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Abstract. In a recent theoretical article [S.H. Kazemi, S. Ghanbari, M. Mahmoudi, Eur. Phys. J. D 70, 1
(2016)], Kazemi et al. claim to have demonstrated superluminal light transmission in an optomechanical
system where a Bose-Einstein condensate serves as the mechanical oscillator. In fact the superluminal
propagation is only inferred from the existence of a minimum of transmission of the system at the probe
frequency. This condition is not sufficient and we show that, in all the cases where superluminal propagation
is claimed by Kazemi et al., the propagation is in reality subluminal. Moreover, we point out that the system
under consideration is not minimum-phase-shift. The Kramers-Kronig relations then only fix a lower limit
to the group delay and we show that these two quantities have sometimes opposite signs.

When the transmission of light in a given medium dis-
plays a well-marked narrow dip at some frequency, the
group velocity at this frequency may be larger than the
velocity of light in vacuum or even negative. An ideally
smooth light-pulse can then exits the medium without
significant distortion before than if it had propagated in
vacuum [1]. Such superluminal or fast propagation is not
at odds with relativistic causality since a given point of
the output-pulse profile is not a direct reflection of the
homologous point of the incident-pulse profile but results
from the action of the medium on all the earlier part of the
incident pulse. The major challenge in such experiments is
to obtain advancements comparable to the pulse duration
with moderate distortion. Convincing experiments have
been performed in the 1980s [2,3] in media with a narrow
absorption line. Unfortunately, superluminal propagation
is then accompanied by strong absorption. This inconve-
nience is overcome by using a medium with a doublet of
gain lines [4,5] and a minimum of transmission between
them. Significant advancements have been evidenced in an
atomic vapor with this arrangement [6]. A comprehensive
review on fast light in atomic media can be found in [7].
Experiments involving four wave mixing are reported in
[8].

Superluminal or subluminal propagation can only be
demonstrated by a determination of the group delay and
one should not hastily conclude from what it precedes that
every gain system with a dip in its transmission curve will
be superluminal. This extrapolation is unfortunately made
in a recent theoretical article [9] whose authors claim to
have evidenced superluminal propagation by giving this
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sole argument. The system under consideration is an op-
tomechanical device consisting in a high-quality optical
cavity containing a Bose-Einstein condensate (BEC) of
Rubidium atoms which serves as the mechanical oscilla-
tor [10]. It is submitted to a strong pump field (continuous
wave) and to a weak probe field. In a frame rotating at
the pump angular-frequency, the transfer function for the
probe field reads as [9]1

H(ω) = 1− 1 + if (ω)

κ/2− 2f (ω)∆c + i (∆c − ω)
(
κ

2
) (1)

with

f (ω) =
2ωmng2

[κ/2− i (ω +∆c)] [ω2
m − ω2 − iωγm]

(2)

In these expressions, κ (γm ) is the damping rate of the
cavity (the mechanical oscillator), ∆c is a frequency re-
lated to the cavity detuning and is assumed equal to the
resonance frequency ωm of the mechanical oscillator in all
the simulations, n = E2

pu/
(

∆2

c + κ2/4
)

where Epu is a pa-
rameter proportional to the amplitude of the pump field,
g = g2

0

√
N/

(

2∆a

√
2
)

where g0 is the elementary atom-
photon coupling constant, N is the number of atoms in
the BEC and ∆a is the detuning of the pump from the
frequency of the relevant atomic line. We denote in the fol-

lowing T (ω) = |H (ω)|2 the intensity transmission of the
system and ϕ (ω) = arg [H (ω)] the phase shift induced by
the system.

1 Some typo errors in [9] are corrected in the present com-
ment.
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In order to evidence that the existence of a minimum
of the intensity transmission does not entail superluminal
propagation we have determined the corresponding group
delay τg (ω) = d

dω
ϕ (ω) in all the cases considered in [9].

As a representative example, our Figure.1 shows the de-
pendence of T (ω) and τg (ω) as functions of ω for two
different values of the damping rate γm of the mechanical
oscillator (BEC). The parameters are those considered to
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Fig. 1. a) Intensity transmission T (ω) of the optomechanical
system as a function of ω. Used parameters are: N = 1.2×105,
g0 = 2π × 10.9 MHz, ∆a = 2π × 32 GHz, κ = 2π × 1.3 MHz,
∆c = ωm = 2π×15.2kHz, Epu = 2π×100kHz, γm = 2π×15kHz
(solid line) and γm = 2π × 45 kHz (dashed line). The dotted
line is the power spectrum of the incident pulse considered
in Figure.2. b) Corresponding group delays. The upper curves
give the exact group delays τg(ω) = d

dω
arg [H (ω)] and the

lower curves give the group delays τKK (ω) derived from the
Kramers-Kronig relations.

obtain Figure.4 in [9]. We see that, for γm = 2π × 15 kHz
(solid line), the transmission has a minimum for ω = 0
(probe frequency equal to the pump frequency) but that
the propagation remains subluminal [τg(0) > 0 ] contrary
to the claim of Kazemi et al. [9]. Compared to the result
obtained for γm = 2π × 45 kHz (dashed line) where the
transmission has a maximum for ω = 0 , it appears that
the effect of a minimum of transmission is to significantly
reduce the group delay without changing its sign (no time-
advancement). In the present case, we get τg(0) = 33.8µs

for γm = 2π × 45 kHz and τg(0) = 11.6 µs for γm =
2π × 15 kHz . Figure 2 shows the intensity profiles of the
pulses transmitted by the system when it is subjected to
an incident Gaussian pulse with a carrier frequency equal
to the pump frequency. The intensity profile of the inci-
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Fig. 2. Temporal response of the system to an incident Gaus-
sian pulse of carrier frequency equal to the pump frequency
and of duration τp = 100 µs. (half-width at 1/e of the en-
velope). The figure shows the normalized intensity-profiles of
the incident pulse (dotted line), of the pulse transmitted for
γm = 2π × 15 kHz (solid line) and for γm = 2π × 45 kHz
(dashed line). The other parameters are those of Figure.1.

dent pulse is given for reference (dotted line). Its duration
τp (half-width at 1/e of its envelope) has been taken equal
to 100 µs in order that T (ω) and τg(ω) do not vary too
considerably over the width of its power spectrum (shown
in dotted line in Figure.1a). The pulse distortion remains
then moderate and the delay tm of the pulse maximum
is close to the group delay [5]. We get tm = 30.7 µs for
γm = 2π×45kHz and tm = 12.1µs for γm = 2π×15kHz .
Similar results are obtained in all the cases where Kazemi
et al. [9] predict superluminal propagation. Even in the
conditions of their Figure.5 where the gain dynamics is
particularly large, we find that the group delay remains
positive, namely τg(0) = 5.6 µs.

Kramers-Kronig relations are invoked in [9] to asso-
ciate superluminal propagation with a minimum of the
medium transmission. As extensively shown in [11,12],
these relations only give the exact group delay when the
system is minimum-phase-shift 2. The phase-shift and the
group delay then reads as ϕ (ω) = ϕKK (ω) and τg (ω) =

τKK (ω) = d
dω

ϕKK (ω) where ϕKK (ω) is the Hilbert trans-
form of ln [|H (ω)|]. It appears that, in all the cases con-
sidered in [9], the transfer function H (ω) has a zero ω̃0

2 Note that, even in minimum-phase-shift systems as are the
purely propagative systems, the group delay may be positive
at a frequency for which the transmission presents a minimum.
See for example Section.4 in [5].
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in the upper half-plane of the complex plane and thus
that the system is not minimum-phase-shift. In this case,
τKK (ω) only fixes a lower limit to the exact group de-
lay. The transfer function can then be written as H (ω) =
HMP (ω)HAP (ω) where HMP (ω) and HAP (ω) are re-
spectively associated with a minimum-phase-shift system
and with an all-pass system, with |HMP (ω)| = |H (ω)|
and |HAP (ω)| = 1. HAP (ω) is a so-called Blaschke prod-
uct [11] which, in the present case, is reduced to

HAP (ω) =
1− ω/ω̃0

1− ω/ω̃∗

0

(3)

This term is responsible of additional contributions ϕAP (ω)
to the phase shift ϕKK (ω) and τAP (ω) to the group delay
τKK (ω) . These contributions read as

ϕAP (ω) = arg [HAP (ω)] = −2 tan−1

[

Im (ω/ω̃0)

1− Re (ω/ω̃0)

]

(4)

τAP (ω) =
d

dω
ϕAP (ω) = − 2Im (1/ω̃0)

1 + |ω/ω̃0|2 − 2Re (ω/ω̃0)
(5)

Im (ω̃0) being positive, Im (1/ω̃0) is negative and τAP (ω)
is always positive as expected. For ω = 0, τAP (ω) takes
the simple form τAP (0) = −Im (1/ω̃0) . In the conditions
of Figure.1, we get ω̃0 = −0.127 + 0.244i µs−1 (−0.115 +
0.200iµs−1 ) for γm = 2π×15kHz (γm = 2π×45kHz). In
both cases the difference between the exact group delay
and that given by the Kramers-Kronig relations is every-
where positive and perfectly reproduced by Eq.(5). For
ω = 0, we get in particular τAP = 6.45 µs (7.51 µs),
τKK = 5.16 µs (26.3 µs) and τg = 11.6 µs (33.8 µs), with
τg = τKK + τAP as expected.

Arrived to this point, it is worth remarking that sig-
nificant differences between the exact group delay τg and
the group delay τKK derived from the Kramers-Kronig
relations are not specific to the system considered in [9].
They are often obtained in optical systems involving mir-
rors and/or polarizers. See, e.g., [13–15]. These two quan-
tities may even have opposite signs. This phenomenon
marginally occurs in the conditions of our Figure.1. On
the left of Figure.1b, we actually see that τg > 0 (time-
delay) whereas the Kramers-Kronig relations predict a
time advancement (τKK < 0). Much more spectacular
effects are shown on Figure.3. Figure 3a shows the trans-
mission T (ω) as a function of ω obtained for parameters
enabling us to reproduce the transmission curve given Fig-
ure.6 in [9]. For these parameters, the transfer function of
the system is again not minimum-phase-shift. Figure.3b
shows the corresponding functions τg (ω) (solid line) and
τKK (ω) (dashed line). Denoting ωA,B,C,D the frequencies
corresponding to the points A,B,C,D in Figure.3a, we
note that τg (ω) and τKK (ω) are everywhere equal or very
close, except for ω ≈ ωC . The inset on the left confirms
that for ω ≈ ωB the propagation is not superluminal
contrary to the claim of Kazemi et al. [9]. As expected,
the propagation is subluminal for ω ≈ ωA but the corre-
sponding group delay is only 22.4 µs (not visible at the
figure scale). The most interesting features are observed
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Fig. 3. a) Intensity transmission T (ω) of the optomechan-
ical system as a function of ω. Used parameters are now :
∆a = 2π×2.77GHz , γm = 2π×400Hz and κ = 2π×7.2kHz.
The parameters not defined in [9] have been chosen in or-
der to reproduce the Figure.6 of this article. b) Correspond-
ing group delays. The solid line gives the exact group delay
τg(ω) =

d
dω

arg [H (ω)] and the dashed line gives the group de-
lays τKK (ω) derived from the Kramers-Kronig relations. The
insets are enlargements in the spectral regions around the fre-
quencies ωB and ωC .

for ω ≈ ωC and for ω ≈ ωD, evidencing that very sim-
ilar transmission profiles with a well-marked minimum
can lead to quite different group delays3. For ω = ωC ,
the inset on the right shows that the group delay has
a very large positive value whereas an irrelevant appli-
cation of the Kramers-Kronig relations predict a group
advancement (τKK < 0 ). For ω = ωD on the contrary,
τg = τKK < 0 and a significant group advancement is ob-
tained as currently expected at a transmission minimum.

3 Analogous phenomena have been observed in optical sys-
tem consisting in a photonic crystal [14] or a birefringent fibre
[15] placed between two polarizers. These papers report in par-
ticular experimental evidence that subluminal propagation can
be associated with a well marked-dip in the transmission curve
of a non-minimum-phase-shift system.
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It should be noted that large group delay or advancement
are both paid at the price of a dramatically weak trans-
mission. Figure.4 shows the intensity profiles of the trans-
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Fig. 4. Normalized intensity-profile of the pulses transmit-
ted by the system subjected to an incident Gaussian pulse of
duration τp = 25 ms with a carrier frequency detuned from
the pump frequency by ωc (dashed line, subluminal case) and
ωD (solid line, superluminal case). The system parameters are
those of Figure.3. The profile of the incident pulse is given for
reference (dotted line). In the subluminal case the maximum of
the output pulse is delayed by 9.3ms whereas τg = 11.8ms. In
the superluminal case, this maximum is advanced by 2.06 ms
whereas τg = −2.08ms. The corresponding absolute intensities
are respectively 1.6 × 104 and 660 times weaker than that of
the incident pulse.

mitted pulses when the system is subjected to incident
Gaussian pulses with a carrier frequency detuned from
the pump frequency by ωC (dashed line) or by ωD (solid
line). The intensity profile of the incident pulse is given
for reference (dotted line). Its duration τp has been taken
as large as 25 ms to avoid significant pulse-distortion.

To summarize, the inconsistent claims of superluminal
propagation made in [9] originate in two misconceptions,
firstly that the existence of a minimum of transmission
always implies superluminal propagation and, secondly,
that the group delays can always be derived from the
Kramers-Kronig relations whereas the latter only give a
lower limit to this delay when the system under considera-
tion is not minimum-phase-shift (as are numerous optical
systems). Surprisingly enough, these misconceptions are
widespread in the optics community. The present com-
ment is expected to bring some clarification on this sub-
ject.
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