Peter H Feiler

David P Gluch

John D Mcgregor
email: johnmc@clemson.edu

An Architecture-Led Safety Analysis Method

Keywords: safety analysis, architecture-led, error model

Safety-critical systems require specific development and evaluation activities in the software development life cycle to ensure that the product is safe. Some of these activities are aggregated into comprehensive safety engineering practices, which are standardized within an industry, such as Aerospace Recommended Practice (ARP) 4761 in the aircraft industry. These techniques focus on individual component failures and reliability. More recent techniques such as the Systems-Theoretic Process Analysis (STPA) go beyond reliability of individual components to consider the interactions among the components. In this paper we present the Architecture-Led Safety Analysis (ALSA) method that is part of the Architecture-Led Safety Engineering practice. ALSA combines the development and analysis of at least a partial architecture model using notations such as the Architecture Analysis and Design Language, its Error Model Annex, and existing ARP 4761 and ARP 4754A practices such as Functional Hazard Assessment, Preliminary System Safety Assessment, and System Safety Assessment as well as the emerging technique of STPA. This work contributes an illustration of using ALSA to analyze a Full-Authority Digital Engine Controller. The method is supported by the Open Source Architectural Tool Environment and has been piloted on an industrial-strength example.

Introduction

Safety-critical systems require specific development and evaluation activities in the software development life cycle to ensure that a system is safe. Some of these activities are aggregated into comprehensive safety engineering practices, which are standardized within an industry. Standards such as Aerospace Recommended Practice (ARP) 4761 in the aircraft industry define very specific techniques for assessing the safety of life-critical systems [START_REF]Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment[END_REF]. These techniques focus on individual component failures and their associated reliability. More recent techniques such as the Systems-Theoretic Process Analysis (STPA) go beyond methods based on the reliability of individual components to consider the interactions among the components [START_REF] Leveson | A Systems-Theoretic Approach to Safety in Software-Intensive Systems[END_REF].

The increasing complexity of current embedded systems is driving the need for increasing automation of all activities, including safety analysis. The goal of our research is to create a safety engineering practice that blends existing safety analysis techniques with an error ontology and a model-based architecture representation of the system and its operational context that will more effectively and efficiently discover hazards in the interactions among system components. The practice enables increased automation to support iterative development. Our technique differs from some existing practices as described in Chen and Biehl that use EAST-ADL [START_REF] Chen | Modelling Support for Design of Safety-Critical Automotive Embedded Systems[END_REF][START_REF] Biehl | Integrating Safety Analysis into the Model-Based Development Toolchain of Automotive Embedded Systems[END_REF][START_REF] Blom | EAST-ADL: An Architecture Description Language for Automotive Software-Intensive Systems[END_REF]. EAST ADL focuses on supporting system engineering mapping functional architectures onto hardware. It does not support modeling of the software architecture. In contrast, AADL allows modeling of system and software architectures. By supporting safety analysis across both, it addresses hazard contributions by software. There is plenty of recent evidence that software has become a major source of hazards; thus, it is crucial to extend safety analysis into the software system architecture.

In this paper we present the Architecture-Led Safety Analysis (ALSA) method and demonstrate its use. ALSA is part of an Architecture-Centric Virtual Integration Process (ACVIP) within a comprehensive, architecture-led systems engineering practice [START_REF] Yu | Towards an Architecture-Centric Approach Dedicated to Model-Based Virtual Integration for Embedded Software Systems[END_REF]. Figure 1 shows steps in the ACVIP, with the ALSA steps in boldface. We apply these process steps repeatedly down the hierarchy of subsystems. The diagram conveys that the ACVIP and ALSA steps are closely coupled and involve iteration and concurrency of activities. Our practice combines features of several existing safety engineering practices, model-based requirements analysis, and architecture design practices. It incorporates development and analysis of at least a partial architecture model using notations such as the Architecture Analysis and Design Language (AADL) [START_REF] Peter | Model-Based Engineering with AADL: An Introduction to the SAE Architecture Analysis and Design Language[END_REF]. The method incorporates existing ARP 4761 and ARP 4754A practices such as Functional Hazard Assessment (FHA), Preliminary System Safety Assessment, and System Safety Assessment. Our method also uses techniques similar to those in STPA, including a specially constructed set of guidewords. The unique contribution of our work is the use of an architecture representation of the system and its operational context and an error ontology to support hazard identification. An early version of this method was validated by its use in the System Architecture Virtual Integration technique [START_REF] Feiler | System Architecture Virtual Integration: An Industrial Case Study[END_REF].

We create the architecture representation, which supports our practice, using AADL and elaborate it over multiple iterations of analysis and design. Several annexes to the core AADL have been defined and we particularly use the error annex, referred to as EMV2 (error model version 2), in this safety analysis method. EMV2 supports expressing the error behavior of a component and its subcomponents using a state machine construct linked to the component's ports. Component connectors between ports and error flows through the connectors allow the designer to explicitly plan error propagations through the system. Work around, restart and other error recovery strategies can be modeled and analyzed. EMV2 defines the error ontology that is a center piece of the safety analysis method. The ontology provides guide words that are used to help locate safety hazards, which are added to the error model as properties that can be used to produce hazard analysis reports.

An architecture model created using the process in the rest of this paper supports safety analyses at user-selectable levels of detail. Certain analyses are conducted on an instantiation of the selected component including any subcomponents of the selected component. The algorithms are defined to accept the scope of the selected entity and to apply the analysis technique within that scope. The highly extensible OSATE predefines analyses such as FHA but as an open source tool based on Eclipse any analysis can be added to the tool set.

The practice is composed of four steps that we apply in a top-down manner to the system hierarchy. Feedback from lower levels drives the next iterations with new information. The individual steps interface with the encompassing ACVIP practice and inform other integration activities. The four steps are 1. Identify Operational Safety Risks: This step involves identifying operational system-level accidents, incidents, and contributory system-level hazards by considering the context in which the system is engineered and operates as well as its interfaces with the environment. This step requires significant stakeholder engagement, especially safety engineering, operational, and mission expertise.

Identify Operational Hazards and Hazard Contributors:

Step 1 helps to establish a minimal system architecture, associating identified accidents with various aspects of the system. The error ontology defined in the Error Model Annex of AADL provides guidance in identifying hazards and their contributors. 3. Identify Safety Requirements: The sources of error are used to define safety requirements that mitigate the identified hazards. While designated as a distinct step, safety requirements can be defined concurrently with hazard identification. 4. Develop Safety Architecture Design: A safety architecture is designed based on the safety requirements identified in the previous step. The safety architecture merges the safety aspects of the product into the overall product architecture.

The ALSA practice is supported by the Open Source Architectural Tool Environment (OSATE) [START_REF]Open Source AADL Tool Environment (OSATE)[END_REF]. It is conducted in coordination with the general systems requirements definition and initial architecture design activities in an iterative, incremental development approach. The architecture representation includes information about nominal and error flows in the system. These flows are analyzed end to end to identify hazards that may appear only when complex interactions among multiple components are considered together. As hazards are discovered, the architecture representation is annotated with information about the hazards, making this information available in future iterations of analysis as the system definition evolves.

The example in the next section illustrates elements of the ALSA approach but is not intended to represent a comprehensive safety assessment. In practice, experts utilize these techniques to develop the technical and safety aspects of the systems they analyze. In presenting the ALSA process, we assume that readers are familiar with the AADL, the AADL Error Model Annex (EMV2), and their application [START_REF]SAE AS5506B, Architecture Analysis & Design Language[END_REF][START_REF]Architecture Analysis and Design Language (AADL), Annex E: Error Model Annex[END_REF][START_REF] Delange | AADL Fault Modeling and Analysis Within an ARP4761 Safety Assessment[END_REF].

Example

This is an example application of the ALSA safety process to a representative Full-Authority Digital Engine Controller (FADEC) system. For our purposes, we address only the operating process aspects of the broader systemlevel theoretical framework presented in Figure 1. The example focuses on the fuel flow control aspects of the system as shown in Figure 2 and taken from [START_REF] Garg | Fundamentals of Aircraft Turbine Engine Control[END_REF]. The design presented here is illustrative, does not represent any specific or operational FADEC system, and is not intended for implementation. Nominally, a safety analysis is conducted for the complete aircraft, but in this problem (i.e., the system) we focus on the aircraft engine. A technical report is in preparation and will provide many details that are omitted here due to space limitations. We apply each of the four steps in the safety process and explain the interactions among the steps.

Identify Operational Safety Risks

This initial step interfaces with the encompassing ACVIP and defines the operational safety context for the system as part of the ACVIP context-definition activity. In this step, we identify safety risks (accidents, incidents, and toplevel operational hazards). As noted earlier, the specific procedures, techniques, and outputs depend on the preferences and norms of an organization. In some cases, certifications require specific practices. Various techniques can be used to identify system-level hazards in the ALSA process. Traditionally FHA has been the technique used to identify operational safety risks [START_REF]Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment[END_REF]. More recently, Leveson's STPA has also been used [START_REF] Leveson | A Systems-Theoretic Approach to Safety in Software-Intensive Systems[END_REF].

An FHA output table for the FADEC is shown in Table 1. For our purposes, we consider only the hazards and descriptions for the control thrust function while the aircraft is in motion and do not specify other entries in the table.

Table 2 shows the results using STPA. At this point, we identify the top-level safety requirements that prevent hazards or accidents (termed safety constraints [START_REF] Leveson | A Systems-Theoretic Approach to Safety in Software-Intensive Systems[END_REF]). The top-level safety requirements for the engine hazards are shown in Table 3. Defining safety requirements in concert with identifying hazards can be more effective, since experienced engineers with the requisite expertise are focused on the specific details of a hazard and immersed in the overall safety context. Often during the hazard-identification activities of ALSA, engineers implicitly assume or identify requirements, identify implicit architecture assumptions or alternatives, or make architecture decisions. For example, engineers may develop a requirement that a combat aircraft will include an ejection set for the pilot. At this point, they can begin to develop an operational model of the top-level system architecture and include an ejection system, along with potential alternative designs.

Table 3: Hazards and safety requirements.

Hazards Safety Requirements

H1: Engine provides no thrust SC1: Thrust must be provided at all times when commanded.

H2: Engine provides too little thrust H3: Engine provides too much thrust SC2: Thrust level must be provided at the commanded level.

H4: Engine is slow to provide commanded thrust SC3: Engine must provide commanded thrust within the required interval.

H5: Engine will not shut down when commanded [Relevant safety constraints arising from H5 include SC1, SC2, and SC4.] H6: Engine cannot be controlled -LOTC SC4: Engine must respond to all commands. SC4.1: Engine must start when commanded. SC4.2: Engine must shut down when commanded.

Identify Operational Hazards and Contributors

In this step, we detail hazards and identify hazard contributors by incrementally extending the hazard analysis into lower levels of the system operational and architectural hierarchy. Consequently, it is necessary that additional details or working assumptions about the architecture exist and possibly alternative architecture designs for consideration have been defined. These steps incorporate hazard analysis techniques-such as fault tree analysis, event tree analysis, and hazard and operability study from ARP 4761-as well as the STPA and are connected with the identification of safety requirements and the development of a safety architecture.

In the initial activities of this step, we establish the boundaries of the system and its subsystems and define the types of errors that can propagate among them. For the FADEC example, we choose to partition the relevant system into the cockpit (including the pilot), a separate autopilot, and the remainder of the physical aircraft. External elements in the environment may impact the system via sensors or other input (e.g., light entering the aircraft can produce heat within the aircraft). The system-level diagram shown in Figure 3 reflects an architecture in which pilot and autopilot commands to the aircraft's FADEC are separate and parallel.

Figure 3: Example aircraft decomposition.

A common way of viewing a system in its operational context is as a control system that involves interactions via Monitored and Controlled Variables. This approach, documented in the FAA Requirement Engineering Management Handbook [START_REF]Requirements Engineering Management Handbook[END_REF], has its roots with Parnas and Madey [START_REF] Parnas | Functional Documentation for Computer Systems Engineering[END_REF]. These variables can be used to represent states that characterize unsafe system conditions and interactions. The STPA utilizes a control loop representation for hazard identification [START_REF] Leveson | A Systems-Theoretic Approach to Safety in Software-Intensive Systems[END_REF].

Two principal considerations in identifying hazards are exceptional conditions within architecture elements (characterized using the ALSA error ontology) and mismatched assumptions (mismatched assumption-guarantee contracts between systems) about their interactions. Exceptional conditions and mismatched assumptions are hazardous (undesired) states of a system. Those that pose a threat to the well-being of people or offer the potential for catastrophic consequences to the environment are safety hazards.

As seen in Figure 3, the Pilot_Cockpit system provides control commands to the Autopilot and the Aircraft. We consider the port connections between the elements and choose the error types: no data is sent (service omission), bad data is sent, and data is sent late. We assume that the data is a single content record sent on some schedule. As we define the details of the communication between the components more specifically, we can define the amount of acceptable delay and adjust the model to accommodate these details. This information is summarized in Table 4, whose columns are labeled with the relevant error categories from the error ontology. The engine system within the aircraft system implementation is shown in Figure 4. For clarity, other internal aircraft components are not included. The FADEC within the engine system can be commanded by either pilot or autopilot input, and the FADEC does a signal selection based on the operational mode. The engine receives a command from the FADEC and provides engine turbine fan speed back to the FADEC.

Identify Safety Requirements

Operational safety hazards, errors sources, and other contributors to those hazards are used to establish safety requirements-statements about the desired operation and capabilities of a system that address safety hazards. As we have shown, safety requirements arise out of hazards and hazard contributors and can be identified throughout the ALSA process. Consider the example in Table 4; the identification of the hazard that an asymmetric transmission error can occur leads to a requirement to address asymmetric errors in the system.

Develop Safety Architecture Design

Developing a safety architecture is synergistic with the hazard analysis process and the general architecture design efforts. Especially for safety-critical systems, the safety requirements (safety constraints) identified in earlier steps in the process guide the engineering of the system. In safety-guided design, safety requirements drive the overall architecture development and define safety-specific architecture elements, such as redundant hardware, highly reliable communication, and low workload interface designs. Safety requirements significantly influence, and often dictate, architecture and detailed design trade-off decisions and overall system assurance activities.

In ALSA, standard error patterns such as the standard-error state machine shown in Figure 56 are collected in libraries that can be reused across architectures. The safety analysis is tied directly to the architecture by recording the identification of a hazard in the error model for the appropriate AADL component, as shown in Figure 67. Errors may be propagated from hardware into software components, or from one component to another, and may arise from the implementation and operation of the component itself, as shown in Figure 78. The error propagations can also lead the system/subsystem hierarchy, as shown in Figure 89. Making these error propagations explicit in the architecture description makes design decisions much more straightforward. This ties the safety architecture into the architecture design activity of the encompassing ACVIP. OSATE is extensible using the Extend language. By defining domain specific properties and encoding an algorithm to compute a measure from those properties a new analysis is added to the toolkit. Future work is intended to add to the analysis set and to enhance usability.

error

Conclusion

The ALSA process involves assessing interconnected elements within an architecture, considering the potential EMV2 errors that may apply to the interconnections, and representing each architecture element as an error state machine based on the impacts of these errors. The error model also includes considerations of the operational paradigm and system model of the component. ALSA also involves assessing the interaction paths between architecture components. Within ALSA, systems engineers consider system interaction scenarios in which each component representation is based on an assumed architecture model of the system and assumed operational paradigms (algorithms) that are premised on that model. Each component interaction can be affected by one of the EMV2 error types via its interaction with other components. These are errors output by or received by a component. ALSA is a safety engineering practice that blends existing safety analysis techniques with an error ontology and a model-based architecture representation of the system and its operational context. Using this blend, engineers can more effectively and efficiently discover hazards in the interactions among system components, increase automation to support iterative development, and help to ensure that a safety-critical system is safe.

Figure 1 :

 1 Figure 1: Process steps for ACVIP (lightface) and ALSA (boldface).

*Figure 2 :

 2 Figure 2: FADEC fuel flow control example [data adapted from 10].

Figure 4 :

 4 Figure 4: Major engine system components.

Figure 5 :Figure 6 :

 56 Figure 5: Three-state error model.

Figure 7 :

 7 Figure 7: Tying the FADEC to the higher level engine package.

Figure 8 :

 8 Figure 8: Dual redundant fuel flow.

Table 1 : Hazards identified using FHA.

 1

	Function	Failure Condition (Hazard Description)	Phase	Effect of Failure	Classifi-cation	Reference to Material Supporting	Verification
		Engine provides no thrust	Taxi				
		Engine provides too little thrust	Takeoff				
		Engine provides too much thrust	Landing				
		Engine is slow to provide	Flight				
	Control Thrust	commanded thrust (increase or decrease) Engine will not shut down when					
		commanded					
		Engine cannot be controlled -					
		Loss of Engine Thrust Control					
		(LOTC)					

Table 2 : Results of applying STPA.

 2

	Accident	System-Level (Operational) Hazards
	A-1: Loss of life or serious injury	H0: Ineffective thrust to maintain controlled flight or safe taxi
	due to aircraft engine	H1: Engine provides no thrust
		H2: Engine provides too little thrust
	A-2: Catastrophic damage to	H3: Engine provides too much thrust
	aircraft or other property due to	H4: Engine is slow to provide thrust (increase or decrease)
	aircraft engine	H5: Engine will not shut down when commanded
		H6: Complete LOTC

Table 4 :

 4 Interface errors.

	Component Interface	Service Errors	Value Errors	Timing Errors	Replication Errors
	Pilot_Cockpit to	No command to	Bad value input	Late delivery	
	Autopilot	autopilot (may not	into Autopilot	(since this is	
		be a hazard -need		specified as a	
		details on		message, potential	
		assumptions of the		timing errors need	
		autopilot system)		additional analysis)	
	Pilot_Cockpit to Aircraft No command to	Bad value input	Late delivery	
		aircraft	into Aircraft		
	Autopilot to Aircraft	No command	Bad value	Late delivery	
	Aircraft to Pilot_Cockpit No data	Bad value	Late delivery	Potential for
					asymmetric missing,
	Aircraft to Autopilot	No data	Bad value	Late delivery	value or timing error

propagation {No_Data,Bad_Data,Late_Data}; fan_speed: out propagation {No_Data,Bad_Data,Late_Data,AsymmetricSpeedFeedback}; end propagations;

	system FADEC extends Top_Level_Pkg::FADEC
	annex EMV2 {**
	use types FADEC_Error_library;
	error propagations
	autopilot_PLA_Cmd: in propagation {No_Data,Bad_Data,Late_Data};
	fan_speed: in propagation
	{No_Data,Bad_Data,Late_Data,AsymmetricSpeedFeedback};
	pilot_PLA_Cmd: in propagation {No_Data,Bad_Data,Late_Data};
	cmd_to_engine: out propagation {No_Data,Bad_Data,Late_Data};
	end propagations;
	**};
	end FADEC;
	device engine extends Top_Level_Pkg::engine
	annex EMV2 {**
	use types FADEC_Error_library;
	error propagations
	engine_cmd: in

**}; end engine;

Acknowledgments

Copyright 2015 Carnegie Mellon University This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. This material has been approved for public release and unlimited distribution. Carnegie Mellon ® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. DM-0002899