
HAL Id: hal-01292179
https://hal.science/hal-01292179v1

Submitted on 22 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation of Non-Stationary Noise Based on Robust
Statistics in Speech Enhancement

van Khanh Mai, Dominique Pastor, Abdeldjalil Aissa El Bey, Raphaël Le
Bidan

To cite this version:
van Khanh Mai, Dominique Pastor, Abdeldjalil Aissa El Bey, Raphaël Le Bidan. Estimation of Non-
Stationary Noise Based on Robust Statistics in Speech Enhancement. [Research Report] RR-2014-03-
SC, Dépt. Signal et Communications (Institut Mines-Télécom-Télécom Bretagne-UEB); Laboratoire
en sciences et technologies de l’information, de la communication et de la connaissance (UMR CNRS
6285 - Télécom Bretagne - Université de Bretagne Occidentale - Université de Bretagne Sud). 2014,
pp.31. �hal-01292179�

https://hal.science/hal-01292179v1
https://hal.archives-ouvertes.fr


 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Collection des rapports de recherche de 

Télécom Bretagne 

 

 RR-2014-03-SC 

 

Estimation of Non-Stationary Noise 
Based on Robust Statistics in Speech 
Enhancement 

Van-Khanh MAI (Télécom Bretagne) 
Dominique PASTOR (Télécom Bretagne) 
Abdeldjalil AISSA-EL-BEY (Télécom Bretagne) 
Raphaël LE-BIDAN (Télécom Bretagne) 
 

 

1, rue de l’Institut  
75000 PARIS – France 

Tél. +33 (0)1 00 00 00 00  

Siret : 000 000 000 000 00 
APE : 0000 A 

www.mines-telecom.fr 

 
 

 
 

Mines ParisTech  
Mines Albi 
Mines Alès 

Mines Douai  
Mines Nantes  

Mines Saint Étienne 
Télécom ParisTech  
Télécom Bretagne 
Télécom SudParis  

Télécom Ecole de Management 
Télécom Lille1 

Eurecom 
 
 



CONTENTS

I Introduction 1

II The DATE 3

III Weak-sparseness model of noisy speech 7

IV Noise power spectrum estimation by E-DATE 10

IV-A Stationary white gaussian noise . . . . . . . . . . . . . . . . . . . . . . . . . . 10

IV-B Colored stationary noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

IV-C Extension to non-stationary noise: The E-DATE algorithm . . . . . . . . . . 12

IV-D Practical implementation of the E-DATE algorithm . . . . . . . . . . . . . . 13

V Performance Evaluation 15

V-A Number of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

V-B Noise Estimation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

V-C Performance Evaluation in Speech Enhancement . . . . . . . . . . . . . . . . 18

V-D Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

VI Conclusion 24

References 25



LIST OF FIGURES

1 Spectrograms of clean and noisy speech signals from the NOIZEUS database. The

noise source is car noise. No weighting function was used to calculate the STFT. 8

2 Principle of noise power spectrum estimation based on the DATE in colored

stationary noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Block E-DATE (B-E-DATE) combined with noise reduction (NR). A single noise

power spectrum estimate is calculated every D non-overlapping frames and used

to denoise each of these D frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Sliding-Window E-DATE (SW-E-DATE) combined with noise reduction. For the

first D −1 frames, a surrogate method for noise power spectrum estimation is

used in combination with noise reduction. Once D frames are available and

upon reception of frame D +`, `≥ 0, the SW-E-DATE algorithm provides the NR

system with a new estimate of the noise power spectrum computed using the

last D frames F`+1, . . . ,F`+D for denoising of the current frame. . . . . . . . . . . . 14

5 Noise estimation quality comparison of several noise power spectrum estimators. 19

6 SNRI with various noise types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Speech quality evaluation after speech denoising (Covl composite criterion). . . . 21

8 Speech quality evaluation after speech denoising (Cbak composite criterion). . . . 22

LIST OF TABLES

I Number of parameters (NP) required by different noise power spectrum estima-

tion algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

II Computational cost of B-E-DATE per group of D frames and per frequency bin . 24

III Computational cost of SW-E-DATE per new frame and per frequency bin . . . . . 24

IV Computational cost of MMSE2 per new frame and per frequency bin . . . . . . . 24



Estimation of Non-Stationary Noise

Based on Robust Statistics in Speech

Enhancement
Van-Khanh Mai, Dominique Pastor, Abdeldjalil Aïssa-El-Bey, and Raphaël Le-Bidan

Institut Télécom; Télécom Bretagne; UMR CNRS 3192 Lab-STICC

Technopôle Brest Iroise CS 83818 29238 Brest, France

Université européenne de Bretagne

Email: Firstname.Lastname@telecom-bretagne.eu

Abstract

We propose a novel method for noise power spectrum estimation in speech enhance-

ment. This method called extended-DATE (E-DATE) extends the d-dimensional amplitude

trimmed estimator (DATE), originally introduced for additive white gaussian noise estima-

tion in [1], to the more challenging scenario of non-stationary noise. The key idea is that,

in each frequency bin and within a sufficiently short time period, the noise instantaneous

power spectrum can be considered as approximately constant and estimated as the variance

of a complex gaussian noise process possibly observed in the presence of the signal of

interest. The proposed method relies on the fact that the Short-Time Fourier Transform

(STFT) of noisy speech signals is sparse in the sense that transformed speech signals

can be represented by a relatively small number of coefficients with large amplitudes in

the time-frequency domain. The E-DATE estimator is robust in that it does not require

prior information about the signal probability distribution except for the weak-sparseness

property. In comparison to other state-of-the-art methods, the E-DATE is found to require

the smallest number of parameters (only two). The performance of the proposed estimator

has been evaluated in combination with noise reduction and compared to alternative

methods. This evaluation involves objective as well as pseudo-subjective criteria.

Index Terms

Speech enhancement, noise estimation, noise reduction, robust statistics.



I. INTRODUCTION

NOWADAYS communication electronic support in general and telephone conversation

in particular often take place in noisy and non-stationary environments such as the

inside of a car, in the street or inside an airport for example. Hence many research efforts

have aimed at improving not only the quality but also the intelligibility of speech. Noise

power spectrum estimation is a key issue in designing robust noise reduction methods

for speech enhancement. Most of the noise estimation algorithms found in the literature

can be classified into four main categories [2], namely histogram-based methods, minimal-

tracking algorithms, time-recursive averaging algorithms, and other techniques derived from

Maximum-Likelihood (ML) or Bayesian estimation principles, e.g. minimum mean square

error (MMSE) methods.

In the first category of algorithm, the noise power spectrum is estimated from the maxi-

mum of the histogram in the time-frequency domain of the observed signal power spectrum,

the latter being determined by using a first-order smoothing recursion [3]. An improvement

of this method involves updating the noise power spectrum uniquely on the frames detected

as noise-only by a chi-square test [4]. However, most of the histogram-based algorithms

have the drawback of being relatively complex in terms of computational cost and memory

resources [5].

In the second family of methods, the noise power spectrum is tracked by using minimum

statistics according to the reasonable hypothesis that the noise power spectrum level is

below that of noisy speech [6], [7]. Firstly, the smoothed noisy speech power spectrum is

evaluated by a first-order recursive operation. Then, the noise variance is computed as

the statistical minimum of the smoothed power spectrum with a factor of correction. The

main difference between the two methods in [6] and [7] lies in the computation of the

smoothing parameter used in the first order recursion. In [6], the smoothing parameter

is chosen empirically, whereas this parameter is derived by minimizing the mean square

error between the noise and the smoothed noisy speech power spectrum in [7]. Minimum-

statistics methods require observing the noisy signals on a sufficiently long time interval in

order to reduce complexity. On the other hand, a long time interval is detrimental to the

quality of the estimate in case of non stationary noise. A trade-off is thus necessary, leading

to a typical time-delay of 1 to 3 seconds in practice. This causes underestimation which

decreases in turn the performance of noise reduction algorithms.

Famous methods of the third category include the Minima-Controlled Recursive-Averaging
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(MCRA) algorithm [8] and its many modifications such as the Improved-MCRA (IMCRA) [5]

or the MCRA2 [9] methods. In this class of algorithms, the noise power spectrum in a given

frequency bin is estimated by first-order recursive operations where smoothing parameters

depend on the conditional speech presence probability in the bin. The main difference

between MCRA, MCRA2 and IMCRA lies in the way the speech-presence probability is

estimated. MCRA and MCRA2 directly estimate the speech-presence probability frame-by-

frame via a smoothing operation whereby, for a given frame, the probability of speech

presence is increased when this frame is detected as noisy speech and decreased otherwise.

A frame is detected as noisy speech if the ratio of the smoothed noisy speech power spectrum

to its local minimum is above a certain threshold, the local minimum being computed by

using the minimum-statistics technique proposed in [7]. Fixed and frequency-dependent

thresholds are used in MCRA and MCRA2, respectively. On the other hand, IMCRA derives

the speech-presence probability in each bin by a two-step estimation of the speech-absence

probability. The first iteration aims at detecting the absence of speech in a given frame,

while the second iteration actually estimates the speech-absence probability from the power

spectral components in the speech-absence frame. The main disadvantage of these methods

is the estimation delay in case of sudden rising noise, this delay being mainly due to the

use of the minimum-statistics methods of [7].

Techniques derived from ML or Bayesian estimation principles overcome the problem of

sudden rising noise by estimating the noise power spectrum from the noise periodogram via

a statistical criterion. In [10], [11], the noise instantaneous power is evaluated by MMSE and

then incorporated in a recursive noise power spectrum estimation technique. [10] proposes

a simple bias compensation of the noise instantaneous power before estimating the noise

power spectrum via the same recursive smoothing and under the same hypotheses as

in [11]. In both cases, however, the noise instantaneous power estimate remains biased.

In contrast, an unbiased estimator for the noise instantaneous spectrum is obtained in

[11] by soft-weighting the noisy speech instantaneous power and the previous noise power

spectrum estimate by the conditional probabilities of speech-absence and speech-presence,

respectively. The noise power spectrum estimation can also be carried out by recursive ML-

Expectation-Maximization [12], similar to MCRA and IMCRA. This approach allows for rapid

noise estimation and tracking by avoiding the use of minimum-statistics methods.

In this paper, we propose a new approach for noise power spectrum estimation that

does not use any model nor require prior knowledge about the signal occurrences and
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probability distributions. Fundamentally, we do not even take into consideration the fact

that the signal of interest here is speech. The approach is henceforth called extended-DATE

(E-DATE) since it basically extends the d-dimensional amplitude trimmed estimator (DATE),

initially proposed in [1] for white gaussian noise, to colored stationary and non-stationary

noise. The main principle at the heart of the E-DATE algorithm is the weak-sparseness

property of the STFT of noisy signals, according to which the sequence of complex values

returned by the STFT in a given time-frequency bin can be modeled as a complex random

signal with unknown distribution and whose unknown probability of occurrence in noise

does not exceed one half. Noise in each bin is assumed to follow a zero-mean complex

gaussian distribution [2, p. 210] so that estimating the noise power spectrum amounts to

estimate the noise variance in each bin, the latter being provided by the DATE. Although

the E-DATE does not rely on minimum-statistics principles or methods, it does however

require a time buffer having the same length than other popular algorithms.

The paper is organized as follows. In Section II, the main features of the DATE are

reviewed. Section III develops the weak-sparseness model for noisy speech. The E-DATE is

then introduced in Section IV, following a step-by-step methodology where we successively

deal with white gaussian noise, stationary noise and non-stationary noise. Two practical

implementations of the E-DATE algorithm are then described. The performance of the E-

DATE algorithm is evaluated in Section V and compared to state-of-the-art methods in

terms of number of parameters and estimation errors. Speech enhancement experimental

comparisons using objective as well as pseudo-subjective criteria are also conducted by

combining the noise estimation methods with a noise reduction system. Conclusions are

finally given in Section VI.

II. THE DATE

For the sake of self-completeness, this section presents the DATE in its full generality.

Given d-dimensional observations of random signals randomly absent or present in inde-

pendent and additive white gaussian noise (AWGN), the purpose of the DATE is to estimate

the noise standard deviation. Such an estimation may serve to detect the signals or estimate

them as in speech denoising. As in [13], the DATE addresses the frequently-encountered case

where 1) most observations follow the same zero-mean normal distribution with unknown

variance, 2) signals of interest have unknown distributions and occurrences in noise. Stan-

dard robust scale estimators such as the very popular median absolute deviation (MAD)
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estimator and the trimmed estimator (T-estimator) have performance that degrades signif-

icantly when the proportion of signal increases. In contrast, the DATE can still estimate

the noise standard deviation when possible signals occur with a probability too large for

usual scale estimators to perform well. As indicated by its name, the DATE basically trims

the norms of the d-dimensional observations. However, in contrast to the conventional T-

estimator, the DATE applies to any dimension and does not fix the number of outliers to

remove. It performs the trimming by assuming that the signal norms are above some known

lower-bound and that the signal probabilities of occurrence are less than one half. These

assumptions bound our lack of prior knowledge about the signals and make it possible to

separate signals from noise. They are particularly suitable for observations obtained after

sparse transforms capable of representing signals by coefficients that are mostly small except

a few ones whose norms are relatively big.

The DATE basically relies on [1, Theorem 1] and can be viewed as a method of moments.

A detailed presentation of the theoretical background of the DATE is beyond the scope of

this paper and the reader is referred to [1] for details. However, the following brief heuristic

presentation may be convenient for the reader. This heuristic exposure departs from that

proposed in [1, Theorem 1], so as to shed different light on the theory behind the DATE.

Notation: In what follows, Id stands for the d ×d identity matrix, N (0,σ2
0Id ) designates

the d-dimensional gaussian distribution with null mean and covariance matrix σ2Id and

1[X ∈ B ] stands for the indicator function of the event [U ∈ B ], where U is any random

variable and B is any borel set in R: 1[U ∈ B ] = 1 if U ∈ B and 1[U ∈ B ] = 0, otherwise.

In addition, Γ is the standard Gamma function and 0F1 is the generalized hypergeometric

function [14, p. 275]. All the random vectors and variables are henceforth assumed to be

defined on the same probability space (Ω,P,E).

Let (Yn)n∈N be a sequence of d-dimensional random observations such that:

(A0) The observations Y1,Y2, . . . ,Yn , . . . are mutually independent, Yn = εnΛn+Xn where Xn ∼
N (0,σ2

0Id ) and εn is Bernoulli distributed with values in {0,1} for each n ∈N.

In this model, each observation is either noise alone or the sum of some signal and noise.

The probability distributions of the signals Λn are supposed to be unknown. Our purpose

is then to estimate σ0.

If all the ratios ‖Λn‖/σ0 are known to be above some sufficiently large signal to noise ratio

(SNR) ρ, it can be expected that some threshold height σ0ξ(ρ) can suitably be chosen to

decide with small error probability that Λn is present (resp. absent) whenever ‖Yn‖ is above
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(resp. less) σ0ξ(ρ). Therefore, most of the non-zero terms in the sum
∑N

n=1 ‖Yn‖1[‖Yn‖ 6
σ0ξ(ρ)] should pertain to noise alone. If the number

∑N
n=1 1[‖Yn‖6 σ0ξ(ρ)] of these non-

zero terms is itself large enough, we should have an approximation of the form∑N
n=1 ‖Yn‖1[‖Yn‖6σ0ξ(ρ)]∑N

n=1 1[‖Yn‖6σ0ξ(ρ)]
≈λσ0.

Such an approximation can actually be proved asymptotically with the help of some addi-

tional assumptions. More precisely, suppose that:

(A1) Λn , Xn and εn are independent for every n ∈N;

(A2) the set of priors
{
P[εn = 1] : n ∈N}

is upper-bounded by 1/2 and the random variables

εn , n ∈N, are independent;

(A3) sup
n∈N

E
[‖Λn‖2

]<∞.

These assumptions including (A0) deserve some comments. To begin with, the independence

assumption in (A0) is mainly technical to prove the results stated in [1]. In fact, our

experimental results below suggest that this assumption is not so constraining in speech

processing, where we deal with non-overlapping but not necessarily independent time

frames. Assumption (A1) simply means that the two hypotheses for the observation occur

independently and that the noise and signal are independent. The model thus assumes prior

probabilities of presence and absence through the random variables εn . However, the impact

of these priors is reduced by assuming that the probabilities of presence and absence are

actually unknown. The role of Assumption (A2) is then to bound this lack of prior knowledge

about the occurrences of the two possible hypotheses that any Yn is supposed to satisfy.

Assumption (A3) simply means that the signals Λn have finite energy.

Under assumptions (A0)-(A3) and with the help of [15, Theorem 1], [1, Theorem 1] then

guarantees that σ0 is the unique positive real number σ such that:

lim
ρ→∞

∥∥∥∥∥ limsup
N→∞

∣∣∣∣∣
∑N

n=1 ‖Yn‖1[‖Yn‖6σξ(ρ)]∑N
n=1 1[‖Yn‖6σξ(ρ)]

−λσ
∣∣∣∣∣
∥∥∥∥∥∞ = 0 (1)

where λ = p
2Γ

(
d+1

2

)
/Γ

(
d
2

)
and ξ(ρ) is the unique positive solution in x to the equality

0F1(d/2;ρ2x2/4) = e ρ
2/2. It is thus natural to estimate the noise standard deviation σ0 by

seeking a possibly local minimum of:∣∣∣∣∣
∑N

n=1 ‖Yn‖1[‖Yn‖6σξ(ρ)]∑N
n=1 1[‖Yn‖6σξ(ρ)]

−λσ
∣∣∣∣∣ , (2)
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when σ ranges over some search interval [σmin,σmax]. Given a lower bound ρ for the ratios

‖Λn‖/σ0, the DATE computes the solution in σ to the equality:∑N
n=1 ‖Yn‖1[‖Yn‖6σξ(ρ)]∑N

n=1 1[‖Yn‖6σξ(ρ)]
=λσ. (3)

Indeed, such a solution trivially minimizes (2).

In addition, an application of Bienaymé-Chebyshev’s inequality makes it possible to deter-

mine the value nmin ∈ {1,2, . . . , N } such that the probability that the number of observations

due to noise alone be above nmin is larger than or equal to some given probability value

Q. The main steps of the DATE are summarized in Algorithm 1, where Y(1),Y(2), . . . ,Y(N ) is

the sequence Y1,Y2, . . . ,YN sorted by increasing norm so that ‖Y(1)‖6 ‖Y(2)‖6 . . .‖Y(N )‖, and

where we have defined

M∗
{‖Y1‖,‖Y2‖,...,‖YN ‖}(n) =


1
n

n∑
k=1

‖Y(k)‖ if n 6= 0

0 if n = 0,

(4)

The parameters on which the DATE relies are thus: the dimension d of the observations, the

number N of observations and the lower bound ρ for the possible SNRs. The two parameters

that directly influence the DATE performance are N and ρ. As recommended in [1, Remark

4], we can use ρ = 4 in practice. Theoretically, N should be large since the theoretical result

on which the DATE relies is asymptotic by nature. However, experimental results show that

the DATE performance is acceptable when N is above 200. This will be confirmed by the

application to speech processing of Sections IV and V.

Another means to choose the minimal SNR required by the DATE is to resort to the notion

of universal threshold [16], as proposed in [17]. Indeed, the coordinates of all the N obser-

vations Y1,Y2, . . . ,YN form a set of N ×d random variables. If no signals were present, these

N ×d random variables would be i.i.d (independent and identically distributed) gaussian

with null mean and variance equal to σ2
0. According to [18, Eqs. (9.2.1), (9.2.2), Section 9.2, p.

187] [19, p. 454] [20, Section 2.4.4, p. 91], the universal threshold λu(N ×d) =σ0
p

2ln(N ×d)

could then be regarded as the maximum absolute value of these gaussian random variables

when N ×d is large. Instead of proceeding as in wavelet shrinkage [16] where the universal

threshold is utilized to discriminate noisy signal wavelet coefficients from wavelet coefficients

of noise alone, the trick proposed in [21] and [17] is to consider λu(N ×d) as the minimum

amplitude that a signal must have to be distinguishable from noise. The minimal SNR can
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Algorithm 1 DATE algorithm for estimation of noise standard deviation

Input:

• A finite subsequence {Y1,Y2, . . . ,YN } of a sequence Y = (Yn)n∈N of d-dimensional real

random vectors satisfying assumptions (A0-A3) above

• A lower bound ρ for the SNRs ‖Λn‖/σ0, n ∈N
• A probability value Q 6 1− N

4(N /2−1)2

Constants: nmin = N /2−√
N /4(1−Q), ξ(ρ), λ

Output: The estimate σ∗
{Y1,Y2,...,YN } of σ0

Computation of σ∗
{Y1,Y2,...,YN }:

Sort Y1,Y2, . . . ,YN by increasing norm so that ‖Y(1)‖6 ‖Y(2)‖6 . . .6 ‖Y(N )‖
if there exists a smallest integer n in {nmin, . . . , N } such that: ‖Y(n)‖ 6(
M∗

{‖Y1‖,‖Y2‖,...,‖YN ‖}(n)/λ
)
ξ(ρ) < ‖Y(n+1)‖

n∗ = n

else

n∗ = nmin

end if

σ∗
{Y1,Y2,...,YN } = M∗

{‖Y1‖,‖Y2‖,...,‖YN ‖}(n∗)/λ

then be defined as ρ = ρ(N ×d) = λu(N ×d)/σ0 =
p

2ln(N ×d). It is an interesting fact that

the value of ρ(N ×d) grows rapidly to 4 with N ×d .

In the sequel, we will consider values returned by STFT. The DATE will therefore be

applied to sequences of real and complex values, that is, one- and two-dimensional data

since complex values can be regarded as 2-dimensional real vectors. It is thus worth recalling

the specific values of ξ(ρ) and λ for d = 1 and d = 2. If d = 1, ξ(ρ) = cosh−1(eρ
2/2) = 1

2ρ+
1
ρ log(1+

√
1−e−ρ2 ) and λ= 0.7979. If d = 2, ξ(ρ) = I−1

0 (e ρ
2/2)/ρ where I0 is the zeroth order

modified Bessel function of the first kind and λ= 1.2533.

III. WEAK-SPARSENESS MODEL OF NOISY SPEECH

The main motivation for utilizing the DATE is that noisy speech signals in the time-

frequency domain after STFT reasonably satisfy the same type of weak-sparseness model

as used to establish [1, Theorem 1]. This weak-sparseness model essentially assumes that

RR-2014-03-SC 7



the noisy speech signal can be represented by a relatively small number of coefficients

with large amplitudes. Indeed, let us consider the spectrograms of Figure 1 obtained by

STFT of typical examples of clean and noisy speech signals. In the time-frequency domain,

speech is composed of a set of time-frequency components or atoms. Most atoms with small

amplitudes are masked in the presence of noise. Only the few atoms whose amplitude

is above some minimum value remain visible in noise. Clearly, the proportion of these

significant atoms does not exceed one half. These remarks lead to the following model for

noisy speech STFTs. In the time domain, the observed signal is given by

 

F
re

q
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cy
 

Time 

(a) Clean speech

 

F
re

q
u
en

cy
 

Time 

(b) Noisy speech

Fig. 1: Spectrograms of clean and noisy speech signals from the NOIZEUS database. The

noise source is car noise. No weighting function was used to calculate the STFT.

y(t ) = s(t )+x(t ) (5)

where s(t ) and x(t ) denotes clean speech and independent additive noise. Note that both are

real-valued signals. The signal in the time domain is transformed into the time-frequency

domain by STFT since most noise reduction systems operate in this particular transform

domain. Hence, all processing is frame-based. Let K be the frame length, or equivalently, the

STFT length. The corresponding system model in the time-frequency domain then reads:

Y (m,k) = S(m,k)+X (m,k) (6)

in which m denotes the frame index, k is the frequency-bin index, and S(m,k) (resp. X (m,k))

stands for the STFT component of the speech signal (resp. noise) at time-frequency point

(m,k). Following [2, page 210], we model each X (m,k) as a complex Gaussian random

variable. By property of discrete Fourier transforms, Y (m,0) and Y (m,K /2) are real-valued,
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whereas Y (m,k) is generally complex for other values of k. By a slight abuse of language,

the latter will be implicitly manipulated as 2-dimensional real vectors.

According to the empirical remarks above, the weak-sparseness model first assumes that

an atomic speech audio source is either present or absent at any given time-frequency

point (m,k). The presence or the absence of this source is modeled by a Bernoulli random

variable ε(m,k). The probability of presence is assumed to be less than or equal to 1/2. Thus

P
[
ε(m,k) = 1

] ≤ 1/2. Second, the atomic audio source must have significant amplitude so

as to contribute effectively to the mixture that composes the speech signal. The minimum

amplitude that such a source must have will hereafter be denoted by ρ. Let us further denote

by Θ(m,k) the underlying atomic audio source. Then, under the previous assumptions, the

noisy speech signal at time-frequency point (m,k) can be modeled as:

Y (m,k) = ε(m,k)Θ(m,k)+X (m,k) (7)

We recognize here the weak-sparseness model [22] applied to speech processing, in the

continuation of [17].

In summary, our model essentially assumes that the STFT of noisy speech signals satisfies

the following three key properties in each time-frequency bin (m,k):

(A’1): the presence/absence of speech ε(m,k) and the atomic speech audio source Θ(m,k)

are independent,

(A’2): the speech-presence probability is not higher than one half,

(A’3): the instantaneous power of the random clean speech signal is upper-bounded by a

finite value.

Assumptions (A’1-A’3) are adaptations of (A1-A3) to the particular case of noisy speech

signals. Regarding (A0), its equivalent form for noisy speech signals is simply Eq. (7).

Our purpose is then to estimate the noise power spectrum σ2
X (m,k) = E[|X (m,k)|2] at

any given time-frequency point (m,k). This problem is similar to the one addressed in [17]

where the signal of interest was a mixture of audio signals including but not limited to

speech signals, and where additive noise was stationary, gaussian and white. The DATE [1]

was used to estimate the noise power spectrum in [17] because this estimator is robust in

the sense that it does not make prior assumption on the statistical nature of the signals of

interest. In the present paper and in contrast to [17], we do not restrict our attention to
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white gaussian noise and generalize the approach of [17] to the estimation of colored and

possibly non-stationary noise in the presence of speech.

IV. NOISE POWER SPECTRUM ESTIMATION BY E-DATE

In this section, we derive the E-DATE algorithm that will be used for noise power spec-

trum estimation in all the experiments conducted in Section V. The derivation follows a

three-step process, which aims at gradually introducing the modifications required to evolve

from the academic white gaussian noise model to the much more realistic, but also more

challenging, practical case of non-stationary noise. More precisely, we first describe the

application of the DATE algorithm to noise power spectrum estimation of noisy speech

signals in the time-frequency domain. We extend the DATE to the case of colored stationary

gaussian noise, and then discuss the estimation of non-stationary noise. This leads to the

E-DATE algorithm, which is specifically designed for noise power spectrum estimation in

non-stationary noisy environments, but can be used with stationary noise as well.

In the following, we suppose to be given M noisy speech frames of K samples. The

frames are assumed to be non-overlapping so as to satisfy assumption (A0). The STFTs are

normalized by 1/
p

K .

A. Stationary white gaussian noise

In the particular case of white gaussian noise, the noise power spectrum is constant

and equals σ2
X over the whole time-frequency plane. Accordingly, and by properties of the

(normalized) STFT, each noise sample X (m,k) in the time-frequency domain is a zero-mean

circularly-symmetric gaussian complex random variable with variance σ2
X :

X (m,k)∼Nc (0,σ2
X ).

Equivalently, X (m,k) may be viewed as a zero-mean two-dimensional real gaussian random

vector with covariance matrix (σ2
X /2)I 2:

X (m,k)∼N
(
0, (σ2

X /2)I 2
)

.

Since the STFT of noisy speech signals is weakly-sparse in the sense of Section III, the

M × (K /2− 1) values Y (m,k) for m ∈ {1,2, . . . , M } and k ∈ {1,2, . . . ,K /2− 1} can be used as

inputs of the two-dimensional (d = 2) version of the DATE to provide an estimate σ̂2
X

of σ2
X . Note that, in principle, another estimate of σ2

X could be obtained by applying
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a one-dimensional (d = 1) DATE on the 2× M real dataset Y (1,0),Y (2,0), . . . ,Y (M ,0) and

Y (1,K /2),Y (2,K /2), . . . ,Y (M ,K /2). However, the size of this second dataset is usually much

smaller than that of the first one. Thus only the first option is used in practice as it leads

to a more reliable estimate. Note also that, due to the Hermitian property of the STFT of

real input signals, |Y (m,k)| = |Y (m,K −k)|. Therefore the frequency bins K /2+1 to K are

not used in the estimation process as they do not bring additional information.

B. Colored stationary noise

For colored stationary noise, the noise power spectrum is no longer constant over the

whole time-frequency plane but may vary as a function of frequency. Consequently, each

noise sample X (m,k) in a given frequency bin k will now be modeled as a zero-mean

complex gaussian random variable with variance σ2
X (k):

X (m,k) ∼Nc
(
0,σ2

X (k)
)
.

Here again, the STFT output sequence Y (m,k) for m = 1,2, . . . , M is assumed to be weakly-

sparse in the sense of Section III so that in each frequency bin k, only a few of these

values will have an SNR above ρ and in a proportion that does not exceed 1/2. As a result

and as illustrated in Figure 2, the extension to colored stationary noise involves running

concurrently K /2+1 independent instances of the DATE to estimate σ2
X (k) in each frequency

bin k = 0,1,2, . . . ,K /2. As discussed earlier, we do not use the DATE to estimate σ2
X (k) for

 

𝑌 1,0 ,𝑌 2,0 ,… ,𝑌 𝑀, 0  𝐷𝐴𝑇𝐸1,𝜌 𝜎𝑋  0  

𝑌 1,1 ,𝑌 2,1 ,… ,𝑌 𝑀, 1  𝐷𝐴𝑇𝐸2,𝜌 𝜎𝑋  1  

…
 

…
 

…
 

𝑌 1,𝐾/2 − 1 ,𝑌 2,𝐾/2 − 1 … ,𝑌 𝑀,𝐾/2 − 1  𝐷𝐴𝑇𝐸2,𝜌 𝜎𝑋  𝐾/2 − 1  

𝑌 1,𝐾/2 ,𝑌 2,𝐾/2 … ,𝑌 𝑀,𝐾/2  𝐷𝐴𝑇𝐸1,𝜌 𝜎𝑋  𝐾/2  

Fig. 2: Principle of noise power spectrum estimation based on the DATE in colored stationary

noise

k > K /2 because of the Hermitian symmetry. For k ∈ {1,2,K /2−1}, the estimate of σ2
X (k) is

computed by the two-dimensional (d = 2) DATE whereas the one dimensional (d = 1) DATE

is used for bins 0 and K /2. For colored noise, assumption (A’1) may not always rigorously
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hold, especially at low frequencies. However, as supported by the experimental results of

Section V, this deviation with respect to the underlying theoretical model turns out to be

no real issue in practice, thanks to the robust behavior of the DATE, even when the signal

presence probability may exceed 1/2 (see [1, Figure 2]).

In contrast to white gaussian noise for which the whole time-frequency plane (≈ MK /2

observations) is used to estimate the noise variance σ2
X , M frames only are available here

to estimate σ2
X (k) in each frequency bin. Clearly a more reliable estimate can be obtained

by increasing M , but this increases in return the overall computational cost and may also

entail some time-delay. A possible solution is to begin with a first estimate σ̂2
X (k) computed

over the first M frames, and then to periodically update this estimate as new frames are

acquired. For stationary noise, the initial number of frames M need not be very high. Even

if the first estimate is not very accurate, it is expected to improve rapidly as new frames

enter the estimation process.

C. Extension to non-stationary noise: The E-DATE algorithm

Most practical applications including speech denoising usually face a mix of stationary as

well as non-stationary noise. Unlike white or colored stationary noise, the power spectrum

of non-stationary noise varies over time and frequency, and, as such, proves to be much

more challenging to estimate. Interestingly, non-stationary noise models including car noise,

babble noise, exhibition noise and others, usually exhibit some form of local stationarity in

time and frequency. In such cases, non-stationary noise can be considered as approximately

stationary within short time periods of D consecutive frames, where parameter D has to

be defined appropriately for each noise model. This amounts to assuming the existence of

a noise power spectrum in this time interval, which is a function of frequency only. The

DATE algorithm for colored stationary noise introduced in Section IV-B can then be used to

estimate the noise power spectrum within this time window of D frames. This is the basis

of the proposed E-DATE algorithm.

Parameter D can be preset once for all or could be optimized for applications where

prior knowledge about noise is available. The choice for duration D results from a trade-off

between estimation accuracy, stationarity and practical constraints such as computational

cost and time-delay. A large value for D may violate the local stationary property. On the

other hand, the number of frames D should be large enough to produce reliable estimates

σ2
X (k). In case D is too small to provide the DATE with a sufficient number of input data, a
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E-DATE 

NR 

(F#1) 

 F#D+2 

NR 

(F#2) 

… 

… 

F#2D 

NR 

(F#D) 

F#2D+1 

E-DATE 

NR 

(F#D+1) 

F#2D+2 

 NR 

(F#D+2) 

… 

E-DATE 

… 

Frame indices 

Noise Estimation 

Noise Reduction 

(NR) 

Time 

NR 

(F#2D) 

… … … 

NR 

(F#2D+1) 

NR 

(F#2D+2) 

… 

Time delay 

Fig. 3: Block E-DATE (B-E-DATE) combined with noise reduction (NR). A single noise power

spectrum estimate is calculated every D non-overlapping frames and used to denoise each

of these D frames.

possible solution consists in grouping several consecutive frequency bins. This is tantamount

to assuming that the noise power spectrum is approximately constant over those frequencies.

Such a procedure however requires prior knowledge on the noise spectrum properties, which

can be irrelevant in practical applications where noise has often unknown type and may

evolve across time. For this reason, this solution will not be further studied below.

In summary, the E-DATE algorithm consists in carrying noise power spectrum estimation

by running a per-bin instance of the DATE (see Figure 2) on periods of D consecutive non-

overlapping frames, where D is chosen so that noise can be considered as approximately

stationary within this time interval. Once an estimate of the noise power spectrum has

been obtained, it can be used for denoising purpose for instance, but will not be taken

into account in the computation of future estimates, as the local power spectrum of non-

stationary noise may change significantly from one period of D frames to the next.

Although the E-DATE algorithm was specifically designed for power spectrum estimation

of non-stationary noise, it can be used without modification for power spectrum estimation

of white gaussian noise or colored stationary noise, thereby offering a robust and universal

noise power spectrum estimator whose parameters are fixed once for all types of noise

considered above. Let us now discuss the practical implementation of the E-DATE algorithm.

D. Practical implementation of the E-DATE algorithm

Two different implementations of the E-DATE algorithm are proposed here.
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F#1 F# 2 F#D+1  …  F#D+2  F#D … 

Frame indices 

Noise Estimation 

Noise Reduction (NR) 

NR (F#1) NR (F#D+2) NR (F#2)  …  NR (F#D) NR (F#D+1) 

Time 

… 

E-DATE E-DATE E-DATE 

Fig. 4: Sliding-Window E-DATE (SW-E-DATE) combined with noise reduction. For the first

D−1 frames, a surrogate method for noise power spectrum estimation is used in combination

with noise reduction. Once D frames are available and upon reception of frame D+`, `≥ 0,

the SW-E-DATE algorithm provides the NR system with a new estimate of the noise power

spectrum computed using the last D frames F`+1, . . . ,F`+D for denoising of the current frame.

The first approach is a straightforward block-based implementation of the algorithm

described in Section IV-C. It involves estimating the noise power spectrum on each period

of D successive non-overlapping frames. This requires storing D frames, calculating the

K /2+1 estimates σ̂2
X (k) using the observations in these D frames, and then waiting for D

new non-overlapping frames. The resulting algorithm is called Block-E-DATE (B-E-DATE)

and summarized in Algorithm 2, where σ̂ = DATEd ,ρ
(
y1, y2, . . . , yn

)
denotes the standard

deviation estimate σ̂ returned by the d-dimensional DATE with minimal SNR ρ and n

real d-dimensional inputs y1, y2, . . . , yn .

Estimation of the noise power spectrum over separate periods of D non-overlapping

frames reduces the overall algorithm complexity. However, this entails a time-delay of D

frames, which must be considered in applications. Consider the particular example of speech

denoising illustrated in 3. Noise reduction is performed on a frame-by-frame basis. A new

noise power spectrum estimate is provided to the noise reduction system by the B-E-DATE

algorithm once every D non-overlapping frames, and then used to denoise each of those D

frames. Clearly, denoising cannot start before the first D non-overlapping frames have been

recorded. This results in an overall latency of about 1 or 2 seconds for typical sampling rates

of 8 and 16 kHz. This delay can then have some impact for speech applications embedded
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in current mobile devices. It will naturally be lesser in applications such as Active Noise

Cancellation (ANC) where frequency rates are much higher.

The delay limitation can be bypassed as follows. First, a standard noise power spec-

trum tracking method is used to estimate the noise power spectrum during the first D −1

non-overlapping frames. Any of the methods mentioned in the introduction can be used for

this purpose. Afterwards, starting from the D th frame onwards, a sliding-window version of

the E-DATE algorithm is used to estimate the noise spectrum on a per-frame basis, using the

latest recorded D non-overlapping frames. This alternative implementation called Sliding-

Window E-DATE (SW-E-DATE) is summarized in Algorithm 3. Its application to speech

denoising is illustrated in Figure 4.

The B-E-DATE and the SW-E-DATE algorithm may be viewed as two particular instances of

a more general buffer-based algorithm. More precisely, the B-E-DATE algorithm corresponds

to the extreme case where the buffer is totally flushed and updated once every D non-

overlapping frames. In contrast, the SW-E-DATE algorithm corresponds to the other extreme

case where only the oldest frame is discarded in order to store the current one, in a First-

In First-Out (FIFO) mode. Clearly, a more general approach between these two extremes

consists in partially updating the buffer by renewing only L frames among D . This point

has not been further investigated in the present work.

Note finally that the proposed implementations of the E-DATE algorithm are not limited

to speech denoising but could find use in any application involving signals corrupted by

additive and independent non-stationary noise, and to which the weak-sparseness model

locally applies.

V. PERFORMANCE EVALUATION

Several comparisons and experiments were conducted in order to assess the performance

and benefits of the E-DATE noise power spectrum estimator in comparison with other

state-of-the-art algorithms. Both the B-E-DATE and the SW-E-DATE implementations were

considered in two different benchmarks. In subsection V-A, we first compare the number

of parameters required by the E-DATE and several classical or more recent noise power

spectrum estimators. Then, we compare in subsection V-B the estimation quality of the

different algorithms in several distinct noise environments. The combination of the noise

power spectrum estimation algorithms with a noise reduction system based on the Log-

MMSE algorithm is investigated using the NOIZEUS speech corpus in subsection V-C. Finally,
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Algorithm 2 Block-Extended-DATE (B-E-DATE) algorithm for noise power spectrum estima-

tion
for m ≥ D do

if mod (m,D) = 0

m∗ = m

σ̂X (m∗,0) = DATE1,ρ
(
Y (m −D +1,0),Y (m −D +2,0), . . . ,Y (m,0)

)
σ̂X (m∗,K /2) = DATE1,ρ

(
Y (m −D +1,K /2),Y (m −D +2,K /2), . . . ,Y (m,K /2)

)
for k := 1 to N

2 −1 do

σ̂X (m∗,k) = DATE2,ρ
(
Y (m −D +1,k),Y (m −D +2,k), . . . ,Y (m,k)

)
σ̂X (m∗,K −k) = σ̂X (m∗,k)

end for

else

σ̂X (m −D,k) = σ̂∗
X (m∗,k)

end if

end for

Algorithm 3 Sliding-Window Extended-DATE (SW-E-DATE) algorithm for noise power

spectrum estimation
for m = 1 to the end of signal do

if m < D

Estimate σ̂X using another noise estimation method

else

σ̂X (m,0) = DATE1,ρ
(
Y (m −D +1,0),Y (m −D +2,0), . . . ,Y (m,0)

)
σ̂X (m,K /2) = DATE1,ρ

(
Y (m −D +1,K /2,Y (m −D +2,K /2)), . . . ,Y (m,K /2)

)
for k := 1 to K

2 +1 do

σ̂X (m,k) = D AT Ed ,ρ
(
Y (m −D +1,k),Y (m −D +2,k), . . . ,Y (m,k)

)
σ̂X (m,K −k) = σ̂X (m,k)

end for

end if

end for
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TABLE I: Number of parameters (NP) required by different noise power spectrum estimation

algorithms

Method MARTIN[7] IMCRA[5] MCRA2[9] MMSE1[10] MMSE2[11] ML-ME[12] E-DATE

NP 7 10 7 3 5 3 2

the time-complexity of the E-DATE algorithm is analyzed in subsection V-D.

A. Number of parameters

Table I gives the number of parameters required by the E-DATE as well as by the state-of-

the-art noise power spectrum estimation algorithms mentioned in the introduction. Derived

from robust statistical signal processing concepts, the E-DATE is the simplest algorithm to

configure, with only two parameters to specify, namely the SNR lower bound ρ and the

number of frames D . This stands in sharp contrast with other popular approaches such

as Minimum Statistics [7], which involves 7 parameters. In practice, the minimal SNR ρ

can be set as explained at the end of Section II so that the only crucial parameter is D .

Working with D = 80 non-overlapping frames of K = 256 samples was found to yield good

performance in all the experiments reported here.

B. Noise Estimation Quality

The estimation quality of the noise power spectrum estimation algorithms listed in Table

I was evaluated on several noise models using the symmetric segmental logarithmic esti-

mation error measure defined in [23]. The difference between the estimated noise power

spectrum σ̂2
X (m,k) and reference noise power spectrum σ2

X (m,k) is evaluated by

Log Er r = 1

MK

M−1∑
m=0

K−1∑
k=0

∣∣∣∣10log10

σ̂2
X (m,k)

σ2
X (m,k)

∣∣∣∣ (8)

where M denotes the total the number of available frames. For white gaussian noise, the

theoretical reference noise power spectrum is known and can be substituted to σ2
X (m,k) in

(8). This is no longer the case for non-stationary noise involved in the NOIZEUS database.

For non stationary noise, the reference noise power spectrum σ2
X (m,k) is estimated as

follows [23]:

σ2
X (m,k) =ασ2

X (m −1,k)+ (1−α)|X (m,k)|2,with α= 0.9.
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Both the B-E-DATE and the SW-E-DATE implementations of the E-DATE algorithm were

evaluated and compared. The SW-E-DATE uses the recently-introduced MMSE2 method

[11] as surrogate algorithm to provide an estimate for the first D−1 frames since, as shown

below, this algorithms turns out to offer excellent performance among state-of-the-art noise

estimators.

The Log Er r measures obtained with the different noise power spectrum estimators are

given in Figure 5. All algorithms have been benchmarked at four SNR levels and against

various noise models, namely white gaussian noise, auto-regressive (AR) colored stationary

noise, and 6 typical non-stationary noise environments.

The results for white and colored stationary noise are given in Figs. 5(a) and 5(b), re-

spectively. The B-E-DATE and SW-E-DATE methods yield the lowest Log Er r error, the best

performance being achieved by the B-E-DATE algorithm in white gaussian noise. This had

to be expected since the underlying DATE algorithm was originally developed for estimating

the standard deviation of additive white gaussian noise.

For non-stationary noise with slowly-varying noise spectrum like exhibition, car, station

or train noise, and depending on the noise level, the B-E-DATE algorithm uniformly obtains

either the best score, or comes very close to the best score, as shown in Figures 5(c), 5(d)

and 5(e), respectively.

Figures 5(f), 5(g) and 5(h) present the results obtained with the least favorable types of

non-stationary noise. In the case of modulate white gaussian noise (resp. babble noise),

the SW-E-DATE (resp. B-E-DATE) algorithm yields the smallest Log Er r error. As illustrated

in Figure 5(h), the two proposed algorithms are among the best in estimating the very

challenging airport noise environment. Their performance closely match those obtained

with the state-of-the-art MMSE2 and ML-EM estimators.

C. Performance Evaluation in Speech Enhancement

In complement to the previous study, the performance of the noise power spectrum esti-

mation algorithms listed in Table I have also been evaluated and compared in combination

with a noise reduction system. The speech denoising experiments are based on the NOIZEUS

database [2], which contains IEEE sentences corrupted by eight types of noise coming from

the AURORA noise database, at four SNR levels, namely 0, 5, 10 and 15 dB. The noise

reduction algorithm retained for our experiments is the Log-MMSE estimator [24]. This

method is a standard reference in speech denoising. It can easily be implemented and is
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(a) white gaussian noise
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(b) AR noise
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(c) car noise
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(d) train noise
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(e) station noise
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(f) modulated white gaussian noise
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(g) babble noise
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Fig. 5: Noise estimation quality comparison of several noise power spectrum estimators.
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Fig. 6: SNRI with various noise types

known to reduce residual noise without distorting too much the speech signal [2, p.230, Sec.

7.7].

Two different criteria have been used to compare the different algorithms. The first one is

the Signal-to-Noise Ratio Improvement (SNRI) objective criterion standardized in the ITU-T

G.160 recommendation for evaluating noise reduction systems [25]. The SNRI performance

obtained with the Log-MMSE combined with the noise power spectrum estimators of Table I

are shown in Figure 6 for various noise environments. Note that 4 noise levels were used for

each noise type, the final SNRI score being computed as the average score over these 4 levels.

We observe that the B-E-DATE and SW-E-DATE yield similar performance measurements

and that they outperform all other methods for each type of noise except airport noise.

The average SNRI score computed over the 11 noise types and labeled Total at the right of

Figure 6 clearly emphasizes the SNRI gain brought by the E-DATE in comparison to other

methods.

The second criterion used to evaluate the noise estimation performance for speech en-

hancement is the composite objective measures proposed in [26] (see also [2]). This criterion

introduces three measures Csi g , Cbak and Covl that are linear combination of some widely

used measures like segmental SNR (segSNR), weighted-slope spectral (WSS), log likelihood
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(a) white gaussian noise
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(b) AR noise
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(c) car noise
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(d) train noise
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(e) station noise
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(f) modulated white gaussian noise
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(g) babble noise
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(h) airport noise

Fig. 7: Speech quality evaluation after speech denoising (Covl composite criterion).
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ratio (LLR), and perceptual evaluation of speech quality (PESQ):
Csi g = 3.093−1.029LLR0.603PESQ−0.009WSS

Cbak = 1.634+0.478PESQ−0.00WSS+0.063segSNR

Cvol = 1.594+0.805PESQ−0.512LRR−0.007.WSS

The three measures Csi g , Cbak and Covl are designed so as to provide a high correlation

with the three usual corresponding subjective measures that are signal distortion (SIG),

background intrusiveness (BAK) and Mean Opinion Score (OVRL). We focus here on the

Covl criterion since it has the highest correlation with the real subjective tests. Figure 7

shows the Covl scores obtained with the different noise power spectrum estimators and

noise environments. For reference purpose, the Covl score obtained with noisy speech but

without noise reduction is shown in dashed lines in each sub-figure. The good performance

of the B-E-DATE and SW-E-DATE are confirmed by the Covl measures obtained in the case

of white gaussian noise, AR noise, car noise, station noise and train noise. These results allow

us to conclude that the E-DATE approach is well-suited for stationary or slowly varying non-

stationary noise. Although not shown here for space limitation, we hasten to mention that

very similar trends were observed for the other two criteria Csi g and Cbak . In the challenging

case of airport noise, all the methods in this paper introduce a large signal distortion at

0dB and 5 dB. At 10 and 15 dB, the E-DATE Covl scores are similar to that obtained by the

other methods (see Fig 7(h)). A detailed analysis of the Cbak scores in babble and airport

noise (see Figure 8) nevertheless reveals that the E-DATE algorithms perform best in terms

of background noise reduction. Two final remarks are in order here. First, the B-E-DATE
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(a) babble noise
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Fig. 8: Speech quality evaluation after speech denoising (Cbak composite criterion).
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algorithm generally performs better than the SW-E-DATE algorithm. This is particularly

evident in Figure 7 and can also be noticed in the other experimental results. This is mainly

due to the fact that our implementation of the SW-E-DATE initially resorts to a surrogate

algorithm to estimate noise power spectrum during the first D = 80 frames, which has inferior

performance to the B-E-DATE. Since these D frames represent a significant part of the total

duration of many of the tested utterances, the performance loss incurred by the use of a

worse estimator significantly impacts the overall score. Second, in the previous section was

evoked the possibility to partially update the buffer by renewing only L frames among D

instead of flushing it completely (B-E-DATE), or renewing it only one frame at a time in

a FIFO manner (SW-E-DATE). The difference in performance between these two E-DATE

implementations suggests that such a partial renewal should not dramatically modify the

results. This means that buffer optimization can be performed in practice whenever required

by practical constraints, and without significantly impacting the denoising performance.

D. Complexity analysis

Tables II and III compare the computational costs of the B-E-DATE and SW-E-DATE

implementations, respectively. Each table gives the number of real additions, multiplications,

divisions and square roots required to perform the estimate. Both the B-E-DATE and the SW-

E-DATE use D frames to compute the noise power spectrum estimate. However computation

is performed only once every D frames for the B-E-DATE algorithm, whereas it is performed

once per frame in the SW-E-DATE implementation. Hence the number of operations in Table

II should be divided by D to allow for a fair per-frame computational cost comparison

between the two implementations. For reference purpose, Table IV lists the number of

operations required by the MMSE2 estimator of [11]. Inspection of Tables II and IV shows

that the B-E-DATE and MMSE2 estimators have similar computational complexity. This is

confirmed by execution times of Matlab implementations of these algorithms where the B-

E-DATE algorithm is found to have a processing time about 1.53 times that of the MMSE2

algorithm. We also note from Tables II and III that SW-E-DATE requires approximately D/3

times more operations that B-E-DATE. Indeed, B-E-DATE requires 3D multiplications to

process D frames at once, whereas SW-E-DATE requires D + 2 multiplications per frame.

Execution times of Matlab implementations of these algorithms also confirm this ratio.
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TABLE II: Computational cost of B-E-DATE per group of D frames and per frequency bin

Addition Multiplication Division Square root

Norm D 2D 0 D

Sorting D logD 0 0 0

Search n∗(worst case) D(D −1)/2 D D 0

Total D
(
logD + (D +1)/2

)
3D D D

TABLE III: Computational cost of SW-E-DATE per new frame and per frequency bin

Addition Multiplication Division Square root

Norm 1 2 0 1

Sorting logD 0 0 0

Search n∗(worst case) D(D −1)/2 D D 0

Total 1+ logD +D(D −1)/2 D +2 D 1

VI. CONCLUSION

In this paper, we have proposed a novel method for non-stationary noise estimation in

applications where a weak-sparse transform makes it possible to represent the signal of

interest by a relatively small number of coefficients with significantly large amplitude. The

resulting estimator called Extended-DATE (E-DATE) is robust in that it does not use prior

knowledge about the signal or the noise except for the weak-spareness property. Compared

to other methods in the literature, the E-DATE algorithm has the remarkable advantage

of requiring only two parameters to specify. A straightforward block-based implementation

of the E-DATE, called B-E-DATE, has first been introduced. This implementation entails

an estimation delay, which diminishes as the frequency rate increases. This delay could

be reduced by grouping frequency bins. Another solution to shorten this delay involves

resorting to a sliding-window implementation called SW-E-DATE, but at the price of a higher

computational cost. The B-E-DATE and SW-E-DATE have been benchmarked against various

classical and recent noise power spectrum estimation methods in two situations: with and

TABLE IV: Computational cost of MMSE2 per new frame and per frequency bin

Addition Multiplication Division Exponent

12 10 2 1
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without noise reduction. The experimental results show that the E-DATE estimator generally

provides the most accurate noise estimate, and that it outperforms other methods for speech

denoising in the presence of various noise types and levels. For its good performance and

low complexity, the B-E-DATE should be preferred in practice when frequency rates are high

enough to induce acceptable or even negligible time-delay.

Although the present paper focused on noise reduction in speech enhancement systems, it

must be emphasized that the E-DATE estimator is not restricted to speech signals and could

find other applications in any scenario where noisy signals have a weakly-sparse representa-

tion. For many signals of interest, not limited to speech, such a weakly-sparse representation

can be provided by an appropriate wavelet transform. In this respect, the application of the

E-DATE algorithm to audio separation could be considered in continuation of [17]. The

E-DATE estimator fundamentally relies on the DATE estimator which, as emphasized in [1],

can be regarded as an outlier detector. Consequently the E-DATE can also be used as an

outlier detector in each frequency bin. This opens interesting perspectives in voice activity

detection based on frequency analysis as well as in the detection and estimation of chirp

signals in various types of noise.
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