
HAL Id: hal-01292318
https://hal.science/hal-01292318v1

Submitted on 22 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Resilient Computing on ROS for Embedded
Applications

Jean-Charles Fabre, Michaël Lauer, Matthieu Roy, Matthieu Amy, William
Excoffon, Miruna Stoicescu

To cite this version:
Jean-Charles Fabre, Michaël Lauer, Matthieu Roy, Matthieu Amy, William Excoffon, et al.. Towards
Resilient Computing on ROS for Embedded Applications. 8th European Congress on Embedded Real
Time Software and Systems (ERTS 2016), Jan 2016, TOULOUSE, France. �hal-01292318�

https://hal.science/hal-01292318v1
https://hal.archives-ouvertes.fr

 1

Towards Resilient Computing on ROS
for Embedded Applications

Jean-Charles Fabre1, Michal Lauer2, Matthieu Roy

CNRS-LAAS, Ave du Colonel Roche,
F-31400 Toulouse, France

1Univ de Toulouse, INP, LAAS, F-31400 Toulouse, France

Matthieu Amy1, William Excoffon1, Miruna Stoicescu3
CNRS-LAAS, Ave du Colonel Roche, F-31400

Toulouse, France
2Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France

3 Presently with ESOC/ESA, Darmstadt, Germany, on behalf of GMV

Abstract—Systems are expected to evolve during their service

life in order to cope with changes of various natures, ranging
from fluctuations in available resources to additional features
requested by users. For dependable embedded systems, the
challenge is even greater, as evolution must not impair
dependability attributes. Resilient computing implies
maintaining dependability properties when facing changes.
Resilience encompasses several aspects, among which
evolvability, i.e., the capacity of a system to evolve during its
service life. In this paper, we discuss the evolution of systems with
respect to their dependability mechanisms, and show how such
mechanisms can evolve accordingly. From a component-based
approach that enables to clarify the concepts, the process and the
techniques to be used to address resilient computing, in
particular regarding the adaptation of fault tolerance (or safety)
mechanisms, we show how Adaptive Fault Tolerance (AFT) can
be implemented with ROS. Beyond some implementation details
given in the paper, we draw the lessons learned from this work
and discus the limits of this runtime support to implement such
resilient computing features in embedded systems.

I. INTRODUCTION
Evolution during service life is inevitable in many systems

today. A system that remains dependable when facing changes
(new threats, change in failures modes, updates of applications)
is called resilient. The persistence of dependability when facing
changes is called resilience [1]. Resilient computing
encompasses several aspects, among which evolvability, i.e.,
the capacity of a system to evolve during its service life. On the
other hand, dependability relies on fault-tolerant computing at
runtime, enabled by Fault Tolerance Mechanisms (FTMs)
attached to the application. As such, one of the key challenges
of resilient computing is the capacity to adapt the FTMs
attached to an application during its operational life.

One important aspect of a dependable system design is the
definition of the fault model. This fault model considers both
hardware and software faults may lead to failure modes that
impair the correct behavior of the system. In critical systems,
such failure modes may violate safety properties. The role of
the safety analysis (e.g. using the FMECA method, FMECA
stands for Failure Modes, Effects and Criticality Analysis) is to
identify the failure mode and then define the safety
mechanisms to prevent the violation of safety properties. Such
safety mechanisms rely on basic error detection and recovery
mechanisms, namely fault tolerance techniques following
Laprie's terminology. Such safety mechanisms are based on
Fault Tolerance Design Patterns that can be combined

together. The safety analysis is often done a priori according to
the fault model that had been defined.

During the operational life of the system, several situation
may occur. New threats may lead to revise the fault model
(electromagnetic perturbations, obsolescence of HW
components, Software aging, etc.). A revision of the fault
model has consequences on the fault tolerance mechanisms to
be used. In other words, the validity of the fault tolerance
mechanisms of safety mechanisms (whatever you want to call
them) depends on the representativeness of the fault model. In
a certain sense, a bad choice of the fault model may lead to pay
for useless mechanisms in both normal operation and erroneous
situations. This has an obvious side effect on the performance
and on the dependability measures (reliability, dependability)
respectively. This means that a change in the definition of the
fault model implies a change in the fault tolerance mechanisms.

Beyond the fault model, there are other sources of changes.

Resources changes may also impair some safety
mechanisms that rely on hardware resources. A typical
example is the lost of processing units, but simply a loss in
networks bandwidth may invalidate some fault tolerance
mechanisms from a timing viewpoint.

Application changes are more and more frequent during the
operational lifetime. This is obvious for many conventional
applications (e.g. mobile phones) but it is becoming also
needed for more critical embedded systems. This is the case for
long living systems like space or avionics systems, but also in
the automotive domain, not only for maintenance purposes but
also of commercial reasons. The evolution of the specification
during the lifetime of a system is a fact, it follows the evolution
of the user requirements or needs. The notion of versioning
(updates) or the loading of additional features (upgrades) may
lead to change the assumptions on top of which the
implementation of FT mechanisms rely. Such change implies
revisiting the FMECA spreadsheets but also the
implementation of the FT mechanisms. Some FT mechanisms
rely on strong assumptions regarding the behavior of the
application, and everybody knows in the dependability
community the importance of the coverage of such
assumptions [16].

As a conclusion, the safety mechanism must remain
compliant with all assumptions in terms of fault model,
resources and application characteristics during the whole
lifetime of the system. Their efficiency relies on this statement.

 2

In this paper, we first motivate the issue and then report on
an approach taking advantage of Component Based Software
Engineering technologies for tackling this crucial aspect of
resilient computing, namely the adaptation of fault tolerance
mechanisms. We defined a minimal runtime support for
implementing adaptive fault tolerance. The second part of this
paper shows how this minimal runtime support can be
implemented on ROS (Robot Operating System), presently
used in many applications (robotics applications, automotive
applications like ADAS – Advanced Driver Assistance
Systems, or military applications). We illustrate the mapping of
ideal components to ROS components and give
implementation details of a fault tolerance design pattern that is
adaptive at runtime. We finally draw the lessons learnt from
our first experiments, discuss the limits of the exercise, and
identify some promising directions.

In Section II we present the problem statement, and then
summarize our Component-Based Software Engineering
(CBSE) approach for adaptive fault tolerance in Section III. A
full account of this approach can be found in [13]. The
mapping of this approach to ROS is described in Section IV.
The lessons learnt are given in Section V before concluding.

II. PROBLEM STATEMENT
The need for Adaptive Fault Tolerance (AFT) rising from

the dynamically changing fault tolerance requirements and
from the inefficiency of allocating a fixed amount of resources
to FTMs throughout the service life of a system was stated in
[2]. AFT is gaining more importance with the increasing
concern for lowering the amount of energy consumed by
cyber-physical systems and the amount of heat they generate
[3]. For Dependable systems that cannot be stopped for
performing off-line adaptation, on-line adaptation of Fault
Tolerance Mechanisms (FTMs) has attracted research efforts
for some time now. However, most of the solutions [4], [5], [6]
tackle adaptation in a preprogrammed manner: all FTMs
necessary during the service life of the system must be known
and deployed from the beginning and adaptation consists in
choosing the appropriate execution branch or tuning some
parameters, e.g., the number of replicas or the interval between
state checkpoints. Nevertheless, predicting all events and
threats that a system may encounter throughout its service life
and making provisions for them is impossible. The use of
FTMs in real operational conditions may lead to slight updates
or unanticipated upgrades, e.g., compositions of FTMs that can
tolerate a more complex fault model than initially expected.

In both aeronautical and automotive systems, the ability to
perform remote changes for different purposes is essential:
maintenance but also updates and upgrades of embedded
applications. The remote changes should be partial as it is
unrealistic to reload completely an processing unit from small
updates. This idea is recently promoted by some car
manufacturers like Renault, BMW but also TESLA Motors in
the USA stating in its website "Model S regularly receives
over-the-air software updates that add new features and
functionality". It is important to mention that performing
remote changes will become very important for economic
reasons, for instance selling options a posteriori since most of
the evolution in the next future will rely on software for the

same hardware configuration (sensors and actuators). In
addition to this, the X-to-X applications (X being cars, planes
or any smart critical objet) will imply rapid adaptation of
onboard software to remain consistent with the network of X.

We propose an alternative to preprogrammed adaptation
that we denote agile adaptation of FTMs. The term “agile” is
inspired from agile software development [7] that emphasizes
the importance of accommodating change during the lifecycle
of an application at a reasonable cost, rather than striving to
anticipate an exhaustive set of requirements. Agile adaptation
of FTMs enables systematic evolution: according to runtime
observations of the system and of its environment, new FTMs
can be designed off-line and integrated on-line in a flexible
manner, with limited impact on the existing software
architecture.

Evolvability has long been a prerogative of the application
business logic. A rich body of research exists in the field of
software engineering consisting of concepts, tools,
methodologies and best practices for designing and developing
adaptive software [8]. Consequently, our approach for the agile
adaptation of FTMs leverages advancements in this field such
as Component-Based Software Engineering [9], Service
Component Architecture [10] and Aspect-Oriented
Programming [11].

The basic idea is the following. Fault Tolerance or Safety
Mechanisms are developed as a composition of elementary
mechanisms, e.g. basic design patterns for fault tolerance
computing.

Using such concepts and technologies, we design FTMs as
“Lego”-like brick-based assemblies that can be methodically
modified at runtime through fine-grained changes affecting a
limited number of bricks. This is the basic idea of our approach
that maximizes reuse and flexibility, contrary to monolithic
replacements of FTMs found in related work, e.g., [4], [5], [6].

However, most of software runtime supports used in
embedded systems today do not rely on dynamic CBSE
concepts. AUTOSAR, for instance, relies on very static system
engineering concepts and does not provide today much
flexibility [12]. A new approach enabling remote updates to be
carried out, including for safety mechanisms, is required.

ROS seems an appealing candidate for the dynamic
composition of safety mechanisms. ROS is described as1: ROS
is an open-source, meta- operating system for your robot. It
provides the services you would expect from an operating
system, including hardware abstraction, low-level device
control, implementation of commonly-used functionality,
message-passing between processes, and package management.
It also provides tools and libraries for obtaining, building,
writing, and running code across multiple computers. ROS can
be viewed as a middleware running on top of a Unix-based
operating system (typically Linux). ROS is used in robotics
applications (e.g. Robonaut 2 from NASA within the ISS) but
also in other industry sectors, the automotive industry for
instance. This middleware provides a weak component

1 ttp://wiki.ros.org/ROS/Introduction

 3

approach and means to dynamically manipulate system
configuration. It is open-source, its user community is very
large and it is used for critical application e.g. at NREC (The
National Robotics Engineering Center in Pittsburgh) for
unmanned military vehicles (e.g. the Crusher).

III. ADAPTIVE FAULT TOLERANCE

A. Basic concepts for AFT
Some basic concepts must be discussed to address the

problem of Adaptive Fault Tolerant computing. Three essential
concepts must be discussed beforehand:

• Separation of concerns: this concepts is now well known, it
implies a clear separation between the functional code, i.e.
the application, and the non-functional code, i.e. the fault
tolerance mechanisms in our case. The connection between
the application code and the FTM must be clearly defined
as specific connections. This means that the FTMs can be
disconnected and replaced by a new one provide the
connectors remains the same.

• Componentization: this concepts means that any software
components can be decomposed into smaller components.
Each component exhibit interfaces (services provided) and
receptacles (services required). This means that any FTMs
can be decomposed into smaller pieces, and conversely that
an FTM is the aggregation of smaller. The ability to
manipulate the binding between components (off-line but
also on-line) is of high interest for AFT.

• Design for adaptation: the adaptation of software systems
imply that (i) the software itself has been analyzed with
adaptation in mind for later evolution using
componentization (although all situations cannot be
anticipated) and (ii) designed to simplify their adaptation
including from a programming viewpoint (e.g. using
object-oriented, aspect-oriented programming concepts).

Such basic concepts have been established and validated
through various steps of analysis of fault tolerance design
patterns and after several design and implementation loops, as
discussed in [17].

The main benefits of AFT with respect to pre-programmed
adaptation is clear, it provides means to define and update
dependability mechanisms later during the lifetime of the
system. Pre-program adaptation implies that all possible
undesirable situations are defined at design time, which is
difficult to anticipate regarding new threats (attacks), new
failure modes (obsolescence of components), or simply adverse
situations that have been ignored or forgotten during the safety
analysis. In short, fine grain adaptation of FTMs improves
maintainability of the system from a non-functional viewpoint.

B. Change Model
The choice of an appropriate fault tolerance mechanism

(FTM) for a given application depends on the values of sev-
eral parameters. We consider three classes of parameters: 1)
fault tolerance requirements (FT); 2) application characteristics
(A); 3) available resources (R). We denote (FT,A,R) as change
model. At any point in time, the FTM(s) attached to an

application component must be consistent with the current
values of (FT, A, R).

The three classes of parameters enable to discriminate
FTMs. Among fault tolerance requirements FT, we focus, for
the time being, on the fault model that must be tolerated. Our
fault model classification is based on well-known types [14],
e.g., crash faults, value faults, development faults. In this work,
we focus on hardware faults but the approach is perfectly
reproducible for FTMs that target development faults.

The application characteristics A that we identified as
having an impact on the choice of an FTM is: application
statefulness, state accessibility and determinism. We con- sider
the FTMs are attached to a black-box application. This means
there is no possibility to interfere with its internals, for tackling
non-determinism, for instance, in case an FTM only works for
deterministic applications. Resources R play an important part
and represent the last step in the selection process. FTMs
require resources such as bandwidth, CPU, battery life/energy.
In case more than one solution exists, given the values of the
parameters FT and A, the resource criterion can invalidate
some of the solutions. A cost function can be associated to each
solution, based on R.

Any parameter variation during the service life of the
system may invalidate the initial FTM, thus requiring a
transition towards a new one. Transitions may be triggered by
new threats, resource loss or the introduction of a new
application version that changes the initial application
characteristics. A particularly interesting adaptation trigger is
the fault model change. Incomplete or misunderstood initial
fault tolerance requirements, environmental threats such as
electromagnetic interferences or hardware aging may change
the initial model to a more complex one.

C. FT Design Patterns and Assumptions
To illustrate our approach, we consider some fault tolerance

design patterns (design patterns of FTMs) and discuss their
underlying assumptions and resource needs. Any change that
invalidates an assumption or implies an unacceptable resource
change calls for an update of the FTMs.

Duplex protocols tolerate crash faults using passive (e.g.
Primary-Backup Replication denoted PBR), or active
replication strategies (e.g. Leader-Follower Replication
denoted LFR). In this case, each replica is considered as a self-
checking component, the error detection coverage is perfect.
The fault model includes hardware faults or random operating
system faults (no common mode faults). At least 2 independent
processing units are necessary to run this FTM.

 Two design patterns tolerating transient value faults are
briefly discussed here. Time Redundancy (TR) tolerates
transient physical faults or random runtime support faults using
repetition of the computation and voting. This is way to
improve the self-checking nature of a replica, but it introduces
a timing overhead. Assertion&Duplex (A&D) tolerates both
transient and permanent faults. It's a combination of a duplex
strategy with the verification using assertions of safety
properties that could be violated by a value fault or by a
random runtime support error.

 4

Assumptions / FTM PBR LFR TR A&D
Fault Model

(FT)
crash

transient
Application

behaviour (A)
Deterministic ()
State access ()

Resources (R)

Bandwidth high low nil (TDB)
CPU 2 2 1 2

Fig. 1. Assumptions and fault tolerance design patterns charateristics

The underlying characteristics of the considered FTMs, in
terms of (FT,A,R), are shown in Fig. 1. For instance, PBR and
LFR tolerate the same fault model, but have different A and R.
PBR allows non-determinism of applications because only the
Primary computes client requests while LFR only works for
deterministic applications as both replicas compute all requests.
LFR could tackle non-determinism if the application was not
considered a black-box, as in our approach. PBR requires state
access for checkpoints and higher network bandwidth (in
general), while LFR does not require state access but generally
incurs higher CPU costs (and, consequently, higher energy
consumption) as both replicas perform all computations.

During the service life of the system, the values of the
parameters enumerated in Fig. 1 can change. An application
can become non-deterministic because a new version is
installed. The fault model can become more complex, e.g.,
from crash-only it can become crash and value fault due to
hardware aging or physical perturbations. Available resources
can also vary, e.g., bandwidth drop or constraints in energy
consumption. For instance, the PBR→LFR transition is
triggered by a change in application characteristics (e.g.
inability to access application state) or in resources (bandwidth
drop), while the PBR→A&D transition is triggered by a
change in the considered fault model (e.g. safety property
verification). Transitions can occur in both directions,
according to parameter variation.

The priority is the fault model, the selection of the solution
(i.e. the composition of several FTMs) depending on the
application characteristics and the available resources. The
final objective is always to comply with the dependability
properties during the service lifetime.

D. Design for adaptation of FTMs
Our “design for adaptation” aims at producing reusable

elementary components that can be combined to implement a
given fault tolerance or safety mechanism. Any FTM follows
the generic Before-Proceed-After metamodel. Many FTMs can
be mapped and combined using this model, as shown in Fig. 2.

FTM Before Proceed After
PBR (primary)
PBR(backup)

 Compute Checkpointing
 State update

LFR (leader)
LFR (follower)

Forward request Compute Notify
Handle request Compute Handle notification

TR Save/restore state Compute Compare
A&D Compute Assert

Fig. 2. Generic execution scheme for FT design patterns

Composition implies nesting the Before-Proceed-After
metamodel. This approach improves flexibility, reusability,
composability and reduces development time. Updates are
minimized since just few components have to be changed.

E. Runtime support
The software runtime support must provide key features to

manipulation the component graph. Any application or an FTM
is perceived as a graph of components. From previous
experiments reported in [17], the following primitive are
required.

• Dynamic creation, deletion of components;

• Suspension, activation of components;

• Control over interactions between components for the
creation and the removal of connections (bindings);

Our first implementation was done on a reflective
component-based middleware, FRASCATI [14] providing a
scripting language to manipulate the component graph, FScript
[15]. The proposed approach is reproducible on any other
support that provides these features.

IV. ADAPTIVE FAULT TOLERANCE ON ROS
The main goal of ROS is to allow the design of modular

applications: a ROS application is a collection of programs,
called nodes, interacting only through message passing.
Developing an application involve the assembly of nodes,
which is akin to component-based approaches. Such an
assembly is referred to as the computation graph of the
application.

A. Component model and reconfiguration
Two communication models are available in ROS: a pub-

lisher/subscriber model and a client/server one. The pub-
lisher/subscriber model defines one-way, many-to-many, asyn-
chronous communications through the concept of topic. When
a node publishes a message on a topic, it is delivered to every
nodes subscribing to this topic. Note that a publisher is not
aware of the subscriber to its topic nor the other publishers.
The client/server model defines bidirectional transaction (one
request/one reply) synchronous communications through the
concept of service. A node providing a service is not aware of
the client nodes that may use its service. These high-level
communication models allows to add, replace or delete nodes
in a transparent manner, either offline or online.

To provide this level of abstraction, each ROS application
includes a special node called the ROS Master. It provides
registration and lookup services to the other nodes. All nodes
register services and topics to the ROS master. It is the only
node that has a comprehensive view of the computation graph.
When a node issues a service call, it queries the master for the
address of the node providing the service and then it sends its
request to this address.

In order to be able to add fault-tolerance mechanisms to an
existing ROS application in the most transparent manner, we
need to implement interceptors. An interceptor provides a
means to insert functionality, such as safety or monitoring
nodes, into the invocation path between two ROS nodes. To
this end, a relevant ROS feature is its remapping capability. At
launch time, it is possible to reconfigure the name of any
services or topics used by a node. Thus, requests and replies
between nodes can be rerouted to interceptor nodes.

 5

B. Implementing a componentized FT design pattern
A full implementation on ROS of a duplex FT design

pattern, a Primary Backup Replication (PBR) combined with a
Time-Redundancy (TR) design pattern is developed here.

1) Generic Computation Graph
We have identified a generic pattern for the computation

graph of a FTM. Figure 3 shows its application in the context
of ROS. Node Client uses a service provided by Server. The
FTM computation graph is inserted between the two thanks to
the ROS remapping feature. Since Client and Server must be
re-launched for the remapping to take effect, the insertion is
done offline. The FTM nodes, topics, and services are generic
for every FTM discussed in section II. Implementing a FTM
consist in specializing the before, proceed, and after nodes with
its corresponding behavior (see Fig. 3).

Fig. 3. Generic computation graph for FTM

We illustrate the approach, through a Primary-Backup
Replication (PBR) mechanism added to the Client/Server
application in order to tolerate a crash fault of the Server. Fig. 4
presents the associated architecture. Three machines are
involved: the Client, which is also hosting the ROS, master, the
MASTER site hosting the primary replica and the SLAVE site
hosting the backup replica. For the sake of clarity, the
symmetric topics and services between MASTER and SLAVE are
not represented. Elements of the slave are suffixed with “_S”.

2) Implementing PBR
We present the behavior of each node, the topics/services

used through a request/reply exchange between a node Client
and node Server (see Fig. 4).
• Client sends a request to Proxy (service clt2pxy);

• Proxy adds an identifier to the request and transfers it to
Protocol (topics pxy2pro);

• Protocol checks whether it is a duplicate request: if so, it
sends directly the stored reply to Proxy (topics pro2pxy).
Otherwise, it sends the request to Before (service pro2bfr);

• Before transfers the request for processing to Proceed
(topics bfr2prd); no action is associated in the PBR case,
but for other duplex protocol, Before may synchronize with
the other replicas;

• Proceed calls the actual service provided by Server (service
prd2srv) and forwards the result to After (topics prd2aft);

• After gets the last result from Proceed, captures Server state
by calling the state management service provided by the

server (service aft2srv), and builds a checkpoint based on
this information which it sends to node After_S of the other
replica (topics aft2aft_S);

• Protocol gets the result (topics aft2pro) and sends it to
Proxy (topics pro2pxy);

• On the backup replica, After_S transfers the last result to its
protocol node Proto_S (topics aft2pr_S) and sets the state
of its server to match the primary.
In parallel with request processing, the node crash detector

on the MASTER (noted CD) periodically gives a proof of life to
the crash detector (CD_S) on the SLAVE to assert its liveliness
(topics CD2CD_S). If a crash is detected, then the crash
detector of the slave notifies the recovery node (topics
CD_S2rcy). This node has two purposes: (i) in order to enforce
the fail-silent assumption, it must ensure that every node of the
MASTER are removed; (ii) it switches the binding between the
Client proxy and the MASTER protocol to the SLAVE protocol.
Thus, the SLAVE will receive the Client’s requests and will act
as the Primary, changing its operating mode.

Fig. 4. Computation graph of a PBR mechanism

ROS does not provide APIs to dynamically change
bindings between nodes. The node developer must implement
the transition logics. The SLAVE protocol spins waiting for a
notification from recovery (topics rcy2pro_S). This is done
using the ROS API: background threads, within a node, check
for messages independently of the node’s main functionality.
Upon reception of this topic, protocol subscribes to topic
pxy2pro and publishes to topic pro2pxy. After this transition,
the proxy forwards the Client’s requests to the Slave protocol.

3) Impact on the existing application
 From the designer viewpoint, there are two changes

required to integrate a FTM computation graph to its
application. First, Client will have to be remapped offline to
call the proxy node’s service instead of directly the Server.
Second, state management services, to get and set the state of
the node, must be integrated to the Server. Form an object-
oriented viewpoint any server inherits from an abstract class
stateManager providing two virtual methods, getState and
setState, overridden during the server development.

Adaptive Fault-Tolerance: from a Component-Based
Approach to ROS

Michael Shell
School of Electrical and
Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250

Email: http://www.michaelshell.org/contact.html

Homer Simpson
Twentieth Century Fox

Springfield, USA
Email: homer@thesimpsons.com

James Kirk
and Montgomery Scott

Starfleet Academy
San Francisco, California 96678-2391

Telephone: (800) 555–1212
Fax: (888) 555–1212

Abstract—The abstract goes here.

I. ADAPTATIVE FAULT TOLERANCE ON ROS

A. Introduction to ROS

ROS can be viewed as a middleware running on top of
a Unix-based operating system (typically Linux). The main
goal of ROS is to allow the design of modular applications :
a ROS application is a collection of programs, called nodes,
interacting only through message passing. Developing an ap-
plication involve the assembly of nodes, which is akin to
component-based approaches. Such an assembly is referred to
as the computation graph of the application.

B. Component model and reconfiguration

Two communication models are available in ROS: a pub-
lisher/subscriber model and a client/server one. The pub-
lisher/subscriber model defines one-way, many-to-many, asyn-
chronous communications through the concept of topic. When
a node publishes a message on a topic, it is delivered to every
nodes subscribing to this topic. Note that a publisher is not
aware of the subscriber to its topic nor the other publishers.
The client/server model defines bidirectional transaction (one
request/one reply) synchronous communications through the
concept of service. A node providing a service is not aware
of the client nodes that may use its service. These high-level
communication models allows to add, replace or delete nodes
in a transparent manner, either offline or online.

To provide this level of abstraction, each ROS application
includes a special node called the ROS Master. It provides
registration and lookup services to the other nodes. All nodes
register there services and topics to the ROS master. It is the
only node which has a comprehensive view of the computation
graph. When a node issues a service call, it queries the master
for the address of the node providing the service and then it
sends its request to this address.

In order to be able to add fault-tolerance mechanisms to
an existing ROS application in the most transparent manner,
we need to implement interceptors. An interceptor provides
a means to insert functionality, such as safety or monitoring
nodes, into the invocation path between two ROS nodes. To
this end, a relevant ROS feature is its remapping capability.
At launch time, it is possible to reconfigure the name of any

Client

P
r
o
x
y

P
r
o
t
o
c
o
l

Before

Proceed

After

Server

FTM

clt2pxy prd2srv

pro2bfr

aft2pro

prd2aft

bfr2prd

pxy2pro

pro2pxy service

topic

Fig. 1. Generic computation graph for FTM

services or topics used by a node. Thus, requests and replies
between nodes can be rerouted easily to interceptor nodes.

C. Implementing a componentized FT design pattern

1) Generic Computation Graph: We identified a generic
pattern for the computation graph of a FTM. Figure 1 shows
its application in the context of ROS. Node Client uses a
service provided by Server. The FTM computation graph is
inserted between the two thanks to the ROS remapping feature.
The FTM nodes, topics, and services are generic for every
FTM discussed in section II. Implementing a FTM consist
in specializing the before, proceed, and after nodes with its
corresponding behavior (see table X).

We illustrate the approach, through a Primary-Backup
Replication (PBR) mechanism added to the Client/Server
application in order to tolerate a crash fault of the Server.
Figure 2 shows the architecture. Three machines are involved
: the CLIENT which is also hosting the ROS master, the
MASTER hosting the primary replica and the SLAVE hosting
the backup replica. For the sake of clarity, the symmetric
topics and services between MASTER and SLAVE are not
represented. Elements of the slave are suffixed with ” S”

We present the behavior of each nodes, the topics/services
used through a request/reply exchange between a node Client
and node Server.

• Client sends a request to Proxy (service clt2pxy);

 6

Fig. 5. Composition principle of FT mechanisms (PBR+TR).

C. Composition of FT mechanisms
The generic computation graph for FTM is designed for
composability. In this section, the composition scenario is
two-fold. We first illustrate the composition of two FTMs,
PBR for crash faults and TR for transient value faults. Initially
the application was installed with PBR. From an operational
standpoint, at a given point in time, transient faults impacting
numerical calculations appeared due to hardware components
aging or sudden increase of environmental radiations. In a
second step, later on, we consider that the communication
channel between client and server can be the target for
intrusions. Cryptographic protocols, based for instance on a
simple Public Key Infrastructure (PKI), can be used to cipher
communications and add cryptographic signatures.

Fig. 6. Composition principle of FT mechanisms.

1) Composition of PBR and TR on ROS
With respect to request processing, a Protocol node and a

Proceed node present the same interfaces: a request as input, a
reply as output. Hence, a way to compose mechanisms is to
replace the Proceed node of a mechanism by a Protocol and its
associated Before/Proceed/After nodes, as shown in Fig. 6.

Our approach enables developing a new mechanism on the
foundation of several existing ones. This improves the
development time and the assurance in the overall system,

since all mechanisms have been validated off-line by test and
fault injection techniques.

The architecture of the composite FTM made of PBR and
TR is given in Fig. 5. This figure is an extension of Fig. 4
where the Proceed node of the PBR has been replaced with the
Protocol node of the TR implementation.

2) Composing FTM with Cryptographic protocols
The generic computation graph presented in Fig. 3 enables

cryptographic protocols to be seamlessly added to an
application, already equipped with accidental fault tolerance
mechanisms, PBR and TR in our example. The cryptographic
mechanism (called SEC for security) is located at both the
client (SEC_C) and the server side (SEC_S) as shown in Fig.
7). On the server side, SEC operates before PBR and TR.

Fig. 7. Composition principle of SEC with other FT mechanisms.

In this example, we only deal with possible intrusions
between the client and the server.

We assume that a node implements the Certification
Authority (CA). Three topics are used to communicate with the
CA, namely Cli2CA for the Client, Master2CA for the Master
and Slave2CA for the Slave. The topic Cli2CA enables the
Before node of the Client to collect the certificate of the Server.
Similarly, the topic Master2CA and Slave2CA enable Before of

Client

P
r
o
x
y

P
r
o
t
o
c
o
l

Before

Proceed

After

Server

clt2pxy prd2srv

pro2bfr

aft2pro

prd2aft

bfr2prd

pxy2pro

pro2pxy
aft2srv

P
r
o
t
o
_
S

Before_S

Proc_S

After_S

Server_S

prd2srv_S

pro2bfr_S

aft2pro_S

prd2aft_S

bfr2prd_S

aft2srv_S

MASTER

SLAVE

CLIENT

aft2aft_S

Recovery
CD

CD_S

CD_S2rcy

CD2CD_S

rcy2pro_S

Fig. 2. Computation graph of a PBR mechanism

• Proxy adds an identifier to the request and transfer it
to Protocol (topic pxy2pro);

• Protocol checks whether it is a duplicate request: if
so, it sends directly the stored reply to Proxy (topic
pro2pxy), otherwise, it sends the request to Before
(service pro2bfr);

• Before transfer the request for processing to Proceed
(topic bfr2prd); no action in the PBR case, for other
duplex protocol, Before may synchronize with the
other replica;

• Proceed calls the actual service provided by Server
(service prd2srv) and forwards the result to After
(topic prd2aft);

• After gets the last result form Proceed and captures
Server state by calling the state management service
provided by the server (service aft2srv) and builds a
checkpoint based on this information which it sends
to node After S of the other replica (topic aft2aft S);

• Protocol gets the result (topic aft2pro) and sends it to
Proxy (topic pro2pxy);

• on the other replica, After S transfers the last result
to its protocol node proto S (topic aft2pro S) and set
the state of its server to match the primary.

In parallel with request processing, the node crash detector
on the MASTER (noted CD) periodically gives a proof of
life to the crash detector (CD S) on the SLAVE to assert its
liveliness (topic CD2CD S). If a crash is detected, then the
slave crash detector notifies the crash to the recovery node
(topic CD S2rcy). This node has two purposes : (1) in order
to enforce the fail-silent assumption, it must ensure that every
node of the Master are removed; (2) it switches the binding

Client

P
r
o
x
y

P
r
o
t
o
c
o
l

Before

After

FTM1

P
r
o
t
o
c
o
l

Before

After

Proceed

FTM2

Server

Fig. 3. Composition of FTM mechanisms

between the Client proxy and the Master protocol to the Slave
protocol. Thus, the Slave will receive the Client’s requests and
will act as the Primary, changing its operating mode.

Note that ROS does not provide APIs to dynamically
change bindings between nodes. The transition logic must be
implemented by the developper in the nodes. For instance, the
Slave protocol spins waiting for a notification from recovery
(topic rcy2pro S). This is carried out by background threads
within a node independently of its main functionality. We use
some ROS API for this. Upon reception of this topic, protocol
advertise that it is providing service 2 (as defined in figure X).
Further request from the Client will now be forwarded by the
proxy to the Slave protocol becoming now primary.

2) Impact on the existing application: Form the application
designer point of view, there are two main changes required
to integrate a FTM computation graph to its application. First,
Client will have to be remapped to call the proxy nodes
service instead of directly the service of Server. Second, state
management services, to get and set the state of the node, must
be integrated to the Server. Form an Object Oriented viewpoint
any server inherit from an abstract class stateManager provid-
ing two virtual methods, getState and setState. Both methods
are overridden during the server development.

D. Composition of mechanisms

The generic computation graph for FTM is designed for
composability. With respect to request processing a Protocol
node and a Proceed node present the same interfaces: a
request as input, a reply as output. Hence, a way to compose
mechanisms is to replace the proceed node of a mechanism
by a protocol and its associated before/proceed/after nodes.
Figure 3

E. Dynamic Adaptation of FTM

A set of minimal API required for dynamic adaptation of
FTMs have been established in previous research [Miruna]:

• control over components life cycle at runtime (add,
remove, start, stop);

• control over interactions between components at run-
time, for creating or removing bindings.

Furthermore, to ensure consistency before, during and after
reconfiguration, several issues must be carefully considered:

• components must be stopped in a quiescent state, i.e.
when all internal processing has finished;

C

P
r
o
x
y

P
r
o
t
o
c
o
l

B

A

P
r
o
t
o
c
o
l

B

A

P

PBR

S

P
r
o
t
o
c
o
l

B

A

P
r
o
t
o
c
o
l

B

A

SEC_S TRSEC_C

 7

the Master, respectively the Slave, to collect the certificate of
the Client. We assume that all parties know CA's public key.
We assume that, for each participant, Client or Server, Before
and After of the SEC mechanism share the pair of private and
public keys they received when initialized.

Before of the Client can then ciphers the request with !!"#! ,
the Server's public key, and adds a signature, using !!"#$! the
Client's private key;

Using the generic scheme given in Fig. 6, a message is sent
by the client to the server side through a new topic (called
Client_2_Server) connecting Before of SEC_C to Protocol of
SEC_S.

Before of the Master deciphers the request with !!"#$! , the
Server's private key, and checks the signature, using !!"#! , the
Client's public key;

The Server can then proceed with a valid deciphered
request through PBR and TR.

Conversely, After of the Master ciphers the reply and
computes a signature. After of the Client deciphers the reply,
checks the signature, and finally delivers the reply to the
Client.

The communication between Master and Slave can also be
secured using a similar security protocol.

V. DYNAMIC COMPOSITION: TO WHAT EXTENT WITH ROS

A. Dynamic Adaptation of FTM
Dynamic adaptation of FTM is required to provide continuity
of service in resilient systems. The question is then: is it
possible to safely adapt a FTM at runtime in the context of
ROS? A set of minimal API required to guarantee the
consistency of the transition between two different FTMs has
been established in previous work [14]:
• Control over components life cycle at runtime (add,

remove, start, stop).

• Control over interactions between components at runtime,
for creating or removing bindings.

Furthermore, ensuring consistency before, during and after
reconfiguration, requires that no requests or replies are lost:
• Components are stopped in a quiescent state, i.e. when all

internal processing has finished

• Incoming requests on stopped components must be
buffered

With the exception of add and remove, ROS does not
provide these APIs. However, these APIs can be emulated with
dedicated logics in some nodes. For instance, we are using
some binding control in the Primary to Backup switch
described in our example. Controlling node lifecycle is more
complex but can be done in the same manner and these
principles can be applied in the context of dynamic adaptation,
i.e. add new nodes at runtime and binding them in the
computation graph.

The protocol node plays a central part to provide proper
consistency during a transition. Indeed, our design pattern for
FTM is such that only stateless nodes, namely before, proceed
and after, need to change in order to switch from one FTM to
the next. Thus, protocol does not need to be changed during a
transition and it can be used to buffer messages and detect
when the changing nodes are in quiescent state. To do this,
protocol is extended to deal with three new messages. The first
one is used to signal protocol that a transition is about to
happen and it has to start storing incoming requests. The
second one is published by protocol and confirms that the FTM
is in a safe state and transition can be safely executed. In
particular, the safe state is reached when protocol has received
the replies of all pending requests. The third message is used to
signal protocol that the transition has been executed and it can
resume normal operation and release the requests stored during
the transition.

Note that the described transition technique requires that an
FTM is already in place in the system, meaning that the Client
and the Server are already configured to use our proxy nodes.
Installing an FTM in an application without interruption is not
possible with ROS since control over binding at runtime is only
possible with dedicated code within the nodes.

B. Implementing Dynamic Binding on ROS
Dynamic binding is not a core feature of ROS. As far as

AFT is concerned, this is a major concept for runtime
adaptation. However, ROS does not contain any API to control
bindings online. In ROS, connections between nodes are based
on pre-defined Topics and messages are sent/received through
ports.

A Topic is defined by:

• A name: ports are connected through a named Topic.

• A sending port: Publisher or Client sends messages.

• A receiving port: Subscriber or Server receives messages.

• A data type: a Topic is assigned a data type for messages.

Several Publishers and Subscribers can communicate on
the same Topic according to a unique message format, a given
data type. The connection of a new node to the system implies
creating a new Topic with its own data type. Suppose that
Node A and B are connected to a Node C. When the data type
from A to C and B to C is different, then two Topics are
needed. If the same data type is used, then just one Topic is
needed.

We defined two types of dynamic bindings: a) dynamic
binding on Pre-Defined Topics (PDT); b) dynamic binding on
UnAnticipated Topics (UAT).

Some topics can be pre-defined, for instance two topics,
one between the Client and the primary, one between the Client
and the backup in a PBR replication strategy. Others topics are
unanticipated: some new topics are needed when a new node is
created with a new data type for messages. This might be
needed for the on-line composition of FTM later during the
lifetime of the system.

 8

Dynamic binding on PDT: This is the simpler case since
Topics preexist in the ROS configuration. For example, in the
PBR replication strategy, the two Protocols nodes (in the two
replicas) are bound to the same topic, but the Slave’s port is
deactivated. The Proxy sends the request but only one
Protocol node receives it.

A third Node, in our implementation the Recovery node, is
used to activate the Slave’s port when the Master crashes. A
dedicated topic is defined and used to this aim. After recovery,
the former Slave, i.e. new Master, can now listen to the Proxy
and receive messages. It is the simplest way to dynamically
bind Nodes since the same data type is used in this case.

Dynamic binding on UAT: In the case of unanticipated topics,
the binding is a bit more difficult to achieve. Instead of
reactivating a port, two communication ports must be created.
Suppose that two nodes A and B must be connected at a given
point in time through a new topic. The solution is based on:

• two methods added to both A and B to create ports, one for
the publisher, one for the subscriber;

• a third node used to trigger and control the creation of the
channel (activation of the methods).

The Topic defined offline corresponds to one data type that
is handled by the methods. The third Node is part of the
implementation of AFT, in fact part of the implementation of
an adaptation engine responsible for the manipulation the FTM
configuration.

VI. LESSONS LEARNT AND CONCLUSION
Installing an FTM within a ROS application or adapting an

existing FTM does not incur technical difficulties as long as the
system’s nodes (application + FTM) can be stopped and re-
launched. Indeed, using the remapping capability of ROS
implies rewriting some configuration files, which are taken into
account only during the initialization of the nodes. For system
where interruption of service is not an option, adaptation has to
be done at runtime. In the context of ROS, this requires some
additional software development.

Regarding the features of ROS for implementing AFT, we
can say that they are not fully satisfactory. The main troubles
relate to the dynamic binding on unanticipated topics and on
the weak API to control components at runtime. However,
ROS provides separation of concerns, since component can be
mapped to nodes (Unix processes) that have their own address
space. Dynamic binding is possible on pre-defined topics. For
unanticipated topics, a customized solution was proposed in
this work. Control over components relies on the underlying
operating system to suspend and activate nodes, i.e. processes
and threads, and to store input messages. However, ROS is an
acceptable candidate for AFT, in other words, resilient
computing using AFT can be implemented on ROS.

Regarding safety issues, the design of AFT and its
validation is always carried out off-line. Any composition of
mechanisms due to a change in the various axis of the change
model denoted (FT, A, R) follows a design and validation
process off-line that can be conformant to standards like
DO178C or ISO26262, to comply with certification if needed.

Some performance measurements have been obtained. The
overhead of the FTM (composition of PBR+TR) is less than
10 ms (on a PC, Intel I7 Quad Core, 8 Go RAM). Actually, the
real overhead is very dependent of the complexity of the
application, in particular the handling of the application state,
and the network performance. As a conclusion, the
implementation of AFT on ROS is independent from the
application and the network.

REFERENCES
[1] J.-C. Laprie, “From Dependability to Resilience,” in 38th IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN),
2008.

[2] K. H. K. Kim and T. F. Lawrence, “Adaptive Fault Tolerance: Issues
and Approaches,” in Proceedings of the Second IEEE Workshop on
Future Trends of Distributed Computing Systems. IEEE, 1990, pp. 38–
46.

[3] C. Krishna and I. Koren, “Adaptive Fault-Tolerance for Cyber- Physical
Systems,” in IEEE International Conference on Computing, Networking
and Communications (ICNC), 2013, pp. 310–314.

[4] J. Fraga, F. Siqueira, and F. Favarim, “An Adaptive Fault- Tolerant
Component Model,” in 9th Workshop on Object- Oriented Real-Time
Dependable Systems. IEEE, 2003, pp. 179–186.

[5] L. C. Lung, F. Favarim, G. T. Santos, and M. Correia, “An Infrastructure
for Adaptive Fault Tolerance on FT-CORBA,” in 9th International
Symposium on Object and Component- Oriented Real-Time Distributed
Computing. IEEE, 2006.

[6] O. Marin, P. Sens, J.-P. Briot, and Z. Guessoum, “Towards Adaptive
Fault-Tolerance for Distributed Multi-Agent Sys- tems,” in 4th
European Research Seminar on Advances in Distributed Systems, 2001,
pp. 195–201.

[7] J.HighsmithandA.Cockburn,“AgileSoftwareDevelopment: The Business
of Innovation,” Computer, vol. 34, no. 9, pp. 120–127, 2001.

[8] P. McKinley, S. Sadjadi, E. Kasten, and B. H. C. Cheng, “Composing
Adaptive Software,” Computer, vol. 37, no. 7, pp. 56–64, 2004.

[9] [11] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, 2nd ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[10] [12] J. Marino and M. Rowley, Understanding SCA (Service Com-
ponent Architecture). Addison-Wesley Professional, 2009.

[11] [13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented program- ming,”
ECOOP’97Object-Oriented Programming, pp. 220– 242, 1997.

[12] H. Martorell, J.-C. Fabre, M. Lauer, M. Roy and R. Valentin. Partial
Updates of AUTOSAR Embedded Applications — To What Extent?, in
European Dependable Computing Conference (EDCC), 2015, Paris,
France.

[13] M.Stoicescu, J.-C. Fabre, M. Roy, From Design for Adaptation to
Component-Based Resilient Computing. PRDC 2012: 1-10

[14] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schi- avoni, and J.-B.
Stefani, “A Component-Based Middleware Platform for Reconfigurable
Service-Oriented Architectures,” Software: Practice and Experience,
2011.

[15] M. Leger, T. Ledoux, and T. Coupaye, “Reliable Dynamic
Reconfigurations in a Reflective Component Model,” 13th International
Conference on Component-Based Software En- gineering, 2010.

[16] D. Powell, "Failure Mode Assumption and Assumpion Coverage", in
Proc. of the IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-22),
Boston (USA), 1992, pp.386-395. (revised in the book Predictably
Dependable Computing Systems, ISBN 3-540-59334, 1995.)

[17] M.Stoicescu, "Architecting Resilient Computing Systems: A
Component-based Approach", PhD thesis, National Polytechnic Institute
of Toulouse (INP), 2013. ww.theses.fr/en/2013INPT0120.

