
HAL Id: hal-01292294
https://hal.science/hal-01292294

Submitted on 22 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fine-Tuning the Accuracy of Numerical Computations
in Avionics Automatic Code Generators

Alexis Werey, David Delmas, Matthieu Martel

To cite this version:
Alexis Werey, David Delmas, Matthieu Martel. Fine-Tuning the Accuracy of Numerical Computations
in Avionics Automatic Code Generators. 8th European Congress on Embedded Real Time Software
and Systems (ERTS 2016), Jan 2016, TOULOUSE, France. �hal-01292294�

https://hal.science/hal-01292294
https://hal.archives-ouvertes.fr

Fine-Tuning the Accuracy of Numerical Computations in

Avionics Automatic Code Generators

Alexis Werey†,*, David Delmas* and Matthieu Martel†

*Airbus Operations SAS, Toulouse, France
†University of Perpignan, Laboratoire de Mathématiques et Physique LAMPS, France

Abstract

Most of safety-critical embedded software,
such as �y-by-wire control programs, per-
forms a lot of �oating-point computations.
High level speci�cations are expressed in a
formal model edited manually in SCADE
through a graphical interface. It generally
handles numerical variables and constants
as if they were ideal real numbers. This
work, for the purpose of numerical accuracy
analysis, presents a new version of an Au-
tomatic Code Generator (ACG). This tool
transforms high-level models into C codes
and performs static computations by using
multiple-precision arithmetic. This article
describes a successful way of controlling com-
putation accuracy of numerical constants in
an Automatic Code Generator. An accuracy
analysis on numerical constant values is pre-
sented in a case study.

Keywords: automatic code generator, in-
dustrial software, �oating-point computation,
numerical accuracy, constant propagation

1 Introduction

In this article, we focus on a method for tun-
ing the accuracy of numerical computations in an
avionic Automatic Code Generator (ACG), i.e. a
software tool which aims at transforming a formal
model into a target source code (generally in C).
The generated codes are dedicated to be embed-
ded into avionic systems. Nowadays, the accu-
racy of computations in avionic systems depends
on �oating-point arithmetic. Our motivation is to

study the enhancement of �oating-point computa-
tions in these codes by applying program transfor-
mation [11, 12]. For this purpose and as a �rst
step, numerical error analysis is needed on static
computation of constants during the code genera-
tion. Some constants are computed from the inter-
nal formal model by the ACG for code e�ciency
reasons due to CPU consumption. The analysis is
performed by : a) observing algorithms accuracy
manually or using static analysis by abstract inter-
pretation [21, 20] ; b) checking systematically the
accuracy of the resulting �oating-point values after
generation.

Assurance The embedded software are catego-
rized at a Design Assurance Level depending of the
safety impact on the system, in the sense of the
avionic standard DO-178C/ED-12C [1]. In fact, the
ACG has to be quali�ed as a development tool at
the same assurance level as the generated software.

Numerical optimization In order to lower the
number of computations and accept almost only
arithmetic operations in the embedded code, the
ACG provides simpli�ed constants. A similar situ-
ation in compilers arises when static expressions are
computed at compile-time (e.g const y=1;x=y+1

replaced by x=2 by the compiler.) The fact that
almost any compiler makes the same processings
than our ACG that makes the results presented in
this article rather general.

Floating-point arithmetic errors The
�oating-point representation necessary leads to
numerical errors created by roundings and propa-

1

gated by operations. In practice, they are highly
negligible compared with the uncertainty of the
input data (precision of the sensors/actuators).
However as part of a long-term perspective, the
evolution of the hardware precision and the so-
phistication of control algorithms could necessitate
in the future a better accuracy concerning the
computation of numerical operations.

We aim at verifying that a combination of constants
of the high level model is not likely to degrade the
quality of calculations. Indeed, constants are often
called several times inside a loop. The objective in
the present work is to make use of the state of the
art to generate constants as accurate as possible
and then to be able to measuring �oating-point er-
rors. A tunable approach using the rational repre-
sentation [8] for arithmetic operations (+,−,×,÷)
and the extended-precision [9] �oating-point repre-
sentation for elementary functions (such as

√
, tan)

has been selected for the ACG reimplementation.

This article is organized as follows : in Section 2,
we give an overview of the high critical real time
software code generation. Section 3 introduces the
�oating-point arithmetic and its use for constant
propagation. Then Section 4 describes the details
of the reimplementation. Section 5 presents exper-
imental results on a use case. Finally, Section 6
gives general perspectives and Section 7 concludes.

2 Embedded Code Generation

In this section, we describe brie�y the development
of embedded software products. Figure 2 illustrates
the development process.

2.1 Model Speci�cation

In the context of Airbus, the high-level formal spec-
i�cations of avionics program behaviours are ex-
pressed by SCADE sheets [2] and translated into
the Lustre [3] synchronous data-�ow programming
language.

The implementation of this speci�cation is pro-
cessed automatically through an Automatic Code
Generator developed internally.

The model representation consists in data (real, in-
teger or boolean as either constants or variables)

and data-�ow structures (symbols and their in-
puts/outputs). Examples of symbols include delays
and cosines, as depicted in Figure 1.

Figure 1 � An example of a SCADE sheet

Symbols may possibly hold constant parameters,
e.g. the cos symbol in the Figure 1 does not contain
constants while the delay symbol has 3 constants.
Some other constants are global and not directly
referenced in the sheet such as the clock.

2.2 Generated Code Structure

A symbol library is implemented by hand in C
or assembly using macro-functions. The generated
code, which has the same semantics as the initial
formal speci�cation, can therefore call these prede-
�ned macros. For hardware e�ciency and safety
reasons, macros are written as simple as possible
with IEEE754 [4] well-de�ned operations with the
double precision format. Macros and speci�cation
nodes can in addition di�er on the number and the
type of constant parameters since the ACG reduces
the CPU-time by evaluating static expressions dur-
ing the code generation.
A static expression in a symbol can be computed
once for all by the ACG from either input and
global constants in the model or by simpli�cation
of an algorithm thanks to mathematical proper-
ties. This method is similar, from a certain point
of view, to the constant propagation optimization
performed by compilers [5].

2.3 Numerical Error Analysis

In the process of quali�cation, the ACG is subject
to analysis and in particular to �oating-point ac-
curacy. Note that during the step of optimization
that we describe in the next section, the ACG com-
putes values in �oating-point double precision. Two
complementary sorts of analysis are carried out :

2

Symbol
Library
Files

Application
Spec
Files
(SCADE)

Application
C Files

Application
ASM
Files

ACG

C Compiler

Manual
coding

Figure 2 � The C development chain of the software

• A handwritten analysis followed by a static
analysis [21] on �oating-point accuracy to over-
approximately estimate the errors generated
by the algorithm.

• A set of tests to verify whether the ACG is
near or far from the expected results.

Our objective is to provide a method to automat-
ically analyse the current ACG with inputs from
the formal model.

Note that some tools are already used for the analy-
sis of control-command programs. Astre computes
safe bounds on �oating-point variables, Fluctuat
computes error bounds between the exact and the
�oating-point semantic, both by abstract interpre-
tation. Compcert is a certi�ed compiler which use
Coq libraries to handle the �oating-point arith-
metic [17].

3 Constant propagation of

�oating point expressions

3.1 The IEEE754 Standard

The IEEE-754 standard [4] describes the �oating-
point number format as well as the elementary op-
erations (+,−,×,÷) and the square root function.
It de�nes:

1. the simple precision on 32 bits with 8 bits for
the exponent e, 23 bits for the mantissa m and
1 bit for the sign s

2. the double precision on 64 bits with 11 bits for
the exponent, 52 bits for the mantissa and 1
bit for the sign

3. the double extended precision on a number of
bits higher than 79 with, more than 15 bits
for the exponent, more than 63 bits for the
mantissa and 1 bit for the sign

It also speci�es several kinds of �oating-point num-
bers, e.g. in radix 2:

• normalized numbers represented by:
f = s · (1.m0...mp−1) · 2e where s ∈ {−1, 1},
p the length of m and Emin ≤ e ≤ Emax
(Emin = −1022 and Emax = 1023 in double
precision)

• denormalized numbers de�ned when e = 0 and
represented by: f = s · (0.m0...mp−1) · 2Emin

• signed zeros +0 and −0

• in�nities ±∞

• NaN (Not A Number)

The standard also de�nes 4 rounding modes :
rounding ◦∼ to nearest, rounding ◦−∞ towards
−∞, rounding ◦+∞ towards +∞ and rounding ◦0
towards zero. Arithmetical operations are exactly
rounded, which means that assuming ↑◦: R → F
the function returning the �oating-point value c
a real number with the chosen rounding mode
◦ ∈ {◦ , ◦−∞, ◦+∞, ◦0}, and an arithmetical oper-
ation � ∈ {+,−,×,÷}, then for all �oating-point
numbers f1, f2 ∈ F :

f1 �F,◦ f2 =↑◦ (f1 �R f2) (1)

Despite this propriety, �oating-point operations
can lead to subtle traps as in logical as in mate-
rial considerations [6, 10]. Among several reasons
of numerical errors, we can cite : the representation
errors, for example the rational number 1

10 is not
representable in �oating-point radix 2 ; the accu-
mulation and propagation of errors through opera-
tions ; the absorption (resp. cancellation), a loss of
precision when adding a number with a smaller one

3

from a di�erent order (resp. when subtracting two
numbers approximately equal) ; unstable tests, the
path executed in the control �ow is di�erent from
the one expected in the real semantics.

3.2 Constant propagation

In the long term, we aim at improving the �oating-
point accuracy of the generated embedded code
by reducing error propagation. A �rst step con-
sists in analyzing the �oating-point accuracy of the
computation of constants during the code genera-
tion. Equation (1) gives an example of a �rst order
low-pass �lter algorithm, considering thatX(t) and
Y (t) are temporal values denoting respectively the
input and the output at time t. The constants a, b
and c are related to physical properties.

Y (t) =
2b
a

2b
a

+ 1
Y (t−1)+

1
2b
a

+ 1
(X(t)+X(t−1)) (2)

The terms c1 =
1

1 + 2∗b
a

and c2 = 1 − c1 can be

calculated beforehand. The generated code then
looks like:

Y (t) = c2 Y (t− 1) + c1 (X(t) +X(t− 1)) (3)

The generated constants c1 and c2 appear several
times in a function executed at every tick of a syn-
chronous clock, their numerical accuracy is then
worth to be considered. In addition, the embed-
ded software environment constraints, for example
the real time constraints, e.g. Worst-Case Execu-

tion Time (WCET) [7], are relevant at execution-
time rather than at compile-time. In order to im-
prove their accuracy, the �oating-point operations
can be computed by an arbitrary precision library
such as the Multi-Precision Floating-Point library
(MPFR) [9], which has in addition the bene�t to
be independent from the host machine. Indeed,
static computations achieved by ACG, or more gen-
erally by compilers may be sensitive to the arith-
metic of the processor as well to the dynamic li-
braries of the host machine and libraries get rid of
this issue.

Example of �oating-point rounding errors

A �rst example of �oating-point error that may

arise is a call to the �oor function (returning an in-
teger) after some �oating-point operations. If the
�oating-point arithmetic double precision is used to
implement the real value b x × 1000c when x ∈ R
and b.c : R → Z, the natural way is to write
floor(x×1000) when this time x is a �oating-point
variable, × is the standard �oating-point multipli-
cation and floor the �oating-point �oor function
returning an integer. Some values are error-prone,
for x = 1.001, this implementation leads to an im-
portant relative error : 10−3.

floor(1.001 ∗ 1000) = floor(1.000999999 ∗ 1000)
= floor(1000.999999)
= 1000

(4)

3.3 Static Analysis

In this section, we illustrate the loss of accuracy
resulting from the computation of constant param-
eters by a static analysis on the computation of the
second order low-pass �lter constants.

Low-pass �lter transfer function

H(s) =
1

1 + 2ξ s
ω0

+ s2

ω2
0

This function speci�ed in the formal model is im-
plemented in a way that requires the following con-
stant a :

a =

2

tan2(ω0
∆t
2)
− 2

1 + 2ξ

tan(ω0
∆t
2)

+ 1

tan2(ω0
∆t
2)

(5)

Assuming that the clock ∆t is 0.01 seconds, the
analysis of a with Fluctuat and 1000 global sub-
divisions on ω0 returns the results depicted in Fig-
ure 3.

The range of a is determined by the analysis from
the input range of ∆t, ω0 and ξ and the relative
error is the comparison of the real result and the
�oating-point one. Considering the errors, the gen-
erated �oating-point constant a is sound and com-
plying with the speci�cations.
Assuming that ∆t is 0.02 seconds, Figure 4 show
the relative error on the computation of a. Lower
and upper bound of the relative error are drawn in
the graph.

4

Constant Range Relative error

∆t [1.00000000·10−2;1.00000001·10−2] [−2.16840435·10−17;−2.03287906·10−17]

ω0 [6.28318530·10−1;9.42477797·101] [0;0]

ξ [9.99999998·10−2;1.20000001] [0;0]

a [5.95590847·10−1;2.11425866] [−6.52831414·10−15;6.61998150·10−15]

Figure 3 � Results of the static analysis from Equation 4

Figure 4 � Relative error bounds on a

Even though the absolute error stays stable, the
relative error increases when ω0 ' π

2∆t
. A new

implementation of the ACG would be an additive
analysis tool to reinforce the assurance that con-
stants are generated accurately.

4 A Tunable Code Generator

4.1 Alternative Arithmetics

Several works has been done to estimate and to
improve the numerical accuracy of programs [16].
We can cite interval arithmetic which consists of
bounding the exact result by two �oating-point
numbers. Stochastic arithmetic [15] that consists
of running the programs several times with random
rounding modes. Doing so, the round-o� errors are
randomly propagated and the output is eventually
statistically approximated.
The ones that would be considered for the reim-
plementation of the computations in the ACG is
the rational and the extended-precision arithmetic.
The rational representation is de�ned by two un-
bounded integers, a numerator and a denomina-

tor. The computations in this representation is
exact and thus not subjected to any round-o� er-
rors, but valid only for the elementary operations
{+,−,×,÷}. Since the constants of the model are
expressed in decimal and most of the operations in
the ACG are elementary, this arithmetic is well-
suited to this representation. The downside of this
approach is that it is not stable in term of memory
and time costs. Basically, after a certain number of
operations on a variable x, the cost of a new opera-
tion is getting higher and higher due to the possible
increasing length of the numerator and the denom-
inator. However in our context, it does not have
to be taken into account since most of the time
few operations are involved in static computation
of constants and not performed at run time.

In some circumstances, for example on a call to a
tangent or a square root function, the �oating-point
representation with extended precision is more ap-
propriate and can be con�gured with the selected
number of bits.

4.2 Architectures

We reimplement the existing ACG written in Ada
to improve the numerical accuracy of the constant
computations. The current ACG uses the dou-
ble precision complying with the precision of the
IEEE754 double format. As shown in Figure 5a,
the library Ada is used to compute the static ex-
pressions and both the reading and the writing pro-
cess of constants generate rounding errors. In ad-
dition, there is some call to the tangent function
which is not de�ned in the IEEE754 Standard but
which is de�ned in the dynamic mathematical li-
brary of the host machine. Figure 5b describes
the computation process of the new ACG using the
multi-precision rational arithmetic library (MPQ)
from GMP [8] and the MPFR library.

5

Real constants

decimal representation

Floating-point constants

double precision

double

precision

double

precision

SCADE

C

Automatic code generator
string

string

read

computation

Ada libraries write

(a) Static computation in the current ACG

Real constants

decimal representation

Floating-point constants

double precision

rational rational

double

precision

SCADE

C

Automatic code generator
string

string

read

write

cast

computation

MPQ *1

cast

computation

MPFR *2

cast

(b) Static computation in the optimized ACG
*1 : only with arithmetic operators
*2 : with elementary functions

5 Experimental Results

In order to have representative results of static com-
putations, the former and the new ACG have been
tested on a use case representative of the model
for a large avionic system (several thousand nodes).
They have been executed on a Sun Solaris platform
on a SPARC architecture. MPFR has been con�g-
ured to the to-nearest rounding mode and 200 bits
of allocation for a �oating-point number. We com-
pare by analysis of the generated constants the nu-
merical errors created by the ACGs. The analysis
calculates for each constant the relative error be-
tween the two values. If c1 is generated by the �rst
ACG and c2 by the second from the same static

expression, the relative error corresponds to |c1−c2|c2
as we suppose that the second ACG computes al-
most exactly. Figure 6 depicts the results. N in-
dicates the number of generated constants whose
relative error from the analysis is greater than the
error �xed in x-axis. For clarity, Figure 7 shows
the index of the most signi�cant bit in the man-
tissa of the absolute error |c1 − c2| between the re-
lated constants c1 and c2 for the 1000 worst cases.
Some conclusions have been raised from this exper-
iment : The results are complying with the accu-

racy requirements for the former ACG. There are
approximately 1000 constants whose relative error
is above 10−10 and 500 above 10−9 on a total of
40000 generated constants. They all are in confor-
mance with the internal error criterion expressed
by an acceptable error bound.

Figure 6 � Relative error between generated constants

6

Figure 7 � Index of the most signi�cant bit of the absolute
error

6 Perspectives

The work introduced in this article, concerning the
accurate evaluation of the static arithmetic expres-
sions by ACGs, is a �rst step towards the automatic
generation of fully optimized code with respect to
the accuracy of �oating-point computations. The
next steps are the generation of accurate arithmetic
expressions and, more generally, the generation of
accurate programs. More precisely, in the �oating-
point arithmetic, the accuracy of expressions de-
pends on how formulas are written and mathemat-
ically equivalent expressions give di�erent results,
more or less accurate, when evaluated by the ma-
chine. For example, a+(b+c) is generally di�erent
from (a+b)+c and x+x2 is generally di�erent from
x(x + 1). The choice of the best formula depends
on the ranges of the inputs which can be obtained
by static analysis [20].

Automatic techniques enabling one to �nd a very
accurate implementation of a formula for the
IEEE754 arithmetic have been introduced in [12]
and other work has been done to re-organize larger
pieces of code containing several statements made
of assignments, conditionals and loops [13]. For ex-
ample, x=a+b ; y=c+d; z=x+y may be rewritten
as z=((a+c)+d))+b if this choice is relevant, de-
pending on the ranges of a, b, c and d computed by
static analysis. These transformations still needs to
be extended to the inter-procedural case. At mid-
term, ACGs could take advantage of these tech-
niques to generate accurate code, made of formulas

mathematically equivalent to the ones of the high
level model (e.g. Scade) but taylored to evaluate
very accurately in the computer arithmetic.

The code transformations operated to improve the
numerical accuracy may lead to programs which are
di�erent enough from the original ones while they
still computing the same mathematical results. An-
other important research direction is to take care
of certi�cation. Traceability and a good level of
con�dence in the transformed codes are obviously
mandatory. We aim at generating correctness cer-
ti�cates ensuring that the transformed codes are
mathematically equivalent and more accurate than
the original codes. These certi�cates will be ex-
pressed using formal proof assistants. In practice,
we plan to use the Coq theorem prover. A related
problem, more theoretical is to show that substi-
tuting a more accurate piece of code to an origi-
nal piece of code inside a large program improves
the accuracy of the whole application. Ongoing re-
search in currently done in this direction.

7 Conclusion

In this article, we have shown how the static com-
putations performed by ACGs are sensitive to the
host machine on which the code generation is per-
formed. Indeed, the resulting code may depend
on the arithmetic of the host machine as well as
on the dynamic libraries of its operating system.
This problem is not limited to ACGs. It is gen-
eral to all the modern compilers which perform con-
stant propagation during their optimization passes.
Our experimental results show that large indus-
trial applications may be impacted by this trans-
formation. In addition, even if the accuracy of the
computations done at compile-time without using
any speci�c high precision library like MPFR is
acceptable, reproducibility and maintenance ques-
tions still remain since compiling again the same
program on another machine, possibly several years
later to deliver a new version of the software, may
yield a program embedding constants which are dif-
ferent from these of the original code.

The accuracy tunable ACG is intended to be used
as an analysis tool and may be subject to a process
of quali�cation with the corresponding libraries
GMP MPQ and MPFR in the case of a devel-
opment application.

7

Another aspect of the problem of improving the ac-
curacy concerns the execution-time. We wish the
transformed codes, optimized for accuracy, be at
least as e�cient as the original codes. The trans-
formations introduced in [12, 13, 14] neither slow
the applications nor speed them up signi�cantly.
However, the transformation of the arithmetic ex-
pression is only guided by accuracy. The existing
methods could be interestingly extended to search
a compromise between time and accuracy, or, in
other word, a rewriting of the computations which
improves both accuracy and execution-time even if
it not optimal for each criterion taken separately.

References

[1] DO-178C/ED-12C, Software Considerations in
Airborne Systems and Equipment Certi�cation,
RTCA/EUROCAE, December 2011.

[2] F.-X. Dormoy. Scade 6 a model based solution for safety
critical software development. In Embedded Real-Time
Systems Conference, 2008.

[3] N. Halbwachs, P. Caspi and D. Pilaud. The synchronous
data�ow programming language Lustre. Another Look
at Real Time Programming, Proceedings of the IEEE,
Special Issue, Sept. 1991.

[4] ANSI/IEEE, IEEE Standard for Binary Floating-point
Arithmetic, Std 754-2008, ANSI/IEEE, 2008.

[5] G. A. Kildall, A Uni�ed Approach to Global Program
Optimization, 1973.

[6] D. Monniaux, The Pitfalls of Verifying Floating-Point
Computations, ACM, 2008.

[7] J. Souyris, V. Wiels, D. Delmas, H. Delseny. Formal
Veri�cation of Avionics Software Product, 2009.

[8] T. Granlund and the GMP development team.
The GNU Multiple Precision Arithmetic Library,
http://gmplib.org/, 2012.

[9] L. Fousse, G. Hanrot, V. Lefèvre, Patrick Pélissier
and Paul Zimmermann. A Multiple-Precision Binary
Floating-Point Library with Correct Rounding, ACM
Transactions on Mathematical Software 2007.

[10] D. Goldberg. What Every Computer Scientist Should
Know About Floating-Point Arithmetic, ACM Comput.
Surv., 1991.

[11] M. Martel, Semantics-Based Transformation of Arith-
metic Expressions, 14th International Symposium, SAS
2007.

[12] A. Ioualalen and M. Martel. A New Abstract Domain
for the Representation of Mathematically Equivalent
Expressions, 19th International Symposium, SAS, 2012.

[13] N. Damouche, M. Martel and A. Chapoutot. Intra-
procedural Optimization of the Numerical Accuracy of
Programs, Formal Methods for Industrial Critical Sys-
tems, 20th International Workshop, 2015.

[14] P. Panchekha, Alex Sanchez-Stern, James R. Wilcox
and Zachary Tatlock. Automatically improving accu-
racy for �oating point expressions, Proceedings of the
36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, ACM, 2015.

[15] F. Jézéquel and J. M. Chesneaux, CADNA: a library
for estimating round-o� error propagation, Computer
Physics Communications, 2008.

[16] J. C. Bajard, O. Beaumont, J. M. Chesneaux, M. Dau-
mas, J. Erhel, D. Michelucci, J. M. Muller, B. Philippe,
N. Revol, J. L. Roche, J. Vignes. Qualité des calculs
sur ordinateurs, vers des arithmétiques plus �ables ?,
Masson, 1997.

[17] G. Melquiond, Floating-point arithmetic in the Coq
system, Inf. Comput., 2012.

[18] S. Boldo, J. C. Filliâtre and G. Melquiond, Combin-
ing Coq and Gappa for Certifying Floating-Point Pro-
grams, Intelligent Computer Mathematics, 16th Sym-
posium, MKM, 2009.

[19] Modern Compiler Implementation in C, Cambridge
University Press, 1998.

[20] Static Analysis by Abstract Interpretation of Numer-
ical Programs and Systems, and FLUCTUAT, Static
Analysis - 20th International Symposium, SAS, 2013.

[21] David Delmas, Eric Goubault, Sylvie Putot, Jean
Souyris, Karim Tekkal, and Franck Védrine. Towards
an industrial use of �uctuat on safety-critical avionics
software, FMICS, 2009.

8

