
HAL Id: hal-01292296
https://hal.science/hal-01292296

Submitted on 22 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Seamless Model-Transformation between System and
Software Development Tools

Georg Macher, Harald Sporer, Eric Armengaud, Eugen Brenner, Christian
Kreiner

To cite this version:
Georg Macher, Harald Sporer, Eric Armengaud, Eugen Brenner, Christian Kreiner. A Seamless
Model-Transformation between System and Software Development Tools. 8th European Congress on
Embedded Real Time Software and Systems (ERTS 2016), Jan 2016, TOULOUSE, France. �hal-
01292296�

https://hal.science/hal-01292296
https://hal.archives-ouvertes.fr


A Seamless Model-Transformation between System
and Software Development Tools

Georg Macher∗†, Harald Sporer∗, Eric Armengaud†, Eugen Brenner∗ and Christian Kreiner∗

∗Institute for Technical Informatics, Graz University of Technology, AUSTRIA
Email: {georg.macher, sporer, brenner, christian.kreiner}@tugraz.at

†AVL List GmbH, Graz, AUSTRIA
Email: {georg.macher, eric.armengaud}@avl.com

Abstract—The development of dependable embedded auto-
motive systems faces many challenges arising from increasing
complexity, coexistence of critical and non-critical applications,
and the emergence of new architectural paradigms on the one
hand, to short time-to-market intervals on the other hand. This
situation requires tools to improve efficiency and consistence
of development models along the entire development lifecycle.
The existing solutions to date are still all too frequently in-
sufficient when transforming system models with higher levels
of abstraction to more concrete engineering models (such as
software engineering models). Future automotive systems require
appropriate structuring and abstraction in terms of modulariza-
tion, separation of concerns, and supporting interactions between
system, and component development.

However, refinement of system designs into hardware and
software implementations is still a tedious task. The aim of this
work is to enhance an automotive model-driven system engi-
neering framework with software-architecture design capabilities
and a model-transformation framework to enable a seamless
description of safety-critical systems, from requirements at the
system level down to software component implementation in a
bidirectional manner.

Keywords—Automotive, model-based development, reuse, trace-
ability, model-based software engineering, ISO 26262.

I. INTRODUCTION

Embedded systems are already integrated in our every-
day lives and play a central role in all domains including
automotive, aerospace, healthcare, manufacturing industry, the
energy sector, or consumer electronics. In 2010, the embedded
systems market accounted for almost 852 billion dollars world-
wide, and is expected to reach 1.5 trillion by 2015 (assuming
an annual growth rate of 12%) [18]. Current premium cars
implement more than 90 electronic control units (ECU) per
car with close to 1 Gigabyte software code [6], these are
responsible for 25% of vehicle costs and bring an added value
of between 40% and 75% [23].

The trend of replacing traditional mechanical systems with
modern embedded systems enables the deployment of more
advanced control strategies providing additional benefits for
the customer and for the environment, but at the same time,
the higher degree of integration and criticality of the control
application is posing new challenges. These factors are result-
ing in multiple cross-domain collaborations and interactions in
the face of the challenge of mastering the increased complexity

involved and also to ensure consistency of the development
along the entire product life cycle.

Model-based development supports the description of the
system under development in a more structured manner, in
the context of handling upcoming issues with modern real-
time systems and also in relation to ISO 26262. Model-based
development approaches enable different views for different
stakeholders, different levels of abstraction and central storage
of information. This improves the consistency, correctness, and
completeness of the system specification. Nevertheless, such
seamless integrations of model-based development still tend
to be the exception rather than the rule and often fall short of
target due to the lack of integration of conceptual and tooling
levels [4]. Consequently, this work focuses on improving the
continuity of information interchange from system develop-
ment level to software development level models.

With this objective in mind the work focuses on improving
the continuity of information interchange for architectural
designs from system development level (Automotive SPICE
[26] ENG.3 respectively ISO 26262 [10] 4-7 System design)
to software development level (Automotive SPICE ENG.5
respectively ISO 26262 6-7 SW architectural design). More
specifically, the approach is based on the enhancement of a
model-driven system engineering framework with software-
architecture design capabilities. The model-transformation
framework automatically generates software architectures in
Matlab/Simulink described via high level control system mod-
els in SysML format. The goal is, on the one hand, to support
a consistent and traceable refinement from the early concept
phase to software implementation. On the other hand, the
bidirectional update function of the transformation framework
enables facilitation in gaining mutual benefits for the basic
software and the application software development from the
coexistence of information for them both within the central
database.

The document is organized as follows: Section II presents
an overview of related approaches as well as model-based
development and integrated tool chains. In Section III a de-
scription of the proposed bridging approach for the refinement
of the model-based system engineering model to software
development is provided. An application and evaluation of
the approach is presented in Section IV. Finally, this work
is concluded in Section V with an overview of the approach.



II. RELATED WORK

Model-based systems and software development as well as
tool integration aim at moving the development steps involved
closer together and thus improving the consistency of infor-
mation over the expertise and domain boundaries. Pretschner’s
roadmap [19] highlights the benefits of such a seamless model-
based development tool-chain for automotive software engi-
neering. Model-based development is also claimed to be the
best approach to managing the large amount of information and
the complexity of the modern embedded systems involved by
Broy et al. [4]. Their paper illustrates why seamless solutions
have not been achieved so far and mentions concepts and
theories for model-based development of embedded software
systems. Additionally they make reference to commonly used
solutions and problems arising with inadequate tool-chain sup-
port (e.g. redundancy, inconsistency and lack of automation).
Nevertheless, the challenge of enabling a seamless integration
of models into model-chains is still an open issue [20], [21],
[27] Often, different specialized models for specific aspects
are used at different development stages with varying ab-
straction levels. Traceability between these different models
is commonly established via manual linking due to process
and tooling gaps.

The work of Holtmann et al. [9] highlights process and
tooling gaps between different modeling aspects of a model-
based development process. Giese et al. [8] address issues of
correct bi-directional transfer between system design models
and software engineering models. The authors propose a
model synchronization approach consisting of tool adapters
between SysML models and software engineering models in
AUTOSAR representation.

Dealing with this gap between system architecture and
software architecture, especially while considering component-
based approaches such as UML and SysML for system ar-
chitecture description and AUTOSAR for SW architecture
description, is one of the most important topics in this entire
issue. Two common variants in the automotive domain are
the usage of SysML [3], [8], [11], [14], [17] or X-MAN
[12] approaches for architectural description and AUTOSAR
for software system description. Boldt [3] proposed the use
of a tailored Unified Modeling Language (UML) or System
Modeling Language (SysML) profile as the most powerful and
extensible way to integrate an AUTOSAR method in company
process flows.

The approach of bridging the gap between model-based
system engineering and software engineering models based on
EAST-ADL2 architecture description language and a comple-
mentary AUTOSAR representation is also very common in
the automotive software development domain [5], [16], [25].
EAST-ADL represents an architecture description language
using AUTOSAR elements to represent the software imple-
mentation layer of embedded systems [2]. More recently the
MAENAD Project1 is also focusing this approach.

Kawahara et al. [11] propose an extension of SysML
which enables description of continuous time behavior. Their
tool integration base on Eclipse and couples SysML and
Matlab/Simulink via API.

1http://maenad.eu/

Farkas et al. [7] describe in their paper an integrative
approach for Embedded Software Design with UML and
Simulink. Their presented approach aims in a stepwise mi-
gration towards model-based development and enables the co-
operative usage of MATLAB/Simulink & UML for functional
specification and code generation. The focus of this work is on
the combination of source codes generated by different model-
based tools, rather than the interchange of data between the
different model representations.

SysML and model-based development (MBD) as the back-
bone for development of complex safety critical systems is also
seen as a key success factor by Lovric et. al [13]. The paper
evaluates key success factors of MBD in comparison to legacy
development processes in the field of safety-critical automotive
systems.

Tool support for automotive engineering development is
still organized as a patchwork of heterogeneous tools and
formalisms [2]. On the one hand, general-purpose modeling
languages (such as UML or SysML) provide modeling power
suitable for capturing system wide constraints and behavior,
but are lacking in synthesizability. On the other hand, special-
purpose modeling languages (such as C, Assembler, Matlab,
Simulink, ASCET ) are optimized for fine granular design, but
are less efficient in high-level design.

The issue of improving these interactions, especially those
which deal with cross-domains affairs (such as the architectural
design refinement from system development level to software
development level), thus requires a comprehensive understand-
ing of related processes, methods, and tools. The work of
Sechser [24] describes the experiences gained when combining
two different process worlds in the automotive domain.

III. MODEL-TRANSFORMATION BRIDGE APPROACH

This paragraph gives a brief overview of the underly-
ing framework and related preliminary work which supports
the proposed approach. The presented framework focuses on
improving the continuity of information interchange from
system development level to software development level. The
basic concept behind this framework is to have a consistent
information repository as central source of information, to
store all information of all the engineering disciplines involved
for embedded automotive system development in a structured
way [15].

The methodical support of system architectural design
and refinement of this design to software design often fell
short of the mark. To handle this situation the AUTOSAR
methodology [1] provides standardized and clearly defined
interfaces between different software components and develop-
ment tools and also provides such tools for easing this process
of architectural design refinement. Nevertheless, the enor-
mously complex AUTOSAR model requires a high amount
of preliminary work and projects with limited resources often
struggle to achieve adequate quality within budget (such as
time or manpower) using this approach. This approach thus
arises out of common AUTOSAR based approaches and forces
a direct model transformation from SysML representation to
Matlab/Simulink. The reason for making the decision of not
fostering an AUTOSAR approach is based on the one hand on



TOOL-BRIDGE

SYSTEM REQUIREMENTS

SAFETY REQUIREMENTS

SYSTEM ARCHITECTURE

HW ARCHITECTURESW ARCHITECTURE

SYSTEM MODELING TOOL

SYSTEM DEVELOPMENT SOFTWARE DEVELOPMENT

MODEL ADDON
C# CLASS LIBRARY (DLL)

MATLAB / SIMULINK

SOURCE CODE

Fig. 1. Portrayal of the Bridging Approach Transferring System Development
Artifacts to SW Development Phase

focusing not only AUTOSAR but also rather on generally Mat-
lab/Simulink based automotive software development. On the
other hand, experiences we made with our previous approach
[14] confirm the problem mentioned by Rodriguez et al. [21].
Not all tools fully support the whole AUTOSAR standard,
because of its complexity, which leads to several mutual
incompatibilities and interoperability problems. The presented
MDB model has been developed using profiles which use a
subset of the SysML language to define a SW architecture
model particularly tailored to automotive SW engineering in
context of ISO 26262. In the following paragraphs we describe
the additional model enhancements to support software devel-
opment and modeling of complex software architectures for
function software development. The contribution presented in
this work supports automatic generation of software architec-
tures, interface definition, timing setting, and auto-routing of
signals in Matlab/Simulink based on SysML representation.

Figure 1 shows an overview of this approach and the
imbedded bridging of abstract system development and con-
crete software development models. More specifically, our
contribution consists of the following parts:

• SW modeling framework: Enhancement of a SysML
profile for the definition of SW component interfaces
and SW architecture composition. Required for con-
sistent SW system description, see Figure 1 – model
addon.

• SW architecture exporter: Exporter to generate the de-
signed SW architecture in Matlab/Simulink for further
development of SW functions, see Figure 1 – tool
bridge.

• SW architecture importer: Importer to integrate refined
SW architecture and interfaces from the software
development tool (to support round-trip engineering),
see Figure 1 – tool bridge.

This proposed approach closes the gap, also mentioned
by Giese et al. [8], Holtmann et al. [9], and Sandmann
and Seibt [22], between system-level development at ab-
stract UML-like representations and software-level develop-
ment modeling tools (e.g. Matlab/Simulink or Targetlink). The
bridging supports consistency of information transfer between

Fig. 2. Screenshot of the SW Architecture Representation within the System
Development Tool and Representation of the Interface Information

system engineering tools and software engineering tools and
minimizes redundant manual information exchange between
these tools. This contributes to simplifing seamless safety
argumentation according to ISO 26262 [10] for the system de-
veloped. The benefits of this development approach are highly
noticeable in terms of re-engineering cycles, tool changes, and
reworking of development artifacts with alternating dependen-
cies. As can be seen in Figure 1, the lack of supporting tools
for information transfer between system development tools and
software development tools can be dispelled by our approach.
The implementation of the bridge based on versatile C# class
libraries (dll) and Matlab COM Automation Server ensures
tool in-dependence of the general-purpose UML modeling tool
(such as Enterprise Architect or Artisan Studio) and version
in-dependence of Matlab/Simulink through API command
implementation. This makes the method especially attractive
for projects and companies with limited resources (either in
manpower or finances). Small projects or start-up companies
in particular often struggle with the problem of setting up their
development processes so as to achieve adequate quality.

A. Software Modeling Framework

The first part of the approach is a specific SysML modeling
framework which enables the possibility of designing software
architectures in an AUTOSAR aligned manner within a system
development tool. The profile enables an explicit definition
of AUTOSAR components, component interfaces, connections
between interfaces and makes the SysML representation more
manageable for the needs of the design of an automotive
software architecture. Furthermore, it opens up the possibility
for defining software architecture and ensures establishment
of communication between architecture artifacts with inter-
face specifications (e.g. upper limits, initial values, formulas).
Special basic software and hardware abstraction modules are



TABLE I. SW ARCHITECTURE IMPORTER INDICATORS OF TYPE OF
CHANGE

Indicator Type of Change

A model artifact added
AC interface connection added
D model artifact deleted
DC interface connection deleted
U model artifact updated
UC interface connection updated

assigned to establish links to the underlying basic software
and hardware abstraction layers. Moreover, these SW modeling
artifacts can be linked to the system model artifacts and
requirements in such a manner that traceable links can be
established more easily. This has further benefits in terms of
constraints checking, reuse, and reporting generation (e.g. for
safety case generation). Figure 2 shows an example of software
architecture artifacts and interface information represented in
Enterprise Architect. Furthermore, this integrated definition of
system artifacts and software module in one tool supports the
work of safety engineers by adding values and visual labels
for safety-relevant software modules.

In addition to standard VFB AUTOSAR profiles the profile
features assignment and graphical representation of ASIL to
dedicated signals and modules and provides specification of
runnables with timing constraints (such as WCET), ASIL, and
priority. This additional information enables mapping of tasks
to a specific core and establishment of a valid scheduling in
a later development phase. Further benefits result in terms of
constraints checking and traceability of development decisions.

B. SW Architecture Exporter

The second part of the approach is the SW architec-
ture exporter. The implementation of the exporter is based
on Matlab COM Automation Server and generates models
through API command implementation, which ensures tool
version-independence. The export functionality enables the
export of software architecture, component containers, and
their interconnections designed in SysML to the software
development tool Matlab/Simulink. The SW architecture ar-
tifacts to be transferred can be selected by user input and
the corresponding Matlab/Simulink model is generated by a
background task. As can be seen in Figure 3 the user is able
to select the SW artifacts for exporting, the desired model rep-
resentation in Matlab/Simulink (either TargetLink or Simulink
representation), and the exporting mode (m-file based, API
based, or as ARXML file). The export mode variants also
enable exporting if Matlab/Simulink is not available (m-file
based) or an AUTOSAR based SW development toolchain is
used (ARXML file based). Listing 1 shows some excerpts of
the automatically generated Matlab API commands. As can
be seen in this listing, each model artifact, parameter, and
connection is transferred to Matlab/Simulink, where the blocks
are arranged and sized in a correct manner. Besides this, unique
links to the EA representation and assigned safety-criticality
marking of the artifact (Listing 1 line 3 and 8) are established.

Fig. 3. Screenshot of the SW Architecture Exporter GUI

Listing 1. Excerpts of Matlab API Commands
1 addpath(genpath(’C:\EGasSystem’))
2 add_block(’Simulink/Ports & Subsystems/Model’,’EGasSystem/

EGasCtrl’)
3 set_param(’EGasSystem/EGasCtrl’,’ModelNameDialog’,’EGasCtrl’

,’Description’,’EA_ObjectID@1969;ASIL@QM’)
4 set_param(’EGasSystem/EGasCtrl’,’Position’,[250 50 550 250])

5

.

.

.
6 add_block(’Simulink/Ports & Subsystems/In1’,’EGasSystem/

APedl2’)
7 set_param(’EGasSystem/APedl2’,’Position’,[50 200 80 215])
8 set_param(’EGasSystem/APedl2’,’Outmin’,’0’,’Outmax’,’5’,’

OutDataTypeStr’,’single’,’Description’,’
EA_ObjectID@1966;ASIL@B’);

9

.

.

.
10 add_line(’EGasSystem’,’APedl1/1’,’EGasMonr/1’,’AUTOROUTING’,

’ON’)

11

.

.

.
12 save_system(’EGasSystem’)
13 close_system(’EGasSystem’)
14 cd ..
15 cd C:\EGasSystem

C. SW Architecture Importer

The last part of the approach is the import functionality
add-on for the system development tool, which in combination
with the export function, enables bidirectional updates of
software architecture representations in the system develop-
ment tool and the software modules in Matlab/Simulink. The



Fig. 4. SW Architecture Importer User Interface

Fig. 5. Top-Level Representation of Demonstration Use-Case in Enterprise
Architect

importer analyzes the Matlab/Simulink model representation
and identifies the unique links to the EA representation (shown
in Listing 1 line 3 and 8). Thereby new and modified model
artifacts can be differentiated and changes made in the software
development tool can be kept consistent within the system
development model representation. This ensures consistency
between the models, enables importing of newly available soft-
ware modules from Matlab/Simulink, and therefore guarantees
consistency of information across tool boundaries. Figure 4
shows the user interface within the system development tool.
As can be seen in this figure, modifications between the two
models are identified and a selective update of the SysML
representation can be triggered by the user. Furthermore, a
highlighting of the type of change can also be depicted. Table
I shows the different change type indicators and types of
changes.

IV. APPLICATION OF THE PROPOSED APPROACH

This section demonstrates the introduced approach by an
automotive embedded system use-case. To provide a compar-
ison and highlighting of the improvements of our approach

we use the 3 layer monitoring concept [28] as an evaluation
use-case. This elementary use-case is well-known in the auto-
motive domain, but is nevertheless representative. Moreover,
this elementary use-case is illustrative material, which is also
used for internal training purposes with students and engineers.
The disclosed and commercially non-sensitivity use-case is not
intended to be exhaustive, nor to be representative of leading-
edge technology.

The definition of the software architecture is usually per-
formed by a software system architect within the software
development tool (Matlab/Simulink). With our approach this
work package is included in the system development tool
(depicted in Figure 5). This does not hamper the work of the
software system architect, but it enables constraint checking
features and helps to improve system maturity in terms of
consistency, completeness, and correctness of the development
artifacts. Besides this, the change offers a significant benefit
for the development of safety-critical software in terms of
traceability, replicability of design decisions and it unambigu-
ously visualizes dependencies while putting visual emphasis on
view-dependent constraints (such as graphical safety-criticality
highlighting of SW modules in Figure 5).

The 3 layer monitoring concept use-case presented consists
of 7 SW modules with 34 interfaces and 30 signal connections.
Hereby the SW module representations contain 3 configurable
attributes per element and the SW interfaces 34 attributes per
element. The use-case thus sums up to a total count of 41
model artifacts with 361 configuration parameters and 30 rela-
tions between the elements. This elementary example already
indicates that the number of model elements and relations
between the model elements already becomes confusing. A
manual transformation of the information represented within
the models would already be cumbersome, error-prone, and
would involve a great amount of additional work to ensure
consistency between the two models.

The presented approach in this work checks the information
and model artifacts for point-to-point consistency of interface
configurations before automatically transferring the model rep-
resentation via 212 lines of auto-generated Matlab API code,
which provides evidences and ensures the completeness of the
model transformation. The presented SW architecture importer
functionality enables round-trip engineering and bi-directional
updates of both models and therefore supports evidence for
the consistency of both models.

In terms of safety-critical development and reuse the fea-
tures of the approach presents are crucial to transfer infor-
mation between separated tools and link supporting safety-
relevant information. Moreover, the approach eliminates the
need for manual information reworking without adequate tool
support, ensuring reproducibility, and traceability argumenta-
tion.

V. CONCLUSION

The challenge with modern embedded automotive systems
is to master the increased complexity of these systems and
ensure consistency of the development along the entire product
life cycle. Automotive standards, such as ISO 26262 safety
standard provide a process framework which requires efficient



and consistent product development and tool support. Nev-
ertheless, various heterogeneous development tools in use are
hampering the efficiency and consistency of information flows.

This work thus focuses on improving the continuity of
information interchange of architectural designs from system
development level (Automotive SPICE ENG.3 respectively
ISO 26262 4-7 System design) to software development level
(Automotive SPICE ENG.5 respectively ISO 26262 6-7 SW
architectural design). For this purpose, an approach to seam-
lessly combine model-based development tools on system level
(such as Enterprise Architect) and on SW development level
(such as Matlab/Simulink) has been proposed.

The applicability of the approach has been demonstrated
utilizing an elementary automotive use-case, the 3 layer mon-
itoring concept, which is an illustrative material and does
not represent either an exhaustive or a commercially sensitive
project. The main benefits of the presented approach are:
improved consistency and traceability from the initial design
at the system level down to the software implementation, as
well as, a reduction of cumbersome and error-prone manual
work along the system development path.

ACKNOWLEDGMENTS

This work is partially supported by the EMC2 and the
MEMCONS projects.

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agree-
ment nr 621429 (project EMC2) and financial support of
the ”COMET K2 - Competence Centers for Excellent Tech-
nologies Programme” of the Austrian Federal Ministry for
Transport, Innovation and Technology (BMVIT), the Austrian
Federal Ministry of Economy, Family and Youth (BMWFJ),
the Austrian Research Promotion Agency (FFG), the Province
of Styria, and the Styrian Business Promotion Agency (SFG).

Furthermore, we would like to express our thanks to our
supporting project partners, AVL List GmbH, Virtual Vehicle
Research Center, and Graz University of Technology.

REFERENCES

[1] AUTOSAR development cooperation. AUTOSAR AUTomotive Open
System ARchitecture, 2009.

[2] H. Blom, H. Loenn, F. Hagl, Y. Papadopoulos, M.-O. Reiser, C.-J.
Sjoestedt, D. Chen, and R. Kolagari. EAST-ADL - An Architecture De-
scription Language for Automotive Software-intensive Systems. White
Paper 2.1.12, 2013.

[3] R. Boldt. Modeling AUTOSAR systems with a UML/SysML profile.
Technical report, IBM Software Group, July 2009.

[4] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu.
Seamless Model-based Development: from Isolated Tool to Integrated
Model Engineering Environments. IEEE Magazin, 2008.

[5] D. Chen, R. Johansson, H. Loenn, Y. Papadopoulos, A. Sandberg,
F. Toerner, and M. Toerngren. Modelling Support for Design of Safety-
Critical Automotive Embedded Systems. In SAFECOMP 2008, pages
72 – 85, 2008.

[6] C. Ebert and C. Jones. Embedded Software: Facts, Figures, and Future.
IEEE Computer Society, 0018-9162/09:42–52, 2009.

[7] T. Farkas, C. Neumann, and A. Hinnerichs. An Integrative Approach
for Embedded Software Design with UML and Simulink. In Computer
Software and Applications Conference, 2009. COMPSAC ’09. 33rd
Annual IEEE International, volume 2, pages 516–521, July 2009.

[8] H. Giese, S. Hildebrandt, and S. Neumann. Model Synchronization
at Work: Keeping SysML and AUTOSAR Models Consistent. LNCS
5765, pages pp. 555 –579, 2010.

[9] J. Holtmann, J. Meyer, and M. Meyer. A Seamless Model-Based
Development Process for Automotive Systems, 2011.

[10] ISO - International Organization for Standardization. ISO 26262 Road
vehicles Functional Safety Part 1-10, 2011.

[11] R. Kawahara, D. Dotan, T. Sakairi, K. Ono, A. Kirshin, H. Nakamura,
S. Hirose, and H. Ishikawa. Verification of embedded system’s specifi-
cation using collaborative simulation of SysML and Simulink models.
In Proceedings of Second International Conference on Model Based
Systems Engineering, pages 21 – 28, March 2009.

[12] K.-K. Lau, P. Tepan, C. Tran, S. Saudrais, and B. Tchakaloff. A
Holistic (Component-based) Approach to AUTOSAR Designs. In
Software Engineering and Advanced Applications (SEAA), 2013 39th
EUROMICRO Conference on, pages 203–207, Sept 2013.

[13] T. Lovric, M. Schneider-Scheyer, and S. Sarkic. SysML as Backbone
for Engineering and Safety - Practical Experience with TRW Braking
ECU. In SAE Technical Paper. SAE International, 04 2014.

[14] G. Macher, E. Armengaud, and C. Kreiner. Automated Generation of
AUTOSAR Description File for Safety-Critical Software Architectures.
In 12. Workshop Automotive Software Engineering (ASE), Lecture Notes
in Informatics, pages 2145–2156, 2014.

[15] G. Macher, E. Armengaud, and C. Kreiner. Bridging Automotive
Systems, Safety and Software Engineering by a Seamless Tool Chain.
In 7th European Congress Embedded Real Time Software and Systems
Proceedings, pages 256 –263, 2014.

[16] R. Mader, G. Griessnig, A. Eric, L. Andrea, K. Christian, Q. Bour-
rouilh, C. Steger, and R. Weiss. A Bridge from System to Software
Development for Safety-Critical Automotive Embedded Systems. 38th
Euromicro Conference on Software Engineering and Advanced Appli-
cations, pages 75 –79, 2012.

[17] J. Meyer. Eine durchgaengige modellbasierte Entwicklungsmethodik
fuer die automobile Steuergeraeteentwicklung unter Einbeziehung des
AUTOSAR Standards. PhD thesis, Universitaet Paderborn, Fakultaet
fuer Elektrotechnik, Informatik und Mathematik, July 2014.

[18] A. Petrissans, S. Krawczyk, L. Veronesi, G. Cattaneo, N. Feeney, and
C. Meunier. Design of Future Embedded Systems Toward System of
Systems - Trends and Challenges. European Commission, May 2012.

[19] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner. Software
Engineering for Automotive Systems: A Roadmap. In 2007 Future
of Software Engineering, FOSE ’07, pages 55–71, Washington, DC,
USA, 2007. IEEE Computer Society.

[20] I. R. Quadri and A. Sadovykh. MADES: A SysML/MARTE high level
methodology for real-time and embedded systems, 2011.

[21] E. Rodriguez-Priego, F. Garcia-Izquierdo, and A. Rubio. Modeling
Issues: A Survival Guide for a Non-expert Modeler. Models2010,
2:361–375, 2010.

[22] G. Sandmann and M. Seibt. AUTOSAR-Compliant Development
Workflows: From Architecture to Implementation - Tool Interoperability
for Round-Trip Engineering and Verification & Validation. SAE World
Congress & Exhibition 2012, (SAE 2012-01-0962), 2012.

[23] G. Scuro. Automotive industry: Innovation driven by elec-
tronics. http://embedded-computing.com/articles/automotive-industry-
innovation-driven-electronics/, 2012.

[24] B. Sechser. The marriage of two process worlds. Software Process:
Improvement and Practice, 14(6):349–354, 2009.

[25] C.-J. Sjoestedt, J. Shi, M. Toerngren, D. Servat, D. Chen, V. Ahlsten,
and H. Loenn. Mapping Simulink to UML in the Design of Embedded
Systems: Investigating Scenarios and Structural and Behavioral Map-
ping. In OMER 4 Post Workshop Proceedings, April 2008.

[26] The SPICE User Group. Automotive SPICE Process Assessment Model.
Technical report, 2007.

[27] J. Thyssen, D. Ratiu, W. Schwitzer, E. Harhurin, M. Feilkas, T. U.
Muenchen, and E. Thaden. A system for seamless abstraction layers
for model-based development of embedded software. In Software
Engineering Workshops, pages 137–148, 2010.

[28] T. Zurawka and J. Schaeuffele. Method for checking the safety and
reliability of a software-based electronic system, January 2007.


