
HAL Id: hal-01292315
https://hal.science/hal-01292315v1

Submitted on 22 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-compilation challenges [for Cyber-Physical
systems (CPS)]

Belgacem Ben Hedia, Etienne Hamelin, Chokri Mraidha, Sara Tucci
Piergiovanni

To cite this version:
Belgacem Ben Hedia, Etienne Hamelin, Chokri Mraidha, Sara Tucci Piergiovanni. Model-compilation
challenges [for Cyber-Physical systems (CPS)]. 8th European Congress on Embedded Real Time Soft-
ware and Systems (ERTS 2016), Jan 2016, TOULOUSE, France. �hal-01292315�

https://hal.science/hal-01292315v1
https://hal.archives-ouvertes.fr

Model-compilation challenges
[for Cyber-Physical systems (CPS)]

B. BEN HEDIA, E. HAMELIN, C. MRAIDHA & S. TUCCI-PIERGIOVANNI

CEA, LIST, Gif-sur-Yvette, France

{belgacem.ben-hedia, etienne.hamelin, sara.tucci@cea.fr, chokri.mraidha}@cea.fr

Abstract

There are several “disconnects” which need to be ad-
dressed to provide effective means for engineering Cyber
Physical Systems (CPS). One of them is how to construct
an optimized application starting from high-level specifi-
cations taking into account exacerbated interactions with
the physical environment and in the same time address-
ing new paradigms like mixed criticality, and distributed
multi/many-cores platforms. We introduce in this position
paper a new methodology called model-compilation for
Cyber-Physical systems. This methodology introduces new
concepts and process that can be seen as a specification that
tool editors and CPS application developers can integrate (
instantiate) in their tool chain or development process.

Keywords: Cyber Physical Systems (CPS), model-
compilation, real-time and embedded system, design space
exploration, correct-by-design, mix-criticality

1 Introduction

Cyber Physical Systems (CPS) [25] can be considered as the
next level of embedded systems [27]. Where an embedded
system was mainly concerned with the computational ele-
ments for controlling systems, CPS are a network of com-
plex interacting elements which require different physical
inputs and outputs and therefore the stress is put on the
interaction between separate elements rather than on the
computation of a standalone device. However, most of the
added value comes from this complex interaction between
several devices and the physical environment[26]. The Eu-
ropean consumer electronics industry is among one of the
strongest players in the fierce global competition for leader-
ship in the embedded systems domain and is now leading
the way in CPS.

In CyPhERS project [9] report, for instance, we read: the
principal barrier to developing the field of Cyber-Physical Systems
(CPS) is the lack of a theory and of application best practices that
comprehend cyber and physical resources in a single unified frame-
work. There are several “disconnects” which need to be addressed
to provide effective means for engineering CPS.

One need that became apparent while building several
European project proposals on the development of CPS is
to reduce the gap between high-level modeling tools (for in-
stance: Simulink for control and Modelica for physical mod-

eling) aiming at describing functional behaviors and struc-
ture, and the actual software implementation on the target
platform.

Given the new CPS design challenges [26, 22, 39], the CPS
domain needs to move forward from traditional approaches
[22], where transition from model to software relies either
on fully manual rewriting (a highly error-prone activity), or
on code generation tools that can only perform a simple, un-
optimized transformation, hard to fine-tune to a given plat-
form architecture. These tools do not address distributed
multi/many-cores platforms. Only few research tentatives
aim at generating correct-by-design multi-task code from
high-level modeling languages, e.g. [40] which addresses
the modular generation of multi-rate solvers for Modelica
models, and [20] which focuses on reliability aspects.

In our opinion these traditional approaches are not ask-
ing the right questions, and limits rapid application pro-
totyping. During the ITEA2 project OPENPROD [19], we
have worked on how to construct a software architecture
and generate source code starting from a Modelica [3] model
for a time-triggered execution platform. At the end of this
project, we came to the conclusion that, before starting to
build a software architecture and subsequently generate an
optimized source code, there are many questions that need
to be answered:

• How to generate an optimized software architecture
and source code well suited for a given target plat-
form?

• How to integrate the specificity of a given execu-
tion platform model (HW platform, communication
and runtime support, mix-criticality) during this pro-
cess, especially with distributed multi/many-cores
platforms?

• How to construct the CPS software application struc-
ture that will take into account the structural elements
available in the high-level model?

• How to construct a CPS process application that re-
spects all requirements described in the high-level
model, especially with mixed degree of dependability
for different functions and data, through all construc-
tion steps, without systematic a posterior V&V meth-
ods. In other words how to make the CPS application
correct-by-design?

To sum up, we need to construct an approach or method-
ology that allows the integration of existing tools and tech-
niques and that meets two main concerns:

1

2 CPS challenges 2

1. Design space exploration and optimization of software
architectures for CPS applications.

2. Correct-by-design methods for CPS applications con-
struction, from high-level model to binary code into
execution platform.

This position paper aims at presenting the first rationale
of this methodology and at defining key concepts in order
to develop an emerging domain of research and technol-
ogy that we call model-compilation: this term denotes the
semi-automated, multi-criteria optimized synthesis of dependable
and efficient software implementations distributed on a network
of multi/many-cores embedded computers, from abstract system-
level models (including multi-physics hybrid control models).

Integrated into a model-driven system development
methodology, the model-compilation methodology will
help system, control, software and safety engineers work
together to generate a software implementation respect-
ing all their concerns at once, in a holistic, iterative and
de-verticalized way. By automating the optimization and
trade-offs selection during the software architecture cre-
ation, the model-compilation methodology will also en-
able faster development cycles from concept to realiza-
tion and validation, up to rapid-prototyping of complex,
safety-critical applications and hence reduce the develop-
ment costs and enhance the qualities of cyber physical sys-
tems in many industrial domains.

The model-compilation methodology can then be seen as
a specification that tool editors and developers or CPS appli-
cation design and development teams can integrate (instan-
tiate) in their toolchain or adopt as a development process
with the goal to construct their CPS application. Through-
out this paper we illustrate the model-compilation method-
ology concepts on a use-case represented in figure 1.

This position paper is organized as follows: section 2 will
introduce the new challenges of software architecture for
CPS applications in terms of design space exploration and
optimization; section 3 will detail the model-compilation
methodology and how to integrate its different steps into
existing toolchains or how to adopt it as a development pro-
cess; in section 4 we present how the model-compilation
methodology answers the challenges expressed in section
2 and its applicability to a use case; section 5 gives an
overview of related works in the state of the art; and finally
we conclude the paper in section 6

2 CPS challenges

The challenge of implementing a cyber-physical system, as
many engineering challenges, can be described in the form
of an optimization problem. Some parameters of this opti-
mization problem will be specific to one application domain,
however many parameters can be seen as generic problems,
only to be weighted differently among use-cases. The opti-
mization problem can be written in the form of:{

Minsys Cost(sys)
Feasible(sys)

In other words: “find a system implementation (sys) which
minimizes the cost function, such that the system is feasible”.
In a traditional mathematical optimization formulation, the

Cost() function has as output a single scalar value, whereas
the Feasible function is a vector of several feasibility con-
straints of the form Feasibilei(sys) 6 0

The Cost() and Feasible() functions are specific for each
CPS problem; however they are built using generic build-
ing blocks, with estimations/weights specific to the prob-
lem. Within the Cost function, most CPS domains will enlist
the aspects of the system that should be minimized or opti-
mized:

• Cost aspects (accounted positive, to be minimized):

– Recurring or per-unit costs: e.g. most hardware
costs, cabling requirement, devices.

– Non-recurring costs: e.g. specific HW and SW
engineering and development costs, certification
costs.

– System usage costs: e.g. power consumption,
maintenance costs.

• Quality and performance aspects (accounted positive,
to be maximized):

– Functional performance of the implemented
functionality.

– Reliability of components.

At this point it is important to note that, since the output
of Cost function is a scalar evaluation of a proposed system
implementation, a weight must be given to all cost compo-
nents enlisted above: this weight distribution will drive the
resolution of necessary trade-offs between performance and
cost aspects (e.g. a “low-cost” vs. “premium” strategies).
Within the feasibility function many CPS domains will en-
list all their domain-specific engineering constraints:

• System minimal viability requirement:

Per f ormance > required
(threshold for functionality to be granted)

• System resource constraints:{
SW memory usage 6 HW memory available
SW proc. & comm. usage 6 HW capability

• Certification/qualification constraints:

Evaluated sa f ety level > required level

The canonical method for minimizing Cost(sys) such that
Feasible(sys) is satisfied is to explore the domain of feasi-
ble system implementations sys, while keeping a track of
the best one. Most optimization solvers choose smart strate-
gies to avoid exploring the whole feasible domain, through
backtracking and iteration, and split the optimization pro-
cess into several successive approximations.

The theoretical difficulty is that an accurate
cost/performance and feasibility evaluation can only
be performed on a concrete system implementation -which
makes this optimization-driven engineering method just
useless. Moreover, the engineering time spent on finding
the optimum of this problem is also part of the non-
recurring cost valuation, and may become crucial when
time-to-market is a stringent requirement.

2 CPS challenges 3

It thus becomes necessary to perform “approximate” cost
& feasibility evaluations. However an implementation op-
timal wrt those approximations may consequently not be
optimal to the exact cost & feasibility evaluation, should
it be performed. It becomes useless looking for an opti-
mal solution, one should rather look for an implementation
“good enough” wrt. estimated cost/feasibility. Moreover
estimations can be performed at intermediate steps in the
design process, i.e. during phases in which the system im-
plementation is only partially known or specified: on sys-
tem design models. These estimations should however be
checked again a posteriori on the concrete system, once im-
plemented. A large effort is dedicated, in the CPS commu-
nity, to developing tools and design patterns that help de-
sign more robust and simple model-based approximations
of certain system costs/feasibility evaluations.

As an intermediate conclusion, we assume that CPS sys-
tems design is an optimization process, where design con-
straints and costs are rarely well specified and hard to eval-
uate accurately, and in which we only look for good-enough,
but practical, implementations.

One classical way to speed up approximate optimization
problems is to partition variables into mostly-orthogonal
sets. An example is usually to split up CPS design into sep-
arate dimensions, e.g. with one team exploring the HW
trade-offs (against estimated SW requirements), and an-
other team exploring the SW implementation choices. How-
ever recent evolution in the CPS industry show that cross-
domain optimizations are highly demanded:

• Embedded systems design used to involve both hard-
ware and software engineers to explore cross-domain
trade-offs for higher performance control and commu-
nication systems,

• Mechatronics systems design used to mix previous em-
bedded systems teams with mechanical engineers to
explore tighter system integration,

• Now Cyber-Physical Systems implies to cooperate
with multi-physics modelling, instrumentation and
control engineers, for flexible, distributed systems in-
teracting with humans and physical systems.

The whole model-compilation challenge relies in:

• identifying how much of the approximate-
optimization problem solving can be assisted by
automatic computer reasoning;

• defining cross-domain interfaces that allow control,
software, and hardware engineers cooperate on coher-
ent models, to allow for multi-domain trade-off selec-
tion;

• setting-up practical tools through which multi-domain
experts can cooperate with computer-aided design
choices, in order to develop feasible, good-enough sys-
tem implementations.

We call this process model-compilation, as a tribute to the
software compilation process, in which a high(er)-level lan-
guage is automatically transformed into a lower-level (as-
sembly, then binary) implementation, through a roughly-
optimizing compilation process.

When compilers were introduced, an assembly expert
could certainly write a fine-tuned, high-performance im-
plementation of a given algorithm, it would take so much

time that the system performance drawback of using a com-
piled language is undoubtedly outweighed by the produc-
tivity of the software engineer. Today assembly is used only
in very specific situations, and the performance drawback
is moreover significantly reduced thanks to compiler and
high-level languages improvements. We expect similarly
that model-driven engineering will take over, thanks to gen-
eral adoption of both model-driven engineering and step-
wise improvements in the implementations generated by
model-compilers, so that within a couple decades most of
a CPS’s implementation will be semi-automatically gener-
ated, and CPS software engineers only have to implement
specific aspects such as low-level glue between HW and the
generated SW part.

The model-compilation process can be seen as a multi-
domain toolbox that enables control engineers, embedded
software architects, and hardware designers share their
domain-specific requirements and iterate on multi-domain
trade-offs. The control engineer in particular expects to:

• express the CPSystem’s functionality, often in the form
of a block chain involving sensing, filtering and predic-
tion, communication and actuation;

• validate system functionality, stability, robustness and
reactivity in various scenarios, usually through MiL
(model-in-the-loop) simulations involving intercon-
necting the controller model with a model of the phys-
ical plant under control;

• assess, at each iteration of the domain-space explo-
ration process, that a given software/hardware im-
plementation is functionally correct w.r.t. the origi-
nal control model, e.g. through semantically-correct-
by-construction software generation, or MiL or SiL
(Software-in-the-Loop) validation.

The hardware engineer expects to:

• define a hardware architecture made of ECUs in-
terconnected through networks, each node having
specific computing structure (e.g. a specific SoC
with single/multi/many-core architecture), and spe-
cific limitations (e.g. memory/computing/bandwidth
resource);

• perform preliminary safety assessment of the effects of
common HW failure modes:

• negotiate HW/SW trade-offs with SW engineer, e.g.
upgrade a CPU computing power, or downgrade SW
functionality.

The software architect expects to:

• assess software architectures, at several abstraction lev-
els (functional component, task, runnable, or source-
code block), for feasibility, performance, and safety
metrics;

• explore software architectures with computer assis-
tance towards a nearly-optimal choice;

• automatically generate a correct source code imple-
mentation of the chosen software architecture, that
suits a specific RTOS API, and if necessary re-write
only the performance-critical part of it;

• iterate quickly with hardware or control engineers on
SW/control or SW/HW trade-offs.

3 Model-compilation (methodology & approach) 4

Fig. 1: Adaptive cruise control and collision avoid-
ance system

Fig. 2: Global model-compilation methodology

3 Model-compilation (methodology &
approach)

In order to best present the complete end-to-end approach,
and how it is integrated within a model-driven devel-
opment process, this section highlights the application of
the model-compilation methodology on an adaptive cruise
control and collision avoidance system. This system is
sketched by figure 1.

Figure 2 gives an overview of the model-compilation
process. Like a third generation programming language
compiler, the model-compiler is composed by a front-end,
middle-end and back-end parts.

3.1 Front-end: from multiple
heterogeneous high-level models

The system is first designed as a conceptual systems archi-
tecture, using a general purpose or domain specific archi-
tecture modelling tool, where main system constituents and
their relations are identified as illustrated on the following
Unified Modelling Language (UML) diagram. The Cruise
control and collision avoidance system is composed of a set
of sensors, actuators as well as a human-machine interface
(HMI) and a controller.

At this level, a first safety analysis and risk assessment
can be conducted to estimate the level of risk associated
with specific items (elements of the architecture). Since we

Fig. 3: Conceptual systems architecture

Fig. 4: SysArch: Systems Architecture model

are considering an automotive use case, for risk assessment
we will use the concepts coming from the functional safety
standard for automotive equipment, the ISO26262 standard.
Accordingly to ISO26262, the risk level is specified through
an Automotive Safety Integrity Level (ASIL). A Safety Goal
is then defined for each hazardous event identified (e.g.
“when the brake pedal is pushed, a braking torque must be
applied to the wheels”) as well as a set of essential safety
requirements.

SysArch: systems architecture model The component-
based design is then detailed as an abstract data flow dia-
gram, illustrated below. This diagram is usually hierarchic,
for sake of representation and understanding. This diagram
will later be referred to as the functional architecture, or sys-
tems architecture: in brief SysArch.

This SysArch can efficiently be used to perform several
design activities relevant at the systems abstraction level, as
required by the ISO26262 standard. This activity includes
the definition of functional safety requirements and their al-
location to this preliminary functional architecture. At this
phase the System Hazard Analysis (SHA) is conducted to
study the propagation of failures across the system archi-
tecture. A preliminary safety assessment is conducted as
well through Fault Tree generation and qualitative Analy-
sis (FTA), Failure Mode Effects Analysis (FMEA) and Com-
mon Cause Analysis (CCA). These methods aim at analyz-
ing fault propagation through the system and help in the
definition of safety goals and ASIL criticality level. For in-
stance, a functional chain that supports a ASIL C safety
goal should rely on functional blocks assigned a criticality
of ASIL C or higher.

This functional system architecture model can also be
used for the specification of timing requirements. Some
chains of functions can be identified and used to define
global end-to-end deadlines (e.g. “latency from brake pedal

3 Model-compilation (methodology & approach) 5

Fig. 5: SimModel: Simulation Model

signal acquisition to the corresponding brakes actuation
should always be under 10ms“).

SimModel: the Simulation Model Then, for the control
engineering team to work out the regulation principles, the
data flow model is turned into a simulation model that will
be used in particular to design and validate the controller
regulation parameters, and assess their stability and robust-
ness. This simulation is built from the same architecture,
except that it includes a simulation of the environment (e.g.
of the vehicle dynamics). The Simulation model is specified
in a multi-physics modelling language.

Some blocks of the original systems diagram have been
abstracted away: mainly the controller’s interfaces to the
external world are replaced with simulation stubs. For in-
stance, some sensor blocks have been replaced by input sig-
nals (the orange blocks) that connect to external signal sce-
narios (e.g. a list of cruise control set speeds, brake pedal po-
sitions, etc. at given simulation time instants). Some other
blocks (like actuators and sensors) are replaced with trans-
parent connections to signals from/to the vehicle dynamics
simulation or a simulation of the sensor or actuator’s inter-
nals. The “human-machine interface” and “parameter se-
lection” blocks are also abstracted away by the “cruise con-
trol mode & set speed” input signal block, because these
blocks represent a graphical user-interface and menu han-
dling functions, therefore are not suitable for multi-physics
simulation.

Although the final software implementation of the whole
cruise control and collision avoidance system will be real-
ized by purely discrete computations, at this point both the
vehicle dynamics and the controller may be specified with
either discrete or continuous (i.e. time-differential) equa-
tions. Typically the “vehicle state estimation” block in the
controller will integrate differential equations. Many pa-
rameters evaluated during this simulation will be used to
drive the model-compilation.

PfArch: the Platform Architecture In parallel to the sim-
ulation modelling activity, a hardware platform model, here
named PfArch, is defined. It can be represented by a
graph of interconnected computing, communication, sens-
ing/actuating resources as illustrated below. Each compu-

Fig. 6: PfArch: Platform Architecture

tation resource should be annotated with its own specific re-
source constraints, e.g. CPU speed, RAM and ROM memory
limits, hardware peripherals available, maximum criticality
allowed (i.e. ASIL qualification level); and similarly buses
may be annotated with a bandwidth or any other required
by later feasibility analyses.

In many cases, it can be allowed to change this architec-
ture to some extent in order to meet the needs of the fi-
nal software implementation. In this case, some production
rules may be defined, together with an associated cost value,
that allow the computer-assisted optimization to create a
new platform architecture from the initial one if the applica-
tion does not meet the constraints of the initial platform ar-
chitecture (e.g. “another Electronics Component Unit (ECU)
can be added on a bus, at some cost; a bus can be replaced
with one with higher bandwidth, at some cost, etc.”).

3.2 Middle-end: model-compilation into
software architecture

The middle-end part is at the heart of the model-
compilation approach and lies in the optimized and effi-
cient synthesis, from a system architecture model (SysArch),
of a software architecture (SwArch) mapped onto the plat-
form architecture (PfArch), that simultaneously satisfies
safety, timing, resources and behaviour requirements. The
model-compilation is implemented by a combination of op-
timization algorithms and heuristics for transforming, in an
optimized manner, a system-level model into a software im-
plementation mapped onto a platform architecture model:

1. Optimisation algorithms aim at finding a solution
correct-by-construction, i.e. the transformation itself
is proven to guarantee that the SwArch produced re-
spects all the constraints related to timing, safety, be-
haviour, resources, etc. Such approach called multi-
staged optimization approach for multi-objective opti-
mization has been already investigated in our previous
works [30, 42]. The approach was able to find correct
solutions which respect a wide range of constraints in-
cluding causality and schedulability, while identifying
design trade-offs. Note that producing correct solu-
tions means that the analysis supposed to verify cor-
rectness is included in the optimization algorithm as a
set of constraints.

2. Heuristics fall in a trial-and-error paradigm: here the
SwArch obtained with the heuristics must be anal-

3 Model-compilation (methodology & approach) 6

ysed a-posteriori (i) to establish if all the constraints
are respected and (ii) if the required trade-offs are met.
Heuristics will be applied whenever the overall com-
plexity of the problem hinders the application of de-
terministic optimisation algorithms. One example of
efficient trial-and-error strategy is to use coarse esti-
mates of parameters to produce several nearly-optimal
feasible solutions (e.g. use only a coarse estimate of
CPU utilization factor for task creation step), then ap-
ply fine-grain analysis only to those few solutions (e.g.
validate schedulability with a detailed period & WCET
analysis).

For the automated transformation to be possible, either
as correct-by-construction generation or as analysis-driven
trial-and-error, all concerns must be first formalized and
quantified. Some requirements will be quantified as quan-
titative relationships that must be verified, whereas some
other requirements will be defined as the maximization of
some quantified objective. To enable multi-concern trade-
offs, a single objective (usually a weighted sum of all sub-
objectives) shall be defined. Different weights could be
selected depending on the application. [13, 14] aimed to
integrate the specificity of an execution paradigm (RTOS)
during the model-compilation process by integrating some
characteristics of the execution platform when the SwArch
is generated. Since then, the generation process became
more accurate, since it now integrates information about the
paradigm of the execution platform.

It should be noted that both optimization algorithms
and heuristics accept some degree of parameter uncer-
tainty. For instance, worst case execution time estimates
could be extracted from in-situ measures (when reusing a
function or task), or safe over-approximations (when us-
ing static analysis tools on the actual software), or only
coarse estimates when the function has not yet been imple-
mented/generated.

SwArch: Software Architecture intermediate represen-
tation Concretely at the end of the model-compilation
process, all functional blocks from the SysArch model are
transformed into some software code mapped onto one or
several tasks or runnables, each allocated to a CPU, and
all data or events (the edges of the SysArch diagram) are
mapped to variables or inter-task communication messages
or to bus messages; all tasks and signals have scheduling
parameters assigned, in such a way that on each computa-
tion unit all tasks are schedulable, messages are schedula-
ble on each bus, all end-to-end latency constraints are met,
no CPU resource is exhausted, items of different criticality
levels are separated and monitored by safety elements qual-
ified at the appropriate criticality level, etc. Several reports
may be produced together with the SwArch, for instance:
a schedulability report for each CPU, an analysis of end-
to-end latency constraints, a safety analysis at the software
architecture level demonstrating the respect of criticality-
related constraints, etc.

In the following illustration, functions of different criti-
cality levels are mapped onto tasks. Tasks of different ASIL
levels are separated either physically or in software by a
SEooC RTOS providing sufficient partitioning mechanisms.
A first work addressing the co-simulation of the SimModel

Fig. 7: SwArch: Software Architecture output

and SwArch is provided in [32].

3.3 Back-end: transformation into
concrete target platforms

A rather simple model-to-code transformation back-end
translates the SwArch model, into a set of files that actually
implement in a software language e.g. C, all these tasks,
and properly configure each CPU and RTOS instance. A
first work [13, 14] was carried out to integrate a generic
services of an execution paradigm (RTOS) during a model-
compilation process and integrate some information about
execution plate-form in the generated SwArch, with the in-
tention of making easier the Back-end stage. The back-
end of the model-compilation process then relies on off-
the-shelf C compilers to generate the binary file that will
be loaded on each ECU. This translation back-end is spe-
cific to the RTOS since it relies on the specific RTOS ap-
plication programming interface (API) and services for the
use of temporal control flow and inter-task messaging for
instance. For some blocks of the SysArch where only a
wrapper/placeholder was given in the simulation model,
an empty task or runnable is generated together with the
inter-task communication infrastructure, so that it still re-
mains easy to manually add the manual implementation
part. The wrapper & placeholder method facilitates the in-
tegration of existing tasks into the model-compilation pro-
cess.

3.4 Design iterations
For each artifact of the SwArch model (task, runnable, mes-
sage, etc.), a traceability annotation ensures that a straight-
forward link identifies the SysArch functional block or sig-
nal it was generated from and the design constraints that
apply.

When the generated code is run on the actual platform
properly instrumented, it is possible to measure relevant
metrics at actual runtime: for instance measure actual exe-
cution times with real-time tracing/debugging tools. These
runtime metrics can then, thanks to the traceability fea-
ture, be retro-annotated onto the SwArch model, then on
the SysArch model. In many cases these actual metrics are
much more accurate than the estimations given at first (if
any), and can be used to perform another run of the model-
compilation for a more optimized or more accurate synthe-

5 Related works 7

sis. This iterative design approach also allows an expert
engineer to identify on actual execution abnormalities, vi-
olations of unexpressed or soft requirements, bottlenecks,
sources of possible optimizations unseen before, etc. In this
case, the engineer can annotate the SysArch model with
different constraints that drive some steps of the model-
compilation towards his preferred solution, applying the
model-compilation process again.

4 Model-compilation methodology
assessment

Here we address the question whether, and how far, the
challenges defined in sections 1 and 2 can be resolved by
implementing the approach illustrated in section 3.

Applicability of model-compilation approach The
model-compilation methodology would be applied by
first implementing all (semi-)automated analysis and opti-
mization algorithms into already-existing tools, and then
applying the development method to realistic use-cases.

1. Integration/implementation by existing tools. To ef-
fectively support the model-compilation process, anal-
ysis/optimization plug-ins and model transformations
must be integrated to existing model-based develop-
ment (MBD) tools:

• A set of model analysis/optimization techniques
will refine different aspects of the SwArch model.
Most model-based development (MBD) tools al-
low to define specific languages and therefore
support the SwArch models; moreover they sup-
port plug-ins and extensions mechanisms, within
which feasibility, performance evaluation and
optimization techniques can be implemented.
Our previous work [13, 19, 14, 42, 30, 33] address
different analysis & optimizations techniques as
a proof of concept of this methodology.

• The development process defined here certainly
needs to rely on several engineering tools, there-
fore some bridges are required to support a seam-
less workflow along several iterations of individ-
ual steps of the model-compilation methodol-
ogy. This generic toolbox can then be tailored by
each engineering team into a product-specific de-
velopment method, in which eventually a set of
process guidelines can also be enforced through
tool usage rules. Each process step should more-
over be formalized with a set of hypotheses and
guarantees, so that it could be eventually possi-
ble to verify the overall coherency of each specific
workflow – this point will be further detailed in
forthcoming publications.

2. Realistic use-case application. The illustrative use-
case detailed in section 3 proves that the approach is
applicable, through several analysis & transformation
steps, on a virtual use-case representative of a realistic,
non-trivial, industrial system.

Productivity enhancements The CPS development pro-
ductivity will be illustrated on three main axes:

1. (semi-)automation of individual steps. Several tasks
are automated or computer-aided, especially those
most labor-intensive, with low systems-engineering
added value, or most error-prone. Common MBD tools
usually generate hardly-readable source-code in only
one iteration, are poor at engineer interaction, with lim-
ited (if any) analysis or user-guided optimization facil-
ities.

2. Overall workflow acceleration. With model-
compilation, the CPS development workflow enables
an exploration and optimization of SwArch. This
allows to quickly evaluate several configurations of
the software before choosing which one to apply
for the final source-code generation. Existing tools
generally generate code that is poorly structured,
therefore adaptation to a specific execution platform
(RTOS) or HW platform is very costly. Architectural
exploration is subsequently only manual, and very
long. Within the model-compilation methodology,
all necessary information for the SwArch exploration
phase are integrated, so that exploration steps are
quickly iterated.

3. Early feasibility assessment. The feasibility and
cost/performance evaluations performed at different
phases during architecture exploration allow to early
focus only on feasible alternatives.

5 Related works

This section presents the current state-of-art of some re-
search areas relevant for CPS development, which in our
opinion need further consideration.

Model-based methodologies for safety and timing
Considering the whole body of work on development
methodologies for systems and software is of course unfea-
sible. Nevertheless we are interested in giving an overview
particularly focused on safety, timing and methodologi-
cal management based on the use of modelling languages,
which narrows the scope of this literary review.

Methodologies for safety management have been mainly
proposed by T.Kelly and his group [18, 38, 17, 16]. These
methodologies focus on how to build a safety case both at
system and software level. Safety case patterns are pro-
posed to ease this task [16], however, these approaches pro-
pose only an abstract methodology, i.e. they are not focus-
ing on the use of either particular language (e.g. SysML,
UML, etc) or models. This lack of concretization also im-
plies a lack of methodology automation. A model-based
approach has been proposed in the FP7 MAENAD project,
where the GMP pattern methodology developed in TIMMO
and TIMMO-2-USE projects has been instantiated on EAST-
ADL models. This concretization allowed the automation of
some safety activities such as FMEA and static and tempo-
ral FTA; still the automation support is partial with respect
to the whole safety management, and safety case patterns
were not integrated.

6 Conclusion 8

On the timing side, while a vast number of model-based
approaches have been proposed for performance prediction
[29], methodologies enabling analysis of timing constraints
are more recent and are gaining a growing interest with the
increasing complexity of embedded real-time systems [8, 4].
A UML based methodology based on the Y-chart princi-
ple has been proposed18 which then envisages the use of
mapping algorithms (model-compilation) but not specifi-
cally focusing on timing analysis. A UML-based methodol-
ogy for the analysis of objected oriented models but without
proposing an automated mapping step has also been pro-
posed [21]. Mraidha et al. [33] proposed a MARTE based
methodology based on a scenario-based mapping and en-
abling schedulability analysis of mono-processor systems.

Note that the only methodological attempt, we are aware
of, about the integration of safety and timing has been pur-
sued in TIMMO and TIMMO-2-USE projects with the GMP
pattern methodology. However this methodology is very
general and do not specify how safety and timing manage-
ment interact during the development process, this speci-
fication is left to the system engineer. New methodologies
proposing a tighter integration of safety and timing activ-
ities throughout the development processes are needed to
better support the development of CPS with mixed-critical
constraints.

Model-compilation In the development of cyber-physical
systems, abstraction levels must be used to manage com-
plexity [24]. Industrial standards (like the automotive
AUTOSAR [1] and the Model-Driven Architecture from
the OMG [24]) and academic frameworks (including the
Platform-Based Design [37]) recommend system develop-
ment along the lines of the Y-chart approach [23]: a func-
tional model representing the system functions and the sig-
nals exchanged among them (model often represented by
Simulink-like models) is deployed onto an execution plat-
form model consisting of nodes, buses, tasks and messages.
Throughout this paper we call model-compilation the re-
finement of a functional model in its “execution counter-
part”: functions concretised by software modules (code) de-
ployed across sofware (middleware, OS, etc...) and hard-
ware (CPUs, memories, buffers, etc..) execution architec-
tures, mostly distributed (as for CPS). Correctness of model-
compilation implies that this functional execution counter-
part must respect timing and safety constraint when run-
ning in the target platform.

On this topic, the current state of the art has been de-
veloped by two rather separated communities: the formal
methods community focusing on functional model schedul-
ing [28, 7, 36, 34] (with implicit assumption about a deploy-
ment on uni-processor platforms) and the real-time commu-
nity focusing on allocation and scheduling of tasks models
(with a large use of optimization and design exploration
techniques), leaving the function-to-software transforma-
tion to the designer [15, 35, 11, 31, 10].

Providing a holistic optimization approach for model-
compilation, i.e. optimization applied to the deployment
of a functional model over a multi-processors architecture
(multi-core and/or distributed). In this direction recent
works, such as Mehiaoui et al. [30] and Wozniak et al.56
proposed a two-staged multi-objective optimisation tech-
nique able to output schedulable solutions for functions to

be deployed in a distributed architecture. These approaches
must be extended to specifically address safety constraints
and mixed-criticality. Another important research topic
about model-compilation concerns model transformations
for Matlab Simulink models. While semantics preserving
translations of Simulink models into tasks exist for discrete
models, the translation of continuous blocks is an open re-
search issue.

Physical modelling Historically, physical modelling and
discrete control have mostly been treated as separate engi-
neering activities. However, over the years, due to an in-
creasing demand in tools covering a wider range of prod-
uct lifecycle, the need for more integrated approaches has
emerged [41].

Today, industrial applications of physical modelling are
handled by tools providing informal semantic models
mostly inspired from results in the field of continuous sys-
tem simulation. Discrete aspects, despite being essential
even in pure physical applications, are generally poorly sup-
ported by modelling tools, sometimes leading to important
issues as soon as discrete aspects have to tightly interact
with continuous ones [12, 5, 6].

Currently, tools essentially resort to their own semantic
models, believed to be compatible with the operational re-
quirements of some emerging standards such as Modelica
[3] and FMI [2]. “High-level” proposals such as Modelica,
VHDL-AMS and Verilog-AMS, and “low-level” proposals
such as FMI attempt to provide a common basis for different
users using different tools to describe models in such a way
that tool interoperability and model exchange are hopefully
possible. However, to the best of our knowledge, none of
these proposals currently attempt to fully formalize the op-
erational semantics required to reach the desired portability
of hybrid models, especially their continuous-time part [6].
This means that a sound operational semantics for physi-
cal models is yet to be defined so that models coming from
various sources (so including physical models) have to be
combined in a sound way.

On the other hand, the situation is more comfortable
in pure discrete-time applications since many semantically
sound approaches have been proposed over the years to
cope with them, one of the most prominent among them
being the synchronous approach. Many tools targeting em-
bedded applications (among which CEA’s tools) support a
form of synchronous approach. This approach allows one to
reason about logical timing properties of models at a high
level of abstraction, even before target code has actually
been generated. This makes the synchronous level of ab-
straction an attractive “common denominator” for models
that need to be checked for semantic compatibility and for
qualification for embedded purposes. However, no tool al-
lows physical models to be rigorously transformed into this
intermediate form currently [6], which clearly constitutes an
important challenge to be addressed.

6 Conclusion

In this position paper, we have defined a roadmap for
a method of development for cyber-physical systems, to
address the new challenges of rapidly designing multi-

6 Conclusion 9

viewpoint optimized implementations, that we call model-
compilation. The proposed approach addresses two main
concerns: design-space exploration and optimization of a
software architecture, and correct-by-design construction
from high-level models to source code and binary for a
given execution platform. The model-compilation method-
ology can then be seen as a general specification that tool
editors and CPS design teams can integrate (instantiate) in
their toolchain, or adopt as a development process.

This roadmap is deemed feasible through several previ-
ous work and publications by the authors, but many aspects
will be further detailed to confirm that the whole model-
compilation approach can be efficiently implemented in in-
dustrial practice.

References

[1] Autosar 4.0 specifications. http://www.autosar.
org/.

[2] Fmi standars. http://www.fmi-standard.org.

[3] Modelica. http://www.modelica.org.

[4] Cesare Bartolini, Antonia Bertolino, Guglielmo De An-
gelis, and Giuseppe Lipari. A uml profile and a
methodology for real-time systems design. In Software
Engineering and Advanced Applications, 2006. SEAA’06.
32nd EUROMICRO Conference on, pages 108–117. IEEE,
2006.

[5] Albert Benveniste, Timothy Bourke, Benoit Caillaud,
and Marc Pouzet. Non-standard semantics of hybrid
systems modelers. Journal of Computer and System Sci-
ences, 78(3):877–910, 2012.

[6] Simon Bliudze and Sébastien Furic. An operational
semantics for hybrid systems involving behavioral ab-
straction. In Proceedings of the 10th International Model-
icaConference, number EPFL-CONF-199085, pages 693–
706. Linköping University Electronic Press, Linköpings
universitet, 2014.

[7] Paul Caspi, Adrian Curic, Aude Maignan, Christos
Sofronis, Stavros Tripakis, and Peter Niebert. From
simulink to scade/lustre to tta: a layered approach for
distributed embedded applications. In ACM Sigplan
Notices, volume 38, pages 153–162. ACM, 2003.

[8] Rong Chen, Marco Sgroi, Luciano Lavagno, Grant Mar-
tin, Alberto Sangiovanni-Vincentelli, and Jan Rabaey.
Uml and platform-based design. In UML for Real, pages
107–126. Springer, 2003.

[9] CyPhERS. Cyber-physical european roadmap & strat-
egy, 2014.

[10] Werner Damm, Alexander Metzner, Friedrich Eisen-
brand, Gennady Shmonin, Reinhard Wilhelm, and Se-
bastian Winkel. Mapping task-graphs on distributed
ecu networks: efficient algorithms for feasibility and
optimality. In Embedded and Real-Time Computing Sys-
tems and Applications, 2006. Proceedings. 12th IEEE Inter-
national Conference on, pages 87–90. IEEE, 2006.

[11] Cagkan Erbas. System-level modelling and design space
exploration for multiprocessor embedded system-on-chip ar-
chitectures, volume 132. Amsterdam University Press,
2007.

[12] Sébastien Furic and LMS Imagine. Enforcing reliability
of discrete-time models in modelica. In Proceedings of
the 8th International Modelica Conference, 2011.

[13] Hela Guesmi, Belgacem Ben Hedia, Simon Bliudze,
Saddek Bensalem, and Jacques Combaz. Towards time-
triggered component-based system models. In The
Tenth International Conference on Software Engineering
Advances (ICSEA), 2015.

[14] Hela Guesmi, Belgacem Ben Hedia, Simon Bliudze,
and Saddek Bensalem. Externalisation of time-
triggered communication system in bip high level
models. JRWRTC 2014, page 41, 2014.

[15] Arne Hamann, Razvan Racu, and Rolf Ernst. Formal
methods for automotive platform analysis and opti-
mization. In In Proc. Future Trends in Automotive Elec-
tronics and Tool Integration Workshop (DATE Conference),
Munich. Citeseer, 2006.

[16] Richard Hawkins, Kester Clegg, Rob Alexander, and
Tim Kelly. Using a software safety argument pattern
catalogue: Two case studies. In Computer Safety, Relia-
bility, and Security, pages 185–198. Springer, 2011.

[17] Richard Hawkins, Ibrahim Habli, and Tim Kelly. Prin-
cipled construction of software safety cases. In SAFE-
COMP 2013-Workshop SASSUR (Next Generation of Sys-
tem Assurance Approaches for Safety-Critical Systems) of
the 32nd International Conference on Computer Safety, Re-
liability and Security, page NA, 2013.

[18] Richard Hawkins, Tim Kelly, John Knight, and Patrick
Graydon. A new approach to creating clear safety ar-
guments. In Advances in systems safety, pages 3–23.
Springer London, 2011.

[19] B. Ben Hedia and E. Hamelin. Model to embedded real-
time real time embedded code transformation, 2012.

[20] Jia Huang, Simon Barner, Andreas Raabe, Christian
Buckl, and Alois Knoll. A framework for reliability-
aware embedded system design on multiprocessor
platforms. Microprocessors and Microsystems, 38(6):539
– 551, 2014.

[21] Dongxi Jin and David C Levy. An approach to schedu-
lability analysis of uml-based real-time systems design.
In Proceedings of the 3rd international workshop on Soft-
ware and performance, pages 243–250. ACM, 2002.

[22] S.K. Khaitan and J.D. McCalley. Design techniques and
applications of cyberphysical systems: A survey. Sys-
tems Journal, IEEE, 9(2):350–365, June 2015.

[23] Bart Kienhuis, Ed F Deprettere, Pieter Van Der Wolf,
and Kees Vissers. A methodology to design pro-
grammable embedded systems. In Embedded processor
design challenges, pages 18–37. Springer, 2002.

[24] Stefan Kugele, Wolfgang Haberl, Michael Tautschnig,
and Martin Wechs. Optimizing automatic deploy-
ment using non-functional requirement annotations. In
Leveraging Applications of Formal Methods, Verification
and Validation, pages 400–414. Springer, 2008.

[25] Edward A. Lee. Cyber-physical systems - are comput-
ing foundations adequate? In Position Paper for NSF
Workshop On Cyber-Physical Systems: Research Motiva-
tion, Techniques and Roadmap, October 2006.

 http://www.autosar.org/
 http://www.autosar.org/
http://www.fmi-standard.org
http://www.modelica.org

6 Conclusion 10

[26] Edward A. Lee. Cyber physical systems: Design chal-
lenges. Technical Report UCB/EECS-2008-8, EECS De-
partment, University of California, Berkeley, Jan 2008.

[27] Edward A. Lee and Sanjit A. Seshia. Introduction to Em-
bedded Systems - A Cyber-Physical Systems Approach. Lee
and Seshia, 1 edition, 2010.

[28] Roberto Lublinerman and Stavros Tripakis. Modular
code generation from triggered and timed block dia-
grams. In Real-Time and Embedded Technology and Appli-
cations Symposium, 2008. RTAS’08. IEEE, pages 147–158.
IEEE, 2008.

[29] Jack E Matson, Bruce E Barrett, and Joseph M Mel-
lichamp. Software development cost estimation using
function points. Software Engineering, IEEE Transactions
on, 20(4):275–287, 1994.

[30] Asma Mehiaoui, Ernest Wozniak, Sara Tucci-
Piergiovanni, Chokri Mraidha, Marco Di Natale,
Haibo Zeng, Jean-Philippe Babau, Laurent Lemarc-
hand, and Sébastien Gerard. A two-step optimization
technique for functions placement, partitioning, and
priority assignment in distributed systems. ACM
SIGPLAN Notices, 48(5):121–132, 2013.

[31] Alexander Metzner and Christian Herde. Rtsat–an
optimal and efficient approach to the task allocation
problem in distributed architectures. In Real-Time Sys-
tems Symposium, 2006. RTSS’06. 27th IEEE International,
pages 147–158. IEEE, 2006.

[32] Matteo Morelli, Yasmina Seddik, Marco Di Na-
tale, Chokri Mraidha, and Sara Tucci-Piergiovanni.
Simulation-driven optimization of real-time control
tasks. In Proceedings of International Conference on Em-
bedded Software and Systems (ICESS), 2015.

[33] Chokri Mraidha, Sara Tucci-Piergiovanni, and Se-
bastien Gerard. Optimum: a marte-based methodol-
ogy for schedulability analysis at early design stages.
ACM SIGSOFT Software Engineering Notes, 36(1):1–8,
2011.

[34] Thomas M Parks, Edward Lee, et al. Non-preemptive
real-time scheduling of dataflow systems. In Acoustics,
Speech, and Signal Processing, 1995. ICASSP-95., 1995 In-
ternational Conference on, volume 5, pages 3235–3238.
IEEE, 1995.

[35] Traian Pop, Paul Pop, Petru Eles, and Zebo Peng. Anal-
ysis and optimisation of hierarchically scheduled mul-
tiprocessor embedded systems. International Journal of
Parallel Programming, 36(1):37–67, 2008.

[36] Marc Pouzet and Pascal Raymond. Modular static
scheduling of synchronous data-flow networks. Design
Automation for Embedded Systems, 14(3):165–192, 2010.

[37] Alberto Sangiovanni-Vincentelli and Grant Martin.
Platform-based design and software design methodol-
ogy for embedded systems. IEEE Design & Test of Com-
puters, (6):23–33, 2001.

[38] Mark A Sujan, Floor Koornneef, Nick Chozos, Simone
Pozzi, and Tim Kelly. Safety cases for medical devices
and health information technology: Involving health-
care organisations in the assurance of safety. Health in-
formatics journal, 19(3):165–182, 2013.

[39] Paulo Tabuada. Cyber-physical systems: Position pa-
per. In NSF Workshop on Cyber-Physical Systems, 2006.

[40] Bernhard Thiele, Martin Otter, and Sven Erik Matts-
son. Modular Multi-Rate and Multi-Method Real-
Time Simulation. In Hubertus Tummescheit and Karl-
Erik Årzén, editors, 10th Int. Modelica Conference, Lund,
Sweden, May 2014.

[41] Vincent Berthoux Sébastien Furic Loı̈c Wagner and
LMS Imagine SA. Statecharts as a means to control
plant models in lms imagine. lab amesim.

[42] Ernest Wozniak, Asma Mehiaoui, Chokri Mraidha,
Sara Tucci Piergiovanni, and Sebastien Gerard. An op-
timization approach for the synthesis of AUTOSAR ar-
chitectures. In Carla Seatzu, editor, Proceedings of 2013
IEEE 18th Conference on Emerging Technologies & Factory
Automation, ETFA 2013, Cagliari, Italy, September 10-13,
2013, pages 1–10. IEEE, 2013.

	Introduction
	CPS challenges
	Model-compilation (methodology & approach)
	Front-end: from multiple heterogeneous high-level models
	Middle-end: model-compilation into software architecture
	Back-end: transformation into concrete target platforms
	Design iterations

	Model-compilation methodology assessment
	Related works
	Conclusion

