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Introduction

Ecological data frequently consist of two-way r × c tables of counts, whose rows are associated with surveys (spatial-temporal positions, generally) and columns are associated with species. Roughly speaking, such tables can be analyzed through two dierent approaches. On the one hand, multivariate methods are widely used to investigate relationships between the community structure (columns) and the spatio-temporal variations of the surveys (rows), frequently in connection with explanatory environmental variables. On the other hand, an alternative way, much earlier in Ecological Statistics, consists in modeling the rows or the columns count distributions. Most authors focus on tting the rows of such tables, because distributions of counts are closely associated with biodiversity [START_REF] Magurran | Species abundance distributions: pattern or processes?[END_REF] or stochastic abundance models for communities [START_REF] Watterson | Models for the logarithmic species abundance distributions[END_REF][START_REF] Diserud | Detecting changes in diversity in a uctuating environment based on simulation of stochastic processes[END_REF].

For example, the log-series (LS) introduced by Fisher, Corbet and [START_REF] Fisher | The relation between the number of species and the number of individuals in a random sample of an animal population[END_REF] is standard for evaluating or modeling biodiversity [START_REF] Taylor | Diversity statistics and the Log-Series model[END_REF][START_REF] Magurran | Species abundance distributions: pattern or processes?[END_REF][START_REF] Watterson | Models for the logarithmic species abundance distributions[END_REF][START_REF] Diserud | Detecting changes in diversity in a uctuating environment based on simulation of stochastic processes[END_REF]. Besides, the LS has been also used to model the columns of such tables; for instance, [START_REF] Williams | The Logarithmic Series and its application to biological problems[END_REF] (see also [START_REF] Bliss | Fitting the Negative Binomial distribution to biological data[END_REF]) reported that it tted well the number of lice per head of prisoners, as well as the number of eas on rats, and [START_REF] Quenouille | A relation between the Logarithmic, Poisson and Negative Binomial series[END_REF] reported that the number of bacteria in a colony is also well-tted by this series. Notice nally that the LS was obtained by [START_REF] Fisher | The relation between the number of species and the number of individuals in a random sample of an animal population[END_REF] as a limit case of the Negative Binomial distribution (NBD), which is also classically used for tting count data [START_REF] Bliss | Fitting the Negative Binomial distribution to biological data[END_REF][START_REF] Elliot | Some methods for the statistical analysis of samples of benthic invertebrates[END_REF][START_REF] Vaudor | Comparing distribution models for small samples of overdispersed counts of freshwater sh[END_REF].

From another side, [START_REF] Kendall | On some modes of population growth leading to R. A. Fisher's logarithmic series distribution[END_REF] has shown that both NBD and LS can be obtained as stable solutions of a single-species population growth process. As a consequence, estimating the parameters of the distribution of counts of each species (columns) would bring information about its dynamics. Notice that this task could be also tackled from a non-parametric viewpoint, since the collective behavior of wild species can be inferred from the Multivariate Analysis of the empirical distribution function of counts of individuals [START_REF] Manté | A functional data-analytic approach to the classication of species according to their spatial dispersion. Application to a marine macrobenthic community from the Bay of Morlaix (Western English Channel)[END_REF]. Nevertheless, we think that the parametric approach of [START_REF] Kendall | On some modes of population growth leading to R. A. Fisher's logarithmic series distribution[END_REF], with sound parameters (reproduction rate, immigration rate, mortality, etc.) is more informative for ecologists than a purely exploratory approach.

Outline: we rst remind in Section 2 dierent stochastic mechanisms generating the NBD or its limit case, the LS. Then, we examine in Sections 3&4 the relationships between NBD and LS, in connection with a nice paper of [START_REF] Rao | Some comments on the logarithmic series distribution in the analysis of insect trap data[END_REF], and compare thoroughly statistical estimation methods designed for these distributions. The data are described and analyzed in Section 5: constitution of samples (replicates) and assessment of the estimators. Finally, the ecological results are commented in Section 6, and Section 7 is dedicated to coclusion and discussion.

Biological interpretations of the parameters of the Negative

Binomial and Log Series Distributions

We remind in this Section dierent stochastic mechanisms generating the NBD or its limit case, the LS.

2.1. NBD and LS: two models for collections. [START_REF] Boswell | Chance mechanisms generating the Negative Binomial distribution[END_REF] have given twelve dierent mechanisms generating the NBD, and two mechanisms generating the Truncated Negative Binomial Distribution (TNBD). Two of these mechanisms sound well-adapted for ecological tables of counts. The rst one is the well-known Gamma-Poisson model, reminded in greater detail hereunder. The second one obtains the TNBD as the equilibrium group-size distribution of a system of dierence equations (see also [START_REF] Cohen | Markov population processes as models of primate social and population dynamics[END_REF]). The LS is afterward obtained as a zero-truncated Poisson mixture, or as a group-size distribution [START_REF] Boswell | Chance mechanisms generating logarithmic series distribution used in the analysis of number of species and individuals In[END_REF]. These theoretical results explain why the same distributions are well-suited for modeling rows and columns of ecological tables, and why LS is well-suited for tting a variety of frequency biological series recorded at dierent taxonomic level (species, genera, family,...) [START_REF] Williams | Some applications of the Logarithmic Series and the Index of diversity to ecological problems[END_REF].

To our knowledge, [START_REF] Williams | Some applications of the Logarithmic Series and the Index of diversity to ecological problems[END_REF][START_REF] Williams | The Logarithmic Series and its application to biological problems[END_REF][START_REF] Williams | Sequences of wet and of dry days considered in relation to the Logarithmic Series[END_REF] was the rst to notice that LS is naturally associated with the grouping of random counts. He distinguished two cases [START_REF] Williams | The Logarithmic Series and its application to biological problems[END_REF], corresponding to rows or columns of our table.

(1) In a randomized collection of individual insects (as, for example, a number of moths caught in a light trap) which are later classied into species, the catch is randomized on the individuals, and in addition to an increase in the size of the sample will bring in new individuals to species already represented, i.e. new units in old groups.

(2) If, on the other hand, collections of rats are made, and the number of eas on each rat counted, then an increase in the number of rats examined will not add any eas to the rats already counted, i.e. all the new units will be in new groups. In this case, the sample is randomized by groups.

Remark 1. We will study data of the second category, and trawls will play the part of rats in the second example above. It is worth noting that Williams (1947, p. 263) has shown that in this case the rst parameter of the LS (α, x) distribution should increase with the total number of counts, denoted β. More precisely, if L similar lists of length β 0 of a common distribution LS (α 0 , x 0 ) are merged we will have on the one hand α 0 ≈ f1 x0 , where f 1 denotes the frequency of counts represented by one individual in any of the L lists, and on the other hand α ≈ L f1 x0 ≈ L α 0 ≈ β α0 β0 .

Thus, roughly speaking, α should be proportional to the number of merged series or, in other words, is is inseparably a measure of sampling redundancy (associated with each species), and the propensity to clumping of this species.

2.2. The Gamma-Poisson model. This model is standard for counts associated with ecological surveys (rows) [START_REF] Fisher | The relation between the number of species and the number of individuals in a random sample of an animal population[END_REF][START_REF] Diserud | Detecting changes in diversity in a uctuating environment based on simulation of stochastic processes[END_REF].

Each random count obeys a Poisson distribution, whose random intensity obeys γ (K, P). Suppose P has been xed; then, the more K is close to zero, the more the probability density of γ (K, P) is concentrated near zero (for instance, its median belongs to max(0,K-1 3 ) P , K P [START_REF] Chen | Bounds for the dierence between median and mean of Gamma and Poisson distributions[END_REF]). Thus, the more K is close to zero, the more a sample of N BD (K, P) will consist of small integers, and a great number of individuals collected in a survey should be split into a large number of rare species, and fewer and fewer common species. That is why 1 K is sometimes considered as an index of diversity or of aggregation [START_REF] Fisher | The relation between the number of species and the number of individuals in a random sample of an animal population[END_REF][START_REF] Elliot | Some methods for the statistical analysis of samples of benthic invertebrates[END_REF][START_REF] Taylor | The Negative Binomial as a dynamic ecological model for aggregation, and the density dependence of K[END_REF], depending on the context, and K is considered as an intrinsic parameter [START_REF] Rao | Some comments on the logarithmic series distribution in the analysis of insect trap data[END_REF], with a biological meaning (this point of view has been contested by [START_REF] Taylor | The Negative Binomial as a dynamic ecological model for aggregation, and the density dependence of K[END_REF]).

As for P, [START_REF] Rao | Some comments on the logarithmic series distribution in the analysis of insect trap data[END_REF] considered that increasing by a multiplying factor a > 0 the probability of a sh being caught increases the same way P, since a γ (K, P) ∼ γ (K, a P). Thus, the parameter P depends on the eciency of the trap (here: the trawl). This fact was already mentioned by [START_REF] Fisher | The relation between the number of species and the number of individuals in a random sample of an animal population[END_REF] and [START_REF] Anscombe | Sampling theory of the negative binomial and logarithmic series distributions[END_REF], who underscored that the eciency of the trap must include time of exposure (standardization of the data).

In conclusion, according to this model, K is an intrinsic biological characteristic of the organism of interest; since P is related to the eciency of the trap for catching the species considered, it is intrinsic too. 2.3. A population growth model for a single species . [START_REF] Kendall | On some modes of population growth leading to R. A. Fisher's logarithmic series distribution[END_REF] proposed a birth-and-dead model of population growth with immigration, starting with no individual at time -T (large) and leading to a Negative Binomial distribution of the population size at each time t ≥ T . The rst parameter of this distribution is K = ι ρ , where ι is the immigration incidence and ρ is the reproductive power of the species (by binary ssion). Consequently, K ≈ 0 when the immigration is negligible, or when the reproduction power is important; of course, the last condition brings to mind aggregation.

The second parameter is, at time t, P t := ρ(exp(t(ρ-µ))-1) ρ-µ

, where µ denotes the mortality incidence of the species. (2.1)

Log (P e ) ≈ -Log (K e ) + Log ι e µ e .
According to this model, K is also an intrinsic biological characteristic of the organisms of interest, but P asymptotically results simultaneously from an intrinsic property of the species (its reproductive power) and from mixed (intrinsic/extrinsic) factors: immigration and mortality, which can simultaneously depend on the species and on the environment.

3. From NBD to ULSD: the three-parameter model of Rao Fisher, Corbet and Williams (1943) tted observed frequency of species by LS, which depends on the parameters α and x, which are estimated by solving the equations:

(3.1) S = -α Log (1 -x) N = α x (1-x)
where S denotes the observed number of species and N the total number of individuals. Fisher derived these equation from the expression of the density of the N BD:

(3.2)

P (N BD (K, P) = n) = P n (1 + P) n+K K + n -1 K -1
where K > 0 and P > 0 (a number of other parametrization are classically used [START_REF] Bliss | Fitting the Negative Binomial distribution to biological data[END_REF][START_REF] Boswell | Chance mechanisms generating the Negative Binomial distribution[END_REF][START_REF] Vaudor | Comparing distribution models for small samples of overdispersed counts of freshwater sh[END_REF]). Dening x := P 1+P and letting K converge towards zero, Fisher, Corbet and [START_REF] Fisher | The relation between the number of species and the number of individuals in a random sample of an animal population[END_REF] found that the expected number of species with n > 0 individuals should be α n x n . Thus, actually, the LS is not a probability distribution, but a model for means [START_REF] Watterson | Models for the logarithmic species abundance distributions[END_REF]: it is in fact an unstandardized distribution, denoted U LSD by [START_REF] Rao | Some comments on the logarithmic series distribution in the analysis of insect trap data[END_REF].

Remark 2. Other authors [START_REF] Quenouille | A relation between the Logarithmic, Poisson and Negative Binomial series[END_REF][START_REF] Boswell | Chance mechanisms generating logarithmic series distribution used in the analysis of number of species and individuals In[END_REF][START_REF] Taylor | Diversity statistics and the Log-Series model[END_REF]) considered instead the normalized series (LSD), which depends only on x, since in this case α = -1/ ln (1 -x) is not to be estimated. [START_REF] Rao | Some comments on the logarithmic series distribution in the analysis of insect trap data[END_REF] noted that Fisher's demonstration was not correct (see also Boswell and Patil (1971, p. 101)) and proved that, if a vector of counts of length β results from the Gamma-Poisson model, we would actually have:

(3.3) E (f r ) = α P r (1 + P) r+K K + r -1 K -1
where f r denotes the frequency of counts represented by r ≥ 1 individuals and α = K β. Thus, the distribution of average frequencies would be that of an unstandardized zero-truncated distribution, named U N BD (K, P, α) by [START_REF] Rao | Some comments on the logarithmic series distribution in the analysis of insect trap data[END_REF].

Afterward, under the conditions

(3.4) (β, K) → (∞, 0) β K = α he obtained the U LSD (α, x).
To estimate the parameters of U N BD (K, P, α), [START_REF] Rao | Some comments on the logarithmic series distribution in the analysis of insect trap data[END_REF] proposed a pseudomaximum likelihood method, whose system of equations is:

(3.5) S = R r=1 f r = α 1 -(1 + P) -K K N = R r=1 r f r = α P = α x 1-x R r=1 f r r-1 i=1 1 K + i = α Log (1 + P) 1-((1+P) -K ) K + α K 2 -1 + (1 + P) -K (1 + K Log (1 + P))
where R is the largest observed count. Notice that the second equation of systems (3.5) and (3.1) are identical and that lim

K→0 α 1-((1+P) -K ) K = α Log (1 + P) = -α Log (1 -x).
As a consequence, when K is small enough, one shouldn't discern much dierences between tting a vector of counts by the zero-truncated distributions T N BD (K, P), U N BD (K, P, α) or U LSD α, P 1+P . It is interesting to compare issues from these models, since

• we can use two dierent methods for estimating K: the MLE for T BN D [START_REF] Wyshak | Algorithm AS 68: A Program for Estimating the Parameters of the Truncated Negative Binomial[END_REF], and the system (3.5) for U N BD • P being a parameter common to all the distributions, there are three ways for estimating it: systems (3.5) or (3.1), and MLE for T BN D • we can use two methods for estimating α, by solving either (3.5) or (3.1); but notice that we cannot expect a common value of this parameter when conditions (3.4) are not fullled (approximately, at least); consequently, it is interesting to investigate whether or not the Williams-Rao's condition α ≈ K β was actually fullled by the data (real, or simulated).

A robust estimator of (K, P)

It is well-known that MLE suers from several weaknesses: it can be biased, neither its uniqueness nor its existence is guaranteed and it is not robust in general, because its inuence function at the model is sensible to outliers or aberrant data [START_REF] Basu | Statistical inference. The Minimum Distance approach[END_REF][START_REF] Simpson | Minimum Hellinger Distance Estimation for the analysis of count data[END_REF]. In addition, its computational cost can be excessive: [START_REF] Bliss | Fitting the Negative Binomial distribution to biological data[END_REF], for instance, claimed that MLE of the parameters of N BD (K, P), is practicable and rapid when the largest observation does not exceed 20 or 30 (this weakness has mostly disappeared now; nevertheless, see Section 5.3).

While estimating the U LSD (α, x) parameters doesn't cause any problem, since equation (3.1) is quite easy to solve numerically, we encountered a number of convergence issues when tting T N BD (K, P) or U N BD (K, P, α) with MLE or pseudo-MLE, like [START_REF] Vaudor | Comparing distribution models for small samples of overdispersed counts of freshwater sh[END_REF] or [START_REF] Anscombe | Sampling theory of the negative binomial and logarithmic series distributions[END_REF]. Consequently we turned ourselves to another method: the Minimum Hellinger Distance Estimator (MHDE).

4.1. The robustness of Minimum Distance Estimators. In the seventies, [START_REF] Beran | Minimum Hellinger Distance Estimates for parametric models[END_REF] established the consistency and asymptotic eciency of MHDE for absolutely continuous distributions, as well as its minimax robustness. Ten years after, [START_REF] Simpson | Minimum Hellinger Distance Estimation for the analysis of count data[END_REF] proved that it has similar desirable properties (asymptotic normality and high breakdown point) for probabilities supported by N, like N BD or LSD. More recently, [START_REF] Basu | Statistical inference. The Minimum Distance approach[END_REF] extended Minimum Distance Estimation to a large family of statistical disparities including the Hellinger distance. They proved (Basu, Shioya and Park , 2011, p. 43-45) that Minimum Distance Estimators have the same inuence function at the model as MLE (consequently, all of them are rst-order ecient). To compare rst-order ecient estimators, [START_REF] Rao | Ecient estimates and optimum inference procedures in large samples (with discussion)[END_REF] introduced second-order eciency and proved that in the case of multinomial distributions, the MLE is second-order ecient, contrarily to several classical estimation methods (minimum chi-square, minimum discrepancy, minimum Kullback-Leibler divergence, and MHDE). Among these alternative methods, the MHDE was the best one (Rao , 1962, p. 51). Nevertheless, as pointed by [START_REF] Mandal | Minimum disparity estimation: improved eciency through inliers modication[END_REF], the bias of Minimum Distance Estimators is generally greater than the one of MLE. That is why these authors, to keep the robustness and decrease the bias of such estimators, introduced some penalization on the inliers (cells with less data than expected under the model). Anyway, there is indeed no unbiased estimator for the parameters of NBD [START_REF] Wang | Estimation problems for the two-parameters negative binomial distribution[END_REF], and the unicity of the MHDE is not guaranteed... 4.2. The estimator. Let R be the largest observation in a vector of zero-truncated counts, and p = {p 1 , • • • , p R } be the associated proportions. Denoting

Π (K,P) (r) := P (N BD (K, P) = r) 1 - 1 (1+P) K
the probability density associated with the T N BD, we can dene the Hellinger distance between the probabilities p and T N BD (K, P):

(4.1) d H (p, T N BD (K, P)) := 1 √ 2 R r=1 √ p r -Π (K,P) (r) 2 + r>R Π (K,P) (r)
To neutralize the inuence of empty cells on d H (see the right part of Formula 4.1), a (twice, squared) penalized form of d H has been introduced (Basu, Shioya and Park , 2011, Section 6.2): (4.2)

P HD h (p, f θ ) := 2 r:pr>0 √ p r -f θ (r) 2 + h r:pr=0 f θ (r)
where h is positive and f θ is a probability distribution belonging to some given family of probabilities supported by N. We adopted the default value recommended by these authors: h = 1. We analyzed 48 demersal sh surveys taking account the number of those stations which trawling is more than or equal to 60 hauls, a total of 4589 stations are retained. These surveys conducted between 1987 to 2010 and covered the entire Mauritanian continental shelf (see Figure 5.1). Trawling speed varied between 2.5 and 3.95 knots, and the duration of shing ranged from 15 to 40 minutes.

All the species (sh and invertebrate) captured in a given station were identied, counted and then recorded on the database. Abundance data were standardized per half an hour of trawling in order to adjust variability in trawling duration.

In addition, each station has been characterized by supplementary environmental variables: bathymetry, sedimentary type of the substrate, latitude and longitude.

Groundsh assemblages properly sampled in the MEEZ were composed on 543 species, belonging to 322 genera and 176 families.

The set of counts associated with each species sampled in the MEEZ consist of a mass of spatio-temporal observations. Because the spatial distribution of groundsh species is strongly inuenced by the physical environment [START_REF] Lamouroux | Fish habital preferences in large streams of southern France[END_REF][START_REF] Gaertner | Spatial structure and habitat associations of demersal assemblages in the Gulf of Lions: a multicompartimental approach[END_REF][START_REF] Johnson | Linking temperate demersal sh species to habitat: scales, patterns and future directions[END_REF], we split each one of these sets into an appropriate number of subsets (replicates), associated with homogeneous physical conditions (typical habitats). Then, for each species in each typical habitat, we estimated from these replicates the parameters of the distributions T N BD (K, P), U N BD (K, P, α) and U LSD α, P 1+P . Afterward, we compared the estimators and determined the best one. 5.2. Constituting habitats and replicates. The sampled stations were distributed in a vast zone of various geographical, bathymetric and sedimentary specics.

We established a typology of trawl stations according to their bathymetry (denoted B) and sedimentary nature (denoted S), dening typical habitats.

More specically, each station is associated with a vector (i, j, B, S), whose two rst coordinates are longitude and latitude. We underscore that to any sampled position (i, j) is associated a whole set ω (i,j) (of size N (i,j) ) of environmental characteristics vectors, corresponding to all the stations sampled in places confounded with (i, j), because of lack of precision in the position of boats:

ω (i,j) := B m (i,j) , S m (i,j) : 1 ≤ m (i,j) ≤ N (i,j) .
Consequently, classical methods designed for spatial data (kriging, thin-plate splines, regression, etc.) cannot be used. We instead consider that we face a continuous random eld of probability distributions, associating to each position (x, y) a probability distribution Ω (x,y) such that ω (i,j) is a sample of Ω (i,j) . Thus, to any position (i, j) is associated a probability density describing the local distribution of environmental characteristics. Our problem consists in classifying such functions under contiguity constraints. Dabo-Niang, Yao, Pischedda, Cuny and Gilbert (2010) proposed a method for clustering such data, which has been adapted for our purpose.

In short, it consists in (1) choosing a distance ∆ (P, Q) between probabilities: we chose the discrepancy metric [START_REF] Gibbs | On choosing and bounding probability metrics[END_REF]: (4) building a partition of the stations by assigning the station (i, j) to the m th class if ∆ Ω m , ω (i,j) is minimal.

∆ (P, Q) = sup b⊆D |f P (b) -f Q (b)| ,
For further details of this method, see (Dabo-Niang, Yao, Pischedda, Cuny and Gilbert , 2010; Dabo-Niang, Hamdad, Ternyck and Yao , 2014).

It was found that the optimal number of modes (or classes) for the MEEZ data was M = 4. The obtained typology of stations is represented on Figure 5.1. Then, for each species and each habitat, a list of counts has been constituted. We considered that such lists consisted of replicates sampled in similar environmental conditions.

We will focus in the next section on the test habitat C4: it is a sandy or sandymuddy habitat, with depth lower than 100m. This is a zone of seasonal upwelling, while C2 is situated in a zone of permanent upwelling and neither C1 nor C3 are aected by this important phenomenon. More precisely, C4 is under the inuence of two ocean currents; these currents and the prole of the continental shelf trigger an important seasonal upwelling phenomenon, from December to March. These water masses (less saline and poor in nutrients) result from the intensication of the Guinea current in the Cap Blanc area. Consequently, C4 is a high plankton productivity area, supporting a large variety of sh communities, with many commercial species that sustain shing activities.

5.3. Comparing the estimators (counts from C4). A great number of species (541) were found in this habitat, but many of them were rarely observed. More precisely, 240 species were observed less than 6 times (in other words, their number of counts was β ≤ 5), and discarded from subsequent analysis. But extremely abundant species cause problems too! Suppose for instance that for some species the maximum observed count was R = 95211 (a real case). Then, solving the system (3.5) or minimizing (4.2) is practically impossible (excessive time and memory consumption). While [START_REF] Bliss | Fitting the Negative Binomial distribution to biological data[END_REF] recommended that R should be less than 30, we xed 3000 as a maximum. Thus, in the estimation steps of TNBD we used, for extremely abundant species, truncated count vectors of length R ≤ min (3000, R), while the genuine value R could be kept for evaluating goodness of t. Among the 301 species kept, 46 species were extremely numerous, and we tted their truncated counts.

We will now compare the results obtained on this habitat with four estimators:

(1) the classical estimator for the parameters of U LSD (α, x) [START_REF] Fisher | The relation between the number of species and the number of individuals in a random sample of an animal population[END_REF] (2) the classical MLE for the parameters of T N BD (K, P) [START_REF] Wyshak | Algorithm AS 68: A Program for Estimating the Parameters of the Truncated Negative Binomial[END_REF] (3) the pseudo-MLE for U N BD (K, P, α) [START_REF] Rao | Some comments on the logarithmic series distribution in the analysis of insect trap data[END_REF]) (4) the MHDE for T N BD (K, P), obtained by globally minimizing the P HD h (4.2), with h = 1 and f θ := Π (K,P) .

5.3.1.

A global insight: goodness of t statistics per estimator. The quality of t was evaluated by the truncated Hellinger distance:

(5.1) . We plotted kernel density estimates of these criteria (sample size=301) on Figure 5.2; the reader can see that, in general, the goodness of t of the MLE for T N BD and U N BD are nearly indistinguishable (this point is examined in more details hereunder), while U LSD is slightly better and the P HD h for T N BD is the best. More precisely, the best estimator was P HD h for T N BD (260 species), followed by U LSD (32 species), MLE for T N BD (4 species) and pseudo-MLE for U N BD (5 species).

[0, 1] d T H (p, f θ ) := 1 √ 2 R r=1 √ p r -f R θ (r) 2 where f R θ (r) := f θ (r) 1-f θ (0)- r>R f θ (r) (same
5.3.2. Coherency of estimations of (K, P) obtained from MLE or pseudo-MLE.

Notice rst that theses estimators are associated with very dierent model since, like LS, pseudo-MLE is a model for means [START_REF] Watterson | Models for the logarithmic species abundance distributions[END_REF]. There were only negligible dierences between these two estimators, in general. On Figure 5.3, we plotted the estimations of both the parameters of the T N BD. We can see that, was very small too. In conclusion, one may say that these estimators were quite coherent with each other. Consequently, we considered that the original MLE method was useless for our purpose and drop it, since the pseudo-MLE method

give us in addition an estimation of α.

5.3.3. Coherency of estimations of (K, P) obtained from pseudo-MLE or P HD h . Figure 5.4 shows that the results were very dierent from the previous ones:

generally, K P HD h > K Rao and P P HD h < P Rao . Moreover, the upper panel of this gure shows that the P HD h seems free from convergence problems: there are a number of points on the vertical axis corresponding to pathological species, whose pseudo-MLE converged towards negative (or complex) values of K Rao ; in such cases, we arbitrarily xed K Rao = 10 -6 . The reader can see on this panel that a number of these aberrant values indeed correspond to acceptable values of K P HD h . 5.3.4. Checking the Williams-Rao's condition: α = K β . Notice that this equality is implicit in equation (3.3), but that it not a constraint in the root nding of the pseudo-MLE system (3.5). Consequently, the relationship α ≈ K β must be considered as a sign of consistency of the estimation of (K, P, α).

Let us investigate whether this condition is at least approximately fullled by the C4 data, i.e. whether the hypothesis α -β K ≈ 0 (see Sections 2.1 &3) is not clearly unacceptable in general. Remember that α can be estimated from both the systems (3.1) and (3.5), while (K, P) can be estimated either from the system (3.5) or (see Section 5.3.3) by minimizing the P HD h given by Formula (4.2). We have here to face an additional estimation task: because of the dubious nature these estimators give similar results, excepted in the considered aggregative case (K = 10 -4 ), where none of them estimates β well.

Notice that for about 34% of the species from the MEEZ, the estimate β (K,P) Rao of β was much greater than the total number of hauls; in the case of β (K,P) P HD h , this happened for 26% of the species. Probably, these species were aggregative ones, whose counts could not be tted from any sample of reasonable size (see Appendix 2). We displayed on Figure 5.5 the results associated with all the estimations of α, β and (K, P) obtained from the MEEZ data. On this gure, we can see that |α -K β| was generally moderate, but was very small only when the parameters were estimated by pseudo-MLE. 

Ecological results

We represented on Figure 6.1 a selection of Negative Binomial species found in the MEEZ; these species were such that they were better tted by some T N BD (K, P) Best (the best of the three estimators, according to criterion (5.1)) than by U LSD (α, x).

Since the counts of a number of species could not probably be correctly tted by any standard distribution, we imposed in addition the constraint:

d T H p e , Π e (K,P) Best ≤ 0.53 determined from a Monte Carlo experiment detailed in Appendix 1. In other words, the species e is displayed in some panel of Figure 6.1 if its counts in the corresponding habitat were better tted by T N BD that by U LSD, and if the goodness-of-t was satisfactory. We retained this way 84 species in C1, 67 in C2, 193 in C3 and 193 in C4. The habitats C3 and C4 shared about 68% of the species selected, while 42 species were common to the four habitats.

It is interesting to examine the relationships between K and P, in connection with the considerations of Section 2. If the right model for the data is the classical Gamma-Poisson one, the estimated parameters could be independent. On the contrary, if the right model is Kendall's one, the relationship (2.1) between the parameters could hold. Finally, in the case of the group-size model, the parameters K and P would also be interrelated (Boswell andPatil , 1970, 1971), but the relationship would depend on unknown (social) groups and individual factors. Such models proved their eciency for modeling primate social dynamics [START_REF] Cohen | Markov population processes as models of primate social and population dynamics[END_REF], but are they well-suited for sh populations?

On Figure 6.1, we superimposed to these estimations the line Log (P e ) = -Log (K e ) corresponding to Kendall's model (see Section 2.3) with ι e ≈ µ e . It is noteworthy that most of the retained species seem compatible with this model, with (in general) a positive additional term Log ιe µe -see Formula (2.1). Notice also that in the setting of Kendall's model, Log (K e ) ≤ 0 ⇐⇒ K e = ιe ρe ≤ 1. Thus, for most of the displayed species, the mortality rate should slightly exceed the immigration rate. In all the habitats, most of the selected species compatible with the Kendall's model were such that ι e ≈ µ e , but few species were such that P < 1, i.e. µ ρ. In each panel there is also a minority of aggregative species discordant with Kendall's model, associated with values of K smaller than e -10 .

Finally, the counts of very few species were better tted and well-represented by the U LSD: 13 species in C1, 6 in C2, 16 in C3 and 20 in C4.

Conclusion -Discussion

We investigated the performance and coherency with each other of three statistical models for overdispersed positive counts: the truncated Negative Binomial distribution T N BD (K, P), the three-parameter variant U N BD (K, P, α) of [START_REF] Rao | Some comments on the logarithmic series distribution in the analysis of insect trap data[END_REF] and the Fisher's log-series. We focused on results obtained in the test habitat C4, but we stress that quite similar ones were obtained in C1, C2 and C3.

Processing the MEEZ data, we thus found that:

(1) the Maximum Likelihood estimations of (K, P) for T N BD and U N BD

were very close to each other

(2) processing either real count or simulated ones, we found similar performances of the estimators

(3) the Williams-Rao's condition: β K = α was roughly fullled by most species (4) the penalized minimum Hellinger distance estimator of (K, P) for T N BD performed better than the other ones, in general.

From the Ecological side, we found that, even if 543 species were sampled, it was possible to satisfactorily estimate the parameters of less than half of them, because of the rarity of most species (a general and problematic phenomenon: see Kunin,

W.E. and Gaston, K.J. (1997); [START_REF] Manté | A functional data-analytic approach to the classication of species according to their spatial dispersion. Application to a marine macrobenthic community from the Bay of Morlaix (Western English Channel)[END_REF]; [START_REF] Manté | Fairly processing rare and common species in multivariate analysis of ecological series. Application to macrobenthic communities from Algiers harbour[END_REF]). These manageable species could be split into two categories. The rst one is composed of very aggregative NB species, such that K ≈ 0, and of species obeying a Log-series distribution. The second category consists of moderately aggregative species (the most numerous ones), obeying some distribution T N BD (K, P) : K 0. It is worth noting that species of the second category seem consistent with the population growth model of [START_REF] Kendall | On some modes of population growth leading to R. A. Fisher's logarithmic series distribution[END_REF].

Rather surprisingly, no species obeyed the Poisson distribution (i.e. was indierent to the presence of fellow creatures).

In this work, we focused on truncated Negative Binomial Distributions essentially because log-series are supported by strictly positive integers, and because many important references [START_REF] Rao | Some comments on the logarithmic series distribution in the analysis of insect trap data[END_REF][START_REF] Kendall | On some modes of population growth leading to R. A. Fisher's logarithmic series distribution[END_REF][START_REF] Fisher | The relation between the number of species and the number of individuals in a random sample of an animal population[END_REF][START_REF] Williams | Some applications of the Logarithmic Series and the Index of diversity to ecological problems[END_REF] only considered such counts. Furthermore, it is wellknown that the status of observed zeros is ambiguous in ecological surveys: are they stochastic, or structural? Zero-inated models were designed for answering this question; according to some authors [START_REF] Lewin | When no catches matter: coping with zeros in environmental assessments[END_REF] they clearly outperform classical models, while other authors do not support them [START_REF] Warton | Many zeros does not mean zero ination: comparing the goodness-of-t of parametric models to multivariate abundance data[END_REF] Neil and Faddy (2003) processed this way recreational catch data, where the number of extra zeros (no shing) largely depends on various events (holidays, bad weather, ability of shers, etc.) stranger to the presence of shes.

As [START_REF] Vaudor | Comparing distribution models for small samples of overdispersed counts of freshwater sh[END_REF], we think that this model is ill-suited for scientic systematic catches.

This is also to avoid the unsolvable problem of zeros that we tted truncated counts and gathered the data according to habitats. Indeed, if an habitat is ill-suited for a species, one should not nd it frequently in this habitat. Since species which were observed less than 6 times were excluded from subsequent analysis, we should not observe mixtures of stochastic and structural zeros. In addition, notice that in generic cases (sere Appendix 2), the number of (possible) structural zeros can be satisfactorily estimated by β ( K, P) -β + while, in the case of aggregative species, the number of stochastic zeros could be really much bigger than the number of hauls (this could be named zero-deation)! In the latter case, how could we determine the nature of some zero? For instance, suppose a theoretical aggregative species was found six times (the minimum to be taken into account in the study). With (K, P) = (0.0001, 14.43), we should then have theoretically β ≈ 6 K ln (1 + P) > 21 × 10 3 , while the total number of hauls in this study is 4589 (1928 in C4).

Now, what about the spatio-temporal structure of the MEEZ data? The spatial side has been taken into account in a special way, through a continuous random eld of environmental characteristics (see Section 5.2), to build replicates for tting NB or LS distributions to the 543 species caught in order to investigate their collective behavior. The most important spatial feature of our data, the presence of upwellings, was then taken into account through a typology of trawls stations. Our results show that a number of the species found in the MEEZ could probably be modeled using dynamical processes. But, to our knowledge, most spatio-temporal statistical models designed for similar count data [START_REF] Aidoo | Evaluation of geostatistical estimators and their applicability to characterise the spatial patterns of recreational shing catch rates[END_REF][START_REF] Nielsen | A statistical model for estimation of sh density including correlation in size, space, time and between species from research survey data[END_REF] are too sophisticated for dealing with a large number of species. Nevertheless, our results could probably be used for parametrization of the Poisson intensity involved in spatio-temporal models focusing on species of interest [START_REF] Hooten | A hierarchical Bayesian non-linear spatiotemporal model for the spread of invasive species with application to the Eurasian Collared-Dove[END_REF]. Spatio-temporal exploratory methods (Di Salvo, F., Ruggieri, M.

and Plaia, A. , to appear) are probably better suited for dealing with a large number of species, but supplementary issues should be addressed for processing marine ecological data:

• qualitative descriptive variables (such as sedimentology) should be included in the method

• because of the major role of turbulence (more active vertically than horizontally), space is no more isotropic. The ellipsoids correspond to 50% and 95% condence regions for the reference distribution, N (µ B , Σ B ).

performances of the three estimators are very close to each other, while goodness-oft by U LSD is very dierent. Among the 207 remaining species, only 6 (3%) were better tted by ULSD, while the best estimator for T N BD was P HD h (185 species:

89% of the total), followed by MLE (10 species) and pseudo-MLE (6 species). Thus almost all aggregative species were discarded, due to their rarity.

The quantile of order 0.95 of the goodness-of-t associated with P HD h was 0.531096; consequently, we considered that 0.53 is an appropriate threshold for d T H , which should not be passed by genuine Negative Binomial species. This threshold has been used in Section 6.

Appendix 2: The Willams-Rao's condition and the estimation of β Notice that the equality α = K β is implicit in equation (3.3), but that it not a constraint in the root nding of the pseudo-MLE system (3.5). Consequently, this relationship must be considered as a sign of consistency of the estimation of (K, P, α). If in addition, the rst condition of (3.4) is fullled, we should also have: • the common one: (K, P) = (0.7767, 14.43) is the spatial median [START_REF] Sering | Nonparametric multivariate descriptive measures based on spatial quantiles[END_REF] of the parameters of the simulated NB species; in this case, we chose β = 10 5 as the sample size of each one of the 50 simulations • an aggregative case: (K, P) = (0.0001, 14.43), with β = 10 7 • a bell-shaped case: (K, P) = (10, 14.43), with β = 10 4 . In these four cases, the best t was obtained with P HD h , and we observed that α LS and α Rao could be considered as normally distributed (according to the Cramer-von Mises test), and that the mean of α Rao was always close to K β (T test), while the relationship α LS K β ≈ 1 was veried only in the aggregative case (Figure 7.6). The equality α LS = K β was unacceptable in the "common" case (see Figure 7.5), as well as in the bell-shaped one (Figure 7.4) and in the mean case (not shown). Let us now examine the most interesting case: the "common" one. On Figure 7.7, we plotted on the left panel KDE estimates of the 50 values of the expression (7.2) obtained with K, P, α = (K Rao , P Rao , α Rao ) and divided by β: they were very close to 1. On the right panel, we plotted the values of (7.2) obtained with K, P = (K P HD h , P P HD h ). Thus, this gure shows that all estimates of β are excellent in the "common" case; as a consequence, the results above concerning the Willams-Rao's condition (see Figure 7.5) stay valid in this case.

α LS K β ≈ α Rao K β ≈ 1.
Quite similar results were obtained in the mean case, as the reader can see on . As for the estimator (7.2) associated with K, P = (K P HD h , P P HD h ), it always underestimated β. Consequently, when K is very small, the consistency of the estimations of the parameters of U N BD (K, P, α) is questionable and the log-series model is probably more sound -even if the t is not quite as good as with U N BD (K, P, α). This is the meaning of Figure 7.6, undoubtedly. 

  5. The MEEZ Data analysis 5.1. Data description. The Mauritanian coast, situated on the Atlantic side of the northwestern African continent, embeds a wide long continental shelf of about 750 km and 36000 km 2 (see Figure5.1) with an Exclusive Economic Zone (MEEZ) of 230000 km 2 . The study area extends of 16°05 N in the South with the border of Senegal and up to 20°36 N in the North with the Western Sahara area. This study focuses on the analysis of abundance of sh and invertebrates data collected during annual scientic trawl surveys performed by oceanographic vessels, N'Diago until 1996 and with Al Awam since 1997 to now on the continental shelf (<200 m depth). These IMROP (Institut Mauritanien de Recherches Océanographiques et des Pêches) vessels have similar performances. The sampling strategy and the observation protocol remained the same during the 24 years of the study. The sampling method consists in a random stratied sampling design[START_REF] Bergerard | Evaluation par chalutage des ressources démersales du plateau continental mauritanien[END_REF];[START_REF] Domain | Evaluation par chalutage des ressources démersales du plateau continental mauritanien[END_REF] ).

  where f P and f Q denote associated density estimates and b is some closed ball of the domain of variation D of the environmental characteristics (2) estimating the spatial density S(x, y) of environmental characteristics in the neighborhood of (x, y), through a kernel method (Dabo-Niang, Hamdad, Ternyck and Yao , 2014)(3) detecting the set {Ω m , 1 ≤ m ≤ M } of functional modes of S(x, y) (see Dabo-Niang, S.,[START_REF] Dabo-Niang | On the using of modal curves for radar waveforms classication[END_REF];Ferraty and Vieu (2006, Ch. 9), or Gasser, Hall and Presnell (1998)); the number M of modes is determined by successive splittings, until the obtained group can be considered as homogeneous enough (Dabo-Niang, S.,[START_REF] Dabo-Niang | On the using of modal curves for radar waveforms classication[END_REF] Dabo-Niang, Hamdad, Ternyck and Yao , 2014) 
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 51 Figure 5.1. Map of trawl stations in four dierent station classes identied by a clustering method based on environmental variables: bathymetry, sedimentary types and geographic positions.
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 52 Figure 5.2. Kernel density estimates of the four goodness of t criteria
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 53 Figure 5.3. Simultaneous log-log plots of K and P (MLE and Rao's methods).
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 55 Figure 5.5. Empirical verication of Williams-Rao's hypothesis for the MEEZ data (20% of upper and 20% of lower values discarded).
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 61 Figure 6.1. Parameters of the species satisfactorily tted by T N BD
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 71 Figure 7.1. Fit of the estimated parameters for the C4 data.
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 72 Figure 7.2. In black: 50% and 95% condence ellipsoids for the reference distribution N (µ B , Σ B ); in gray: same condence ellipsoids for the distribution N µ B , Σ B obtained from the mixture distribution M. Dots correspond to the parameters of the NB species, estimated by P HD h .
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 7 Figure 7.3. Simulations: density estimates of the four goodnessof-t criteria.
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 74 Figure 7.4. The Willams-Rao's condition in the bell-shaped case
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  Figure 7.6. The Willams-Rao's condition in the aggregative case -the blue density is α Rao K β ; the yellow one is α LS K β
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 77 Figure 7.7. Estimating β: the "common" case
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 7 Figure 7.9. Estimating β in the aggregative case; the 5% upper values were dropped

  The variations of P t depends on the ratio ρ

	µ ; µ < 1, P t is µ > 1, P t grows exponentially, as well as the population size. If ρ ρ again a growing function of t, but lim if P t = ρ µ-ρ > ρ µ . As a consequence, if µ ρ t→+∞ (in case of overshing, for instance), lim t→+∞ P t ≈ ρ µ should be small, and we should
	have for such a species e of parameters (K e , P e ):
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Appendix 1: determination of a threshold for the truncated Hellinger distance While results about the asymptotic distribution of our estimators abound, nothing is known about the distribution of the goodness-of-t index (see Formula (5.1)) (7.1)

where K, P is an estimate of (K, P). In order to determine from d T H the species which were correctly tted, we performed a Monte Carlo study. It consisted in generating a sample of the statistics (7.1) for each one of the three estimators used, from a population of Negative Binomial species similar to the genuine population of the C4 habitat considered as a reference structure. This study is detailed hereunder.

The reference distribution of (K, P). We plotted on Figure 7.1 the minimum P HD h estimates of the vector (K, P) associated with the species collected in the C4 habitat. About 35.6% of the species were associated with very small values of the rst parameter ( K ≤ e -10 ); discarding these species, we could t a bi-dimensional log-normal distribution of parameters (µ B , Σ B ) to the remaining vectors of estimates, whose condence ellipsoids are also represented on Figure 7.1. Neither Log K nor Log P strictly obeyed a normal distribution, but this model was retained for sake of simplicity, since the corresponding 95% condence region widely covers the data (see Figure 7.1). As for the discarded species, we postulated that Log P could be considered as obeying some Gaussian distribution, N (µ S , σ S ).

Generating a population consistent with the reference distribution.

To build a sample of d T H T N BD K, P , T N BD (K, P) for counts having the same overall characteristics as the C4 data, we generated random counts of 300 NB species, whose random parameters obeyed the mixture distribution M := 0.356 U e -12 , e -8 ⊗ LN (µ S , σ S ) + 0.644 LN (µ B , Σ B )

where (µ S , σ S ) = (-0.701062, 2.68525) and (µ B , Σ B ) were estimated from the C4 data. Practically, the parameters (k, p) of each one of the species was rst drawn according to M; then a sample of β = 3000 (or β = 6000 when k ≤ e -8 ) counts obeying N BD (k, p) was drawn. The simulated data were then processed the same way as the MEEZ ones. On Figure 7.2, we superimposed to the parameters of the species (estimated by P HD h ), condence ellipsoids of the reference distribution LN (µ B , Σ B ) and of the distribution LN µ B , Σ B , whose parameters were estimated from the independent drawns of M. It is worth noting that in this case, there was no signicant dierence between the empirical distribution of K, P and the reference distribution LN (µ B , Σ B ) (P-values: Cramer-Von Mises =0.544087; Pearson χ 2 = 0.523489).

Results. About 30% (93) of the species were observed less than 6 times, and discarded. The goodness-of-t density estimates for the remaining ones are plotted on Figure 7.3. The reader can see that in the case of genuine TNB distributions, the