
HAL Id: hal-01292266
https://hal.science/hal-01292266

Submitted on 22 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concurrent Programming of Microcontrollers, a Virtual
Machine Approach

Steven Varoumas, Benoît Vaugon, Emmanuel Chailloux

To cite this version:
Steven Varoumas, Benoît Vaugon, Emmanuel Chailloux. Concurrent Programming of Microcon-
trollers, a Virtual Machine Approach. 8th European Congress on Embedded Real Time Software
and Systems (ERTS 2016), Jan 2016, TOULOUSE, France. pp.711-720. �hal-01292266�

https://hal.science/hal-01292266
https://hal.archives-ouvertes.fr

Concurrent Programming of Microcontrollers,

a Virtual Machine Approach

Steven Varoumas1,2, Benôıt Vaugon3 and Emmanuel Chailloux2

1CÉDRIC – Conservatoire national des arts et métiers, Paris, F-75141, France

2Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place
Jussieu 75005 Paris, France.

steven.varoumas@lip6.fr, emmanuel.chailloux@lip6.fr

3U2IS, ENSTA ParisTech, Palaiseau, France
benoit.vaugon@ensta.fr

Abstract

Microcontrollers are low-cost and energy efficient programmable integrated circuits, they are
used in a lot of common electronic devices but are quite difficult to program because of very
limited resources. Being particularly used for embedded system, they interact a lot with their
environment, and should react quickly to external stimuli. In this paper, we study different
models of concurrency for programming microcontrollers using a virtual machine approach for
safety as well as a higher-level model of programming. We then propose OCaLustre, the prototype
of a synchronous extension to OCaml suitable for concurrent programming on microcontrollers.

1 Introduction

Microcontrollers are small integrated circuits that can be considered as simple, albeit complete,
computers: they contain a processing core, multiple memory units (typically, nonvolatile mem-
ory for program code and volatile memory for data) as well as a set of input/output pins which
allow interactions with the surrounding environment of the chip by conducting electric current.
Being very small, affordable and energy efficient, microcontrollers are ubiquitous in embedded
systems: they can be found implanted in the electronics of common-life objects (such as do-
mestic appliances or toys), as well as in bigger, critical, machines (manufacturing robots, car
engines, aircraft systems, . . .), on which they perform tasks of various nature and complexity.
Those efficiency advantages come with some drawbacks: microcontrollers typically offer limited
processing power and low memory resources, constraining programmers of microcontrollers to
use low level programming models in order to keep permanent control of the available hardware
resources, memory consumption in particular.

Due to simplicity and performance concerns, programs running on microcontrollers are com-
monly written in Basic, assembly or subsets of the C language. These programming languages

1

steven.varoumas@lip6.fr
emmanuel.chailloux@lip6.fr
benoit.vaugon@ensta.fr

often fail to provide the same level of hardware abstraction, safety, and expressiveness as higher-
level programming languages such as Python, Lisp, Java, or OCaml. From this observation, a few
virtual machines capable of interpreting the bytecode of such languages have been successfully
ported to microcontrollers. These solutions free developers from a lot of hardware considerations,
and allow the development of less error-prone and more complex software, providing levels of
hardware abstraction, increased safety and a more modern programming style overall.

Typically, embedded systems in which microcontrollers are operating are regularly interacting
with the outside world, often reacting to signals sent by various peripherals controlled or not
by humans (buttons, sensors, other controllers, etc.). In a lot of cases, all of those different
stimuli must be acknowledged and treated as they appear and in any particular order, leading
the programs running on microcontrollers to be inherently concurrent. Unfortunately, none of
traditional ways of programming microcontrollers (namely imperative low level languages), nor
the languages provided by virtual machine approaches are particularly suited for the handling
of concurrent tasks for such systems. We thus intend to expand the ways microcontrollers are
developed to better comply with the nature of embedded systems, and do so while keeping
the safety and expressivity of high-level programming languages as well as a small resources
consumption thanks to bytecode factorization and automatic memory management.

In this paper, we study the different ways to improve the programming of microcontrollers
with concurrent programming, using a particular virtual machine capable of handling bytecode
of the OCaml programming language. We especially focus on providing a high-level model of
concurrency adapted to embedded systems and with a low memory consumption in order to
comply with the limited resources of microcontrollers. Our different efforts, associated with the
development of the OCaPIC virtual machine, lead us to develop OCaLustre, a prototype of a
synchronous data-flow extension to OCaml.

2 A virtual machine approach for more powerful program-
ming languages

Resources on microcontrollers, especially memory space, can be very low. For example, the PIC
18 series of microcontrollers commercialized by the Microchip company can have at most only 4
kibi-bytes (KiB) of RAM and 128 KiB of program memory. These constraints usually drive the
style of programming for such devices to be very low level, with a manual handling of memory
usage. For this reason, most microcontrollers are programmed with a subset of C or assembly
languages, and programmers need to be knowledgeable about the precise architecture of the chip
they use. Not only being quite tedious, not portable, and lacking the richness of constructions
of higher-level languages, these approaches also lack important programming safeguards such as
static type checking at compile-time or automatic memory management at runtime, leading to
the apparition of unforeseen bugs and issues.

In order to free programmers from dealing with tedious tasks relating to the hardware, and to
help them develop safer programs, some ports of virtual machines capable of running the bytecode
of higher-level programming languages have been completed. These virtual machines, directly
implemented in the lower level languages traditionally used for microcontrollers’ programming,
allow a more portable code and a safer programming model while staying fast and efficient.

Among these various virtual machine approaches, we can mention the Darjeeling Virtual
Machine (DVM) [1], a port of the Java virtual machine on Atmel and ARM microcontrollers
capable of running a subset of this language. Similarly, the PICBIT [4] and PICOBIT [10]
systems allow to run Scheme programs on PIC microcontrollers with virtual stack machines.

Quite paradoxically, these virtual machines approaches can lead to a smaller resulting code

2

(that includes the runtime library and virtual machine) than the corresponding native code
because of the more powerful and more complex instruction set of the virtual machines and
thanks to bytecode compression and cleaning tools.

OCaPIC: running OCaml bytecode on PIC microcontrollers

The OCaPIC project [11] is a virtual machine approach directed towards running bytecode of
the OCaml programming language on the very limited hardware of the PIC 18 microcontrollers.
This port of the ZINC Abstract Machine (ZAM) [6] (the original virtual machine of OCaml),
written in PIC assembly, allows programmers to use the various advantages of this language and
of its runtime on microcontrollers with very scarce resources.

OCaml is a high-level programming language belonging to the ML family of programming
languages. Descending from Caml and Caml-light, it was created and maintained at INRIA 1

since 1996. Being multi-paradigm, it implements functional, imperative, modular and object-
oriented traits and thus offers a rich expressiveness for writing programs of various nature for
embedded systems. Furthermore, OCaml provides a strong static type-checking at compile time,
with type inference, which insures the absence of dynamic type error and memory corruption, and
thus decreases the amount of possible bugs inside critical applications. Moreover, OCaml comes
with a garbage collector (GC) which makes possible an automatic handling of memory resources,
and frees programmers from such considerations while providing re-usability of memory. OCaPIC
implements two different algorithms of GC: stop-and-copy (by default) and mark-and-compact.

In addition to the port of most of the standard library of OCaml, OCaPIC offers a set of
primitives adapted to the handling of the input/output pins: for example, calling the function
set bit makes the microcontroller send an electric current on the pin passed in argument and
calling test bit reads and returns the state of a given pin.

The following code is an example of a program written with OCaPIC which makes a LED
connected to the pin named RB0 blink every second.

open Pic;; (* Module containing write_reg, set_bit, RB0, ... *)
write_reg TRISB 0x00; (* Configure the port B to be an output *)
while true do

set_bit RB0;
Sys.sleep 1000;
clear_bit RB0;
Sys.sleep 1000;

done

After compiling an OCaml program with the standard compiler (ocamlc), the resulting
bytecode is then cleaned by the provided OCamlClean tool which removes residual dead code.
This cleaning operation also has an interesting impact at runtime: the heap is cleaned from some
closures and unused global data, typically coming from unused parts of libraries. The resulting
bytecode is then compressed and linked with its interpreter into an hexadecimal file that can
finally be flashed on a PIC microcontroller. This workflow is depicted in the figure 1.

Finally, OCaPIC comes with two different simulators: the first one interprets the bytecode
and makes possible an easy debugging process using usual OCaml tools for correcting errors, such
as ocamldebug. The second simulator interprets the hexadecimal file produced by OCaPIC
and emulates the physical capacities of the microcontroller: it allows checking the native runtime
and the different kind of arithmetic and memory overflows. These simulators give a graphical
representation of the state of each pin of the microcontroller, in order to check the coherence of

1Institut National de Recherche en Informatique et en Automatique

3

Figure 1: The OCaPIC compilation chain, from OCaml to PIC

the input and output of the programs. They are also able to simulate simple electronic boards
connected to the chip (LCD displays, buttons, . . .) for testing purposes.

3 Models of concurrent programming

We engage in improving the virtual machine approach in order to better comply with the nature
of embedded programs. Because those systems are in constant interaction with the outside
world, for example reacting to button presses, impulses from sensors or signals emitted by other
computational devices, we focus on finding a model of concurrent programming adapted to the
scarce resources of microcontrollers that could run in the OCaPIC virtual machine.

Analysis of Models of Concurrent Programming

To achieve this goal, we experimented various models of concurrency and analyze their resources
consumption and expressiveness.

Firstly, preemptive threading approaches seems to be an ill-adapted model because our micro-
controllers do not run any operating system and thus do not provide any underlying scheduling
features capable of switching context between tasks depending on priority. Threads directly
scheduled by the VM could be conceivable, however they would be quite demanding on memory
resources. Moreover, this model of concurrency is not easily predictable and thus any kind of
static analysis capable of checking that programs do not go wrong is very difficult to achieve.

Cooperative threading is a far better candidate: letting each process explicitly hand control
to other threads does not need the presence of an operating system. We have been successful
when porting the core parts of the LWT cooperative thread library [12] into OCaPIC. Reacting
to environment stimuli can be done by frequently polling the value on each entry pin of the
microcontroller in a separate thread but handling the control points of programs is quite tedious
and a single process can block all the system if it does not yield control to the others.

We also managed to port the React functional reactive programming module2 to OCaPIC,
providing a model of concurrency using signals and events appearing and changing through time.
While appearing lightweight, this library makes a heavy use of memory allocation, and despite
our efforts, we were unable to keep memory use limited to the hardware restrictions.

Lastly, a port of the ReactiveML [7] synchronous language has been performed, but its heavy
use of OCaml functors creates a need for too much memory and prevents it for being a viable
solution for the concurrent programming of microcontrollers.

2See http://erratique.ch/software/react

4

Nonetheless, the synchronous approach appears to be well-suited for our goal and we de-
cided to direct our work from the control-flow model of ReactiveML to a data-flow synchronous
concurrent model.

4 OCaLustre: a synchronous extension to OCaml

All of those experiments have exhibited some major drawbacks for the use of the aforementioned
concurrent programming models in real-life applications such as efficiency consideration as well
as expressiveness concerns. We thus propose OCaLustre, a synchronous extension to OCaml
based on the Lustre [3] dataflow synchronous programming language.

4.1 Syntax and Semantics of OCaLustre

An OCaLustre program is an OCaml program augmented with a construct stemming from Lustre:
the node. Nodes are synchronous functions operating on data flows which are considered as
being executed instantaneously, following the synchronous hypothesis. The body of each node
is equivalent to a system of equations that is solved between two “ticks” of the reactive system
and these equations, being solved all at once during the same instant, can represent concurrent
tasks. We believe that this model is well-adapted to microcontrollers’ programming because, at
any moment, each of the input/output pin of a chip is either holding an electrical current or not:
the absence or presence of current can thus be represented as a boolean data flow and treated by
such nodes in order to react “instantaneously” to environment stimuli. The complex algorithmic
and computational parts of programs are still handled by traditional OCaml functions that are
called inside nodes in order to keep the advantages of the expressiveness of high level constructs.

The syntax of OCaLustre nodes is very close to Lustre, and users familiar with the Lustre
style of programming will not really be surprised when using OCaLustre: for example, the code
of figure 2 declares a node called count pairs that computes the series of all natural numbers,
as well as all the even numbers. The complete syntax for OCaLustre nodes is given on figure 3.

let%node count_pairs () (n, m) =
m := n * 2;
n := 0 --> pre n + 1

Figure 2: An OCaLustre node

All of the OCaml boolean and arithmetic operators can be used inside OCaLustre declara-
tions, as well as the initialization (->) and memory (pre) operators of Lustre. Note however
that the operator ->, being already reserved by OCaml, has been replaced by --> to describe
the initialization of data flows. The when operator is not usable at this moment, because our
OCaLustre prototype doesn’t handle nodes running on different clocks (they all run on the de-
fault clock). Notice also that type annotations are not requested in OCaLustre, because it is
compiled into pure OCaml code that offers a type inference mechanism. In this regard, OCaLus-
tre nodes can handle polymorphic flows, as it is the case in the following code that declares a
node testing if the value of a flow f has changed between two instants.

let%node change (f) (changed) = changed := false --> f <> pre f

Adding a new behavior to an existing OCaLustre program is very straightforward: one just
have to write new equations providing the new behavior into the involved node(s). Figure 4
presents such a modification: a program waiting for two signals a and b and returning o only

5

< node > ::= let%node node id < flows sig > < flows sig > = < decl seq >

< flows sig > ::= (id[,id] ∗) | ()
< decl seq > ::= < declaration > | < decl seq >;< declaration >

< declaration > ::= < flow > := < expression >

< flow > ::= id | (id, id)

< infix op > ::= + | - | * | / |+. | -. | *. | /. | < | > | <= | >= | = | <> | && | ||
< prefix op > ::= not

< constant > ::= int | bool | float | ()
< parameters > ::= (< parameter >[, < parameter >] ∗) | ()
< parameter > ::= id | < constant >

< expression > ::= < constant > | id

| if < expression > then < expression > else < expression >

| < expression > < infix op > < expression >

| < expression > --> < expression >

| < prefix op > < expression > | pre < expression >

| call ocaml function id < parameters >

| node id < parameters > | (< expression >,< expression >)

Figure 3: The syntax of OCaLustre

when r is not present is easily expanded into a program waiting for the presence of a third signal
c. This process doesn’t lead to any explosion of memory usage when the resulting program is
executed, due to the lightweight model of compilation of Lustre.

let%node edge (x) (y) =
y = false --> x && not pre x

let%node abro (a,b,r) (o) =
o := edge (seenA && seenB);
seenA := false -->

not r && (a || pre seenA);
seenB := false -->

not r && (b || pre seenB)

let%node abcro (a, b, c, r) (o) =
o := edge (seenA && seenB &&

seenC);
seenA := false -->

not r && (a || pre seenA);
seenB := false -->

not r && (a || pre seenB);
seenC := false -->

not r && (c || pre seenC)

Figure 4: Adding a new behavior to an OCaLustre node

4.2 Compilation of OCaLustre

An OCaLustre program is compiled following the Lustre model of “simple-loop” compilation:
each node is converted into a sequential function, and the main node of the program is run inside
a single endless loop. Following this method, an OCaLustre program is compiled into a pure
OCaml program that can then be handled by OCaPIC as any other OCaml program (see figure
5). Note that, because these two steps are entirely independent, the OCaml code produced after
compilation of OCaLustre can also be used with any other OCaml interpreter or compiler: this
makes possible to use our extension with any kind of hardware target supported by OCaml.

6

OCaLustre
Source

Compilation

OCaml
Program

OCaPIC p

Assembler
File

Assembly

Hexadecimal
File

Figure 5: From OCaLustre to executable through pure sequential OCaml

During compilation, each node is replaced by an OCaml function by converting all of the
declarations contained inside its body into a sequence of assignations. In OCaLustre, the equation
order does not matter (we may use a flow before declaring it) but in OCaml this order matters
and a reordering of each declaration is completed at compile-time. This reordering corresponds
to a rescheduling of each task of our concurrent program. This process may fail when two flows
depend on each other at the same instant: this kind of behavior is invalid since it denotes a
causality loop inside the program and an error is then raised by the compiler.

Each usage of the memory operator “pre” is converted into an OCaml reference holding an
option type. At the first instant, all references hold the value None, and at instant i + 1, they
contain the value of its flow at instant i.

The --> initialization operator is converted into a simple conditional operator checking with
a simple boolean value init if the function is executed at the first instant or not.

In order to preserve the execution context of a node, a closure is returned by each instantiation
function corresponding to a synchronous node. This closure is bound to all of the registers of
the node. All of these compiling rules are depicted in the example of figure 6 which illustrates
code generation for the node count pair of figure 2.

let count_pairs () =
let init = ref true in
let pre_n = ref None in
let count_pairs_step () =

let n = if !init then 0 else Option.get (!pre_n) + 1 in
let m = n * 2 in
init := false; pre_n := Some n; (n, m) in

count_pairs_step

Figure 6: Compilation of an OCaLustre node

4.3 Benchmark analysis

The compilation model of OCaLustre is quite efficient and makes the resulting compiled pro-
grams very small. In order to compare the efficiency of OCaLustre with the various models
of concurrency that we had firstly considered, we developed a simple application in which two
different counters are concurrently displayed on an LCD screen. Four versions of this application
have been developed with OCaLustre as well as with three other models: cooperative threading
with LWT, functional reactive programming with React and a simple sequential program written
in pure OCaml. The size of the programs generated by OCaPIC after a cleaning pass by OCaml-
Clean (containing the runtime library, the virtual machine as well as the compressed bytecode)
allows us to assert that OCaLustre is a very lightweight solution, using about 1.5 times less
space than LWT and being more than three times smaller than the React solution. In fact, the
OCaLustre application is very close, in size, to the compiled sequential code. We executed the
programs on our microcontroller (a PIC 18F4620) and analyzed the dynamic memory allocation
of each tool when the program is loaded. We found again that OCaLustre is very low demanding

7

in resources with React and LWT allocating respectfully 1668 and 1136 bytes while OCaLustre
only using 272 bytes of dynamic memory space:

Tool React LWT OCaLustre Sequential Code

Size of the program 23.8 KiB 11.7 KiB 7.8 KiB 6.8 KiB
Initial dynamic allocation 1668 B 1136 B 272 B 150 B

Using our OCaLustre prototype, we developed a program for a device capable of tempering
chocolate. This device receives inputs from a temperature sensor and from two buttons (labeled
“+” and “-”) used to set a desired temperature for the chocolate. Its outputs are an LCD
displaying the desired temperature, as well as the current temperature of the chocolate, and a set
of resistances capable of heating the preparation. The following OCaLustre program controls the
tempering machine by computing a value (prop) that represents the amount of time at which the
resistances need to be on, depending on the difference between the desired temperature (wtemp)
and the actual temperature (ctemp). The main node of the program receives at each instant
the value of the buttons as well as the current temperature, computes the value of the desired
temperature, the state of the device (on or off) and decides if the heating resistances must be
active based on all of these informations:

(* Temperature in celsius is (1033-ctemp)/11.67 *)
let%node update_prop (wtemp, ctemp) (prop) =

new_prop := 0 --> (min (100, max (0, pre new_prop + offset)));
delta := min (10, max (-10, ctemp - wtemp));
delta2 := if delta < 0 then -delta * delta else delta * delta;
offset := min (10, delta2);
prop := new_prop / 10

let%node timer (number) (alarm) =
time := 1 --> if pre time = 100 then 1 else pre time + 1;
alarm := time < number * 10

let%node heat (w, c) (h) =
prop := update_prop (w, c);
h := timer (prop)

let%node change_wtemp (state) (w) =
w := 654 --> if state = 1 then pre w - 1 else

if state = 2 then pre w + 1 else pre w

let%node thermo_on (state) (on) =
on := true --> if state = 3 then not (pre on) else pre on

let%node main (plus, minus, ctemp) (wtemp, on, heat) =
state := call (buttons_state plus minus);
on := thermo_on (state);
wtemp := if on then change_wtemp (state) else 0;
heat := if on then heat (wtemp, ctemp) else false;

An application displaying the same behavior was also developed in classic OCaml and used
in OCaPIC before the development of OCaLustre, so we are able to compare the size of our
OCaLustre chocolate tempering program versus the size of the OCaml one, as well as display the
significant size difference between the generated OCaml bytecode and the resulting compressed
OCaPIC program:

Language OCaml OCaLustre

Type Bytecode File PIC Program Bytecode File PIC Program
Size 268 KiB 27 KiB 258 KiB 27 KiB

8

We conclude from these results that, after cleaning and compression, the PIC program is a lot
smaller than the original bytecode file. Judging by various experiments, this decrease by a factor
of about 10 is not uncommon. We show once again that the OCaLustre mode of compilation
keeps programs very lightweight and thus allow to run real world programs on devices with small
resources.

5 Conclusion

Our efforts dedicated at proposing a higher level of programming for microcontrollers seem
promising. In particular, OCaLustre, a synchronous extension to the multiparadigm OCaml
programming language, makes possible an easier development of concurrent programs aimed at
embedded systems. This extension, based on the data flow language Lustre is quite similar to
the Lucid Synchrone programming language [2] but our prototype offers a simpler model. It is
translated into pure OCaml and compiled into bytecode that can be lightened by OCamlClean.
This model makes the program written in OCaLustre smaller than the ones developed in the
richer Lucid language which unfortunately (and contrary to OCaLustre3) is not distributed with
an open source license, which was necessary for our early experiments with models of concurrency.

Real-time considerations for programs developed with OCaLustre are usual: Worst Case
Execution Time (WCET) of the synchronous parts of OCaLustre programs can be computed
using classical tools for synchronous programming. For the algorithmic part written in OCaml,
we need a guarantee that there is enough memory and to consider dynamic memory management
(garbage collector or GC) execution time for WCET analysis. These two notions are nested but
depend on the programming style of the algorithmic part and need to deal with dynamic memory
allocations (stack and heap) for recursive functions and dynamic data structures. One possibility
will be to use a real-time GC [5] but they have important costs (time and memory) and not really
adequate for the low resources of PIC micro-controllers. For that, we need to help the GC by
giving indications on liveness of objects. Some on-going works can use static region analysis for
a mini-ML. In this case freeing a region can be immediate or can allow to manually trigger the
garbage collector. The virtual machine approach is not detrimental to the real-time aspects,
actually it also makes possible the factorization of the WCET by measuring it directly on the
bytecode and then extrapolate it for different hardware.

Moreover, the use of a virtual machine facilitates the debugging and tracing of programs:
without modifying program sources the interpreter can be instrumented in order to offer useful
informations, allowing a non-intrusive structural code coverage like Zamcov project [13] for the
Ocaml Virtual Machine (ZAM). The association of functional languages with critical embedded
systems was not previously unseen and have already been used (with less hardware constraints)
for the development of various tools, in particular of code generators (like KCG, the code gener-
ator of the SCADE SUITETM [8]).

Using this virtual machine approach, we are able to produce lightweight and portable code
which offers higher-level guarantees thanks to the use of the OCaml programming language. The
different tools of code analysis are also factorized by the use of bytecode and can be adapted for
many different microcontrollers, offering more safety for embedded system applications. Finally,
our synchronous extension of OCaml offers a deterministic model of concurrence adapted to the
nature of embedded system and the analysis of the safety of programs and its association with
an OCaml virtual machine makes possible the development of richer and safer applications.

We aim for future works at improving the OCaLustre language and developing more serious
applications (for example in robotics or home automation) while trying to offer formal guaran-

3https://github.com/stevenvar/OCaLustre/

9

https://github.com/stevenvar/OCaLustre/

tees for the execution of programs inside devices fitted with minimal memory and computing
resources. As for OCaPIC, a couple of similar projects aimed at porting the virtual machine of
OCaml for Atmel AVR and STM32 microcontrollers (respectively used in Arduino and Nucleo
platforms) have been instantiated.

References

[1] Brouwers, N., Corke, P., and Langendoen, K. Darjeeling, a Java Compatible Vir-
tual Machine for Wireless Sensor Networks. In Proceedings of the ACM/IFIP/USENIX
Middleware ’08 Conference Companion (2008).

[2] Caspi, P., Hamon, G., and Pouzet, M. Real-Time Systems: Models and verification
— Theory and tools. ISTE, 2007, ch. Synchronous Functional Programming with Lucid
Synchrone.

[3] Caspi, P., Pilaud, D., Halbwachs, N., and Plaice, J. A. Lustre: A declarative
language for real-time programming. In In 14th Symposium on Principles of Programming
Languages (POPL’87). ACM (New York, NY, USA, 1987), POPL ’87, ACM, pp. 178–188.

[4] Feeley, M., and Dubé, D. Picbit: a Scheme system for the PIC microcontroller. In
Scheme and Functional Programming Workshop (SFPW’03) (Nov. 2003), pp. 7–15.

[5] Jones, R., Hosking, A., and Moss, E. The Garbage Collection Handbook: The Art of
Automatic Memory Management. CRC Applied Algorithms and Data Structures. Chapman
& Hall, Jan. 2012.

[6] Leroy, X. The ZINC experiment : an economical implementation of the ML language.
Tech. Rep. RT-0117, INRIA, Feb. 1990.

[7] Mandel, L., and Pouzet, M. ReactiveML, a reactive extension to ML. In Proceedings of
7th International conference on Principles and Practice of Declarative Programming (PPDP
2005) (Lisbon, Portugal, July 2005).

[8] Pagano, B., Andrieu, O., Moniot, T., Canou, B., Chailloux, E., Wang, P.,
Manoury, P., and Colaço, J.-L. Experience Report: Using Objective Caml to develop
safety-critical embedded tool in a certification framework. In International Conference of
Functional Programming ICFP 09 (2009), pp. 215–220.

[9] St-Amour, V., and Feeley, M. Picobit: A Compact Scheme System for Microcontrollers.
In International Symposium on Implementation and Application of Functional Languages
(IFL’09) (Sept. 2009), pp. 1–11.

[10] Vaugon, B., Wang, P., and Chailloux, E. Programming Microcontrollers in Ocaml:
the OCaPIC Project. In International Symposium on Practical Aspects of Declarative Lan-
guages (PADL 2015) (June 2015), no. 9131 in Lecture Notes in Computer Science, Springer
Verlag, pp. 132–148.

[11] Vouillon, J. Lwt: A cooperative thread library. In Proceedings of the 2008 ACM SIG-
PLAN Workshop on ML (2008), ML ’08, ACM, pp. 3–12.

[12] Wang, P., Jonquet, A., and Chailloux, E. Non-Intrusive Structural Coverage for
Objective Caml. In 5th Workshop on Bytecode Semantics, Verification, Analysis and Trans-
formation (2011), vol. 264 4 Electronic Notes in Theoretical Computer Science, Elsevier,
pp. 59–73.

10

	Introduction
	A virtual machine approach for more powerful programming languages
	Models of concurrent programming
	OCaLustre: a synchronous extension to OCaml
	Syntax and Semantics of OCaLustre
	Compilation of OCaLustre
	Benchmark analysis

	Conclusion

