
HAL Id: hal-01292286
https://hal.science/hal-01292286v1

Submitted on 22 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Debugging Embedded Systems Requirements with
STIMULUS: an Automotive Case-Study

Bertrand Jeannet, Fabien Gaucher

To cite this version:
Bertrand Jeannet, Fabien Gaucher. Debugging Embedded Systems Requirements with STIMULUS:
an Automotive Case-Study. 8th European Congress on Embedded Real Time Software and Systems
(ERTS 2016), Jan 2016, TOULOUSE, France. �hal-01292286�

https://hal.science/hal-01292286v1
https://hal.archives-ouvertes.fr

www.embedded-world.eu

Debugging Embedded Systems Requirements

with STIMULUS: an Automotive Case-Study

Bertrand Jeannet and Fabien Gaucher

ARGOSIM SA

8-10, rue de Mayencin, 38400 St-Martin d’Hères, France
{Bertrand.Jeannet|Fabien.Gaucher}@argosim.com

Abstract—In a typical software project, 40% to 60% of design

bugs are caused by faulty requirements that generate costly

iterations of the development process as specifications need to be

redefined, design and implementation modified accordingly, and

then retested. The major reason for this situation is that no

practical tool exists for debugging requirements while drafting

specification, and the many tools that exist for requirement

management and traceability do not address this problem.

STIMULUS provides an innovative solution for the early

debugging and validation of functional real -time systems

requirements. It provides a high-level language to express textual

yet formal requirements, and a solver-driven simulation engine

to generate and analyze execution traces that sati sfy

requirements. Visualizing what systems will do enables system

architects to discover ambiguous, incorrect, missing or

conflicting requirements before the des ign begins.

We demonstrate the use of STIMULUS on the specification of

automatic headlights from the automotive industry. We show

how this unique simulation technique enables to discover and to

fix ambiguous and conflicting requirements, resulting in a clear

and executable specification that can be shared among engineers.

Keywords—Requirement Engineering, Real-time Embedded

Systems, Domain Specific Languages, Formal Methods,
Debugging, Simulation.

I. INTRODUCTION

Many tools have been proposed for the development of
embedded software, in which the validation activity may
represent more than 60% of the whole development effort. In
this process, functional validation aims at checking that the
system design is correct with respect to requirements, but few
tools exist for the functional validation of system requirements
themselves.

In this paper, we focus on real-time requirements, such as
the following cruise control example:

“When active, the cruise control shall not permit actual
and desired speeds to differ by more than 2 km/h during more
than 3 seconds.”

Such requirements usually describe a combination of logical
and numerical properties of system signals over time. They
stand in contrast to non-functional requirements, such as
performance, usability, reliability, cost, etc. Being
requirements, they express what a system should do or not do,
but they do not describe how to achieve it: here for instance it
could be done with a PID (proportional-integral-derivative)
controller.

 In practice, requirements are mostly written in natural
language and are generally validated through manual reviews.
As a consequence, many ambiguities and errors remain until
validation testing. It is well-known that the later these errors
are detected, the more expensive it is to fix the bug. The cost is
even worse when third parties are involved as the extra process
iterations involve specification and contractual changes.

 Argosim STIMULUS addresses this issue of requirement
early debugging and validation by providing two key features:

(I) Expresses real-time requirements and environment
assumptions in a formal yet close to natural
specification language;

(II) Generates and observes simulation results that satisfy
requirements under environment assumptions.

The ability to formalize requirements in an easy-to-read
language is a necessary condition for the approach to get
acceptance by users, while the ability to simulate “what
systems shall do” makes requirements validation possible
while writing specifications, instead of delaying it to a later
phase of the development process. This limits specification
errors and ultimately reduces costs in the design phase.

In this paper we show how STIMULUS supports these
claims by describing its technical foundations and by

illustrating its use to formalize, debug and validate the
requirements of a car automatic headlights controller which
was provided to us by a Japanese software and tools vendor.

II. RELATED WORK

Several requirement engineering tools do exist, such as
IBM DOORS. Compared to STIMULUS, they focus on
requirement management and traceability, rather than
validation.

Specification and simulation tools, like UML/SysML or
Mathworks Simulink, aim at modeling and validating system
design and architecture rather than high-level requirements.
There are efficient at describing how a system should be
implemented, but they lack the expressiveness to describe and
to simulate what a system should do without describing the
how. The case-study of this paper will clarify this point.

 Formal methods tools, in particular model-checkers and
proof systems, like the Rodin platform based on Event-B [1],
provide expressive languages and exhaustive validation
features. There are the tools to use to prove the consistency of a
set of worked-out requirements, but less so to incrementally
debug partial, possibly incorrect requirements and to discover
missing requirements, for the two following reasons.

1. They can only detect formalized inconsistencies: they do
not help the user to discover problems that he has not
anticipated.

Consider the cruise control example given in introduction.
Before submitting this requirement to a model-checker or
a proof assistant, the user has to define a relevant property
to prove on it, which is not trivial. Moreover, there is no a
priori guarantee that the chosen property can detect a
mistake like omitting the absolute value operator when
translating the condition “speeds should not differ by more
than two km/h”. In contrast, as we will see, the simulation
feature of STIMULUS enables the user to discover
unanticipated problems in requirements by observing
simulation traces.

2. Model-checkers and proof assistants require fairly complete
requirements to issue relevant results , that is, either a
successfull proof of a non-trivial property on them, or a
meaningful counter-example to it. This makes this
approach hard to use in an incremental specification
process where rough initial requirements are progressively
refined.

The two approaches are actually complementary:

 STIMULUS enables to debug requirements and to validate
them by simulation; its strength is its ability to quickly
exhibit problems. This provides a level of confidence in
the quality of requirements, which is arguably higher than
the level provided by manual reviews, but do not deliver
either a formal proof of consistency and correctness.

 Once good quality requirements are obtained, they can be
submitted to model-checkers and/or proof systems to
obtain formal proofs. Problems can still be discovered at
this step, but much less frequently than if the previous step
had not been performed.

This complementarity motivated a partnership with SafeRiver,
a consulting company specialized in safety and cyber-security
for software-based systems. SafeRiver makes intensive use of
formal methods and tools, and is looking for solutions to speed
up the correct formalization of safety requirements before
performing exhaustive proofs on them.

III. STIMULUS TECHNICAL FOUNDATIONS

The scientific backgrounds of STIMULUS being detailed
in [1], we give only an overview of it. The two key features of

STIMULUS are an expressive formal specification language
and a simulation engine based on a constraint solver.

A. A Constraint Real-Time Specification Language

Stimulus combines the concepts of the synchronous languages
LucidSynchrone [5] and Lutin [6]:

 LucidSynchrone (like its industrial version SCADE)
provides proven and mature concepts for modeling real-
time systems, such as dataflow equations, hierarchical

state machines, and synchronous parallel composition.

 Lutin provides the concepts needed for modeling real-
time non-deterministic behaviours, namely dataflow

constraints and non-deterministic control choices. It was
designed for describing generic test scenarios for real-
time systems.

We list below the main concepts of the resulting language.

a. Data: Synchronous Data-Flow Constraints

The behaviour of signals is specified with dataflow constraints

like:

count = (0 -> last count) + (if evt then 1 else 0);
count <= 10;

in which the integer signal count counts the number of
occurences (in time) of the Boolean signal evt and is
constrained to be less than or equal to 10. -> is the

initialization operator : e1 -> e2 evaluates to e1 on reset, and
to e2 otherwise, and last v denotes the value of signal v in
the previous step. In other words, this specifies than evt might

be true at most ten times during an execution, but specifies
nothing more about when evt can or cannot be true.

b. Control: Hierarchical State Machines.

They are typically used to model running modes, to define the
temporal operators of the standard library, and also to model
probabilistic choices in scenarios. States can contain

constraints, as shown by the state machine of Fig 1. State
machines in STIMULUS have a strong, preemptive transition
semantics according to the terminology of [5]: transitions are

fired and their condition evaluated in the same step as their
destination state. In addition, they implement an original

notion of termination which happens to be crucial to combine
the temporal operators of the standard library.

c. Modularity: Systems and Macros.

As other synchronous languages or Mathworks Simulink,

Stimulus encapsulates statements into systems that can then be

www.embedded-world.eu

Fig. 1: requirement about the occurrences of evt

instantiated at several places. One can for instance define a
system Count that counts the number of occurrences of an

event (using an internal memory) and that can be reused to
specify more complex constraints, like Count(evt1) >=
Count(evt2).
 Stimulus also provides a robust system of macros with
clear scoping and typing rules that accepts statements as
parameters, in addition to signals having a value. They are used
to define temporal operator, such as the

when <condition>, <BODY>

operator defined by the macro depicted on Fig. 2.

d. Readability: Sentence Templates

Formal requirements are easier to read when they look like
textual requirements instead of programs. To achieve this

goal, a system or macro can be associated with a user-defined
format that specifies how instances should be edited and
displayed in the editor.

For instance, if one associates to the macro When and the
system Count the formats When %condition%, %<BODY>% and
number occurences of %event%, the requirement of Fig. 1

rewritten using When and Count will appear as:

which is arguably more concise and more readable than the

automaton of Fig. 1, while still enjoying the same
unambiguous, formal definition.

e. Architecture: Block Diagrams.

Systems can be instantiated not only as a sentence, as
described above, but also as blocks connected to other blocks
in block diagrams, like in Mathworks Simulink, see Fig. 8.

This enables developers to graphically describe the
architecture of a system and to visualize the flow of
information in it.

Other technical features of the STIMULUS language are a

construct for controlling constraint propagation and orienting

constraints, in the spirit of [12], which provides scalability

both for solving constraints and for model understanding by

the user, type inference techniques of functional languages

[13,14] to minimize the annotations required from users, and

a physical dimension analysis [15,16] to statically detect this
kind of inconsistencies.

Regarding the modeling of time, currently STIMULUS
provides a simple periodic physical time model, by using a
period to assign physical time values to logical time steps. In

the long term we plan to provide a more flexible, aperiodic
time model.

B. Compilation Process and Simulation Engine

 SIMULUS compilation process follows the principles of
[3,4,5,6] for (i) reducing parallel composition of hierarchical
state machines to sets of statements guarded by choices on the
clocks representing the active states of state machines, and (ii)
ordering statements properly with respect to dependency
constraints.

The simulation engine follows the principles of [7,8] and
combines an exploration algorithm for resolving the non-
deterministic choices induced by state machines and a

constraint solver for resolving the non-determinism induced
by constraints on variables. The solver handles logico-
numerical constraints mixing logical operators on Boolean and

enumerated variables, and linear constraints on numerical
variables. The restriction to linear numerical expressions

concerns only the unknown variables to be solved: the solver
can deal with non-linear sub-expressions on variables that are
known at solving time, like inputs or memories. For instance

the constraint x*(last x) >= y*(last y)*(last y) is linear
on the unknowns x and y.

IV. METHODLOGY FOR DEBUGGING REQUIREMENTS

In the previous section, we gave an overview of a new
real-time constraint programming language built by

combining the two research lines of work lead by M. Pouzet
[3,4,5,6] and by the synchronous team of VERIMAG
laboratory [7,8,9,10]. Now, how can it be used to debug

requirements of real-time systems ?

Fig.2 Macro defining the temporal operator When

With the current practice, requirements are mostly textual
that are worked out and validated through manual reviews,
and then given as inputs to

1. system designers and programmers on the one hand, who
will implement the system;

2. test engineers on the other hand, who are in charge of

writing functional test cases and test verdicts to confront
the implementation w.r.t. the initial requirements.

Fig. 3 depicts the functional test bench architecture of a real-

time system. I and O denote resp. the inputs and outputs of the
System Under Test (SUT), which is considered as a black box.

The box “Scenarios” feeds the SUT with inputs I, possibly
taking into account outputs O to produce realistic inputs. The
box “Requirements” reads both inputs I and outputs O of the

IUT and emits a verdict.
As mentioned in the introduction, the experience shows

that half of the bugs discovered by functional tests are

requirements bugs, and not implementation bugs. The problem
is that these bugs can be found only after the SUT becomes

available.

Fig. 3 : Classical test architecture of a real-time system

Fig. 4 : Debugging architecture for requirements and

scenarios with STIMULUS

In contrast, the methodology made possible by the

STIMULUS constrained-based language and its simulation
engine is the following one:

 Requirements are seen as constraints between inputs I,
outputs O, and the verdict (OK/NOK).

 The box “requirements” in Fig. 4 act as an outputs
generator. At each simulation step:

o the inputs I and the verdict OK are provided to
the box “requirements”;

o the simulation engine solves the constraints in
the remaining unknowns O and picks a random
solution for them.

 Similarly, scenarios are also seen as constraints between I
and O, which may describe general assumptions on inputs
and/or more specific test cases.

 The box “scenarios” in Fig. 4 acts as an inputs generator:
given outputs O provided to it by the feedback loop, the
simulation engine solves the constraints in the remaining

unknowns I and picks a random solution for them.
The fact that scenarios may be generic scenarios with a

large variability on control and data allows the simulation

engine to generate many different simulation traces, and
ultimately makes more likely the discovering of an unexpected
behaviour corresponding to a problem in the requirements.

Actually scenarios are optional: one may simulate
requirements alone. However, in practice, one often needs

some general assumptions on the stability or the variation of
signals to make simulation traces readable or realistic.

Another important observation is that once scenarios and

requirements have been worked out using the architecture of
Fig. 4, they can be reused directly in the test architecture of
Fig. 3 with a black-box system under test: indeed, there are

executable, and STIMULUS have a mechanism to turn a
generator into an observer, which enables to turn the
requirements box of Fig. 4 in the requirements box of Fig. 3.

We described in the two previous sections the scientific

foundations of STIMULUS and the methodology it enables
for debugging requirements together with their associated
generic test scenarios. The sequel of the paper aims at

answering to the following questions:

 How does it work in practice? Is it easy to formalize
informal textual requirements with STIMULUS? How far

is the formalized version to its informal counterpart in
term of readability (traceability feature)?

 Are simulation traces effective at discovering problems?
In other words, despite the non-exhaustiveness of our
validation-by-simulation approach, is it “exhaustive

enough” in practice?
To answer to these questions, we will illustrate the use of

STIMULUS for formalizing and debugging requirements of

an automatic light system coming from the automotive
industry.

V. FORMALIZING THE REQUIREMENTS OF

AUTOMATIC HEADLIGHTS

These requirements were provided to us by a Japanese

software and tools distributor, as a typical example of the kind
of requirements his customers have to deal with in the
automotive industry. We insist on the fact that they have not

been specifically invented for evaluating a tool like
STIMULUS, neither by us nor by researchers or developers of
alternative solutions.

The original, textual specification of the automatic
headlights is depicted on Fig. 5. The head sentence is a sort of

informal, high-level requirement that describe the general
purpose of the four more precise, lower level requirements
that follow. This purpose is to command the switching of the

lights. In the sequel we will formalize the four requirements
named 3Aa, 3Ab, 3B and 3C.

Fig. 6 depicts the initial formalization of requirement 3Aa,

which will be debugged by simulation and upgraded in the

System Under Test

Scenarios

Requirements

O I

Verdict
I

O

Stimulus
model

Scenarios

Stimulus

model

Requirements

O
I Verdict = O K

www.embedded-world.eu

next sections. One recognizes in Fig. 6 the pieces of sentence
underlined on Fig. 5. This formalization is based on the use of

STIMULUS standard library, which provides a number of
sentence templates that are ubiquitous in real-time
requirements, such as:

 “as long as <expression>, <statement>”
 “initially <statement>, afterwards <statement>”

As explained in Section III.A.d, such sentence templates are
user-definable views for formal systems and macros, and their

purpose is to make easy tracing the formalized requirement
back to the textual, non-formalized requirement.

The other requirements 3Ab, 3B and 3C are similarly
formalized. 3Aa and 3Ab roughly specifies an hysteresis. 3B

and 3C in addition require the light intensity to be low or high
to hold for some time before switching respectively on or off
the headlights. This is to prevent the headlights to blink too
quickly, for instance when driving under a bridge.

VI. SIMULATING AND REFINING THE REQUIREMENTS

We just showed how the requirements can be formalized.

However the major innovation of STIMULUS is the ability to
simulate them.

A. Simulation architecture

Fig. 8 depicts the block diagram defining the simulation

architecure considered in this paper. The block Env generates
values for the signal lightIntensity that satisfy the
assumptions depicted on Fig. 9. These assumptions combine

general physical assumptions on the range of the light
intensity (a percentage of a maximum intensity) and of its
derivative, and a scenario making it alternatively increase or

decrease. In this paper, we maintain the signal switch to
AUTO, as we want to simulate the behaviour of the system

under this mode.
The block R003_v1 on Fig. 8 is defined by the

requirements discussed in Section Erreur ! Source du renvoi

introuvable.. This block will generate possible values for
headLight that are compatible with these requirements and
the values of the other signals.

B. First simulation and detection of a problem

Fig. 10 depicts a possible execution trace of the system

defined by Fig. 8. One can observe the behaviour of
lightIntensity and headLight signals. L60 and L70 are the

two thresholds 60% and 70% that appear in the requirements.
What can be observed is that at start headLight has the

expected behaviour: it is first OFF because the light intensity

is above the 70% threshold, and when the light intensity falls
below the 60% it becomes ON. However, afterwards the
behaviour seems completely random and appears in

contradiction with the intended behaviour.
Hence the simulation exhibits a problem either in the

textual requirements, or in their formalization, or in both.

C. Investigating and solving problem 1

Consider the textual requirement 3Aa on Fig. 6 and more
precisely its second part:
“[…] Afterwards the headlights should continue to stay ON in

AUTO as long as the light intensity is not above 70%”.
The textual expression “as long as” is actually ambiguous:
does it mean

1. as long as condition, something [afterwards nothing]”
(sequential behaviour)

If the switch is AUTO then the headlights turn on or off, depending on the ambient light intensity - with a defined hysteresis
to prevent blinking.
REQ_003Aa: if the switch is turned to AUTO, and the light intensity is at or below 70% then the headlights should stay or
turn immediately ON.

Afterwards the headlights should continue to stay ON in AUTO as long as the light intensity is not above 70%.
REQ_003Ab: if the switch is turned to AUTO, and the light intensity is above 70% then the headlights should stay or turn
immediately OFF.
Afterwards the headlights should continue to stay OFF in AUTO as long as the light intensity is not below 60%.
REQ_003B: if the switch is in position AUTO, the headlights are OFF, and the light intensity falls bellow 60%,
then the lights should turn ON if this condition lasts for 2s.
REQ_003C: if the switch is in position AUTO, the headlights are ON, and the light intensity is above 70%, then the lights
should turn OFF if this condition lasts for 3s.

Fig. 5: Original specification of the automatic headlights

Fig. 6 : Requirement 3Aa in STIMULUS, initial version

Fig. 7 : Requirement 3B in STIMULUS, initial version

2. or “[always] when condition, something”
(cyclic behaviour)?

This ambiguity is not really an artefact introduced by
STIMULUS sentence templates: it is a real ambiguity which
already exists in the textual version, between a sequential or a

cyclic behaviour.
On Fig. 6 we opted inadvertently for the first

interpretation, but clearly we expect a cylic behaviour here.
Let us try the second one, which is available in the standard
library. Requirement 3Ab which follows the same pattern is

similarly modified. Let us simulate this new version of
requirements:

We obtain a conflict at simulation step 6: this means that some

requirements are contradicting each other. Let us highlight the
requirement 3Aa and 3Ab in the debugger at step 6 where the

conflict occurs:

The debugger highlights the active parts of the requirements,
and allows the user to discover that at this step, the

requirements implie headLight to be ON and OFF at the same
time!

D. Investigating and solving problem 2

Consider again the textual requirement 3Aa on Fig. 1. We

formalized the expression
“headLights should continue to stay ON”

underlined in Fig. 1 with the formalized sentence

“headLights shall be ON”.
Was that the right interpretation? The sentence could also
mean:

“if it was ON, maintain it at ON, otherwise do nothing”.
To check this hypothesis, we defined a new, user-defined

sentence template
“<expression> should continue to stay <constant>”

Fig. 8: simulation architecture

Fig. 9: system Env describing the assumptions on the light intensity

Fig. 10: Simulation of requirements, initial version

www.embedded-world.eu

with this semantics and used it to update requirement 3Aa,
resulting in the requirement of Fig. 11. Requirement 3Ab was

similarly modified.
Fig. 12 depicts a possible execution trace with this new

version of requirements, which follows much better the

expected behaviour of the head lights which should not blink
and which should switch to ON or OFF according to two
thresholds.

A last problem, that we will not detail as much, concerns
the requirements 3B and 3C: they express that something

should happen when a condition hold for some time duration,
but say nothing about what should happen before. Hence
unwanted, blinking head lights behaviour might occur with a

more generic scenario in which the switch is not always equal
to AUTO. This is a typical example of a missing requirement.

VII. DISCUSSION

The four textual requirements of Fig. 5 look rather simple
and reasonable. Yet they contain several ambiguities and

omissions, some of them leading to unwanted behaviours,
others to contradictions. Actually, although looking simple,
they specify a complex behaviour that depends on the past

history of signals, and on physical time. This complexity
behind apparent simplicity is typical of real-time requirements
and explains the strong need for their early validation,

especially as they are often requirements of security-critical
systems.

A. Comparison of simulation approach to alternative
requirements validation approaches

It is difficult to discover by manual reviews the problems
we discovered by simulation. This is why many of them are
discovered later, either by developers or test engineers when

they start exploiting the requirements given to them, or, worse,
even later during the functional test phase.

We claim that model-checker or formal proof systems are

not very suitable either for this debugging and elicitation task.
For detecting and fixing the first problem found in Section

VI.D, it is necessary
1. to explicitly formalize the higher-level property capturing

the bad behaviour, which requires having already

identified it as a potential error;
2. to check the validity of the requirements against this

property – this will fail of course;

3. to analyse the cause of the failure and to try a new
alternative.

The simulation approach made possible by STIMULUS

(i) completely removes the need for subtask 1; the user can
still insert property observer to automatize the detection
of an already identified potential problem, but this is

optional;
this subtask is actually replaced by the observation of
simulation traces enabling the discovery of unanticipated

behaviours or getting an higher confidence in the
relevance of the requirements

(ii) makes subtask 2 arguably easier: model-checkers may
have an issue with too complex models, either in terms of
size or expressiveness (non-linear computations for

instance), and proof systems are not always fully
automatic; in contrast simulation techniques are less
computationally demanding and can handle complex

models fully automatically
1
.

Subtask 3 remains the same but in overall the removal or the

simplification of the other subtasks make the trial-error cycle
much quicker.

The use of model-checking and formal proof approaches is

of course still meaningful to obtain an exhaustive confirmation
of consistency, or to discover inconsistencies occurring in very
uncommon cases that a simulation approach may miss.

B. Evaluation w.r.t. announced criteria

At the end of Section IV describing our methodology, we

proposed two main evaluation criteria to our approach,
namely:

1. Easiness of formalization, readability of formal models
and traceability w.r.t. informal, textual requirement;

2. Effectiveness of the simulation engine in generating

simulation traces exhibiting problems, that is, sufficient
“practical exhaustiveness”.

1
 As mentioned in Section III.B, the constraints of

STIMULUS models should be linear, but only on the
unknown variables at solving time, which is not restrictive in

practice.

Fig. 12: Simulation of requirements after the second

correction

Fig. 11 : Requirement 3Aa in STIMULUS, second correction

We hoped to have successfully convinced the reader that
the formalized requirements of Figs. 6 and 7 remain close to
and as concise as their informal counterpart of Fig. 5.

Although these formal requirements are not pure English,
everybody can understand what they are talking about. In
addition, they gain a perfectly formal semantics: the user can

look at the formal definitions of the sentence templates to get a
more in-depth understanding of a sentence, and simulate them
to observe their dynamic behaviours.

Technically, this is a benefit of the combination of a
powerful programming language (which is mostly hidden to

the user), the use of sentence template as a view for
programming constructs, and the design of well-thought
standard library.

Regarding the second evaluation criteria, the two problems

discovered in Section VI were both discovered with the very

first simulation trace. This means that although the validation-
by-simulation approach is not exhaustive, in practice the

simulation engine is efficient at quickly exhibiting problems
when they exist. In particular, the conflict discovered at the
end of Section VI.C, which would have been easily found by a

model-checker, was in practice as easily found by the
simulation engine, using the very unspecific generic scenario
of Fig. 9.

Of course, if the assumptions on the environment disallow
some scenario, STIMULUS will not exhibit problems that are

specific to them. But the same applies to model-checkers and
formal proof systems: formal proofs are valid only w.r.t. the
considered assumptions on the environment. STIMULUS

actually supports the incremental process of starting
debugging requirements with very simple scenarios, and later
stimulating them with more complex or corner-case scenario.

This process allows the user to progressively gain confidence
in the quality of its requirements, instead of having to cope

with too many unwanted behaviours at a time.
Technically, the effectiveness of the STIMULUS

simulation engine for generating “really random” traces inside

the set of possible traces satisfying the requirements comes
from the use of a general constraint solver and of a fair
algorithm to pick a random solution inside the solution space.

VIII. CONCLUSION

In this paper, we presented STIMULUS, a modeling and

simulation tool for the early validation of functional real-time
requirements, and we demonstrate its effectiveness for
debugging a few requirements typical of the industrial

practice, which contain subtle ambiguities and omissions.
STIMULUS is based on modern programming languages

and simulation techniques, with many features dedicated to

requirement readability. It exploits mature and well-proven
research results to make things simple for the users.

It enables engineers to formalize requirements using
predefined or user-defined sentence templates, to model
environment assumptions and to observe execution traces that

satisfy the requirements using the innovative simulation
architecture of Fig. 4. It helps finding ambiguous, incorrect,

incomplete, or conflicting requirements, as shown on the real-
time requirements of an automatic head lights controller of a
car provided to us by a software and tools vendor.

Relying on this case study, we discussed the additional
benefits that the validation-by-simulation approach for
requirements engineering proposed by STIMULUS can bring

to the current validation-by-review and validation-by-proof
approaches. One can actually observe than in the different
domain of control system design, one of the most popular tool

is TheMathworks Simulink, which also implements a
validation-by-simulation approach.

We did not detail in this paper how to reuse STIMULUS
scenario and requirements models for testing black-box real-
time systems as depicted on Fig. 3, but this is a hot topic for

our customers. Other topics are the automation of some
common editing tasks, such as providing functional coverage
criteria for requirements, and to automate debugging and

testing tasks, such as guiding executions to favor the
functional coverage of requirements according to these
criteria.

REFERENCES

[1] Jean-Raymond Abrial: Modeling in Event-B - System and Software

Engineering. Cambridge University Press 2010, ISBN 978-0-521-
89556-9.

[2] Bertrand Jeannet, Fabien Gaucher: Debugging real-time systems
requirements: simulate the “ what” before the “ how”. EmbeddedWorld

2015.

[3] Grégoire Hamon, Marc Pouzet: Modular resetting of synchronous data-
flow programs. Principles and Practice of Declarative Programming

(PPDP’2000), ACM, 2000.

[4] Jean-Louis Colaço, Marc Pouzet: Type-based initialization analysis of a
synchronous data-flow language. Journal on Software Tools for
Technology Transfer (STTT), 6(3), 2004.

[5] Jean-Louis Colaço, Bruno Pagano, Marc Pouzet: A conservative
extension of synchronous data-flow with state machines. Embedded
Software (EMSOFT’2005), ACM, 2005.

[6] Dariusz Biernacki, Jean-Louis Colaço, Grégoire Hamon, Marc Pouzet.
Clock-directed modular code generation for synchronous data-flow
programs. Languages, Compilers , and Tools for Embedded Systems
(LCTES’2008), ACM, 2008.

[7] Erwan Jahier, Pascal Raymond, Philippe Baufreton: Case studies with
Lurette V2. STTT 8(6), 2006.

[8] Pascal Raymond, Yvan Roux, Erwan Jahier: Lutin: A Language for

Specifying and Executing Reactive Scenarios. EURASIP J. of
Embbeded System, 2008.

[9] Erwan Jahier, Nicolas Halbwachs, Pascal Raymond: Engineering

functional requirements of reactive systems using synchronous
languages, Symposium on Industrial Embedded Systems (SIES), IEEE,
2013.

[10] Erwan Jahier, Simplice Djoko Djoko, Chaouki Maiza, Eric Lafont :

Environment model-based testing of control systems : cases studies.
Tols and Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS 8413, Springer, 2014.

[11] The Mercury programming language. https://mercurylang.org/

[12] Zoltan Somogyi: A system of precise modes for logic programs.
Int. Conf. on Logic Programming (ICLP’87), MIT press, 19878

[13] The OCaml programming language. caml.inria.fr

[14] The Haskell programming language. https://www.haskell.org

[15] Jean Goubault. Inférence d'unités physiques en ML. Journées

Francophones des Langages Applicatifs, pages 3--20. INRIA, 1994.

[16] Andrew Kennedy: Dimension Types. European Symposium on
Programming (ESOP’94), LNCS 788, Springer, 1994.

http://www.informatik.uni-trier.de/~ley/pers/hd/c/Cola=ccedil=o:Jean=Louis.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Pagano:Bruno.html
http://www.informatik.uni-trier.de/~ley/db/conf/emsoft/emsoft2005.html#ColacoPP05
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Raymond:Pascal.html
http://www.informatik.uni-trier.de/~ley/pers/hd/b/Baufreton:Philippe.html
http://www.informatik.uni-trier.de/~ley/db/journals/sttt/sttt8.html#JahierRB06
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Raymond:Pascal.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Roux:Yvan.html
http://www.informatik.uni-trier.de/~ley/db/journals/ejes/ejes2008.html#RaymondRJ08
http://www.informatik.uni-trier.de/~ley/db/journals/ejes/ejes2008.html#RaymondRJ08
https://mercurylang.org/
file:///C:/Users/Janice/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/X2XICPVG/caml.inria.fr
https://www.haskell.org/
http://www.informatik.uni-trier.de/~ley/db/conf/esop/esop94.html#Kennedy94

