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Abstract—In a typical software project, 40% to 60% of design 

bugs are caused by faulty requirements that generate  costly 

iterations of the development process as specifications need to be 

redefined, design and implementation modified accordingly, and 

then retested. The major reason for this  situation is that no 

practical tool exists for debugging requirements while  drafting 

specification, and the many tools that exist for requirement 

management and traceability do not address this problem.  

STIMULUS provides an innovative solution for the early 

debugging and validation of functional real -time systems 

requirements. It provides a high-level language to express textual 

yet formal requirements, and a solver-driven simulation engine 

to generate and analyze execution traces that sati sfy 

requirements. Visualizing what systems will  do enables system 

architects to discover ambiguous, incorrect, missing or 

conflicting requirements before the des ign begins. 

We demonstrate the use of STIMULUS on the specification of 

automatic headlights from the automotive industry. We show 

how this unique simulation technique enables to discover and to 

fix ambiguous and conflicting requirements, resulting in a clear 

and executable specification that can be shared among engineers.  

Keywords—Requirement Engineering, Real-time Embedded 

Systems, Domain Specific Languages, Formal Methods, 
Debugging, Simulation. 

I.  INTRODUCTION 

Many tools have been proposed for the development of 
embedded software, in which the validation activity may 
represent more than 60% of the whole development effort. In 
this process, functional validation aims at checking that the 
system design is correct with respect to requirements, but few 
tools exist for the functional validation of system requirements 
themselves. 

In this paper, we focus on real-time requirements, such as 
the following cruise control example:  

“When active, the cruise control shall not permit actual 
and desired speeds to differ by more than 2 km/h during more 
than 3 seconds.” 

Such requirements usually describe a combination of logical 
and numerical properties of system signals over time. They 
stand in contrast to non-functional requirements, such as 
performance, usability, reliability, cost, etc. Being 
requirements, they express what a system should do or not do, 
but they do not describe how to achieve it: here for instance it 
could be done with a PID (proportional-integral-derivative) 
controller. 

 In practice, requirements are mostly written in natural 
language and are generally validated through manual reviews. 
As a consequence, many ambiguities and errors remain until 
validation testing. It is well-known that the later these errors 
are detected, the more expensive it is to fix the bug. The cost is 
even worse when third parties are involved as the extra process 
iterations involve specification and contractual changes. 

 Argosim STIMULUS addresses this issue of requirement 
early debugging and validation by providing two key features: 

(I) Expresses real-time requirements and environment 
assumptions in a formal yet close to natural 
specification language; 

(II) Generates and observes simulation results that satisfy 
requirements under environment assumptions. 

The ability to formalize requirements in an easy-to-read 
language is a necessary condition for the approach to get 
acceptance by users, while the ability to simulate “what 
systems shall do” makes requirements validation possible 
while writing specifications, instead of delaying it to a later 
phase of the development process. This limits specification 
errors and ultimately reduces costs in the design phase. 

In this paper we show how STIMULUS supports these 
claims by describing its technical foundations and by 



illustrating its use to formalize, debug and validate the 
requirements of a car automatic headlights controller which 
was provided to us by a Japanese software and tools vendor. 

II. RELATED WORK 

Several requirement engineering tools  do exist, such as 
IBM DOORS. Compared to STIMULUS, they focus on 
requirement management and traceability, rather than 
validation.  

Specification and simulation tools, like UML/SysML or 
Mathworks Simulink, aim at modeling and validating system 
design and architecture rather than high-level requirements. 
There are efficient at describing how a system should be 
implemented, but they lack the expressiveness to describe and 
to simulate what a system should do without describing the 
how. The case-study of this paper will clarify this point.  

 Formal methods tools, in particular model-checkers and 
proof systems, like the Rodin platform based on Event-B [1], 
provide expressive languages and exhaustive validation 
features. There are the tools to use to prove the consistency of a 
set of worked-out requirements, but less so to incrementally 
debug partial, possibly incorrect requirements and to discover 
missing requirements, for the two following reasons. 

1. They can only detect formalized inconsistencies: they do 
not help the user to discover problems that he has not 
anticipated.  

Consider the cruise control example given in introduction. 
Before submitting this requirement to a model-checker or 
a proof assistant, the user has to define a relevant property 
to prove on it, which is not trivial. Moreover, there is no a 
priori guarantee that the chosen property can detect a 
mistake like omitting the absolute value operator  when 
translating the condition “speeds should not differ by more 
than two km/h”. In contrast, as we will see, the simulation 
feature of STIMULUS enables the user to discover 
unanticipated problems in requirements  by observing 
simulation traces. 

2. Model-checkers and proof assistants require fairly complete 
requirements to issue relevant results , that is, either a 
successfull proof of a non-trivial property on them, or a 
meaningful counter-example to it. This makes this 
approach hard to use in an incremental specification 
process where rough initial requirements are progressively 
refined. 

The two approaches are actually complementary: 

 STIMULUS enables to debug requirements and to validate 
them by simulation; its strength is its ability to quickly 
exhibit problems. This provides a level of confidence in 
the quality of requirements, which is arguably higher than 
the level provided by manual reviews, but do not deliver 
either a formal proof of consistency and correctness. 

 Once good quality requirements are obtained, they can be 
submitted to model-checkers and/or proof systems to 
obtain formal proofs. Problems can still be discovered at 
this step, but much less frequently than if the previous step 
had not been performed.  

This complementarity motivated a partnership with SafeRiver, 
a consulting company specialized in safety and cyber-security 
for software-based systems. SafeRiver makes intensive use of 
formal methods and tools, and is looking for solutions to speed 
up the correct  formalization of safety requirements before 
performing exhaustive proofs on them. 

III. STIMULUS TECHNICAL FOUNDATIONS 

The scientific backgrounds of STIMULUS being detailed  
in [1], we give only an overview of it. The two key features of 

STIMULUS are an expressive formal specification language 
and a simulation engine based on a constraint solver. 

A. A Constraint Real-Time Specification Language 

Stimulus combines the concepts of the synchronous languages 
LucidSynchrone [5] and Lutin [6]: 

 LucidSynchrone (like its industrial version SCADE) 
provides proven and mature concepts for modeling real-
time systems, such as dataflow equations, hierarchical 

state machines, and synchronous parallel composition.  

 Lutin provides the concepts needed for modeling real-
time non-deterministic behaviours, namely dataflow 

constraints and non-deterministic control choices. It was 
designed for describing generic test scenarios for real-
time systems. 

We list below the main concepts of the resulting language. 

a. Data: Synchronous Data-Flow Constraints 

The behaviour of signals is specified with dataflow constraints 

like: 

count = (0 -> last count) + (if evt then 1 else 0); 
count <= 10; 

in which the integer signal count counts the number  of 
occurences (in time) of the Boolean signal evt and is 
constrained to be less than or equal to 10. -> is the 

initialization operator : e1 -> e2 evaluates to e1 on reset, and 
to e2 otherwise, and last v denotes the value of signal v in 
the previous step. In other words, this specifies than evt might 

be true at most ten times during an execution, but specifies 
nothing more about when evt can or cannot be true. 

b. Control: Hierarchical State Machines. 

They are typically used to model running modes, to define the 
temporal operators of the standard library, and also to model 
probabilistic choices in scenarios. States can contain 

constraints, as shown by the state machine of Fig 1. State 
machines in STIMULUS have a strong, preemptive transition 
semantics  according to the terminology of [5]: transitions are 

fired and their condition evaluated in the same step as their 
destination state. In addition, they implement an original 

notion of termination which happens to be crucial to combine 
the temporal operators of the standard library. 

c. Modularity: Systems and Macros.  

As other synchronous languages or Mathworks Simulink, 

Stimulus encapsulates statements into systems that can then be 



www.embedded-world.eu 

 

 
Fig. 1: requirement about the occurrences of evt 

instantiated at several places. One can for instance define a 
system Count that counts the number of occurrences of an 

event (using an internal memory) and that can be reused to 
specify more complex constraints, like Count(evt1) >= 
Count(evt2). 
 Stimulus also provides a robust system of macros with 
clear scoping and typing rules that accepts statements as 
parameters, in addition to signals having a value. They are used 
to define temporal operator, such as the 

when <condition>, <BODY> 

operator defined by the macro depicted on Fig. 2. 

d. Readability: Sentence Templates  

Formal requirements are easier to read when they look like 
textual requirements instead of programs. To achieve this 

goal, a system or macro can be associated with a user-defined 
format that specifies how instances should be edited and 
displayed in the editor.  

For instance, if one associates to the macro When and the 
system Count the formats When %condition%, %<BODY>% and 
number occurences of %event%, the requirement of Fig. 1 

rewritten using When and Count will appear as: 

 

which is arguably more concise and more readable than the 

automaton of Fig. 1, while still enjoying the same 
unambiguous, formal definition. 

e. Architecture: Block Diagrams. 

Systems can be instantiated not only as a sentence, as 
described above, but also as blocks connected to other blocks 
in block diagrams, like in Mathworks Simulink, see Fig. 8. 

This enables developers to graphically describe the 
architecture of a system and to visualize the flow of 
information in it. 

Other technical features of the STIMULUS language are a 

construct for controlling constraint propagation and orienting 

constraints, in the spirit of [12], which provides scalability 

both for solving constraints and for model understanding by 

the user, type inference techniques of functional languages 

[13,14]  to minimize the annotations required from users, and 

a physical dimension analysis [15,16] to statically detect this 
kind of inconsistencies. 

Regarding the modeling of time, currently STIMULUS 
provides a simple periodic physical time model, by using a 
period to assign physical time values to logical time steps. In 

the long term we plan to provide a more flexible, aperiodic 
time model. 

B. Compilation Process and Simulation Engine 

 SIMULUS compilation process follows the principles of 
[3,4,5,6] for (i) reducing parallel composition of hierarchical 
state machines to sets of statements guarded by choices on the 
clocks representing the active states of state machines, and (ii) 
ordering statements properly with respect to dependency 
constraints. 

The simulation engine follows the principles of [7,8] and 
combines an exploration algorithm for resolving the non-
deterministic choices induced by state machines and a 

constraint solver for resolving the non-determinism induced 
by constraints on variables. The solver handles logico-
numerical constraints mixing logical operators on Boolean and 

enumerated variables, and linear constraints on numerical 
variables. The restriction to linear numerical expressions 

concerns only the unknown variables to be solved: the solver 
can deal with non-linear sub-expressions on variables that are 
known at solving time, like inputs or memories. For instance 

the constraint x*(last x) >= y*(last y)*(last y) is linear 
on the unknowns x and y. 

IV. METHODLOGY FOR DEBUGGING REQUIREMENTS 

In the previous section, we gave an overview of a new 
real-time constraint programming language built by 

combining the two research lines of work lead by M. Pouzet 
[3,4,5,6] and by the synchronous team of VERIMAG 
laboratory [7,8,9,10].  Now, how can it be used to debug 

requirements of real-time systems ? 

 
Fig.2 Macro defining the temporal operator When 



With the current practice, requirements are mostly textual 
that are worked out and validated through manual reviews, 
and then given as inputs to 

1. system designers and programmers on the one hand, who 
will implement the system; 

2. test engineers on the other hand, who are in charge of 

writing functional test cases and test verdicts to confront 
the implementation w.r.t. the initial requirements. 

Fig. 3 depicts the functional test bench architecture of a real-

time system. I and O denote resp. the inputs and outputs of the 
System Under Test (SUT), which is considered as a black box. 

The box “Scenarios” feeds the SUT with inputs I, possibly 
taking into account outputs O to produce realistic inputs. The 
box “Requirements” reads both inputs I and outputs O of the 

IUT and emits a verdict. 
As mentioned in the introduction, the experience shows 

that half of the bugs discovered by functional tests are 

requirements bugs, and not implementation bugs. The problem 
is that these bugs can be found only after the SUT becomes 

available. 
 

Fig. 3 : Classical test architecture of a real-time system 

 

 
Fig. 4 : Debugging architecture for requirements and 

scenarios with STIMULUS 
 

In contrast, the methodology made possible by the 

STIMULUS constrained-based language and its simulation 
engine is the following one: 

 Requirements are seen as constraints between inputs I, 
outputs O, and the verdict (OK/NOK). 

 The box “requirements” in Fig. 4 act as an outputs 
generator. At each simulation step: 

o the inputs I and the verdict OK are provided to 
the box “requirements”; 

o the simulation engine solves the constraints in 
the remaining unknowns O and picks a random 
solution for them. 

 Similarly, scenarios are also seen as constraints between I 
and O, which may describe general assumptions on inputs 
and/or more specific test cases. 

 The box “scenarios” in Fig. 4 acts as an inputs generator: 
given outputs O provided to it by the feedback loop, the 
simulation engine solves the constraints in the remaining 

unknowns I and picks a random solution for them. 
The fact that scenarios may be generic scenarios with a 

large variability on control and data allows the simulation 

engine to generate many different simulation traces, and 
ultimately makes more likely the discovering of an unexpected 
behaviour corresponding to a problem in the requirements. 

Actually scenarios are optional: one may simulate 
requirements alone. However, in practice, one often needs 

some general assumptions on the stability or the variation of 
signals to make simulation traces readable or realistic. 

Another important observation is that once scenarios and 

requirements have been worked out using the architecture of 
Fig. 4, they can be reused directly in the test architecture of 
Fig. 3 with a black-box system under test: indeed, there are 

executable, and STIMULUS have a mechanism to turn a 
generator into an observer, which enables to turn the 
requirements box of Fig. 4 in the requirements box of Fig. 3. 

 
We described in the two previous sections the scientific 

foundations of STIMULUS and the methodology it enables 
for debugging requirements together with their associated 
generic test scenarios. The sequel of the paper aims at 

answering to the following questions:  

 How does it work in practice? Is it easy to formalize 
informal textual requirements with STIMULUS? How far 

is the formalized version to its informal counterpart in 
term of readability (traceability feature)? 

 Are simulation traces effective at discovering problems? 
In other words, despite the non-exhaustiveness of our 
validation-by-simulation approach, is it “exhaustive 

enough” in practice? 
To answer to these questions, we will illustrate the use of 

STIMULUS for formalizing and debugging requirements of 

an automatic light system coming from the automotive 
industry.  

V. FORMALIZING THE REQUIREMENTS OF 

AUTOMATIC HEADLIGHTS 

These requirements were provided to us by a Japanese 

software and tools distributor, as a typical example of the kind 
of requirements his customers have to deal with in the 
automotive industry. We insist on the fact that they have not 

been specifically invented for evaluating a tool like 
STIMULUS, neither by us nor by researchers or developers of 
alternative solutions. 

The original, textual specification of the automatic 
headlights is depicted on Fig. 5. The head sentence is a sort of 

informal, high-level requirement that describe the general 
purpose of the four more precise, lower level requirements 
that follow. This purpose is to command the switching of the 

lights. In the sequel we will formalize the four requirements 
named 3Aa, 3Ab, 3B and 3C.  

Fig. 6 depicts the initial formalization of requirement 3Aa, 

which will be debugged by simulation and upgraded in the 

System Under Test 

  

Scenarios 

  

Requirements 

O I 

Verdict 
I 

O 

Stimulus 
model 

Scenarios 

Stimulus 

model 

Requirements 

O 
I Verdict = O K 
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next sections. One recognizes in Fig. 6 the pieces of sentence 
underlined on Fig. 5. This formalization is based on the use of 

STIMULUS standard library, which provides a number of 
sentence templates that are ubiquitous in real-time 
requirements, such as: 

 “as long as  <expression>, <statement>” 
 “initially <statement>, afterwards  <statement>” 

As explained in Section III.A.d, such sentence templates are 
user-definable views for formal systems and macros, and their 

purpose is to make easy tracing the formalized requirement 
back to the textual, non-formalized requirement. 

The other requirements 3Ab, 3B and 3C are similarly 
formalized. 3Aa and 3Ab roughly specifies an hysteresis. 3B 

and 3C in addition require the light intensity to be low or high 
to hold for some time before switching respectively on or off 
the headlights. This is to prevent the headlights to blink too 
quickly, for instance when driving under a bridge. 

VI. SIMULATING AND REFINING THE REQUIREMENTS 

We just showed how the requirements can be formalized. 

However the major innovation of STIMULUS is the ability to 
simulate them.  

A. Simulation architecture 

Fig. 8 depicts the block diagram defining the simulation 

architecure considered  in this paper. The block Env generates 
values for the signal lightIntensity that satisfy the 
assumptions depicted on Fig. 9. These assumptions combine 

general physical assumptions on the range of the light 
intensity (a percentage of a maximum intensity) and of its 
derivative, and a scenario making it alternatively increase or 

decrease. In this paper, we maintain the signal switch to 
AUTO, as we want to simulate the behaviour of the system 

under this mode. 
The block R003_v1 on Fig. 8 is defined by the 

requirements discussed in Section Erreur ! Source du renvoi 

introuvable.. This block will generate possible values for 
headLight that are compatible with these requirements and 
the values of the other signals. 

B. First simulation and detection of a problem 

Fig. 10 depicts a possible execution trace of the system 

defined by Fig. 8. One can observe the behaviour of 
lightIntensity and headLight signals. L60 and L70 are the 

two thresholds 60% and 70% that appear in the requirements. 
What can be observed is that at start headLight has the 

expected behaviour: it is first OFF because the light intensity 

is above the 70% threshold, and when the light intensity falls 
below the 60% it becomes ON. However, afterwards the 
behaviour seems completely random and appears in 

contradiction with the intended behaviour.  
Hence the simulation exhibits a problem either in the 

textual requirements, or in their formalization, or in both. 

C. Investigating and solving problem 1 

Consider the textual requirement 3Aa on Fig. 6 and more 
precisely its second part:  
“[…] Afterwards the headlights should continue to stay ON in 

AUTO as long as  the light intensity is not above 70%”. 
The textual expression “as long  as” is actually ambiguous: 
does it mean 

1. as long as  condition, something [afterwards nothing]” 
(sequential behaviour) 

If the switch is AUTO then the headlights turn on or off, depending on the ambient light intensity - with a defined hysteresis 
to prevent blinking. 
REQ_003Aa: if the switch is turned to AUTO, and the light intensity is at or below 70% then the headlights should stay or 
turn immediately ON.  

Afterwards the headlights should continue to stay ON in AUTO as long as the light intensity is not above 70%. 
REQ_003Ab: if the switch is turned to AUTO, and the light intensity is above 70% then the headlights should stay or turn 
immediately OFF.  
Afterwards the headlights should continue to stay OFF in AUTO as long as the light intensity is not below 60%. 
REQ_003B: if the switch is in position AUTO, the headlights are OFF, and the light intensity falls bellow 60%, 
then the lights should turn ON if this condition lasts for 2s. 
REQ_003C: if the switch is in position AUTO, the headlights are ON, and the light intensity is above 70%, then the lights 
should turn OFF if this condition lasts for 3s. 

Fig. 5: Original specification of the automatic headlights  

 

 
Fig. 6 : Requirement 3Aa in STIMULUS, initial version 

 

 
Fig. 7 : Requirement 3B in STIMULUS, initial version 

 



2. or “[always] when condition, something” 
(cyclic behaviour)? 

This ambiguity is not really an artefact introduced by 
STIMULUS sentence templates: it is a real ambiguity which 
already exists in the textual version, between a sequential or a 

cyclic behaviour.  
On Fig. 6 we opted inadvertently for the first 

interpretation, but clearly we expect a cylic behaviour here. 
Let us try the second one, which is available in the standard 
library. Requirement 3Ab which follows the same pattern is  

similarly modified. Let us simulate this new version of 
requirements: 

 
 
We obtain a conflict at simulation step 6: this means that some 

requirements are contradicting each other. Let us highlight the 
requirement 3Aa and 3Ab in the debugger at step 6 where the 

conflict occurs:         

 
The debugger highlights the active parts of the requirements, 
and allows the user to discover that at this step, the 

requirements implie headLight to be ON and OFF at the same 
time! 

D. Investigating and solving problem 2  

Consider again the textual requirement 3Aa on Fig. 1. We 

formalized the expression  
“headLights should continue to stay ON” 

underlined in Fig. 1 with the formalized sentence  

“headLights shall be ON”. 
Was that the right interpretation? The sentence could also 
mean: 

“if it was ON, maintain it at ON, otherwise do nothing”. 
To check this hypothesis, we defined a new, user-defined  

sentence template  
“<expression> should continue to stay <constant>” 

 
Fig. 8: simulation architecture 

 

 
Fig. 9: system Env describing the assumptions on the light intensity 

 

 

Fig. 10: Simulation of requirements, initial version 
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with this semantics and used it to update requirement 3Aa, 
resulting in the requirement of Fig. 11. Requirement 3Ab was 

similarly modified. 
Fig. 12 depicts a possible execution trace with this new 

version of requirements, which follows much better the 

expected behaviour of the head lights which should not blink 
and which should switch to ON or OFF according to two 
thresholds. 

A last problem, that we will not detail as much, concerns 
the requirements 3B and 3C: they express that something 

should happen when a condition hold for some time duration, 
but say nothing about what should happen before. Hence 
unwanted, blinking head lights behaviour might occur with a 

more generic scenario in which the switch is not always equal 
to AUTO. This is a typical example of a missing requirement. 

VII. DISCUSSION 

The four textual requirements of Fig. 5 look rather simple 
and reasonable. Yet they contain several ambiguities  and 

omissions, some of them leading to unwanted behaviours, 
others to contradictions. Actually, although looking simple, 
they specify a complex behaviour that depends on the past 

history of signals, and on physical time. This complexity 
behind apparent simplicity is typical of real-time requirements 
and explains the strong need for their early validation, 

especially as they are often requirements of security-critical 
systems. 

A. Comparison of simulation approach to alternative 
requirements validation approaches 

It is difficult to discover by manual reviews the problems 
we discovered by simulation. This is why many of them are 
discovered later, either by developers or test engineers when 

they start exploiting the requirements given to them, or, worse, 
even later during the functional test phase. 

We claim that model-checker or formal proof systems are 

not very suitable either for this debugging and elicitation task. 
For detecting and fixing the first problem found in Section 

VI.D, it is necessary 
1. to explicitly formalize the higher-level property capturing 

the bad behaviour, which requires having already 

identified it as a potential error; 
2. to check the validity of the requirements against this 

property – this will fail of course; 

3. to analyse the cause of the failure and to try a new 
alternative. 

The simulation approach made possible by STIMULUS 

(i) completely removes the need for subtask 1; the user can 
still insert property observer to automatize the detection 
of an already identified potential problem, but this is 

optional;  
this subtask is actually replaced by the observation of 
simulation traces enabling the discovery of unanticipated 

behaviours or getting an higher confidence in the 
relevance of the requirements  

(ii) makes subtask 2 arguably easier: model-checkers may 
have an issue with too complex models, either in terms of 
size or expressiveness (non-linear computations for 

instance), and proof systems are not always fully 
automatic; in contrast simulation techniques are less 
computationally demanding and can handle complex 

models fully automatically
1
. 

Subtask 3 remains the same but in overall the removal or the 

simplification of the other subtasks make the trial-error cycle 
much quicker. 

The use of model-checking and formal proof approaches is 

of course still meaningful to obtain an exhaustive confirmation 
of consistency, or to discover inconsistencies occurring in very 
uncommon cases that a simulation approach may miss. 

B. Evaluation w.r.t. announced criteria 

At the end of Section IV describing our methodology, we 

proposed two main evaluation criteria to our approach, 
namely: 

1. Easiness of formalization, readability of formal models 
and traceability w.r.t. informal, textual requirement; 

2. Effectiveness of the simulation engine in generating 

simulation traces exhibiting problems, that is, sufficient 
“practical exhaustiveness”.  

 

                                                             
1
 As mentioned in Section III.B, the constraints of 

STIMULUS models should be linear, but only on the 
unknown variables at solving time, which is  not restrictive in 

practice. 

 
Fig. 12: Simulation of requirements after the second 

correction 

 

 
Fig. 11 : Requirement 3Aa in STIMULUS, second correction 

 
 



We hoped to have successfully convinced the reader that 
the formalized requirements of Figs. 6 and 7 remain close to 
and as concise as their informal counterpart of Fig. 5. 

Although these formal requirements are not pure English, 
everybody can understand what they are talking about. In 
addition, they gain a perfectly formal semantics: the user can 

look at the formal definitions of the sentence templates to get a 
more in-depth understanding of a sentence, and simulate them 
to observe their dynamic behaviours. 

Technically, this is a benefit of the combination of a 
powerful programming language (which is mostly hidden to 

the user), the use of sentence template as a view for 
programming constructs, and the design of well-thought 
standard library. 

 
Regarding the second evaluation criteria, the two problems 

discovered in Section VI were both discovered with the very 

first simulation trace. This means that although the validation-
by-simulation approach is not exhaustive, in practice the 

simulation engine is efficient at quickly exhibiting problems 
when they exist. In particular, the conflict discovered at the 
end of Section VI.C, which would have been easily found by a 

model-checker, was in practice as easily found by the 
simulation engine, using the very unspecific generic scenario 
of Fig. 9.  

Of course, if the assumptions on the environment disallow 
some scenario, STIMULUS will not exhibit problems that are 

specific to them. But the same applies to model-checkers and 
formal proof systems: formal proofs are valid only w.r.t. the 
considered assumptions on the environment. STIMULUS 

actually supports the incremental process of starting 
debugging requirements with very simple scenarios, and later 
stimulating them with more complex or corner-case scenario. 

This process allows the user to progressively gain confidence 
in the quality of its requirements, instead of having to cope 

with too many unwanted behaviours at a time.  
Technically, the effectiveness of the STIMULUS 

simulation engine for generating “really random” traces inside 

the set of possible traces satisfying the requirements  comes 
from the use of a general constraint solver and of a fair 
algorithm to pick a random solution inside the solution space. 

VIII. CONCLUSION 

In this paper, we presented STIMULUS, a modeling and 

simulation tool for the early validation of functional real-time 
requirements, and we demonstrate its effectiveness for 
debugging a few requirements typical of the industrial 

practice, which contain subtle ambiguities and omissions. 
STIMULUS is based on modern programming languages 

and simulation techniques, with many features dedicated to 

requirement readability. It exploits mature and well-proven 
research results to make things simple for the users.  

It enables engineers to formalize requirements using 
predefined or user-defined sentence templates, to model 
environment assumptions and to observe execution traces that 

satisfy the requirements using the innovative simulation 
architecture of Fig. 4. It helps finding ambiguous, incorrect, 

incomplete, or conflicting requirements, as shown on the real-
time requirements of an automatic head lights controller of a 
car provided to us by a software and tools vendor.  

Relying on this case study, we discussed the additional 
benefits that the validation-by-simulation approach for 
requirements engineering proposed by STIMULUS can bring 

to the current validation-by-review and validation-by-proof 
approaches. One can actually observe than in the different 
domain of control system design, one of the most popular tool 

is TheMathworks Simulink, which also implements a 
validation-by-simulation approach. 

We did not detail in this paper how to reuse STIMULUS 
scenario and requirements models for testing black-box real-
time systems as depicted on Fig. 3, but this is a hot topic for 

our customers. Other topics are the automation of some 
common editing tasks, such as providing functional coverage 
criteria for requirements, and to automate debugging and 

testing tasks, such as guiding executions to favor the 
functional coverage of requirements according to these 
criteria. 
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