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Abstract—Systems are expected to evolve during their service 

life in order to cope with changes of various natures, ranging 
from fluctuations in available resources to additional features 
requested by users. For dependable embedded systems, the 
challenge is even greater, as evolution must not impair 
dependability attributes. Resilient computing implies 
maintaining dependability properties when facing changes. 
Resilience encompasses several aspects, among which 
evolvability, i.e., the capacity of a system to evolve during its 
service life. In this paper, we discuss the evolution of systems with 
respect to their dependability mechanisms, and show how such 
mechanisms can evolve accordingly. From a component-based 
approach that enables to clarify the concepts, the process and the 
techniques to be used to address resilient computing, in 
particular regarding the adaptation of fault tolerance (or safety) 
mechanisms, we show how Adaptive Fault Tolerance (AFT) can 
be implemented with ROS. Beyond some implementation details 
given in the paper, we draw the lessons learned from this work 
and discus the limits of this runtime support to implement such 
resilient computing features in embedded systems. 

I. INTRODUCTION 
Evolution during service life is inevitable in many systems 

today. A system that remains dependable when facing changes 
(new threats, change in failures modes, updates of applications) 
is called resilient. The persistence of dependability when facing 
changes is called resilience [1]. Resilient computing 
encompasses several aspects, among which evolvability, i.e., 
the capacity of a system to evolve during its service life. On the 
other hand, dependability relies on fault-tolerant computing at 
runtime, enabled by Fault Tolerance Mechanisms (FTMs) 
attached to the application. As such, one of the key challenges 
of resilient computing is the capacity to adapt the FTMs 
attached to an application during its operational life. 

One important aspect of a dependable system design is the 
definition of the fault model. This fault model considers both 
hardware and software faults may lead to failure modes that 
impair the correct behavior of the system. In critical systems, 
such failure modes may violate safety properties. The role of 
the safety analysis (e.g. using the FMECA method, FMECA 
stands for Failure Modes, Effects and Criticality Analysis) is to 
identify the failure mode and then define the safety 
mechanisms to prevent the violation of safety properties. Such 
safety mechanisms rely on basic error detection and recovery 
mechanisms, namely fault tolerance techniques following 
Laprie's terminology. Such safety mechanisms are based on 
Fault Tolerance Design Patterns that can be combined 

together. The safety analysis is often done a priori according to 
the fault model that had been defined.  

During the operational life of the system, several situation 
may occur. New threats may lead to revise the fault model 
(electromagnetic perturbations, obsolescence of HW 
components, Software aging, etc.). A revision of the fault 
model has consequences on the fault tolerance mechanisms to 
be used. In other words, the validity of the fault tolerance 
mechanisms of safety mechanisms (whatever you want to call 
them) depends on the representativeness of the fault model. In 
a certain sense, a bad choice of the fault model may lead to pay 
for useless mechanisms in both normal operation and erroneous 
situations. This has an obvious side effect on the performance 
and on the dependability measures (reliability, dependability) 
respectively. This means that a change in the definition of the 
fault model implies a change in the fault tolerance mechanisms. 

Beyond the fault model, there are other sources of changes.  

Resources changes may also impair some safety 
mechanisms that rely on hardware resources. A typical 
example is the lost of processing units, but simply a loss in 
networks bandwidth may invalidate some fault tolerance 
mechanisms from a timing viewpoint. 

Application changes are more and more frequent during the 
operational lifetime. This is obvious for many conventional 
applications (e.g. mobile phones) but it is becoming also 
needed for more critical embedded systems. This is the case for 
long living systems like space or avionics systems, but also in 
the automotive domain, not only for maintenance purposes but 
also of commercial reasons. The evolution of the specification 
during the lifetime of a system is a fact, it follows the evolution 
of the user requirements or needs. The notion of versioning 
(updates) or the loading of additional features (upgrades) may 
lead to change the assumptions on top of which the 
implementation of FT mechanisms rely. Such change implies 
revisiting the FMECA spreadsheets but also the 
implementation of the FT mechanisms. Some FT mechanisms 
rely on strong assumptions regarding the behavior of the 
application, and everybody knows in the dependability 
community the importance of the coverage of such 
assumptions [16]. 

As a conclusion, the safety mechanism must remain 
compliant with all assumptions in terms of fault model, 
resources and application characteristics during the whole 
lifetime of the system. Their efficiency relies on this statement. 
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In this paper, we first motivate the issue and then report on 
an approach taking advantage of Component Based Software 
Engineering technologies for tackling this crucial aspect of 
resilient computing, namely the adaptation of fault tolerance 
mechanisms. We defined a minimal runtime support for 
implementing adaptive fault tolerance. The second part of this 
paper shows how this minimal runtime support can be 
implemented on ROS (Robot Operating System), presently 
used in many applications (robotics applications, automotive 
applications like ADAS – Advanced Driver Assistance 
Systems, or military applications). We illustrate the mapping of 
ideal components to ROS components and give 
implementation details of a fault tolerance design pattern that is 
adaptive at runtime. We finally draw the lessons learnt from 
our first experiments, discuss the limits of the exercise, and 
identify some promising directions. 

In Section II we present the problem statement, and then 
summarize our Component-Based Software Engineering 
(CBSE) approach for adaptive fault tolerance in Section III. A 
full account of this approach can be found in [13]. The 
mapping of this approach to ROS is described in Section IV. 
The lessons learnt are given in Section V before concluding. 

II. PROBLEM STATEMENT 
The need for Adaptive Fault Tolerance (AFT) rising from 

the dynamically changing fault tolerance requirements and 
from the inefficiency of allocating a fixed amount of resources 
to FTMs throughout the service life of a system was stated in 
[2]. AFT is gaining more importance with the increasing 
concern for lowering the amount of energy consumed by 
cyber-physical systems and the amount of heat they generate 
[3]. For Dependable systems that cannot be stopped for 
performing off-line adaptation, on-line adaptation of Fault 
Tolerance Mechanisms (FTMs) has attracted research efforts 
for some time now. However, most of the solutions [4], [5], [6] 
tackle adaptation in a preprogrammed manner: all FTMs 
necessary during the service life of the system must be known 
and deployed from the beginning and adaptation consists in 
choosing the appropriate execution branch or tuning some 
parameters, e.g., the number of replicas or the interval between 
state checkpoints. Nevertheless, predicting all events and 
threats that a system may encounter throughout its service life 
and making provisions for them is impossible. The use of 
FTMs in real operational conditions may lead to slight updates 
or unanticipated upgrades, e.g., compositions of FTMs that can 
tolerate a more complex fault model than initially expected. 

In both aeronautical and automotive systems, the ability to 
perform remote changes for different purposes is essential: 
maintenance but also updates and upgrades of embedded 
applications. The remote changes should be partial as it is 
unrealistic to reload completely an processing unit from small 
updates. This idea is recently promoted by some car 
manufacturers like Renault, BMW but also TESLA Motors in 
the USA stating in its website "Model S regularly receives 
over-the-air software updates that add new features and 
functionality". It is important to mention that performing 
remote changes will become very important for economic 
reasons, for instance selling options a posteriori since most of 
the evolution in the next future will rely on software for the 

same hardware configuration (sensors and actuators). In 
addition to this, the X-to-X applications (X being cars, planes 
or any smart critical objet) will imply rapid adaptation of 
onboard software to remain consistent with the network of X.  

We propose an alternative to preprogrammed adaptation 
that we denote agile adaptation of FTMs. The term “agile” is 
inspired from agile software development [7] that emphasizes 
the importance of accommodating change during the lifecycle 
of an application at a reasonable cost, rather than striving to 
anticipate an exhaustive set of requirements. Agile adaptation 
of FTMs enables systematic evolution: according to runtime 
observations of the system and of its environment, new FTMs 
can be designed off-line and integrated on-line in a flexible 
manner, with limited impact on the existing software 
architecture. 

Evolvability has long been a prerogative of the application 
business logic. A rich body of research exists in the field of 
software engineering consisting of concepts, tools, 
methodologies and best practices for designing and developing 
adaptive software [8]. Consequently, our approach for the agile 
adaptation of FTMs leverages advancements in this field such 
as Component-Based Software Engineering [9], Service 
Component Architecture [10] and Aspect-Oriented 
Programming [11].  

The basic idea is the following. Fault Tolerance or Safety 
Mechanisms are developed as a composition of elementary 
mechanisms, e.g. basic design patterns for fault tolerance 
computing. 

Using such concepts and technologies, we design FTMs as 
“Lego”-like brick-based assemblies that can be methodically 
modified at runtime through fine-grained changes affecting a 
limited number of bricks. This is the basic idea of our approach 
that maximizes reuse and flexibility, contrary to monolithic 
replacements of FTMs found in related work, e.g., [4], [5], [6]. 

However, most of software runtime supports used in 
embedded systems today do not rely on dynamic CBSE 
concepts. AUTOSAR, for instance, relies on very static system 
engineering concepts and does not provide today much 
flexibility [12]. A new approach enabling remote updates to be 
carried out, including for safety mechanisms, is required.  

ROS seems an appealing candidate for the dynamic 
composition of safety mechanisms. ROS is described as1: ROS 
is an open-source, meta- operating system for your robot. It 
provides the services you would expect from an operating 
system, including hardware abstraction, low-level device 
control, implementation of commonly-used functionality, 
message-passing between processes, and package management. 
It also provides tools and libraries for obtaining, building, 
writing, and running code across multiple computers. ROS can 
be viewed as a middleware running on top of a Unix-based 
operating system (typically Linux). ROS is used in robotics 
applications (e.g. Robonaut 2 from NASA within the ISS) but 
also in other industry sectors, the automotive industry for 
instance. This middleware provides a weak component 

                                                             
1 ttp://wiki.ros.org/ROS/Introduction 
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approach and means to dynamically manipulate system 
configuration. It is open-source, its user community is very 
large and it is used for critical application e.g. at NREC (The 
National Robotics Engineering Center in Pittsburgh) for 
unmanned military vehicles (e.g. the Crusher).  

III. ADAPTIVE FAULT TOLERANCE  

A. Basic concepts for AFT 
Some basic concepts must be discussed to address the 

problem of Adaptive Fault Tolerant computing. Three essential 
concepts must be discussed beforehand: 

• Separation of concerns: this concepts is now well known, it 
implies a clear separation between the functional code, i.e. 
the application, and the non-functional code, i.e. the fault 
tolerance mechanisms in our case. The connection between 
the application code and the FTM must be clearly defined 
as specific connections. This means that the FTMs can be 
disconnected and replaced by a new one provide the 
connectors remains the same. 

• Componentization: this concepts means that any software 
components can be decomposed into smaller components. 
Each component exhibit interfaces (services provided) and 
receptacles (services required). This means that any FTMs 
can be decomposed into smaller pieces, and conversely that 
an FTM is the aggregation of smaller. The ability to 
manipulate the binding between components (off-line but 
also on-line) is of high interest for AFT. 

• Design for adaptation: the adaptation of software systems 
imply that (i) the software itself has been analyzed with 
adaptation in mind for later evolution using 
componentization (although all situations cannot be 
anticipated) and (ii) designed to simplify their adaptation 
including from a programming viewpoint (e.g. using 
object-oriented, aspect-oriented programming concepts). 

Such basic concepts have been established and validated 
through various steps of analysis of fault tolerance design 
patterns and after several design and implementation loops, as 
discussed in [17]. 

The main benefits of AFT with respect to pre-programmed 
adaptation is clear, it provides means to define and update 
dependability mechanisms later during the lifetime of the 
system. Pre-program adaptation implies that all possible 
undesirable situations are defined at design time, which is 
difficult to anticipate regarding new threats (attacks), new 
failure modes (obsolescence of components), or simply adverse 
situations that have been ignored or forgotten during the safety 
analysis. In short, fine grain adaptation of FTMs improves 
maintainability of the system from a non-functional viewpoint. 

B. Change Model 
The choice of an appropriate fault tolerance mechanism 

(FTM) for a given application depends on the values of sev- 
eral parameters. We consider three classes of parameters: 1) 
fault tolerance requirements (FT); 2) application characteristics 
(A); 3) available resources (R). We denote (FT,A,R) as change 
model. At any point in time, the FTM(s) attached to an 

application component must be consistent with the current 
values of (FT, A, R). 

The three classes of parameters enable to discriminate 
FTMs. Among fault tolerance requirements FT, we focus, for 
the time being, on the fault model that must be tolerated. Our 
fault model classification is based on well-known types [14], 
e.g., crash faults, value faults, development faults. In this work, 
we focus on hardware faults but the approach is perfectly 
reproducible for FTMs that target development faults. 

The application characteristics A that we identified as 
having an impact on the choice of an FTM is: application 
statefulness, state accessibility and determinism. We con- sider 
the FTMs are attached to a black-box application. This means 
there is no possibility to interfere with its internals, for tackling 
non-determinism, for instance, in case an FTM only works for 
deterministic applications. Resources R play an important part 
and represent the last step in the selection process. FTMs 
require resources such as bandwidth, CPU, battery life/energy. 
In case more than one solution exists, given the values of the 
parameters FT and A, the resource criterion can invalidate 
some of the solutions. A cost function can be associated to each 
solution, based on R. 

Any parameter variation during the service life of the 
system may invalidate the initial FTM, thus requiring a 
transition towards a new one. Transitions may be triggered by 
new threats, resource loss or the introduction of a new 
application version that changes the initial application 
characteristics. A particularly interesting adaptation trigger is 
the fault model change. Incomplete or misunderstood initial 
fault tolerance requirements, environmental threats such as 
electromagnetic interferences or hardware aging may change 
the initial model to a more complex one.  

C. FT Design Patterns and Assumptions 
To illustrate our approach, we consider some fault tolerance 

design patterns (design patterns of FTMs) and discuss their 
underlying assumptions and resource needs. Any change that 
invalidates an assumption or implies an unacceptable resource 
change calls for an update of the FTMs. 

Duplex protocols tolerate crash faults using passive (e.g. 
Primary-Backup Replication denoted PBR), or active 
replication strategies (e.g. Leader-Follower Replication 
denoted LFR). In this case, each replica is considered as a self-
checking component, the error detection coverage is perfect. 
The fault model includes hardware faults or random operating 
system faults (no common mode faults). At least 2 independent 
processing units are necessary to run this FTM. 

 Two design patterns tolerating transient value faults are 
briefly discussed here. Time Redundancy (TR) tolerates 
transient physical faults or random runtime support faults using 
repetition of the computation and voting. This is way to 
improve the self-checking nature of a replica, but it introduces 
a timing overhead. Assertion&Duplex (A&D) tolerates both 
transient and permanent faults. It's a combination of a duplex 
strategy with the verification using assertions of safety 
properties that could be violated by a value fault or by a 
random runtime support error. 
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Assumptions / FTM PBR LFR TR A&D 
Fault Model 

(FT) 
crash     

transient     
Application 

behaviour (A) 
Deterministic    () 
State access    () 

Resources (R) 
 

Bandwidth high low nil (TDB) 
# CPU  2 2 1 2 

Fig. 1. Assumptions and fault tolerance design patterns charateristics 

The underlying characteristics of the considered FTMs, in 
terms of (FT,A,R), are shown in Fig. 1. For instance, PBR and 
LFR tolerate the same fault model, but have different A and R. 
PBR allows non-determinism of applications because only the 
Primary computes client requests while LFR only works for 
deterministic applications as both replicas compute all requests. 
LFR could tackle non-determinism if the application was not 
considered a black-box, as in our approach. PBR requires state 
access for checkpoints and higher network bandwidth (in 
general), while LFR does not require state access but generally 
incurs higher CPU costs (and, consequently, higher energy 
consumption) as both replicas perform all computations. 

During the service life of the system, the values of the 
parameters enumerated in Fig. 1 can change. An application 
can become non-deterministic because a new version is 
installed. The fault model can become more complex, e.g., 
from crash-only it can become crash and value fault due to 
hardware aging or physical perturbations. Available resources 
can also vary, e.g., bandwidth drop or constraints in energy 
consumption. For instance, the PBR→LFR transition is 
triggered by a change in application characteristics (e.g. 
inability to access application state) or in resources (bandwidth 
drop), while the PBR→A&D transition is triggered by a 
change in the considered fault model (e.g. safety property 
verification). Transitions can occur in both directions, 
according to parameter variation.  

The priority is the fault model, the selection of the solution 
(i.e. the composition of several FTMs) depending on the 
application characteristics and the available resources. The 
final objective is always to comply with the dependability 
properties during the service lifetime. 

D. Design for adaptation of FTMs 
Our “design for adaptation” aims at producing reusable 

elementary components that can be combined to implement a 
given fault tolerance or safety mechanism. Any FTM follows 
the generic Before-Proceed-After metamodel. Many FTMs can 
be mapped and combined using this model, as shown in Fig. 2. 

FTM Before Proceed After 
PBR (primary) 
PBR(backup) 

 Compute Checkpointing 
  State update 

LFR (leader) 
LFR (follower) 

Forward request Compute Notify 
Handle request Compute Handle notification 

TR Save/restore state   Compute Compare 
A&D  Compute Assert 

Fig. 2. Generic execution scheme for FT design patterns 

Composition implies nesting the Before-Proceed-After 
metamodel. This approach improves flexibility, reusability, 
composability and reduces development time. Updates are 
minimized since just few components have to be changed. 

E. Runtime support 
The software runtime support must provide key features to 

manipulation the component graph. Any application or an FTM 
is perceived as a graph of components. From previous 
experiments reported in [17], the following primitive are 
required. 

• Dynamic creation, deletion of components; 

• Suspension, activation of components; 

• Control over interactions between components for the 
creation and the removal of connections (bindings); 

Our first implementation was done on a reflective 
component-based middleware, FRASCATI [14] providing a 
scripting language to manipulate the component graph, FScript 
[15]. The proposed approach is reproducible on any other 
support that provides these features.  

IV. ADAPTIVE FAULT TOLERANCE ON ROS 
The main goal of ROS is to allow the design of modular 

applications: a ROS application is a collection of programs, 
called nodes, interacting only through message passing. 
Developing an application involve the assembly of nodes, 
which is akin to component-based approaches. Such an 
assembly is referred to as the computation graph of the 
application. 

A. Component model and reconfiguration 
Two communication models are available in ROS: a pub- 

lisher/subscriber model and a client/server one. The pub- 
lisher/subscriber model defines one-way, many-to-many, asyn- 
chronous communications through the concept of topic. When 
a node publishes a message on a topic, it is delivered to every 
nodes subscribing to this topic. Note that a publisher is not 
aware of the subscriber to its topic nor the other publishers. 
The client/server model defines bidirectional transaction (one 
request/one reply) synchronous communications through the 
concept of service. A node providing a service is not aware of 
the client nodes that may use its service. These high-level 
communication models allows to add, replace or delete nodes 
in a transparent manner, either offline or online. 

To provide this level of abstraction, each ROS application 
includes a special node called the ROS Master. It provides 
registration and lookup services to the other nodes. All nodes 
register services and topics to the ROS master. It is the only 
node that has a comprehensive view of the computation graph. 
When a node issues a service call, it queries the master for the 
address of the node providing the service and then it sends its 
request to this address. 

In order to be able to add fault-tolerance mechanisms to an 
existing ROS application in the most transparent manner, we 
need to implement interceptors. An interceptor provides a 
means to insert functionality, such as safety or monitoring 
nodes, into the invocation path between two ROS nodes. To 
this end, a relevant ROS feature is its remapping capability. At 
launch time, it is possible to reconfigure the name of any 
services or topics used by a node. Thus, requests and replies 
between nodes can be rerouted to interceptor nodes. 
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B. Implementing a componentized FT design pattern 
A full implementation on ROS of a duplex FT design 

pattern, a Primary Backup Replication (PBR) combined with a 
Time-Redundancy (TR) design pattern is developed here.  

1) Generic Computation Graph 
We have identified a generic pattern for the computation 

graph of a FTM. Figure 3 shows its application in the context 
of ROS. Node Client uses a service provided by Server. The 
FTM computation graph is inserted between the two thanks to 
the ROS remapping feature. Since Client and Server must be 
re-launched for the remapping to take effect, the insertion is 
done offline. The FTM nodes, topics, and services are generic 
for every FTM discussed in section II. Implementing a FTM 
consist in specializing the before, proceed, and after nodes with 
its corresponding behavior (see Fig. 3). 

 
Fig. 3. Generic computation graph for FTM 

We illustrate the approach, through a Primary-Backup 
Replication (PBR) mechanism added to the Client/Server 
application in order to tolerate a crash fault of the Server. Fig. 4 
presents the associated architecture. Three machines are 
involved: the Client, which is also hosting the ROS, master, the 
MASTER site hosting the primary replica and the SLAVE site 
hosting the backup replica. For the sake of clarity, the 
symmetric topics and services between MASTER and SLAVE are 
not represented. Elements of the slave are suffixed with “_S”. 

2) Implementing PBR 
We present the behavior of each node, the topics/services 

used through a request/reply exchange between a node Client 
and node Server (see Fig. 4). 
• Client sends a request to Proxy (service clt2pxy); 

• Proxy adds an identifier to the request and transfers it to 
Protocol (topics pxy2pro); 

• Protocol checks whether it is a duplicate request: if so, it 
sends directly the stored reply to Proxy (topics pro2pxy). 
Otherwise, it sends the request to Before (service pro2bfr); 

• Before transfers the request for processing to Proceed 
(topics bfr2prd); no action is associated in the PBR case, 
but for other duplex protocol, Before may synchronize with 
the other replicas; 

• Proceed calls the actual service provided by Server (service 
prd2srv) and forwards the result to After (topics prd2aft); 

• After gets the last result from Proceed, captures Server state 
by calling the state management service provided by the 

server (service aft2srv), and builds a checkpoint based on 
this information which it sends to node After_S of the other 
replica (topics aft2aft_S); 

• Protocol gets the result (topics aft2pro) and sends it to 
Proxy (topics pro2pxy); 

• On the backup replica, After_S transfers the last result to its 
protocol node Proto_S (topics aft2pr_S) and sets the state 
of its server to match the primary. 
In parallel with request processing, the node crash detector 

on the MASTER (noted CD) periodically gives a proof of life to 
the crash detector (CD_S) on the SLAVE to assert its liveliness 
(topics CD2CD_S). If a crash is detected, then the crash 
detector of the slave notifies the recovery node (topics 
CD_S2rcy). This node has two purposes: (i) in order to enforce 
the fail-silent assumption, it must ensure that every node of the 
MASTER are removed; (ii) it switches the binding between the 
Client proxy and the MASTER protocol to the SLAVE protocol. 
Thus, the SLAVE will receive the Client’s requests and will act 
as the Primary, changing its operating mode. 

 
Fig. 4. Computation graph of a PBR mechanism 

ROS does not provide APIs to dynamically change 
bindings between nodes. The node developer must implement 
the transition logics. The SLAVE protocol spins waiting for a 
notification from recovery (topics rcy2pro_S). This is done 
using the ROS API: background threads, within a node, check 
for messages independently of the node’s main functionality. 
Upon reception of this topic, protocol subscribes to topic 
pxy2pro and publishes to topic pro2pxy. After this transition, 
the proxy forwards the Client’s requests to the Slave protocol. 

3) Impact on the existing application 
 From the designer viewpoint, there are two changes 

required to integrate a FTM computation graph to its 
application. First, Client will have to be remapped offline to 
call the proxy node’s service instead of directly the Server. 
Second, state management services, to get and set the state of 
the node, must be integrated to the Server. Form an object-
oriented viewpoint any server inherits from an abstract class 
stateManager providing two virtual methods, getState and 
setState, overridden during the server development. 
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I. ADAPTATIVE FAULT TOLERANCE ON ROS

A. Introduction to ROS

ROS can be viewed as a middleware running on top of
a Unix-based operating system (typically Linux). The main
goal of ROS is to allow the design of modular applications :
a ROS application is a collection of programs, called nodes,
interacting only through message passing. Developing an ap-
plication involve the assembly of nodes, which is akin to
component-based approaches. Such an assembly is referred to
as the computation graph of the application.

B. Component model and reconfiguration

Two communication models are available in ROS: a pub-
lisher/subscriber model and a client/server one. The pub-
lisher/subscriber model defines one-way, many-to-many, asyn-
chronous communications through the concept of topic. When
a node publishes a message on a topic, it is delivered to every
nodes subscribing to this topic. Note that a publisher is not
aware of the subscriber to its topic nor the other publishers.
The client/server model defines bidirectional transaction (one
request/one reply) synchronous communications through the
concept of service. A node providing a service is not aware
of the client nodes that may use its service. These high-level
communication models allows to add, replace or delete nodes
in a transparent manner, either offline or online.

To provide this level of abstraction, each ROS application
includes a special node called the ROS Master. It provides
registration and lookup services to the other nodes. All nodes
register there services and topics to the ROS master. It is the
only node which has a comprehensive view of the computation
graph. When a node issues a service call, it queries the master
for the address of the node providing the service and then it
sends its request to this address.

In order to be able to add fault-tolerance mechanisms to
an existing ROS application in the most transparent manner,
we need to implement interceptors. An interceptor provides
a means to insert functionality, such as safety or monitoring
nodes, into the invocation path between two ROS nodes. To
this end, a relevant ROS feature is its remapping capability.
At launch time, it is possible to reconfigure the name of any
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Fig. 1. Generic computation graph for FTM

services or topics used by a node. Thus, requests and replies
between nodes can be rerouted easily to interceptor nodes.

C. Implementing a componentized FT design pattern

1) Generic Computation Graph: We identified a generic
pattern for the computation graph of a FTM. Figure 1 shows
its application in the context of ROS. Node Client uses a
service provided by Server. The FTM computation graph is
inserted between the two thanks to the ROS remapping feature.
The FTM nodes, topics, and services are generic for every
FTM discussed in section II. Implementing a FTM consist
in specializing the before, proceed, and after nodes with its
corresponding behavior (see table X).

We illustrate the approach, through a Primary-Backup
Replication (PBR) mechanism added to the Client/Server
application in order to tolerate a crash fault of the Server.
Figure 2 shows the architecture. Three machines are involved
: the CLIENT which is also hosting the ROS master, the
MASTER hosting the primary replica and the SLAVE hosting
the backup replica. For the sake of clarity, the symmetric
topics and services between MASTER and SLAVE are not
represented. Elements of the slave are suffixed with ” S”

We present the behavior of each nodes, the topics/services
used through a request/reply exchange between a node Client
and node Server.

• Client sends a request to Proxy (service clt2pxy);
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Fig. 5. Composition principle of FT mechanisms (PBR+TR). 

C. Composition of FT mechanisms 
The generic computation graph for FTM is designed for 
composability. In this section, the composition scenario is 
two-fold. We first illustrate the composition of two FTMs, 
PBR for crash faults and TR for transient value faults. Initially 
the application was installed with PBR. From an operational 
standpoint, at a given point in time, transient faults impacting 
numerical calculations appeared due to hardware components 
aging or sudden increase of environmental radiations. In a 
second step, later on, we consider that the communication 
channel between client and server can be the target for 
intrusions. Cryptographic protocols, based for instance on a 
simple Public Key Infrastructure (PKI), can be used to cipher 
communications and add cryptographic signatures.  
 

 
Fig. 6. Composition principle of FT mechanisms. 

1) Composition of PBR and TR on ROS 
With respect to request processing, a Protocol node and a 

Proceed node present the same interfaces: a request as input, a 
reply as output. Hence, a way to compose mechanisms is to 
replace the Proceed node of a mechanism by a Protocol and its 
associated Before/Proceed/After nodes, as shown in Fig. 6.  

Our approach enables developing a new mechanism on the 
foundation of several existing ones. This improves the 
development time and the assurance in the overall system, 

since all mechanisms have been validated off-line by test and 
fault injection techniques.  

The architecture of the composite FTM made of PBR and 
TR is given in Fig. 5. This figure is an extension of Fig. 4 
where the Proceed node of the PBR has been replaced with the 
Protocol node of the TR implementation. 

2) Composing FTM with Cryptographic protocols 
The generic computation graph presented in Fig. 3 enables 

cryptographic protocols to be seamlessly added to an 
application, already equipped with accidental fault tolerance 
mechanisms, PBR and TR in our example. The cryptographic 
mechanism (called SEC for security) is located at both the 
client (SEC_C) and the server side (SEC_S) as shown in Fig. 
7). On the server side, SEC operates before PBR and TR. 

 
Fig. 7. Composition principle of SEC with other FT mechanisms. 

In this example, we only deal with possible intrusions 
between the client and the server. 

We assume that a node implements the Certification 
Authority (CA). Three topics are used to communicate with the 
CA, namely Cli2CA for the Client, Master2CA for the Master 
and Slave2CA for the Slave. The topic Cli2CA enables the 
Before node of the Client to collect the certificate of the Server. 
Similarly, the topic Master2CA and Slave2CA enable Before of 
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Fig. 2. Computation graph of a PBR mechanism

• Proxy adds an identifier to the request and transfer it
to Protocol (topic pxy2pro);

• Protocol checks whether it is a duplicate request: if
so, it sends directly the stored reply to Proxy (topic
pro2pxy), otherwise, it sends the request to Before
(service pro2bfr);

• Before transfer the request for processing to Proceed
(topic bfr2prd); no action in the PBR case, for other
duplex protocol, Before may synchronize with the
other replica;

• Proceed calls the actual service provided by Server
(service prd2srv) and forwards the result to After
(topic prd2aft);

• After gets the last result form Proceed and captures
Server state by calling the state management service
provided by the server (service aft2srv) and builds a
checkpoint based on this information which it sends
to node After S of the other replica (topic aft2aft S);

• Protocol gets the result (topic aft2pro) and sends it to
Proxy (topic pro2pxy);

• on the other replica, After S transfers the last result
to its protocol node proto S (topic aft2pro S) and set
the state of its server to match the primary.

In parallel with request processing, the node crash detector
on the MASTER (noted CD) periodically gives a proof of
life to the crash detector (CD S) on the SLAVE to assert its
liveliness (topic CD2CD S). If a crash is detected, then the
slave crash detector notifies the crash to the recovery node
(topic CD S2rcy). This node has two purposes : (1) in order
to enforce the fail-silent assumption, it must ensure that every
node of the Master are removed; (2) it switches the binding
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Fig. 3. Composition of FTM mechanisms

between the Client proxy and the Master protocol to the Slave
protocol. Thus, the Slave will receive the Client’s requests and
will act as the Primary, changing its operating mode.

Note that ROS does not provide APIs to dynamically
change bindings between nodes. The transition logic must be
implemented by the developper in the nodes. For instance, the
Slave protocol spins waiting for a notification from recovery
(topic rcy2pro S). This is carried out by background threads
within a node independently of its main functionality. We use
some ROS API for this. Upon reception of this topic, protocol
advertise that it is providing service 2 (as defined in figure X).
Further request from the Client will now be forwarded by the
proxy to the Slave protocol becoming now primary.

2) Impact on the existing application: Form the application
designer point of view, there are two main changes required
to integrate a FTM computation graph to its application. First,
Client will have to be remapped to call the proxy nodes
service instead of directly the service of Server. Second, state
management services, to get and set the state of the node, must
be integrated to the Server. Form an Object Oriented viewpoint
any server inherit from an abstract class stateManager provid-
ing two virtual methods, getState and setState. Both methods
are overridden during the server development.

D. Composition of mechanisms

The generic computation graph for FTM is designed for
composability. With respect to request processing a Protocol
node and a Proceed node present the same interfaces: a
request as input, a reply as output. Hence, a way to compose
mechanisms is to replace the proceed node of a mechanism
by a protocol and its associated before/proceed/after nodes.
Figure 3

E. Dynamic Adaptation of FTM

A set of minimal API required for dynamic adaptation of
FTMs have been established in previous research [Miruna]:

• control over components life cycle at runtime (add,
remove, start, stop);

• control over interactions between components at run-
time, for creating or removing bindings.

Furthermore, to ensure consistency before, during and after
reconfiguration, several issues must be carefully considered:

• components must be stopped in a quiescent state, i.e.
when all internal processing has finished;
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the Master, respectively the Slave, to collect the certificate of 
the Client. We assume that all parties know CA's public key. 
We assume that, for each participant, Client or Server, Before 
and After of the SEC mechanism share the pair of private and 
public keys they received when initialized. 

Before of the Client can then ciphers the request with !!"#! , 
the Server's public key, and adds a signature, using !!"#$!  the 
Client's private key; 

Using the generic scheme given in Fig. 6, a message is sent 
by the client to the server side through a new topic (called 
Client_2_Server) connecting Before of SEC_C to Protocol of 
SEC_S. 

Before of the Master deciphers the request with !!"#$! , the 
Server's private key, and checks the signature, using !!"#! , the 
Client's public key; 

The Server can then proceed with a valid deciphered 
request through PBR and TR. 

Conversely, After of the Master ciphers the reply and 
computes a signature. After of the Client deciphers the reply, 
checks the signature, and finally delivers the reply to the 
Client. 

The communication between Master and Slave can also be 
secured using a similar security protocol. 

V. DYNAMIC COMPOSITION: TO WHAT EXTENT WITH ROS 

A. Dynamic Adaptation of FTM 
Dynamic adaptation of FTM is required to provide continuity 
of service in resilient systems. The question is then: is it 
possible to safely adapt a FTM at runtime in the context of 
ROS? A set of minimal API required to guarantee the 
consistency of the transition between two different FTMs has 
been established in previous work [14]: 
• Control over components life cycle at runtime (add, 

remove, start, stop). 

• Control over interactions between components at runtime, 
for creating or removing bindings.   

Furthermore, ensuring consistency before, during and after 
reconfiguration, requires that no requests or replies are lost: 
• Components are stopped in a quiescent state, i.e. when all 

internal processing has finished 

• Incoming requests on stopped components must be 
buffered 

With the exception of add and remove, ROS does not 
provide these APIs. However, these APIs can be emulated with 
dedicated logics in some nodes. For instance, we are using 
some binding control in the Primary to Backup switch 
described in our example. Controlling node lifecycle is more 
complex but can be done in the same manner and these 
principles can be applied in the context of dynamic adaptation, 
i.e. add new nodes at runtime and binding them in the 
computation graph. 

The protocol node plays a central part to provide proper 
consistency during a transition. Indeed, our design pattern for 
FTM is such that only stateless nodes, namely before, proceed 
and after, need to change in order to switch from one FTM to 
the next. Thus, protocol does not need to be changed during a 
transition and it can be used to buffer messages and detect 
when the changing nodes are in quiescent state. To do this, 
protocol is extended to deal with three new messages. The first 
one is used to signal protocol that a transition is about to 
happen and it has to start storing incoming requests. The 
second one is published by protocol and confirms that the FTM 
is in a safe state and transition can be safely executed. In 
particular, the safe state is reached when protocol has received 
the replies of all pending requests. The third message is used to 
signal protocol that the transition has been executed and it can 
resume normal operation and release the requests stored during 
the transition.  

Note that the described transition technique requires that an 
FTM is already in place in the system, meaning that the Client 
and the Server are already configured to use our proxy nodes. 
Installing an FTM in an application without interruption is not 
possible with ROS since control over binding at runtime is only 
possible with dedicated code within the nodes.  

B. Implementing Dynamic Binding on ROS   
Dynamic binding is not a core feature of ROS. As far as 

AFT is concerned, this is a major concept for runtime 
adaptation. However, ROS does not contain any API to control 
bindings online. In ROS, connections between nodes are based 
on pre-defined Topics and messages are sent/received through 
ports. 

A Topic is defined by:  

• A name: ports are connected through a named Topic. 

• A sending port: Publisher or Client sends messages. 

• A receiving port: Subscriber or Server receives messages. 

• A data type: a Topic is assigned a data type for messages.  

Several Publishers and Subscribers can communicate on 
the same Topic according to a unique message format, a given 
data type. The connection of a new node to the system implies 
creating a new Topic with its own data type. Suppose that  
Node A and B are connected to a Node C. When the data type 
from A to C and B to C is different, then two Topics are 
needed. If the same data type is used, then just one Topic is 
needed. 

We defined two types of dynamic bindings: a) dynamic 
binding on Pre-Defined Topics (PDT); b) dynamic binding on 
UnAnticipated Topics (UAT). 

Some topics can be pre-defined, for instance two topics, 
one between the Client and the primary, one between the Client 
and the backup in a PBR replication strategy. Others topics are 
unanticipated: some new topics are needed when a new node is 
created with a new data type for messages. This might be 
needed for the on-line composition of FTM later during the 
lifetime of the system. 
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Dynamic binding on PDT: This is the simpler case since 
Topics preexist in the ROS configuration. For example, in the 
PBR replication strategy, the two Protocols nodes (in the two 
replicas) are bound to the same topic, but the Slave’s port is 
deactivated. The Proxy sends the request but only one 
Protocol node receives it. 

A third Node, in our implementation the Recovery node, is 
used to activate the Slave’s port when the Master crashes. A 
dedicated topic is defined and used to this aim. After recovery, 
the former Slave, i.e. new Master, can now listen to the Proxy 
and receive messages. It is the simplest way to dynamically 
bind Nodes since the same data type is used in this case. 

Dynamic binding on UAT: In the case of unanticipated topics, 
the binding is a bit more difficult to achieve. Instead of 
reactivating a port, two communication ports must be created. 
Suppose that two nodes A and B must be connected at a given 
point in time through a new topic. The solution is based on: 

• two methods added to both A and B to create ports, one for 
the publisher, one for the subscriber; 

• a third node used to trigger and control the creation of the 
channel (activation of the methods). 

The Topic defined offline corresponds to one data type that 
is handled by the methods. The third Node is part of the 
implementation of AFT, in fact part of the implementation of 
an adaptation engine responsible for the manipulation the FTM 
configuration. 

VI. LESSONS LEARNT AND CONCLUSION 
Installing an FTM within a ROS application or adapting an 

existing FTM does not incur technical difficulties as long as the 
system’s nodes (application + FTM) can be stopped and re-
launched. Indeed, using the remapping capability of ROS 
implies rewriting some configuration files, which are taken into 
account only during the initialization of the nodes. For system 
where interruption of service is not an option, adaptation has to 
be done at runtime. In the context of ROS, this requires some 
additional software development.  

Regarding the features of ROS for implementing AFT, we 
can say that they are not fully satisfactory. The main troubles 
relate to the dynamic binding on unanticipated topics and on 
the weak API to control components at runtime. However, 
ROS provides separation of concerns, since component can be 
mapped to nodes (Unix processes) that have their own address 
space. Dynamic binding is possible on pre-defined topics. For 
unanticipated topics, a customized solution was proposed in 
this work. Control over components relies on the underlying 
operating system to suspend and activate nodes, i.e. processes 
and threads, and to store input messages. However, ROS is an 
acceptable candidate for AFT, in other words, resilient 
computing using AFT can be implemented on ROS. 

Regarding safety issues, the design of AFT and its 
validation is always carried out off-line. Any composition of 
mechanisms due to a change in the various axis of the change 
model denoted (FT, A, R) follows a design and validation 
process off-line that can be conformant to standards like 
DO178C or ISO26262, to comply with certification if needed. 

Some performance measurements have been obtained. The 
overhead of the FTM (composition of PBR+TR) is less than 
10 ms (on a PC, Intel I7 Quad Core, 8 Go RAM). Actually, the 
real overhead is very dependent of the complexity of the 
application, in particular the handling of the application state, 
and the network performance. As a conclusion, the 
implementation of AFT on ROS is independent from the 
application and the network. 
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