heterogeneous SoCs.  

 

 

Having a unified debugging environment with awareness 

of operating systems involved will not only enhance the debug 

experience, but improve productivity. As one of such tools, 

Mentor Embedded Sourcery CodeBench tools provide a 

unified IDE with OS awareness for all supported OS 

environments (including Mentor Embedded Linux, Nucleus 

RTOS, and bare metal). Sourcery CodeBench also supports a 

multitude of debug options which include: JTAG-based debug 

for debugging Linux kernel space, Nucleus RTOS kernel and 

applications, and bare metal contexts; GDB-based debug for 

Linux user space, and Nucleus RTOS based applications. 

 

While developing AMP systems, software profiling is a 

valuable tool to gain insight into how various applications 

deployed on heterogeneous operating systems interact with 

each other during runtime. Each OS instance is typically based 

of an independent clock source, and any profiling data 

collected within a given OS context will be based on a time 

base that is local to the OS. Mentor Embedded Sourcery 

Analyzer host-based tools and Mentor’s operating systems 

contain built-in algorithms that enable users to graphically 

visualize and analyze trace data collected from disparate OS 

sources in a unified time reference. This capability allows 

users to gain interesting insights into complex interactions, 

and hard to find timing issues typically encountered in 

developing AMP software. 

 

Figure 4: Designing AMP: possible topologies (a) and memory architecture (b). 



VI. Related Work 

While there are other approches to adressing multicore 

software chalenges, this particular way is a bit unique. Here is 

a short summary of some of them: 

OpenCL™ (Open Computing Language) is the industry’s 

open standard for writing data-parallel code in heterogeneous 

computers. AMD and Intel both promote OpenCL as a 

primary approach towards programming their parallel 

computing hardware offerings. OpenCL requires a similar 

level of low-level understanding and competence to write 

efficient parallel software. OpenCL is primarily targeted at 

leveraging data-parallelism of devices, and additional 

considerations must be made to use the multiple cores 

available on the CPUs in the system, for example offloading 

cpu intensive algorithms to GPUs. The multicore framework 

listed in this paper differs from OpenCL as it does not try to 

paralelize processing for the sake of performance but tries to 

isolate and separate execution blocks based on performance or 

power consumption requirements. 

OpenMP (Open Multi-Processing) is an application 

programming interface (API) that supports multi-platform 

shared memory multiprocessing programming in C, C++, and 

Fortran, on most desktop and server platforms, processor 

architectures and operating systems. It consists of a set of 

compiler directives, library routines, and environment 

variables that influence run-time behavior. OpenMP preselects 

a set of base-language constructs, for example do-construct, as 

a basis for parallel computing. User identifies supported 

constructs, and manually inserts directives to assist compiler 

for a reconstruction of supported constructs into parallel. User 

does not need to create threads, and does not need to consider 

the work assigned to threads. OpenMP allows users who do 

not have a sufficient knowledge of parallel computing to 

explore parallel computing. 

 

VII. Conclusion 

 

The initial implementation of the Multicore Framework 

described in this paper was open-sourced under the OpenAMP 

open-source project with support for the Zynq 7000 SOC. 

OpenAMP as an emerging API standard managed under the 

umbrella of Multicore Association. This project is jointly 

maintained by Mentor Graphics, Xilinx and other software and 

hardware vendors. A current reference implementation of the 

proposed OpenAMP standard is available at: 

https://github.com/OpenAMP/open-amp. Mentor Embedded 

Multicore Framework (MEMF) is a proprietary 

implementation of the OpenAMP standard. 

 

MEMF is tightly integrated with and readily supported by 

all Mentor provided OS run-times. It supports a diverse set of 

ARM based SOCs and platforms. Using MEMF with Mentor’s 

tools and operating systems obviates users from having to 

design their AMP system from scratch. i.e., perform tasks 

discussed under the System level considerations section. Users 

can focus on AMP application development with one of the 

pre-canned reference configurations and later customize the 

system configuration to fit their needs. 
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