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We show that the electromagnetic forces generated by the excitations of a mode in graphene-based
optomechanical systems are highly tunable by varying the graphene chemical potential, and orders of magnitude
stronger than usual non-graphene-based devices, in both attractive and repulsive regimes. We analyze coupled
waveguides made of two parallel graphene sheets, either suspended or supported by dielectric slabs, and study
the interplay between the light-induced force and the Casimir-Lifshitz interaction. These findings pave the way
to advanced possibilities of control and fast modulation for optomechanical devices and sensors at the nano- and
microscales.
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I. INTRODUCTION

The electromagnetic field may induce forces on bodies
through several mechanisms. One of them is the omnipresent
fluctuation-induced attractive Casimir-Lifshitz (CL) or van
der Waals interactions dominating at sub-micron bodies’s
separations [1], with destructive effects in nano- and micro-
electromechanical devices [2]. If an electromagnetic mode is
excited in the system by an external source, it produces an
extra light-induced (LI) force [3,4], which can be attractive
or repulsive, possibly overcoming/balancing the CL force. To
design LI forces, several materials and complex nanostructured
geometries have been intensively studied (photonic crystals,
resonators, metamaterials), mainly to maximize their repulsion
or to increase the optical interactions, hence improving
actuations and functionalities in nano-opto(electro)mechanical
systems (NOEMS) and sensors [5,6]. In particular, the mech-
anism for increasing the LI interaction calls for a subtle
interplay between strong confinements of the fields and their
spatial oscillations [7], together with a reduction of the group
velocity [3]. Metals strongly confine the fields, but the LI
force is limited by losses [8] and the repulsion is contrasted
by huge CL forces. Dielectrics have a weaker CL force, they
confine less efficiently the fields, but once nanostructured they
have ultralow group velocities [9]. They represent an optimal
compromise, allowing the largest values of repulsion [7],
orders of magnitude higher than nonstructured dielectrics.

Here we propose the exploitation of graphene sheets [10]
in optomechanical waveguides systems to manage LI inter-
actions. Remarkably, graphene manifests low group velocity
modes, a strong metallic ability to confine them, it is practically
lossless in a wide region of frequencies, and gives rise to
very weak CL forces. Furthermore, the LI force becomes
tunable by varying the graphene Fermi level via an electrostatic
voltage or via chemical doping. These unique features make
graphene sheets able to strongly increase the repulsion, up to
1–2 orders of magnitude higher than the best nanostructured
systems. Such electromagnetic properties are combined with
peculiar mechanical properties (low density and bending
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stiffness, large modulus of elasticity) making them attractive
for optomechanics [11].

In Sec. II we describe the physical systems, in Sec. III we
derive the dispersion relations, in Sec. IV we discuss the optical
properties of silicon and graphene, in Sec. V we analyze the
typical length scales required to use the lossless assumption,
in Sec. VI we derive the LI pressure, in Sec. VII we derive the
CL pressure, in Sec. VIII we discuss the numerical results for
the LI and CP pressures, and finally in Sec. IX we provide the
conclusions and perspectives.

II. PHYSICAL SYSTEM

We consider the interaction between two types of planar
parallel coupled waveguides: a first configuration is made
by two suspended graphene sheets (G-G) at a distance 2a

from each other [see Fig. 1(a)], and orthogonal to the z

axis. The second (SG-GS) consists of two graphene sheets,
each one supported by a slab of thickness s [see Fig. 1(b)].
Graphene and slabs are characterized by the conductivity
σ (ω) = σR(ω) + iσI(ω) and the relative dielectric permittivity
ε(ω) = εR(ω) + iεI(ω) [regions 2 and 4 in Fig. 1(b)], respec-
tively. Extension to configurations with nonidentical graphene
sheets or nonidentical slabs can be done straightforwardly. The
external and central regions (regions 1, 3, and 5) are not filled
by any materials (ε = 1). LI modes are assumed to be excited
and propagate in the x direction, at frequency ω, with y being
the direction of invariance.

Electromagnetic forces (both CL and LI) acting on any
of the two waveguides can be calculated by [12,13] F =∫
�

T(r) · n dσ , where � is a closed oriented surface in vacuum
enclosing the object and T = 〈T(r,t)〉t is the time averaged
Maxwell stress tensor. The CL force is not monochromatic,
losses cannot be neglected, and it can be expressed as a
sum over all available modes in the systems populated by
both vacuum and thermal field fluctuations. If the waveguides
are close enough (but not too close to form a graphene
bilayer) one can safely approximate the CL pressure with that
occurring between infinite planes [1,14,15]. The LI force is
monochromatic; hence it is possible to further simplify the
problem by choosing frequencies where the system is lossless,
allowing for direct analytical expressions of the pressure,
which now reduces to its z component [4] (see the Appendix A
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FIG. 1. Scheme of the coupled waveguides system. (a) Sus-
pended graphene-graphene configuration (G-G). (b) Slab-supported
graphene-graphene configuration (SG-GS). The distance between the
graphene sheets is 2a; the thickness of the supporting silicon slabs is
s = b − a.

for more details)

pLI = ε0

4

[|Ex |2 + |Ey |2 − |Ez|2

+μ2
0c

2(|Hx |2 + |Hy |2 − |Hz|2)
]
, (1)

to be evaluated in the region between the two waveguides.
Here we assumed that negative (positive) force corresponds to
attraction (repulsion).

III. DISPERSION RELATIONS

In order to derive the dispersion relations, i.e., α(ω), for
the TE/TM symmetric/antisymmetric (s/a) modes we use the
solution of the Maxwell equations in the different homogenous
media of the structure, and impose the boundary conditions.

The invariance of the structures in the y direction allows one
to classify the field modes in two different polarization states:
the transverse electric (TE) and the transverse magnetic (TM).
The TE polarization is characterized by Ex = Ez = Hy = 0,
and since

Hz = − i

ωμ0
∂xEy, Hx = i

ωμ0
∂zEy, (2)

the electromagnetic field can be completely determined by the
knowledge of Ey(x,z). The TM polarization is characterized
by Hx = Hz = Ey = 0, and since

Ez = i

ωε0ε
∂xHy, Ex = − i

ωε0ε
∂zHy, (3)

the electromagnetic field can be completely determined by the
knowledge of Hy(x,z). Each of the TE and TM modes can be
further classified as symmetric or antisymmetric depending on
the symmetry properties of the field [more precisely of Ey(x,z)
for TE modes and of Hy(x,z) for TM modes] with respect to
the z = 0 plane.

We introduce a general field � in the five regions of space,
which will be � ≡ Ey for the TE modes, and � ≡ Hy for the
TM modes:

�1(x,z) = A1e
γ1(z+b)eiαx, if z � −b,

�2(x,z) = [A2e
iγ2(z+a) + B2e

−iγ2(z+a)]eiαx,

if − b � z � −a,

�3(x,z) = [A3 cosh (γ1z) + B3 sinh (γ1z)]eiαx,

if − a � z � a, (4)

�4(x,z) = [A4e
iγ2(z−a) + B4e

−iγ2(z−a)]eiαx,

if a � z � b,

�5(x,z) = A5e
−γ1(z−b)eiαx, if b � z,

where α(ω) is the propagation constant along x, γ1(ω) =√
α2 − k2, γ2(ω) = √

k2ε − α2, and k = ω/c. In general γi

(with i = 1,2) and α are complex quantities. Now, we are
going to impose the boundary conditions at the four interfaces,
and solve the resulting linear system for the field coefficients
Ai and Bi appearing in (4).

A. TE modes

For the TE modes, Ey ≡ � is continuous at the four
interfaces, while Hx [given by (2)] is continuous at interfaces
without graphene, and experiences a jump equal to the surface
current density Jx = σEy(x,z) at the interfaces with graphene:

z = −b :

{
E2y(x, − b) = E1y(x, − b),
H2x(x, − b) = H1x(x, − b), (5)

z = −a :

{
E3y(x, − a) = E2y(x, − a),
H3x(x, − a) − H2x(x, − a) = σE2y(x, − a), (6)

z = a :

{
E4y(x,a) = E3y(x,a),
H4x(x,a) − H3x(x,a) = σE4y(x,a), (7)

z = b :

{
E5y(x,b) = E4y(x,b),
H5x(x,b) = H4x(x,b). (8)

For the symmetric (antisymmetric) mode, we set B3 = 0
(A3 = 0) and find A1 = A5, A2 = B4, and A4 = B2 (A1 =
−A5, A2 = −B4, and A4 = −B2). Then, by elimination of
the coefficients we obtain the dispersion relation for the TE
symmetric and antisymmetric modes:

φ (γ1 + iγ2)[i(γ2 − η) + γ1 F (γ1a)]

+φ−1 (γ1 − iγ2)[i(γ2 + η) − γ1 F (γ1a)] = 0, (9)

where φ = eisγ2 , s = b − a, η = σkZ0 (Z0 = √
μ0/ε0 being

the impedance of vacuum), and where we introduced the
function

F (x) =
{

tanh(x) for the symmetric mode,
coth(x) for the antisymmetric mode. (10)

We note that Eq. (9) has a first solution γ2 = 0, that once sub-
stituted in (4) implies a zero electromagnetic field everywhere.
Hence we can exclude this solution and assume that γ2 �= 0.

B. TM modes

For the TM modes, Hy ≡ � is continuous at the interfaces
without graphene, and experiences a jump equal to the
opposite of the surface current density −Jy = −σEx(x,z)
at the interfaces with graphene, while Ex [given by (3)] is
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FIG. 2. TM dispersion (real part) for 2a = 0.4 μm, μF = 1 eV,
T = 300 K, and � = 1011 rad/s (identical figure obtained for � =
5 × 1012 rad/s), with λ0 = 1 μm, ω0 = 2πc/λ0, and k0 = ω0/c. (a)
G-G. (b) SG-GS, with Si slabs of thickness s = 1 μm. Lines are
calculated with the complete graphene conductivity; with symbols
are calculated with the lossless approximation σ = iσI and ε = εR.
Solid black line corresponds to a single-graphene sheet TM dispersion
α = k[1 − 4/(σZ0)2]1/2. Purple lines are the light cones ω = α/c and
ω = αc/

√
εR.

continuous at the four interfaces:

z = −b :

{
E2x(x, − b) = E1x(x, − b),
H2y(x, − b) = H1y(x, − b), (11)

z = −a :

{
E3x(x, − a) = E2x(x, − a),
H2y(x, − a) − H3y(x, − a) = σE2x(x, − a),

(12)

z = a :

{
E4x(x,a) = E3x(x,a),
H3y(x,a) − H4y(x,a) = σE4x(x,a), (13)

z = b :

{
E5x(x,b) = E4x(x,b),
H5y(x,b) = H4y(x,b). (14)

For the TM symmetric (antisymmetric) mode, we set B3 = 0
(A3 = 0) and find, as for the TE mode, A1 = A5, A2 = B4,
and A4 = B2 (A1 = −A5, A2 = −B4, and A4 = −B2). Then,
by elimination of the coefficients we obtain the dispersion
relation for the TM symmetric and antisymmetric modes:

φ(γ1 + iγ ′
2)[iγ ′

2 + γ1(1 − δ)F (γ1a)]

+φ−1(γ1 − iγ ′
2)[iγ ′

2 − γ1(1 + δ)F (γ1a)] = 0, (15)

where φ, s, F (x) are the same as for the TE dispersion
equation (9), while γ ′

2 = γ2/ε and δ = σZ0γ
′
2/k.

We note that Eq. (15) has a first solution γ2 = 0 = γ ′
2, that

once substituted in (4) implies a zero electromagnetic field

everywhere. Hence we can exclude this solution and assume
that γ2 �= 0 �= γ ′

2.

C. Lossless case

Now we discuss the particular case where the effects
of losses are negligible in the structure, such that the slab
dielectric permittivity is purely real ε = εR and the graphene
conductivity is purely imaginary σ = iσI. This situation,
which largely simplifies the discussion, can be fulfilled in
practice: for instance at λ = 5 μm one has that εI/εR < 10−5

for silicon (Si) and σR/σI < 10−3 for graphene [as we will
see in Sec. IV]. Furthermore, for graphene σR/σI � 1 is
realized below the graphene transition frequency ωc = 2μF/�

(μF being the chemical potential of the sheet, or equivalently its
Fermi level), hence implying σI > 0. Under these assumptions,
the propagation constant α is purely real, Eqs. (9)–(15) can be
recast in much simpler forms, and we can identify three regions
on the (α,ω) plane (cf. Fig. 2) as follows.

(i) Region 1: 0 � α(ω) � k. It is on the left of the first light
cone; hence γ1 is purely imaginary while γ2 is real.

(ii) Region 2: k < α(ω) < k
√

ε. It corresponds to the area
between the two light cones; hence both γi are real.

(iii) Region 3: α(ω) � k
√

ε. It is on the right of the second
light cone; hence γ1 is real and γ2 is purely imaginary.

In the rest of this section we will derive the dispersion
relation in the different regions, and summarize the results in
Table I.

1. TE modes: Lossless case

In the lossless case, in region 1 Eq. (9) has no guided waves
solutions. In region 2, which is meaningful only in presence
of the slabs (ε �= 1 and s > 0), by isolating the term φ2 on one
side of Eq. (9), and imposing that the two sides should have
the same phase (they have the same modulus, equal to 1) we
obtain that the modes are the solutions α of the real equation

γ2s = arctan(q) + arctan

(
qF (γ1a) − iη

γ2

)
+ mπ, (16)

where different modes are labeled by natural numbers m =
0,1,2,3, . . ., and we introduced the real quantity q = γ1/γ2.
In the absence of graphene, η = 0, Eq. (16) reduces to the result
of the slab-slab configuration [4]. In this case, the symmetric
mode dispersion function is below the antisymmetric one, both
are continuous functions, and for m = 0, the antisymmetric
one has a nonzero lower frequency bound at ω

Asym
cut-off > 0

contrarily to the symmetric one which has ω
Sym
cut-off = 0. The

introduction of graphene in the structure (η �= 0) changes
the dispersion functions, which tend to be globally shifted
upwards in frequency, and now the m = 0 symmetric mode

TABLE I. Equation for the TE and TM modes dispersion relations in the lossless case, corresponding to the slab-slab (S-S), graphene-
graphene (G-G), and slabs supported graphene-graphene (SG-GS) configurations.

TE TM

S-S G-G SG-GS S-S G-G SG-GS

Region 2 Eq. (16) or (17) No modes Eq. (16) or (17) Eq. (20) or (21) No modes Eq. (20) or (21)
Region 3 No modes No modes No modes No modes Eq. (23) Eq. (26)
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dispersion function acquires a nonzero lower frequency bound
ω

Sym
cut-off > 0. Finally, it is worth stressing that Eq. (16) can also

be recast under the form

tan(γ2s) =
q[1 + F (γ1a)] − iη

γ2

1 − q
[
qF (γ1a) − iη

γ2

] , (17)

which will be useful in deriving the expression of the LI
pressure (see Sec. VI).

In region 3, by introducing the real quantity u = γ1/(−iγ2)
we can rewrite Eq. (9) in the dimensionless real form

φ(1 − u)

[
uF (γ1a) + η

γ2
− 1

]

+φ−1(1 + u)

[
uF (γ1a) + η

γ2
+ 1

]
= 0. (18)

Now we can distinguish a first situation, corresponding to
graphene-graphene configuration in absence of slabs. In this
case ε = 1, γ2 = iγ1, γ1 > 0, and u = 1; hence Eq. (18)
becomes γ1 + γ1F (γ1a) + σIkZ0 = 0, which has no solu-
tion since we assumed σI > 0. The remaining case is the
graphene-graphene configuration in the presence of slabs,
so that u �= 1, for which it is easy to show that g± =
[u F (γ1a) + η/γ2 ± 1] �= 0, and dividing Eq. (18) by g+ one
obtains the equation

tanh(−iγ2s) = −
u[1 + F (γ1a)] + η

γ2

1 + u
[
uF (γ1a) + η

γ2

] , (19)

which clearly has no solutions (the two sides having opposite
sign). In conclusion, in the lossless case, TE modes exist only
in region 2 (hence in the presence of the supporting slabs).

It is worth noticing that Eq. (17), which has been derived
for γ2 purely real (region 2), reduces exactly to Eq. (19) if one
takes γ2 as purely imaginary. And vice versa, Eq. (19), which
has been derived for γ2 purely imaginary (region 3), reduces
exactly to Eq. (17) if one takes γ2 as purely real.

2. TM modes, lossless case

Let us discuss, under the same lossless assumptions used in
Sec. III C 1 for the TE modes, the presence of TM modes in the
three regions of the (α,ω) plane. In region 1, by definition γ1 is
purely imaginary, hence, as for the TE case, no guided waves
solutions are present. In region 2, following the same procedure
as for the TE case, Eq. (15) becomes the real equation:

γ2s = arctan(p) + arctan

(
pF (γ1a)

1 + iδ pF (γ1a)

)
+ mπ, (20)

where different modes are labeled by natural numbers m =
0,1,2,3, . . ., and where we introduced the real quantity p =
γ1/γ

′
2. In the absence of graphene, δ = 0, Eq. (20) reduces to

the result of the slab-slab configuration [4].
It is worth stressing that for δ = 0, the symmetric mode

dispersion function is below the antisymmetric one, both are
continuous functions, and for m = 0, and the antisymmetric
one has a nonzero lower frequency bound at ω

Asym
cut-off > 0

contrary to the symmetric one which has ω
Sym
cut-off = 0. The

introduction of graphene in the structure (δ �= 0) changes the
dispersion functions, which in general, for m > 0 tend to

be globally shifted upwards in frequency. Remarkable is the
case of the m = 0 modes. Indeed, in presence of graphene
the antisymmetric m = 0 function splits into two branches:
the lower branch is in the frequency region (0 ÷ ω

Asym
cut-off,1),

implying a zero-frequency lower frequency bound and with
an upper bound; the upper branch is in the frequency region
(ωAsym

cut-off,2 ÷ ∞), with ω
Asym
cut-off,1 < ω

Asym
cut-off,2. Between these two

branches there is the m = 0 symmetric dispersion function,
which maintains a zero frequency lower bound. It is worth
noticing that the lowest of the two m = 0 antisymmetric
branches continues in region 3, perfectly matching the anti-
symmetric mode given by Eq. (22).

Finally, it is worth stressing that Eq. (20) can also be recast
under the form

tan(γ2s) = p[1 + (1 + iδ p)F (γ1a)]

1 − p(p − iδ)F (γ1a)
, (21)

which will be useful in deriving the expression of the LI
pressure.

In region 3, by introducing the real quantity v = γ1/(−iγ ′
2)

we can rewrite Eq. (15) in the dimensionless real form

φ(v − 1)[1 − v(1 − δ)F (γ1a)]

+φ−1(v + 1)[1 + v(1 + δ)F (γ1a)] = 0. (22)

Now we can distinguish a first case, corresponding to
graphene-graphene configuration in absence of slabs. In this
case ε = 1, γ2 = iγ1, γ1 > 0, v = 1; then Eq. (22) becomes

1 + (1 + δ)F (γ1a) = 0, (23)

which admits (both symmetric and antisymmetric mode)
solutions, contrary to the corresponding TE case. It is worth
investigating the limit a → 0 of Eq. (23), for which it is easy
to show that the propagation constant for the symmetric mode
diverges as a−1/2, while it is finite for the antisymmetric case:

αs
0 ∼

√
k

σIZ0

1

a1/2
, (24)

αa
0 = k

√
1 + 1

σ 2
I Z2

0

+ k2

σ 2
I Z2

0

√
1 + σ 2

I Z2
0

a. (25)

The lack of a finite value for the symmetric mode propagation
constant in this limit is in accordance with the fact that a
single graphene sheet supports only the antisymmetric mode
(Hy is antisymmetric, it exhibits a jump at the interface, and its
dispersion relation is σIZ0γ1 = 2k). The fact that αs can reach
very large values at small separations will be a crucial feature in
the investigation of the LI force. This effect will remain valid
also in the presence of supporting slabs. In Figs. 7(m)–7(o)
we plot α(ω,a) as a function of the separation 2a, and such
asymptotic behaviors can be recognized.

The remaining case is the graphene-graphene configuration
in the presence of supporting slabs, so that v �= 1. In this case,
following a procedure similar to that used for the TE case [see
Eq. (19)], we obtain that Eq. (22) can be written as

tanh(−iγ2s) = −v[1 + (1 + δv)F (γ1a)]

1 + v(v + δ)F (γ1a)
. (26)

115427-4



LIGHT-INDUCED OPTOMECHANICAL FORCES IN . . . PHYSICAL REVIEW B 93, 115427 (2016)

This equation has solutions provided that the graphene is
present. Indeed for the simple slab-slab configuration (δ = 0)
the two sides of Eq. (26) have opposite sign.

It is worth noticing that, analogous to the TE case, Eq. (21),
which has been derived for γ2 purely real (region 2), reduces
exactly to Eq. (26) if one takes γ2 as purely imaginary. And
vice versa, Eq. (26), which has been derived for γ2 purely
imaginary (region 3), reduces exactly to Eq. (21) if one takes
γ2 as purely real. This means that in both regions 2 and 3 one
can use only Eq. (21) [or only Eq. (26)]. Such a property will
allow one to derive a unique expression for the TM LI pressure
valid in both regions (see Sec. VI).

Figure 2 shows that the s/a TM dispersions relations within
the lossless approximation (symbols) reproduce perfectly the
lossy model results, for both the G-G and SG-GS configu-
rations. It is worth noticing that the G-G dispersion relation
(entirely in region 3) increases very slowly and reaches, at a
given frequency, values of α larger than those of a dielectric
waveguide. Figure 2 also shows that the effect of introducing
supporting slabs is to add modes in region 2, and to bend even
further the dispersion curve.

IV. SLABS AND GRAPHENE SHEETS OPTICAL
PROPERTIES

We will consider slabs made of silicon (Si) with dielectric
permittivity ε(ω) = εR(ω) + iεI(ω) extracted from the Palik’s
handbook [16]. The graphene conductivity σ (ω) = σR(ω) +
iσI(ω), for a gapless doped graphene sheet, is modeled
as the sum of the intraband (Drude-like) and interband
contributions [17–19]:

σ (ω) = σintra(ω) + σinter(ω),

σintra(ω) = i8σ0kBT

π (�ω + i��)
ln

[
2 cosh

(
μF

2kBT

)]
, (27)

σinter(ω) = σ0

[
G
(

�ω

2

)
+ i

4�ω

π

∫ ∞

0

G(ξ ) − G
(

�ω
2

)
(�ω)2 − 4ξ 2

dξ

]
,

where σ0 = e2/(4�), e is the electron charge, T is the temper-
ature of the sheet, μF is the chemical potential (or equivalently
the Fermi level), and G(x) = sinh(x/kBT )/[cosh(μF/kBT ) +
cosh(x/kBT )]. The quantity � = 1/τ is the inverse of the
relaxation time, and depends on the electronic collision mech-
anisms. One of the most interesting properties of graphene is
the possibility to tune its conductivity by changing its chemical
potential μF (typically 0−1 eV), and this can be done via
chemical doping or electrostatic doping realized by simply
applying a voltage to the sheet.

In Fig. 3 we plot the Si dielectric permittivity and the
graphene conductivity. The figure shows the presence of a
wide region where both ratios εI/εR and σR/σI (and hence
losses) are considerably small. It is worth stressing that, in
order to remain in such a lossless condition for graphene, ω

should (i) not be too small (in the limit of small frequencies
σR > 0, while σI = 0); but also (ii) be much smaller than the
graphene transition which takes place at ωc = 2μF/�, indeed
close to such a value σR > 0 and σI < 0. By decreasing the
value of μF, the frequency range where graphene can be
considered lossless becomes smaller and smaller. Hence the

FIG. 3. Optical properties of the slabs and graphene sheets.
Frequencies are in units of ω0 = 2πc/λ0 and λ0 = 1 μm. (a) Real
(blue, solid line) and imaginary (red, dashed line) parts of the silicon
dielectric permittivity [16] ε(ω). (b) Graphene conductivity σ (ω),
with μF = 1 eV and T = 300 K. Real part (blue solid line for
� = 1011 rad/s and blue dashed line for � = 5 × 1012 rad/s) and
imaginary part (red solid line for � = 1011 rad/s and red crosses for
� = 5 × 1012 rad/s).

condition 0 � ω � 2μF must be fulfilled. In Fig. 3(b) we used
μF = 1 eV = 0.81�ω0 (with ω0 = 2πc/λ0, λ0 = 1 μm). This
corresponds to a transition at ωc/ω0 = 2μF/(�ω0) = 1.62, and
indeed at frequencies ω/ω0 ≈ 1.2 we start seeing a clear
change in the conductivity which delimitates the lossless
frequency range. In practice, in the calculations of the radiation
pressure in Sec. VIII, we will use ω/ω0 = 0.2 (i.e., λ = 5 μm),
ω/ω0 = 0.645 (i.e., λ = 1.55 μm), and ω/ω0 = 0.125 (i.e.,
λ = 8 μm). By analyzing the graphene conductivity function
we see that this requires one to set the Fermi level μF > 0.3
eV, μF > 0.6 eV, and μF > 0.7 eV, respectively, in order to
fulfill the lossless condition.

V. LENGTH SCALES

To fulfill the conditions of validity of Eq. (1) for the LI
pressure (i.e., lossless case and infinitely extended waveguides
in the xy plane), it is necessary to investigate the length
scales associated to the excited light mode α(ω): (i) the mode
propagation wavelength λp = 2π/Re(α) and (ii) the mode
absorption length La = 1/[2 Im(α)], characterizing the wave
intensity decay. In order to minimize the boundary effects
due to the finite extension of the system in the x direction, the
waveguide length Lx must be much larger than λp, such that the
wave possesses several oscillations at the scale of the system
length. Furthermore, in order to assume that the intensity of
the wave is as much constant as possible in the x direction, the
absorption length must be much larger than Lx . In practice we
need to satisfy for Lx the length condition:

λp � Lx � La. (28)

This implies finding a configuration where Re(α)  Im(α),
i.e., a system as lossless as possible.

Figure 4 shows, for the TM modes of G-G, both λp and La

(see caption for details) for two different values of �. We see
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FIG. 4. Length scales λp (dotted-blue line for symmetric modes;
red squares for antisymmetric ones) and La (solid-blue line for
symmetric modes; red circles for antisymmetric ones), for the TM
mode, G-G with 2a = 0.4 μm, μF = 1 eV. (a) � = 1011 rad/s. (b)
� = 5 × 1012 rad/s.

that it is possible to find a vast region (stuck between the two
curves) where the length condition is satisfied, and that the
effect of losses is to reduce such a region.

VI. LIGHT-INDUCED PRESSURE

The LI pressure linearly depends on the intensity of light in
the structure, so that it is useful to introduce the power linear
density per unit of length Wy in the direction of invariance y,
for a given mode:

P = 1

Wy

∫ Wy

0
dy

∫ ∞

−∞
〈Sx〉t dz

= 1

2

∫ ∞

−∞
Re[EyH

∗
z − EzH

∗
y ]dz, (29)

where S is the Poynting vector. It can be shown that pLI is
proportional to a coefficient depending on the field amplitudes.
In order to find a closed form expression for pLI we can derive
P in terms of the same coefficient appearing in pLI. Hence,
after eliminating the common coefficient [4], we can express
pLI in terms of P .

Let us start by considering the s/a LI pressure for the
G-G configuration, which in the lossless approximation (see
Table I) can exist only in region 3 and for the TM mode. By
using Eq. (1), and the dispersion relation, it can be explicitly
calculated providing the expression

p
s/a
TM = P s/a

TM

2ωα
s/a
TM

γ1
3(δ + 2)

1 − aγ1(δ + 2)
. (30)

It is worth investigating the limit of this expression for a →
0. By using Eqs. (24) and (25) we obtain that pressure (30)
diverges as −a−3/2 for the symmetric mode, while it is positive
and finite for the antisymmetric one:

ps
TM,0 ∼ −P s

TM

4c

1√
kσIZ0

1

a3/2
, (31)

pa
TM,0 = Pa

TM

2c

k

σ 2
I Z2

0

√
1 + σ 2

I Z2
0

. (32)

Following the same procedure used for G-G, we derive the
TE/TM s/a modes LI pressure for the SG-GS configuration:

p
s/a
TE = −P s/a

TE G(γ1a)γ1
2

2ωα
s/a
TE

{[
1 +

(
qF (γ1a) − iη

γ2

)2]

×
(

s + 1

γ1

)
+ aG(γ1a)

+ (1 + q2)F (γ1a)

γ1
− iηq

γ2γ1

}−1

, (33)

p
s/a
TM = −P s/a

TMG(γ1a)ε2γ1
2

2ωα
s/a
TM

{
[1 + (pF (γ1a) + iδ)2

+ δ2(1 − p2F (γ1a)2)]
(

sε + 1

γ1

ε2 + p2

1 + p2

)

+ aε2G(γ1a) + (ε2 + p2)F (γ1a)

γ1
+ iδp3F (γ1a)2

γ1

}−1

,

(34)

with G(x) = 1 − F (x)2, k = ω/c, q = γ1/γ2, p = γ1/γ
′
2.

Note that Eq. (33) is valid only in region 2 (in region 3 there
are no TE modes), while Eq. (34) is valid in both regions 2
and 3. It is worth noticing that in region 2, and in the absence
of graphene (δ = η = 0), Eqs. (33) and (34) reproduce the
slab-slab expressions derived in [4].

It is remarkable that, in the lossless case, the LI pressure
pLI can be calculated without evaluating the Maxwell stress
tensor [3,20]:

pLI = − P
2ω

1

vg

∂aω(α,a), (35)

where α(ω,a) is the dispersion relation, and vg = ∂αω(α,a)
is the group velocity. By using the lossless condition
dω = 0, we have ∂aω da + ∂αω dα = 0 and dα = ∂aα da,
which together give for the group velocity vg = ∂αω(α,a) =
−∂aω(α,a)/∂aα(ω,a), and hence that Eq. (35) can be recast as

pLI = P
2ω

∂aα(ω,a), (36)

where the pressure is expressed as a simple derivative of
the dispersion relation with respect to the half separation
distance a. Expression (36) permits an immediate derivation
of Eqs. (31) and (32) using Eqs. (24) and (25). For arbitrary
separations, the derivative should be calculated numerically,
hiding the explicit parameter dependences, which is instead
present in expressions (30), (33), and (34). In Figs. 7(m)–7(o)
we plot α(ω,a) as a function of the separation 2a.

VII. CASIMIR-LIFSHITZ FORCE

Even in the absence of additional excited modes, both vac-
uum (T = 0) and thermal fluctuations of the electromagnetic
field give rise to the so-called Casimir-Lifshitz force, which
becomes large at small separations between the objects. In this
section we provide the expression of the CL pressure between
systems containing graphene sheets [15], and in particular the
G-G and SG-GS configurations.
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FIG. 5. (a) Silicon dielectric permittivity at complex frequencies
ε(iξ ) obtained by integration over experimental data of εI(ω) (see
Sec. IV). (b) Graphene conductivity at complex frequencies σ (iξ )
obtained by Eq. (27), with T = 300 K, � = 5 × 1012 rad/s, and μF =
0 eV (dotted), μF = 0.3 eV (dash-dotted), μF = 0.6 eV (dashed), and
μF = 1.0 eV (solid).

The Casimir-Lifshitz interaction is the result of the sum
over all modes of the field, which implies the integration over
entire frequency and wave vector spaces. This means that the
complete complex permittivity and conductivity functions ε

and σ are required. The Casimir-Lifshitz pressure is given by

pCL = −kBT

π

∞∑
n=0

′ ∫ ∞

0
dQQq

∑
p

1

ρ−2
p e2qd − 1

, (37)

where the prime ′ on the sum means that the n = 0 term
should be multiplied by 1/2. Here d = 2a is the separation
between the two bodies, p = TE,TM are the two polarizations,
a rotation on the complex frequency plane has been performed,
hence [21] ε = ε(iξn) = 1 + 2

π

∫ ∞
0

ωεI(ω)
ω2+ξ 2

n
dω [see Fig. 5(a)

for the case of silicon], σ = σ (iξn) using just the analytical
form (27) at imaginary frequencies [see Fig. 5(b), where
different values of μF are considered], ξn = 2πkBT n/�, q =√

ξ 2
n + Q2, and ρp are the reflection coefficients of the GS

block, i.e., that of a wave impinging on a single graphene sheet
sustained by a dielectric slab of thickness s. The reflection
coefficients of the graphene-slab bilayer can be derived from
Maxwell equations and boundary conditions analogous to
those used in Sec. III:

ρTE = (qs + q)(qs − q−) − φ2(qs − q)(qs + q−)

φ2(qs − q)(qs − q+) − (qs + q)(qs + q+)
, (38)

ρTM = (q ′
s + q)(q ′

s − q − β) − φ2(q ′
s − q)(q ′

s + q − β)

φ2(q ′
s − q)(q ′

s − q + β) − (q ′
s + q)(q ′

s + q + β)
,

(39)

where qs = √
εξ 2

n + Q2, q ′
s = qs/ε, φ = e−qss , β =

qq ′
sσZ0/(ξn/c), q± = q ± σZ0(ξn/c). They reproduce the

single graphene sheet reflection coefficients by setting s = 0

FIG. 6. Casimir-Lifshitz pressure Eq. (37) at T = 300 K.
Dashed-blue line: silicon slab-slab configuration (S-S) with slab
thickness s = 1 μm. Solid dark line: SG-GS configuration, s =
1 μm, � = 5 × 1012 rad/s, μF = 0.3 eV, 0.6 eV, and 1.0 eV (lines
corresponding to the three values of μF are not distinguishable).
Red lines: G-G configuration, with � = 5 × 1012 rad/s, μF = 0 eV
(dotted), μF = 0.3 eV (dash-dotted), μF = 0.6 eV (dashed), and
μF = 1.0 eV (solid).

and ε = 1, and the single slab Fresnel reflection coefficients
by setting β = 0 and q± = q. The limiting case of a dielectric
occupying the entire half-space is obtained by setting φ = 0.
In Fig. 6 we plot the CL pressure for the G-G (red lines)
and SG-GS (blue lines) for different values of the graphene
chemical potential. We also plot the CL between two slabs in
absence of graphene (S-S). The pressure is always attractive,
at small separations scales as 1/a4 for G-G configuration
with μF = 0 eV, while as 1/a3 for the S-S configuration. We
see that the CL pressure for G-G is much weaker than for
SG-GS. The CL pressure for SG-GS is practically insensitive
to the variation of the chemical potential (the four curves
overlap), and coincides practically for all separations with
the pressure of the S-S configuration. To give an idea about
the number of frequencies ξn used in the sum (37): for
smallest distance 2a = 1 nm we needed nmax ≈ 1200. Of
course the calculated values for the CL pressure should
be considered as an approximation at the extremely small
separation of 2a = 1 nm, where nonlocal effects for the
graphene conductivity may possibly start playing a role.

VIII. NUMERICAL RESULTS AND DISCUSSIONS

Using the expression derived in the previous sections, here
we evaluate the LI and CL pressures for both G-G and SG-GS
configurations, as a function of the waveguide separation 2a,
and of the chemical potential μF.

Let us first consider modes in the region 3, which are the
most interesting. Figure 7, in panels from (a) to (l), shows
the numerical evaluation of the pressure as a function of the
waveguide separation 2a. The LI pressure [blue-dashed lines,
TM s/a modes, for G-G and SG-GS we used Eqs. (30) and (34),
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FIG. 7. LI and CP pressures, and dispersion relation in region 3, with T = 300 K and � = 5 × 1012 rad/s, and plotted as a function of the
separation 2a. (a)–(l) LI (blue dashed) and CL [red dotted, calculated using Eq. (37)] pressures, and their sum ps/a = p

s/a

TM + pCL (black solid)
for the TM symmetric [(a),(b),(c) log scale and (g),(h),(i) linear scale] and antisymmetric [(d),(e),(f) log scale and (j),(k),(l) linear scale] modes.
(m),(n),(o) Dispersion relation for the TM symmetric (solid blue) and antisymmetric (dashed red) modes, with λ0 = 1 μm, ω0 = 2πc/λ0, and
k0 = ω0/c. (a),(b),(d),(e),(g),(h),(j),(k),(n),(m) G-G with P = 1 mW/μm [Eq. (30) for the LI pressure and Eq. (23) for the dispersion relation].
(c),(f),(i),(l),(o) SG-GS with s = 1 μm and P = 20 mW/μm [Eq. (34) for the LI pressure and Eq. (26) for the dispersion relation].
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respectively] is plotted for several wavelengths and chemical
potentials μF (fulfilling the lossless condition), together
with the CL pressure (red-dotted lines), and with their sum
(black-solid lines). In the first two columns we considered the
G-G configuration, with linear power densityP = 1 mW/μm,
while in the third column we considered the SG-GS
configuration with linear power densityP = 20 mW/μm [22].
In the first column of the figure we fixed the mode frequency
at λ = 5 μm (ω = 0.2ω0) and varied the graphene chemical
potential (see model in Sec. IV, with T = 300 K and � = 5 ×
1012 rad/s), hence used σI(ω,μF = 0.3 eV, 0.6 eV, 1.0 eV) =
7.47 × 10−5,1.79 × 10−4,3.08 × 10−4. In the second column
of the figure we fixed the graphene chemical potential μF =
0.8 eV and changed the frequency of the mode: λ = 8 μm,
5 μm, 1.55 μm corresponding to ω/ω0 = 0.125,0.2,0645,
respectively, and to σI(ω/ω0 = 0.125,0.2,0645, μF =
0.8 eV) = 3.96 × 10−4,2.44 × 10−4,5.55 × 10−5. In the third
column we made a study with the same graphene parameter
used in the first column, but for the SG-GS configuration
with Si slab with thickness s = 1 μm, dielectric permittivity
ε(ω = 0.2ω0) = 11.7.

In the logarithmic plots of panels (a) to (f), we recognize the
asymptotic behaviors of Eqs. (31) and (32) for the LI force.
We also see that the CL force dominates at both large and
small separations, giving rise to a double change of sign for
the antisymmetric pressure [see for instance panels from (d) to
(f) and from (j) to (l)]. One of them (the one occurring at larger
distances) realizes a position of stable equilibrium [the double
change of sign is more pronounced in the case μF = 0.3 eV
in panel (l)]. Panels from (g) to (l) show, in a linear scale, the
same pressures plotted (in a logarithmic scale) in panels from
(a) to (f).

To compare the repulsion with that obtained in other
systems we can start by dropping the CL contribution, and
evaluate the normalized LI pressure β = pLIdc/P , where d is
the waveguide separation. The maximum values for LI repul-
sive pressures are βM ≈ 6 for SG-GS, and βM ≈ 25 for G-G
configurations. This is one order of magnitude larger than the
state-of-the-art repulsion obtained by nanostructured waveg-
uides [7] (βM ≈ 1.9), and nonstructured configurations [3,4]
(βM ≈ 0.1). The gain of graphene-based waveguides is even
larger by considering the attractive CL pressure. Indeed the
CL pressure dominates the LI repulsion at small distances,
decreasing the maximum attainable repulsion. Remarkably, in
the G-G configuration the intensity of the CL interaction is
much weaker than in other dielectric or metallic systems [9]
(typically more than one order of magnitude, several orders
for metals), and this allows the LI pressure to dominate down
to separations of ≈10–30 nm, hence attaining a total repulsion
which largely overcomes that of other known structures.

In panels from (m) to (o) we plot the TM dispersion relation
for both s/a modes in the G-G and SG-GS configurations
[Eqs. (23) and (26), respectively], as a function of the sep-
aration 2a and of μF. We recognize the asymptotic behaviors
given by Eqs. (24) and (25).

Finally let us consider the pressure corresponding to
modes in the region 2. In Fig. 8 we plotted both the LI
[Eqs. (33) and (34)] and CL pressure [Eq. (37)] for the SG-GS
configuration with s = 0.310 μm for the modes TE/TM s/a
with m = 0 (see more details in the figure caption). We remark

FIG. 8. LI and CP pressures in region 2 for the SG-GS and S-S
configurations. Silicon slabs are of thickness s = 0.310 μm, � = 5 ×
1012 rad/s, and T = 300 K. The plotted lines remain unchanged for
the different values of μF = 0.3 eV, 0.6 eV, and 1.0 eV. Total radiation
pressure p

s/a

TE/TM + pCL for the symmetric TE and TM modes (black
dashed and solid lines, respectively) and for the antisymmetric TE and
TM modes (black dash-dotted and dotted lines, respectively). pCL has
been calculated using Eq. (37). The LI pressures ps

TE (red dashed),
ps

TM (red solid), pa
TE (blue dash-dotted), and pa

TM (blue dotted) are
calculated using Eqs. (33) and (34), with λ = 1.55 μm, εR = 12.11,
m = 0, and P = 20 mW/μm. These curves remain unchanged even
by eliminating the graphene sheets [i.e., S-S configuration, σ = 0, in
Eqs. (33) and (34)].

that the curves do not change by varying μF and also by
completely eliminating the graphene sheets. Hence the light
induced pressures p

s/a

TE/TM correspond to that of Fig. 3 of [4]
(here they are 10 times weaker due to a typo in [4]). We see
that the role played by the CL force is important, and cannot
be neglected.

IX. CONCLUSIONS

We studied the light-induced forces occurring in graphene-
based (suspended or supported) optomechanical waveguides.
We derived the dispersion relations, the relevant device length
scales, and the explicit analytical closed form expression of
the LI forces. While for dielectric or metallic waveguides the
LI pressure is always bounded, in the presence of graphene
the TM symmetric mode dispersion relation diverges as
1/a1/2 at small separations 2a → 0, implying an attractive
force diverging as −1/a3/2. We also calculated the additional
fluctuation-induced Casimir-Lifshitz force, which is always
attractive and dominates at short and large distances (it can
dominate over the repulsive TM asymmetric mode both at
small and large separations, giving rise to a position of stable
equilibrium). Thanks to a combined effect of a strong field
confinement with a weak CL attraction, the total force is
considerably stronger than for the most optimized complex
nanophotonic structures. It is widely tunable by varying the
chemical potential via chemical or via a simple electrostatic
doping, allowing for a fast modulation. These features open
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a new path for micronanoscale sensors and optomechanical
devices based on graphene and other 2D materials [23].

APPENDIX: LIGHT-INDUCED ELECTROMAGNETIC
FORCE

In order to calculate the time-averaged optical force F

induced by the excited light mode of the structure and acting
on part of the systems (let us say the graphene sheet and
its supporting slab in the positive z half-space) one should
evaluate the surface integral [12,13]:

F =
∫

�

T(r) · n dσ, (A1)

where � is a closed oriented surface enclosing the object (in
vacuum) on which the force is to be evaluated, n is the unit vec-
tor normal to the surface, and T = 〈T(r,t)〉t is the time aver-
aged Maxwell stress tensor in vacuum whose components are

Tij (r,t) = ε0
[
eiej + (μ0c)2hihj

− 1
2 (e2 + (μ0c)2h2)δij

]
, (A2)

where c is light velocity, with μ0 and ε0 being
respectively the vacuum permeability and permittivity. For a
monochromatic electromagnetic field e(r,t) = Re [E(r)e−iωt ]
and h(r,t) = Re [H(r)e−iωt ], E(r) and H(r) are ω dependent,
and 〈ei(r,t)ej (r,t)〉t = Re[Ei(r)E∗

j (r)]/2.
For symmetry reasons and in the absence of losses [4,14]

the force acts only in the z direction, the only contributing
component of the Maxwell stress tensor is Tzz, the Maxwell
stress tensor is uniform in the xy plane, hence the pressure
acting on the upper graphene-slab bilayer is

pLI = Fz

�3
= Tzz(r ∈ �5) − Tzz(r ∈ �3), (A3)

where

Tzz = −ε0

4

[|Ex |2 + |Ey |2 − |Ez|2

+μ2
0c

2(|Hx |2 + |Hy |2 − |Hz|2)
]
, (A4)

and �5 (�3) is a parallel plane over (below) the graphene-
slab bilayer. Once the fields are known (see Sec. III) one can
show [4] that Tzz(r ∈ �5) = 0, hence obtaining Eq. (1).
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