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ABSTRACT. A frequent issue in the study of species abundance consists in
modeling empirical distributions of repeated counts by parametric probability
distributions. In this setting, it is desirable that the chosen family of distri-
butions is flexible enough to take into account very diverse patterns, and that
its parameters possess clear biological/ecological meanings. This is the case of
the Negative Binomial distribution, chosen in this work for modeling counts of
marine fishes and invertebrates. This distribution depends on a vector (K,‘B)
of parameters, and ranges from the Poisson distribution (when K — +o0)
to Fisher’s log-series, when K — 0. Besides, these parameters have biologi-
cal/ecological interpretations detailed in the literature and reminded hereafter.

We focus on the comparison of three estimators of K, B and the parameter
a of Fisher’s log-series, revisiting a nice paper of Rao (1971) about a three-
parameter unstandardized variant of the Negative Binomial distribution. We
investigate the coherency of values of the parameters resulting from these dif-
ferent estimators, with both real count data collected in the Mauritanian Ex-
clusive Economic Zone during the period 1987-2010 and realistics simulations
of theses data.

In the first case, we first built homogeneous lists of counts (replicates), by
gathering observations of each species with respect to “typical environments”
obtained by clustering the sampled stations. The best estimation of (K,P)
was generally obtained by Penalized Minimum Hellinger Distance Estimation.
Interestingly, the parameters of most of the correctly sampled species seem
compatible with a classical birth-and-dead model of population growth with
immigration of Kendall (1948).

1. INTRODUCTION

Ecological data frequently consist of two-way r x c¢ tables of counts, whose rows
are associated with surveys (spatial-temporal positions, generally) and columns are
associated with species. Roughly speaking, such tables can be analyzed through
two different approaches. On the one hand, multivariate methods are widely used
to investigate relationships between the community structure (columns) and the
spatio-temporal variations of the surveys (rows), frequently in connection with ex-
planatory environmental variables. On the other hand, an alternative way, much
earlier in Ecological Statistics, consists in modeling the rows or the columns count
distributions. Most authors focus on fitting the rows of such tables, because dis-
tributions of counts are closely associated with biodiversity (Magurran , 2005) or
stochastic abundance models for communities (Watterson , 1974; Diserud , 2001).
For example, the log-series (LS) introduced by Fisher, Corbet and Williams (1943)
is standard for evaluating or modeling biodiversity (Taylor, Kempton and Woiwod ,
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1976; Magurran , 2005; Watterson , 1974; Diserud , 2001). Besides, the LS has been
also used to model the columns of such tables; for instance, Williams (1947) (see
also Bliss and Fisher (1953)) reported that it fitted well the number of lice per head
of prisoners, as well as the number of fleas on rats, and Quenouille (1949) reported
that the number of bacteria in a colony is also well-fitted by this series. Notice
finally that the LS was obtained by Fisher, Corbet and Williams (1943) as a limit
case of the Negative Binomial distribution (NBD), which is also classically used for
fitting count data (Bliss and Fisher , 1953; Elliot , 1979; Vaudor, Lamouroux and
Olivier , 2011).

From another side, Kendall (1948) has shown that both NBD and LS can
be obtained as stable solutions of a single-species population growth process. As
a consequence, estimating the parameters of the distribution of counts of each
species (columns) would bring information about its dynamics. Notice that this
task could be also tackled from a non-parametric viewpoint, since the collective
behavior of wild species can be inferred from the Multivariate Analysis of the em-
pirical distribution function of counts of individuals (Manté, Durbec and Dauvin
, 2005). Nevertheless, we think that the parametric approach of Kendall (1948),
with sound parameters (reproduction rate, immigration rate, mortality, etc.) is
more informative for ecologists than a purely exploratory approach.

Outline: we first remind in Section 2 different stochastic mechanisms generating
the NBD or its limit case, the LS. Then, we examine in Sections 3&4 the rela-
tionships between NBD and LS, in connection with a nice paper of Rao (1971),
and compare thoroughly statistical estimation methods designed for these distribu-
tions. The data are described and analyzed in Section 5: constitution of samples
(replicates) and assessment of the estimators. Finally, the ecological results are
commented in Section 6, and Section 7 is dedicated to coclusion and discussion.

2. BIOLOGICAL INTERPRETATIONS OF THE PARAMETERS OF THE NEGATIVE
BINOMIAL AND LOG SERIES DISTRIBUTIONS

We remind in this Section different stochastic mechanisms generating the NBD
or its limit case, the LS.

2.1. NBD and LS: two models for collections. Boswell and Patil (1970)
have given twelve different mechanisms generating the NBD, and two mechanisms
generating the Truncated Negative Binomial Distribution (TNBD). Two of these
mechanisms sound well-adapted for ecological tables of counts. The first one is
the well-known Gamma-Poisson model, reminded in greater detail hereunder. The
second one obtains the TNBD as the equilibrium group-size distribution of a system
of difference equations (see also (Cohen , 1972)). The LS is afterward obtained as a
zero-truncated Poisson mixture, or as a group-size distribution (Boswell and Patil ,
1971). These theoretical results explain why the same distributions are well-suited
for modeling rows and columns of ecological tables, and why LS is well-suited for
fitting a variety of frequency biological series recorded at different taxonomic level
(species, genera, family,...) (Williams , 1944).

To our knowledge, Williams (1944, 1947, 1952) was the first to notice that LS
is naturally associated with the grouping of random counts. He distinguished two
cases (Williams , 1947), corresponding to rows or columns of our table.
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(1) “In a randomized collection of individual insects (as, for example, a number
of moths caught in a light trap) which are later classified into species,
the catch is randomized on the individuals, and in addition to an increase
in the size of the sample will bring in new individuals to species already
represented, i.e. new units in old groups.”

(2) “If, on the other hand, collections of rats are made, and the number of fleas
on each rat counted, then an increase in the number of rats examined will
not add any fleas to the rats already counted, i.e. all the new units will be
in new groups. In this case, the sample is randomized by groups.”

Remark 1. We will study data of the second category, and trawls will play the part
of rats in the second example above. It is worth noting that Williams (1947, p. 263)
has shown that in this case the first parameter of the LS (a, z) distribution should
increase with the total number of counts, denoted 5. More precisely, if L similar
lists of length Sy of a common distribution LS (ag, zo) are merged we will have on
the one hand oy = 9’:—;, where f; denotes the frequency of counts represented by

one individual in any of the L lists, and on the other hand « ~ LT{)l ~Layg=f %
Thus, roughly speaking, a should be proportional to the number of merged series
or, in other words, is is inseparably a measure of sampling redundancy (associated
with each species), and the propensity to clumping of this species.

2.2. The Gamma-Poisson model. This model is standard for counts associated
with ecological surveys (rows) (Fisher, Corbet and Williams , 1943; Diserud , 2001).
Each random count obeys a Poisson distribution, whose random intensity obeys
v (K,B). Suppose P has been fixed; then, the more K is close to zero, the more the
probability density of v (K,3) is concentrated near zero (for instance, its median

max -1
w, % [ (Chen and Rubin , 1986)). Thus, the more K is close

to zero, the more a sample of NBD (K, ) will consist of small integers, and a great
number of individuals collected in a survey should be split into a large number of
rare species, and fewer and fewer common species. That is why % is sometimes
considered as an index of diversity or of aggregation (Fisher, Corbet and Williams ,
1943; Elliot , 1979; Taylor, Woiwod and Perry , 1979), depending on the context, and
K is considered as an intrinsic parameter (Rao , 1971), with a biological meaning
(this point of view has been contested by Taylor, Woiwod and Perry (1979)).

As for B, Rao (1971) considered that increasing by a multiplying factor a > 0
the probability of a fish being caught increases the same way B, since a vy (K,B) ~
v (K, a*B). Thus, "the parameter P depends on the efficiency of the trap” (here: the
trawl). This fact was already mentioned by Fisher, Corbet and Williams (1943)
and Anscombe (1950), who underscored that the “efficiency of the trap” must
include time of exposure (standardization of the data).

In conclusion, according to this model, K is an intrinsic biological characteristic
of the organism of interest; since B is related to the efficiency of the trap for catching
the species considered, it is intrinsic too.

belongs to }

2.3. A population growth model for a single species . Kendall (1948) pro-
posed a birth-and-dead model of population growth with immigration, starting with
no individual at time —7 (large) and leading to a Negative Binomial distribution
of the population size at each time ¢t > T. The first parameter of this distribution
is K = é, where ¢ is the immigration incidence and p is the reproductive power of
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the species (by binary fission). Consequently, K ~ 0 when the immigration is neg-
ligible, or when the reproduction power is important; of course, the last condition
brings to mind aggregation.

The second parameter is, at time ¢, ; := %, where p denotes the
mortality incidence of the species. The variations of ; depends on the ratio ﬁ;
if ﬁ > 1, B; grows exponentially, as well as the population size. If ﬁ <1, B is

again a growing function of ¢, but , li+m B, = —Nf 5> ﬁ. As a consequence, if > p
—+00
(in case of overfishing, for instance), . ligl By ~ ﬁ should be small, and we should
——+o0

have for such a species e of parameters (K., . ):

(2.1) Log (Be) ~ —Log (K.) + Log (;) .

According to this model, K is also an intrinsic biological characteristic of the
organisms of interest, but P asymptotically results simultaneously from an in-
trinsic property of the species (its reproductive power) and from mixed (intrin-
sic/extrinsic) factors: immigration and mortality, which can simultaneously depend
on the species and on the environment.

3. FroM NBD 1O ULSD: THE THREE-PARAMETER MODEL OF RAO

Fisher, Corbet and Williams (1943) fitted observed frequency of species by LS,
which depends on the parameters a and x, which are estimated by solving the
equations:

S=—-alLog(l—ux)

N=a"%

where S denotes the observed number of species and N the total number of
individuals. Fisher derived these equation from the expression of the density of the
NBD:

(3.1)

Pt K+n-1

(3.2) P(NBD (K,B)=n) (1—1—‘13)””( ( K1 )

where K > 0 and 8 > 0 (a number of other parametrization are classically used
(Bliss and Fisher , 1953; Boswell and Patil , 1970; Vaudor, Lamouroux and Olivier ,
2011)). Defining z := % and letting K converge towards zero, Fisher, Corbet and
Williams (1943) found that the expected number of species with n > 0 individuals
should be Zz". Thus, actually, the LS “is not a probability distribution, but a
model for means” (Watterson , 1974): it is in fact an unstandardized distribution,
denoted ULSD by Rao (1971).

Remark 2. Other authors (Quenouille , 1949; Boswell and Patil , 1971; Taylor,
Kempton and Woiwod , 1976) considered instead the normalized series (LSD),
which depends only on z, since in this case « = —1/1n (1 — z) is not to be estimated.

Rao (1971) noted that Fisher’s demonstration was not correct (see also Boswell
and Patil (1971, p. 101)) and proved that, if a vector of counts of length /5 results
from the Gamma-Poisson model, we would actually have:
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. B K+r—-1
53 B =0 (2 00)

where f,. denotes the frequency of counts represented by r > 1 individuals and
a = K . Thus, the distribution of average frequencies would be that of an unstan-
dardized zero-truncated distribution, named UNBD (K,B, «) by Rao (1971).
Afterward, under the conditions

(8, K) = (20,0)

(3.4) P,

he obtained the ULSD (a, z).
To estimate the parameters of UNBD (K,*B, ), Rao (1971) proposed a pseudo-
maximum likelihood method, whose system of equations is:

(3.5)
N R
S:;ﬁ:a I
R
N:errza‘ﬁzaﬁ

r=1
R r—1 K
DD Klﬂ = aLog (1+9) TP 4o (14 (1) (14 K Log (1-49)))
r=1 =1

where R is the largest observed count. Notice that the second equation of
- -K
systems (3.5) and (3.1) are identical and that Il(imooz MM%) =aLog(1+9P) =
—

—a Log (1 — ). As a consequence, when K is small enough, one shouldn’t discern
much differences between fitting a vector of counts by the zero-truncated distri-

butions TNBD (K,3), UNBD (K,B,a) or ULSD (a, %). It is interesting to

compare issues from these models, since

e we can use two different methods for estimating K: the MLE for TBND
(Wyshak , 1974), and the system (3.5) for UNBD

e ‘B being a parameter common to all the distributions, there are three ways
for estimating it: systems (3.5) or (3.1), and MLE for TBND

e we can use two methods for estimating «, by solving either (3.5) or (3.1);
but notice that we cannot expect a common value of this parameter when
conditions (3.4) are not fulfilled (approximately, at least); consequently, it
is interesting to investigate whether or not the Williams-Rao’s condition
a =~ K  was actually fulfilled by the data (real, or simulated).

4. A ROBUST ESTIMATOR OF (K, %)

It is well-known that MLE suffers from several weaknesses: it can be biased,
neither its uniqueness nor its existence is guaranteed and it is not robust in general,
because its influence function at the model is sensible to outliers or aberrant data
(Basu, Shioya and Park , 2011; Simpson , 1987). In addition, its computational cost
can be excessive: Bliss and Fisher (1953), for instance, claimed that MLE of the
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parameters of NBD (K,B), is “practicable and rapid when the largest observation
does not exceed 20 or 30” (this weakness has mostly disappeared now; nevertheless,
see Section 5.3).

While estimating the ULSD (a, x) parameters doesn’t cause any problem, since
equation (3.1) is quite easy to solve numerically, we encountered a number of conver-
gence issues when fitting TNBD (K,3) or UNBD (K,*B, o) with MLE or pseudo-
MLE, like Vaudor, Lamouroux and Olivier (2011) or Anscombe (1950). Conse-
quently we turned ourselves to another method: the Minimum Hellinger Distance
Estimator (MHDE).

4.1. The robustness of Minimum Distance Estimators. In the seventies,
Beran (1977) established the consistency and asymptotic efficiency of MHDE for
absolutely continuous distributions, as well as its minimax robustness. Ten years
after, Simpson (1987) proved that it has similar desirable properties (asymptotic
normality and high breakdown point) for probabilities supported by N, like NBD
or LSD. More recently, Basu, Shioya and Park (2011) extended Minimum Dis-
tance Estimation to a large family of statistical disparities including the Hellinger
distance. They proved (Basu, Shioya and Park , 2011, p. 43-45) that Minimum
Distance Estimators have the same influence function at the model as MLE (conse-
quently, all of them are first-order efficient). To compare first-order efficient estima-
tors, Rao (1962) introduced second-order efficiency and proved that in the case of
multinomial distributions, the MLE is second-order efficient, contrarily to several
classical estimation methods (minimum chi-square, minimum discrepancy, mini-
mum Kullback-Leibler divergence, and MHDE). Among these alternative methods,
the MHDE was the best one (Rao , 1962, p. 51). Nevertheless, as pointed by
Mandal and Basu (2013), the bias of Minimum Distance Estimators is generally
greater than the one of MLE. That is why these authors, to keep the robustness and
decrease the bias of such estimators, introduced some penalization on the “inliers”
(cells with less data than expected under the model). Anyway, there is indeed no
unbiased estimator for the parameters of NBD (Wang , 1996), and the unicity of
the MHDE is not guaranteed...

4.2. The estimator. Let R be the largest observation in a vector of zero-truncated
counts, and p = {p1,--- ,pr} be the associated proportions. Denoting

P(NBD (K, ) =r)

Mix o) (r) := —
(1+p)*

the probability density associated with the TN BD, we can define the Hellinger
distance between the probabilities p and TNBD (K,P):

(4.1)

R 2
dy (p, TNBD (K,P)) = % > (vEr =yl () + D ey ()

r=1 r>R

To neutralize the influence of empty cells on dy (see the right part of Formula
4.1), a (twice, squared) penalized form of dy has been introduced (Basu, Shioya
and Park , 2011, Section 6.2):
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(42) PHDh (p7 fe) = 2z:rzpr>0 (\/]TT Y f9 (7"))2 + hZ'r:pT.:O f9 (T)

where h is positive and fy is a probability distribution belonging to some given
family of probabilities supported by N. We adopted the default value recommended
by these authors: h = 1.

5. THE MEEZ DATA ANALYSIS

5.1. Data description. The Mauritanian coast, situated on the Atlantic side of
the northwestern African continent, embeds a wide long continental shelf of about
750 km and 36000 km? (see Figure 5.1) with an Exclusive Economic Zone (MEEZ)
of 230000 km?2. The study area extends of 16°05 N in the South with the border
of Senegal and up to 20°36 N in the North with the Western Sahara area. This
study focuses on the analysis of abundance of fish and invertebrates data collected
during annual scientific trawl surveys performed by oceanographic vessels, N’Diago
until 1996 and with Al Awam since 1997 to now on the continental shelf (<200
m depth). These IMROP (Institut Mauritanien de Recherches Océanographiques
et des Péches) vessels have similar performances. The sampling strategy and the
observation protocol remained the same during the 24 years of the study. The sam-
pling method consists in a random stratified sampling design (Bergerard, Domain
and Richer de Forges (1983); Domain (1986) ).

We analyzed 48 demersal fish surveys taking account the number of those stations
which trawling is more than or equal to 60 hauls, a total of 4589 stations are
retained. These surveys conducted between 1987 to 2010 and covered the entire
Mauritanian continental shelf (see Figure 5.1). Trawling speed varied between
2.5 and 3.95 knots, and the duration of fishing ranged from 15 to 40 minutes.
All the species (fish and invertebrate) captured in a given station were identified,
counted and then recorded on the database. Abundance data were standardized
per half an hour of trawling in order to adjust variability in trawling duration.
In addition, each station has been characterized by supplementary environmental
variables: bathymetry, sedimentary type of the substrate, latitude and longitude.

Groundfish assemblages properly sampled in the MEEZ were composed on 543
species, belonging to 322 genera and 176 families.

The set of counts associated with each species sampled in the MEEZ consist of a
mass of spatio-temporal observations. Because the spatial distribution of groundfish
species is strongly influenced by the physical environment (Lamouroux et al. , 1999;
Gaertner & al. , 1999; Johnson & al. , 2013), we split each one of these sets into an
appropriate number of subsets (replicates), associated with homogeneous physical
conditions (typical habitats). Then, for each species in each typical habitat, we
estimated from these replicates the parameters of the distributions TN BD (K,*B),

UNBD (K,B,a) and ULSD (oz, %) Afterward, we compared the estimators

and determined the best one.

5.2. Constituting habitats and replicates. The sampled stations were dis-
tributed in a vast zone of various geographical, bathymetric and sedimentary specifics.
We established a typology of trawl stations according to their bathymetry (denoted
B) and sedimentary nature (denoted S), defining typical habitats.
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More specifically, each station is associated with a vector (7, j, B, S), whose two
first coordinates are longitude and latitude. We underscore that to any sampled
position (i, j) is associated a whole set w(; ;) (of size N(; ;)) of environmental char-
acteristics vectors, corresponding to all the stations sampled in places confounded
with (i, 7), because of lack of precision in the position of boats:

Wig) = { (Bmgsys Smeisy) + 1< miigy < Neijy } -

Consequently, classical methods designed for spatial data (kriging, thin-plate splines,
regression, etc.) cannot be used. We instead consider that we face a continuous
random field of probability distributions, associating to each position (z,y) a proba-
bility distribution €2, ,y such that w(; ;) is a sample of (); ;). Thus, to any position
(i,7) is associated a probability density describing the local distribution of envi-
ronmental characteristics. Our problem consists in classifying such functions under
contiguity constraints. Dabo-Niang, Yao, Pischedda, Cuny and Gilbert (2010) pro-
posed a method for clustering such data, which has been adapted for our purpose.
In short, it consists in

(1) choosing a distance A (P, Q) between probabilities: we chose the discrep-
ancy metric (Gibbs and Su , 2002):

A(PQ) = sup |fp (b) — fq (b)],

where fp and fg denote associated density estimates and b is some closed
ball of the domain of variation D of the environmental characteristics

(2) estimating the spatial density S(z,y) of environmental characteristics in the
neighborhood of (z,y), through a kernel method (Dabo-Niang, Hamdad,
Ternyck and Yao , 2014)

(3) detecting the set {Q,,,1 <m < M} of functional modes of S(z,y) (see
Dabo-Niang, S., Ferraty, F. and Vieu, P. (2007); Ferraty and Vieu (2006,
Ch. 9), or Gasser, Hall and Presnell (1998)); the number M of modes is
determined by successive splittings, until the obtained group can be con-
sidered as homogeneous enough (Dabo-Niang, S., Ferraty, F. and Vieu, P.
, 2007; Dabo-Niang, Hamdad, Ternyck and Yao , 2014)

(4) building a partition of the stations by assigning the station (i, j) to the m!"
class if A (Q,,w(;;)) is minimal.

For further details of this method, see (Dabo-Niang, Yao, Pischedda, Cuny and
Gilbert , 2010; Dabo-Niang, Hamdad, Ternyck and Yao , 2014).

It was found that the optimal number of modes (or classes) for the MEEZ data
was M = 4. The obtained typology of stations is represented on Figure 5.1. Then,
for each species and each habitat, a list of counts has been constituted. We con-
sidered that such lists consisted of replicates sampled in similar environmental
conditions.

We will focus in the next section on the “test habitat” C4: it is a sandy or sandy-
muddy habitat, with depth lower than 100m. This is a zone of seasonal upwelling,
while C2 is situated in a zone of permanent upwelling and neither C1 nor C3 are
affected by this important phenomenon. More precisely, C4 is under the influence
of two ocean currents; these currents and the profile of the continental shelf trig-
ger an important seasonal upwelling phenomenon, from December to March. These
water masses (less saline and poor in nutrients) result from the intensification of the
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FIGURE 5.1. Map of trawl stations in four different station classes

identified by a clustering method based on environmental variables:

bathymetry, sedimentary types and geographic positions.
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Guinea current in the Cap Blanc area. Consequently, C4 is a high plankton produc-
tivity area, supporting a large variety of fish communities, with many commercial
species that sustain fishing activities.

5.3. Comparing the estimators (counts from C4). A great number of species
(541) were found in this habitat, but many of them were rarely observed. More
precisely, 240 species were observed less than 6 times (in other words, their num-
ber of counts was § < 5), and discarded from subsequent analysis. But extremely
abundant species cause problems too! Suppose for instance that for some species
the maximum observed count was R = 95211 (a real case). Then, solving the
system (3.5) or minimizing (4.2) is practically impossible (excessive time and mem-
ory consumption). While Bliss and Fisher (1953) recommended that R should
be less than 30, we fixed 3000 as a maximum. Thus, in the estimation steps of
TNBD we used, for extremely abundant species, truncated count vectors of length
R < min (3000, R), while the genuine value R could be kept for evaluating good-
ness of fit. Among the 301 species kept, 46 species were extremely numerous, and
we fitted their truncated counts.

We will now compare the results obtained on this habitat with four estimators:

(1) the classical estimator for the parameters of ULSD («a, z) (Fisher, Corbet
and Williams , 1943)

(2) the classical MLE for the parameters of TNBD (K,) (Wyshak , 1974)

(3) the pseudo-MLE for UNBD (K,*B, ) (Rao , 1971)

(4) the MHDE for TN BD (K,B), obtained by globally minimizing the PH Dy,
(4.2), with h =1 and fp := H(K,‘B)

5.3.1. A global insight: goodness of fit statistics per estimator. The quality of fit
was evaluated by the truncated Hellinger distance:

(5.1 0,1)3 df (o) = - 5 (m— N <r>)2

where fR(r) := Jo(r) same notations as in Section 4). To
Jo" (r) 1= fo(0)=2psr Jo (7) ( )
each one of the 301 retained species, e (say), are associated four goodness of

fit criteria: d}} (pe’ H?K7€B)AILE)’ d}} (pe’ H?K>q37(1)3ao>’ dql; (pe’H?me)PHDh) and

d%} (pe, 11¢ ) We plotted kernel density estimates of these criteria (sample

(v.2)yrsp
size=301) on Figure 5.2; the reader can see that, in general, the goodness of fit

of the MLE for TNBD and UN BD are nearly indistinguishable (this point is ex-
amined in more details hereunder), while ULSD is slightly better and the PHDj,
for TNBD is the best. More precisely, the best estimator was PHD;, for TN BD
(260 species), followed by ULSD (32 species), MLE for TNBD (4 species) and
pseudo-MLE for UNBD (5 species).

5.3.2. Coherency of estimations of (K,B) obtained from MLE or pseudo-MLE.
Notice first that theses estimators are associated with very different model since,
like LS, pseudo-MLE is “a model for means” (Watterson , 1974). There were only
negligible differences between these two estimators, in general. On Figure 5.3, we
plotted the estimations of both the parameters of the TINBD. We can see that,
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FIGURE 5.2. Kernel density estimates of the four goodness of fit criteria
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for most of the species, the estimations are coherent with each other and that,
generally Ky g < Krao while Brrre > Brao- More precisely, 262 species (87% of
the species) were such that |K 1z — Kpao| < 107%; in theses cases [Barre — Braol
was very small too. In conclusion, one may say that these estimators were quite
coherent with each other. Consequently, we considered that the original MLE
method was useless for our purpose and drop it, since the pseudo-MLE method
give us in addition an estimation of «.

5.3.3. Coherency of estimations of (K,B) obtained from pseudo-MLE or PHDj,
. Figure 5.4 shows that the results were very different from the previous ones:
generally, Kpuyp, > Kreo and Bpup, < Prao - Moreover, the upper panel of
this figure shows that the PH Dy, seems free from convergence problems: there are
a number of points on the vertical axis corresponding to “pathological” species,
whose pseudo-MLE converged towards negative (or complex) values of Kgry,; in
such cases, we arbitrarily fixed Kr,, = 107%. The reader can see on this panel
that a number of these aberrant values indeed correspond to acceptable values of

Kpup,-

5.3.4. Checking the Williams-Rao’s condition: o = K [ . Notice that this equality
is implicit in equation (3.3), but that it not a constraint in the root finding of
the pseudo-MLE system (3.5). Consequently, the relationship o ~ K 8 must be
considered as a sign of consistency of the estimation of (K9, o).

Let us investigate whether this condition is at least approximately fulfilled by
the C4 data, i.e. whether the hypothesis @« — f K & 0 (see Sections 2.1 &3) is
not clearly unacceptable in general. Remember that « can be estimated from both
the systems (3.1) and (3.5), while (K,) can be estimated either from the system
(3.5) or (see Section 5.3.3) by minimizing the PH D), given by Formula (4.2). We
have here to face an additional estimation task: because of the dubious nature
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FIGURE 5.3. Simultaneous log-log plots of K and P (MLE and
Rao’s methods).
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(stochastic or structural) of the collected zeros, the true value of 5 is unknown,
while we only know the number ST of strictly positive counts. Then, it is classical
to estimate 3 by:

BER) CANN
(1 ~1/(1 +§B>K>

where (K ,‘f3 is an estimation of the TNBD parameters, obtained either from
pseudo-MLE or PH D;,. The simulations carried on in Appendix 2 show that both
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FIGURE 5.4. Simultaneous log-log plots of K and ¥ (PH Dj, and
Rao’s methods).
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these estimators give similar results, excepted in the considered “aggregative” case
(K = 10%), where none of them estimates 3 well.

Notice that for about 34% of the species from the MEEZ, the estimate B}({ng
of 5 was much greater than the total number of hauls; in the case of 51(312%17 this
happened for 26% of the species. Probably, these species were aggregative ones,
whose counts could not be fitted from any sample of reasonable size (see Appen-
dix 2). We displayed on Figure 5.5 the results associated with all the estimations
of , 8 and (K,*B) obtained from the MEEZ data. On this figure, we can see that
| — K 8| was generally moderate, but was very small only when the parameters
were estimated by pseudo-MLE.
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FI1cURE 5.5. Empirical verification of Williams-Rao’s hypothesis
for the MEEZ data (20% of upper and 20% of lower values dis-

carded).
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6. ECOLOGICAL RESULTS

We represented on Figure 6.1 a selection of “Negative Binomial species” found in
the MEEZ; these species were such that they were better fitted by some TN BD (K,B) 5.
(the best of the three estimators, according to criterion (5.1)) than by ULSD («, z).
Since the counts of a number of species could not probably be correctly fitted by
any standard distribution, we imposed in addition the constraint:

% (pe, H?K%est) <0.53

determined from a Monte Carlo experiment detailed in Appendix 1. In other
words, the species e is displayed in some panel of Figure 6.1 if its counts in the
corresponding habitat were better fitted by TNBD that by ULSD, and if the
goodness-of-fit was satisfactory. We retained this way 84 species in C1, 67 in C2,
193 in C3 and 193 in C4. The habitats C3 and C4 shared about 68% of the species
selected, while 42 species were common to the four habitats.

It is interesting to examine the relationships between K and ‘B, in connection
with the considerations of Section 2. If the right model for the data is the classi-
cal Gamma-Poisson one, the estimated parameters could be independent. On the
contrary, if the right model is Kendall’s one, the relationship (2.1) between the
parameters could hold. Finally, in the case of the group-size model, the param-
eters K and P would also be interrelated (Boswell and Patil , 1970, 1971), but
the relationship would depend on unknown (social) groups and individual factors.
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F1GURE 6.1. Parameters of the species satisfactorily fitted by TN BD
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Such models proved their efficiency for modeling primate social dynamics (Cohen |,
1972), but are they well-suited for fish populations?

On Figure 6.1, we superimposed to these estimations the line Log () = —Log (K,)
corresponding to Kendall’s model (see Section 2.3) with t. &~ .. It is noteworthy
that most of the retained species seem compatible with this model, with (in gen-

eral) a positive additional term Log (ﬁ) - see Formula (2.1). Notice also that in
the setting of Kendall’s model, Log (K,) < 0 < K, = 22 < 1. Thus, for most
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of the displayed species, the mortality rate should slightly exceed the immigration
rate. In all the habitats, most of the selected species compatible with the Kendall’s
model were such that ¢, =~ p., but few species were such that P < 1, i.e. p > p. In
each panel there is also a minority of aggregative species discordant with Kendall’s
model, associated with values of K smaller than e~ 10,

Finally, the counts of very few species were better fitted and well-represented by
the ULSD: 13 species in C1, 6 in C2, 16 in C3 and 20 in C4.

7. CONCLUSION - DISCUSSION

We investigated the performance and coherency with each other of three sta-
tistical models for overdispersed positive counts: the truncated Negative Binomial
distribution TN BD (K,B), the three-parameter variant UNBD (K,B, «) of Rao
(1971) and the Fisher’s log-series. We focused on results obtained in the test habi-
tat C4, but we stress that quite similar ones were obtained in C1, C2 and C3.
Processing the MEEZ data, we thus found that:

(1) the Maximum Likelihood estimations of (K,B) for TNBD and UNBD
were very close to each other

(2) processing either real count or simulated ones, we found similar perfor-
mances of the estimators

(3) the Williams-Rao’s condition: 8 K = « was roughly fulfilled by most species

(4) the penalized minimum Hellinger distance estimator of (K,93) for TNBD
performed better than the other ones, in general.

From the Ecological side, we found that, even if 543 species were sampled, it was
possible to satisfactorily estimate the parameters of less than half of them, because
of the rarity of most species (a general and problematic phenomenon: see Kunin,
W.E. and Gaston, K.J. (1997); Manté, Durbec and Dauvin (2005); Manté, Claudet
and Rebzani-Zahaf (2003)). These manageable species could be split into two
categories. The first one is composed of very aggregative NB species, such that
K =~ 0, and of species obeying a Log-series distribution. The second category
consists of moderately aggregative species (the most numerous ones), obeying some
distribution TNBD (K,B) : K > 0. It is worth noting that species of the second
category seem consistent with the population growth model of Kendall (1948).
Rather surprisingly, no species obeyed the Poisson distribution (i.e. was indifferent
to the presence of fellow creatures).

In this work, we focused on truncated Negative Binomial Distributions essentially
because log-series are supported by strictly positive integers, and because many
important references (Rao , 1971; Kendall , 1948; Fisher, Corbet and Williams
, 1943; Williams , 1944) only considered such counts. Furthermore, it is well-
known that the status of observed zeros is ambiguous in ecological surveys: are
they stochastic, or structural? Zero-inflated models were designed for answering this
question; according to some authors (Lewin et al. , 2010) they clearly outperform
classical models, while other authors do not support them (Warton , 2005); Vaudor,
Lamouroux and Olivier (2011) compared a number of models for counts, and
selected the zero-inflated NBD model for only 1% of the samples! Another way to
deal with extra zeros is the hurdle model, consisting in modeling the zeros by a
separate process. O’Neil and Faddy (2003) processed this way recreational catch
data, where the number of extra zeros (no fishing) largely depends on various events
(holidays, bad weather, ability of fishers, etc.) stranger to the presence of fishes.
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As Vaudor, Lamouroux and Olivier (2011), we think that this model is ill-suited
for scientific systematic catches.

This is also to avoid the unsolvable problem of zeros that we fitted truncated
counts and gathered the data according to habitats. Indeed, if an habitat is ill-suited
for a species, one should not find it frequently in this habitat. Since species which
were observed less than 6 times were excluded from subsequent analysis, we should
not observe mixtures of stochastic and structural zeros. In addition, notice that in
generic cases (sere Appendix 2), the number of (possible) structural zeros can be

satisfactorily estimated by 8 (K3) _ BT while, in the case of aggregative species, the
number of stochastic zeros could be really much bigger than the number of hauls
(this could be named “zero-deflation”)! In the latter case, how could we determine
the nature of some zero? For instance, suppose a theoretical “aggregative species”
was found six times (the minimum to be taken into account in the study). With

(K,9) = (0.0001, 14.43), we should then have theoretically 5 = Fma<y) >

21 x 103, while the total number of hauls in this study is 4589 (1928 in C4).

Now, what about the spatio-temporal structure of the MEEZ data? The spatial
side has been taken into account in a special way, through a continuous random
field of environmental characteristics (see Section 5.2), to build replicates for fitting
NB or LS distributions to the 543 species caught in order to investigate their col-
lective behavior. The most important spatial feature of our data, the presence of
upwellings, was then taken into account through a typology of trawls stations. Our
results show that a number of the species found in the MEEZ could probably be
modeled using dynamical processes. But, to our knowledge, most spatio-temporal
statistical models designed for similar count data (Aidoo et al , 2015; Nielsen et al.
, 2014) are too sophisticated for dealing with a large number of species. Neverthe-
less, our results could probably be used for parametrization of the Poisson intensity
involved in spatio-temporal models focusing on species of interest (Hooten and
Wikle , 2008). Spatio-temporal exploratory methods (Di Salvo, F., Ruggieri, M.
and Plaia, A. , to appear) are probably better suited for dealing with a large num-
ber of species, but supplementary issues should be addressed for processing marine
ecological data:

e qualitative descriptive variables (such as sedimentology) should be included
in the method

e because of the major role of turbulence (more active vertically than hori-
zontally), space is no more isotropic.

ACKNOWLEDGMENTS

We thank the Mauritanian Institute of Oceanographic Research and Fisheries
(IMROP) and the Department of Cooperation and Cultural Action of the Embassy
of France in Mauritania for their support for this study. We also thank all scientists
who contributed to field surveys and data collection, to Jean-Pierre Durbec for
helpful discussions, and to anonymous reviewers for their constructive comments.



FITTING THE TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION TO COUNT DATA: A COMPARISON OF ESTIMATORS.

APPENDIX 1: DETERMINATION OF A THRESHOLD FOR THE TRUNCATED
HELLINGER DISTANCE

While results about the asymptotic distribution of our estimators abound, noth-
ing is known about the distribution of the goodness-of-fit index (see Formula (5.1))

(7.1) d, (TNBD (Kfp) , TNBD (K, f,p))

where (K,‘:B) is an estimate of (K,B). In order to determine from d%; the species

which were correctly fitted, we performed a Monte Carlo study. It consisted in
generating a sample of the statistics (7.1) for each one of the three estimators used,
from a population of “Negative Binomial species” similar to the genuine popula-
tion of the C4 habitat considered as a reference structure. This study is detailed
hereunder.

The reference distribution of (K,P). We plotted on Figure 7.1 the minimum
PH Dy, estimates of the vector (K,B) associated with the species collected in the C4
habitat. About 35.6% of the species were associated with very small values of the
first parameter (K < e~10); discarding these species, we could fit a bi-dimensional
log-normal distribution of parameters (up,>p) to the remaining vectors of esti-
mates, whose confidence ellipsoids are also represented on Figure 7.1. Neither
Log (K ) nor Log (‘ﬁ) strictly obeyed a normal distribution, but this model was
retained for sake of simplicity, since the corresponding 95% confidence region widely
covers the data (see Figure 7.1). As for the discarded species, we postulated that

Log (‘i?) could be considered as obeying some Gaussian distribution, N (ug,0s).

Generating a “population” consistent with the reference distribution.
To build a sample of d%; (TNBD (K,‘ﬁ) , TNBD (K, &B)) for counts having the

same overall characteristics as the C4 data, we generated random counts of 300
“NB species”, whose random parameters obeyed the mixture distribution

M :=0356U ([e"?,e7®]) ® LN (us,05) + 0.644 LN (up,Ep)

where (ug,05) = (—0.701062,2.68525) and (up,Xp) were estimated from the
C4 data. Practically, the parameters (k, p) of each one of the species was first drawn
according to M; then a sample of 3 = 3000 (or 3 = 6000 when k < e~®) counts
obeying NBD (k,p) was drawn. The simulated data were then processed the same
way as the MEEZ ones.

On Figure 7.2, we superimposed to the parameters of the species (estimated by
PHDp,), confidence ellipsoids of the reference distribution LN (up,Xp) and of the
distribution LN (,EE;, fl;;), whose parameters were estimated from the independent
drawns of M. It is worth noting that in this case, there was no significant differ-
ence between the empirical distribution of (K ,‘ii) and the reference distribution

LN (up,¥p) (P-values: Cramer-Von Mises —=0.544087; Pearson x? = 0.523489).

Results. About 30% (93) of the “species” were observed less than 6 times, and
discarded. The goodness-of-fit density estimates for the remaining ones are plotted
on Figure 7.3. The reader can see that in the case of genuine TNB distributions, the
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FicUre 7.1. Fit of the estimated parameters for the C4 data.
The ellipsoids correspond to 50% and 95% confidence regions for
the reference distribution, N (up,X5).

Log(Peup,)

10 T
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performances of the three estimators are very close to each other, while goodness-of-
fit by ULSD is very different. Among the 207 remaining species, only 6 (3%) were
better fitted by ULSD, while the best estimator for TN BD was PH Dy, (185 species:
89% of the total), followed by MLE (10 species) and pseudo-MLE (6 species). Thus
almost all “aggregative species” were discarded, due to their rarity.

The quantile of order 0.95 of the goodness-of-fit associated with PH D), was
0.531096; consequently, we considered that 0.53 is an appropriate threshold for d%;,
which should not be passed by genuine Negative Binomial species. This threshold
has been used in Section 6.

APPENDIX 2: THE WILLAMS-RAO’S CONDITION AND THE ESTIMATION OF (3

Notice that the equality o = K 8 is implicit in equation (3.3), but that it not
a constraint in the root finding of the pseudo-MLE system (3.5). Consequently,
this relationship must be considered as a sign of consistency of the estimation of

(K,B, o). If in addition, the first condition of (3.4) is fulfilled, we should also have:
aLs _ YRao
KB~ KB
50 Monte Carlo experiments with “Negative Binomial species” random draws, in
each one of four typical cases:
e the “mean” one: (K,) = (1.193,73.15) is the mean of the bivariate Log-
normal distribution fitting the C4 habitat non-aggregative species (see Sec-
tion 5.2 and Appendix 1)

~ 1. We investigated the validity of this relationship by performing
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FI1GURE 7.2. In black: 50% and 95% confidence ellipsoids for the
reference distribution NV (up, X p); in gray: same confidence ellip-
soids for the distribution NV ( iip, 573) obtained from the mixture

distribution M. Dots correspond to the parameters of the “NB
species”, estimated by PHDy,.

PHD;,: theoretical versus empirical distribution of (K,p)
Log(P)

Log(K)

L
-10 -5 0

FIGURE 7.3. Simulations: density estimates of the four goodness-
of-fit criteria.
TNBD (MLE)

TNBD (PHDp)
Rao UNBD
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FiGURE 7.4. The Willams-Rao’s condition in the bell-shaped case
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FIGURE 7.5. The Willams-Rao’s condition in the "common" case
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o the “common” one: (K,J) = (0.7767,14.43) is the spatial median (Serfling
, 2004) of the parameters of the simulated “NB species”; in this case, we
chose B = 10° as the sample size of each one of the 50 simulations

e an “aggregative” case: (K,J) = (0.0001,14.43), with 8 = 107

e a “bell-shaped” case: (K,B) = (10, 14.43), with 3 = 10%.

In these four cases, the best fit was obtained with PH Dy, and we observed that arg
and agq, could be considered as normally distributed (according to the Cramer-von
Mises test), and that the mean of ag,, was always close to K 8 (T test), while the

relationship ?{—L; ~ 1 was verified only in the aggregative case (Figure 7.6). The

equality ayps = K  was unacceptable in the "common" case (see Figure 7.5), as
well as in the bell-shaped one (Figure 7.4) and in the “mean” case (not shown).



FITTING THE TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION TO COUNT DATA: A COMPARISON OF ESTIMATORS.

FIGURE 7.6. The Willams-Rao’s condition in the aggregative case
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Kp Kp

Rao and LS estimations of a/(K B) for £(y(0.0001 , 14.43))
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From another side, dealing with real data, we often have to face an additional
estimation task: because of the dubious nature of the collected zeros (if there are),
the true value of 3 is unknown and we only know the number 3% of strictly positive
counts. Then, it is classical to estimate S by:

(7.2) pER) AN
(1 -1/(1 +$B)K>

where (K ,‘ﬁ is an estimation of the TNBD parameters, obtained either from

pseudo-MLE or PHD;,. The bell-shaped case is problem-free, because the proba-
bility of zero is extremely weak.

Let us now examine the most interesting case: the "common" one. On Figure 7.7,
we plotted on the left panel KDE estimates of the 50 values of the expression

(7.2) obtained with (Kap a) — (K Raos B Rao, VRao) and divided by f8: they were
very close to 1. On the right panel, we plotted the values of (7.2) obtained with
(K,‘i&‘) = (Kpup,,Bprup,)- Thus, this figure shows that all estimates of 8 are

excellent in the "common" case; as a consequence, the results above concerning the
Willams-Rao’s condition (see Figure 7.5) stay valid in this case.

Quite similar results were obtained in the “mean” case, as the reader can see on
Figure 7.8.
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FIGURE 7.7. Estimating 3: the "common" case
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FIGURE 7.8. Estimating 8: the "mean" case
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Things are very different in the aggregative situation, as the reader can see on
Figure 7.9: the estimator (7.2) based on (Kgao, B Rrao, ¥Rao) strongly underesti-
mates or overestimates 3. More precisely, in about 40% of the samples, 5 was

o +
highly overestimated which is natural, since lim (%) — - B —. As for
K50 K In (1 + ‘13)

the estimator (7.2) associated with (IA(, if3) = (Kpup,,Bprup, ), it always underes-

timated 8. Consequently, when K is very small, the consistency of the estimations
of the parameters of UNBD (K,, o) is questionable and the log-series model is
probably more sound - even if the fit is not quite as good as with UNBD (K,*B, «).
This is the meaning of Figure 7.6, undoubtedly.
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FIGURE 7.9. Estimating /3 in the aggregative case; the 5% upper
values were dropped
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