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DIFFUSIVE LIMITS FOR A BAROTROPIC MODEL OF RADIATIVE
FLOW
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ABSTRACT. Here we aim at justifying rigorously different types of physically relevant diffu-
sive limits for radiative flows. For simplicity, we consider the barotropic situation, and adopt
the so-called P1-approximation of the radiative transfer equation. In the critical functional
framework, we establish the existence of global-in-time strong solutions corresponding to
small enough data, and exhibit uniform estimates with respect to the coefficients of the sys-
tem. Combining with standard compactness arguments, this enables us to justify rigorously
the convergence of the solutions to the expected limit systems.
Our results hold true in the whole space R™ as well as in a periodic box T" with n > 2.
Keywords: Radiation hydrodynamics, Navier-Stokes system, diffusive limit, critical reg-
ularity, P1-approximation.

- 1. INTRODUCTION

We consider the barotropic version of a model of radiation hydrodynamics. Our main goal
is to provide the rigorous justification of asymptotics that have been investigated formally
and numerically by Lowrie, Morel and Hittinger [15], and mathematically by the second
author and S. Necasova in [10, 11, 12] in the finite energy weak solutions framework.

The fluid is described by standard classical fluid mechanics for the mass density o and
the velocity field 4 as functions of the time ¢ € R, and of the (Eulerian) spatial coordinate
x €  where ( is either the whole space R™ or some periodic box T™ with n > 2.

Radiation acts through some radiative momentum source Sp which is given by

o 1 o0
Gr=1 / / 5S d dv,
C 0 Sn—1

The radiative source S = S(t,z,d,v) depends on the direction vector & € S"~! (where
S"~! denotes the unit sphere of R"), and on the frequency v > 0 of the photons, and is

where c is the light speed.

given by
- ~ 1 -
S=04(B(v,0)—I)+0s(Z—-ZI) where I:= = Sn_II da.
The radiative intensity Z obeys the transfer equation
1
(1.1) SOOI +G-VI=S  in(0,T)x QxS x(0,00).
c
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In the present paper, as in [7, 8], we make the following simplifying assumptions
(1) Isotropy : the transport coefficients o, and o4 are independent of J;
(2) ‘Gray’ hypothesis : 0, and oy are independent of v;
(3) ‘P1 hypothesis’ : the averaged radiative intensity I := foool' dv is given by the
ansatz

(1.2) I=Iy+a- I,
where Iy and I, are independent of & and w.

Plugging (1.2) in (1.1), and computing the 0th and 1st order momentum with respect to
&, we find out the following evolution equations for Iy and I; (keeping the same notation
B for the distribution function averaged in v)

1 1 .. -
(13) E at-[(] + E le:vIl = Ja(@)(B(Q) - IO),

-

(1.4) SO+ Yl = (0a(0) + 0x ()5

Besides, the radiative force is now given by

(1.5) §F _ (Ua(é)) + US(Q)>I‘1.
n
In order to identify the most relevant asymptotic regimes, we rewrite the equations in
dimensionless form. To this end, introduce some reference hydrodynamical quantities (length,
time, velocity, density, pressure): L, T, U, 9, p, and reference radiative quantities (radiative
intensity, absorption and scattering coefficients and equilibrium function): I, &,, s and B.

Let Sr:= L/TU, Ma :=U/\/op and Re := UpL/ji be the Strouhal, Mach and Reynolds
numbers corresponding to hydrodynamics. Let also define C := ¢/U, L := L&,, Ls := 55/5q,
various dimensionless numbers corresponding to radiation. In all that follows, we assume our
flow to be strongly under-relativistic so that C is large.

Choosing B = I, we discover that the evolution of the dimensionless unknowns (still
denoted in the same way) is governed by the following system of equations

Sr0po + div (o) = 0,
Sr 9y (0@) + div (0@ ® @) + 75 Vp — 7= (div (uVE+!Va@) +V(Mdiv @) = £(2FE=02) ],

n

S 9o+ L divly = Lo, (B - 1),

% 8tﬂ +Vip=-L (Ua + ﬁsas) fla

where ¢ = p(t,z) € Ry and @ = (t,z) stand for the density and pressure, respectively,
p = P(p) is the pressure, A = A(p) and p = p(p) are the viscosity coefficients. The given
functions P, A and p are supposed sufficiently smooth, and we make the following strict
ellipticity assumption
vi=A4+2u>0 and p>0.
In our recent work [8], we gave a mathematical justification of the low Mach number asymp-
totics. In the present paper, we investigate another type of physically relevant asymptotic
regimes, which are of diffusive type. They correspond to the case where C is large and all
the other dimensionless numbers, but £ and L, are of order 1. To make it more concrete,
take
Ma=Sr=Re=1, C=¢"', o="P(2)=B(0)=0al0) =0s(0) =1,
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where ¢ is a small positive number, bound to tend to 0.

Because we shall focus on small perturbations of the reference density o = 1, it is conve-
nient to introduce the new unknown b := B(p) — B(1). In this context, all the functions of
0 may be written in terms of b. Setting jo := Iy — B(1) and jl = fl, and using exponents
to emphasize the dependency with respect to €, we eventually get the following system

0% + @ - VI + (1 + k1 (b°))div @ = 0,
QT + @ - VI — (14 k(b)) AT + (1 4 k(b)) Vb = EUEED (1 4 gy (b9)) 7,
s + L div j§ = L(b° - j§),
eduji + V5 = —L(1+ LT,

with A := pA+ (A4 p)Vdiv and where kq, ko, k3, k4 are smooth functions vanishing at 0.

2. FORMAL ASYMPTOTICS

Let us first present some formal computations so as to exhibit the limit equations we can
get from (1.6) in different types of diffusive asymptotic regimes. We restrict to the case where
the following necessary and sufficient linear stability condition (derived in [7]) is fulfilled

2+ Ly
14+ L,

(2.1) nvl > e(

Note that (2.1) implies that liminf Le=1 > 0 for e going to 0.

In all that follows, it is assumed that (b°,u", jg,ff) converges to (b, 1, jo,fl) in some
suitable space with enough regularity to pass to the limit in the nonlinear terms.

2.1. Case L ~ ¢ and L, — +0o. Denoting by P the L? orthogonal projector on divergence
free vector fields, we get

= _L =
(2.2) Pji(t) = e =P (0).
Hence Pj¢ tends to 0 for € — 0.
2.1.1. Subcase L2L, — 0. Setting Q := Id — P, we see that the equation for Jg entails that

Q;f = O(e). Next, the equation for Q;f implies that Vj§ goes to 0, too, because 2L, — 0.
Assuming that jg decays to 0 at infinity, this yields jo = 0.

From the equation for jf , we also get
(2.3) —L(1+ Ly)J; = Vjs + O(e).

Hence (1 + Es)ff goes to 0 and (b, @) thus satisfies the barotropic Navier-Stokes equations.
In other words, the radiative effect becomes negligible in the asymptotic £ ~ ¢ and 2L, — 0
with L£; — +00
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2.1.2. Subcase lim, o L2L, € (0,+00). This is the so-called nonequilibrium diffusion regime.
The analysis of the previous paragraph shows that ;5 = O(e) (hence j; = 0) and that (2.3)
holds true. The new fact is that the equation for j§ combined with (2.3) implies that

L 1£ 1
2.4 i+ —(j5 —b°) — ————AJ; = )
(2.4) o + a (46 — %) ne 2L, Jjo = O(e)
Now, if we assume that

L K m
= = — and L°L,— —,
9 nv v

for some m € (0,+00) and k > 1 (see (2.1)), then (b, @) satisfies the following compressible
Navier-Stokes equations coupled with a parabolic equation

Ob+ 1 - Vb~ (14 ky(b))divu = 0,
(2.5) Ot + 1 - Vi — (1 + k(b)) At + (1 + k(b)) Vb + (1 + ka(b)) Vo = 0,

Orjo + 75 (Jo — b — % Ajo) = 0.
2.1.3. Subcase L2L, — +00. We still have j§ = O(e), (2.3) and thus (2.4) holds true. Now,
as L2L; — 400 and £ =~ ¢, the r.h.s. of (2.4) tends to 0. Therefore, if we assume as

before that £/e — x/(nv) then we find out that (b, 1, jo) satisfies the following degenerate
nonequilibrium diffusion system

Ob+ - Vb+ (1 + ki (b))divi =0,

(2.6) Ot + 1 - Vi — (1 + k(b)) At + (1 + k(b)) Vb + (1 + ka(b)) Vo = 0,
Otjo + > (jo — b) = 0.

2.2. Case ¢ < L < 1. Recall that we have (2.3) while the equation for j§ implies that

(2.7) div 55 = nL(b° — j§) + O(e).
Hence Qj; =0 (as £ — 0), and
(2.8) AjS 4+ nL 1+ L)V — j§) = O(e) + O(eL(1 + Ly)).

Subcase L2L4 — 0. Then (2.8) implies that Ajo = 0 and thus jo = 0 (if one assumes that
jo — 0 at c0). Consequently, (2.3) implies that the radiative force in the velocity equation
tends to 0 when e goes to 0. Therefore (b, ) just satisfies the classical compressible Navier-
Stokes equation.

Subcase V2L2Ls — m € (0,+00). We have j; = 0, and Relations (2.3), (2.8) imply that
(b, , jo) fulfills the following Navier-Stokes-Poisson system
Ob+ 1 - Vb~ (14 ki(b))divu = 0,
(2.9) Ot + i - Vi — (1 + k(b)) AT + (1 + k3 (b)) Vb + (1 + ka(b)) Vo = 0,
—2Ajo + mn(jo — b) = 0.
Subcase L2L4 — +00. Then (2.8) implies that jo = b. Combining with (2.3), we thus find out

that (b, ) fulfills the following compressible Navier-Stokes equation with modified pressure
law

2.10) Ob + @ - Vb + (14 ki (b))div i = 0,
' Ot + - Vi — (1 + ko (D) AT + (14 L + k3 (b) + Lka(b)) Vb = 0.
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2.3. Case vL — (¢ € (0,4+00).

Subcase V?L2Ls — m € [0,+00). Passing to the limit in (2.8) gives
(2.11) —v2Ajo 4+ n(f% + m)(jo — b) = 0.
So we get System (2.9) for (b, jo, @) with the last equation replaced by (2.11).

Subcase L — 4+00. Exactly as in the case £ — 0, we get jo = b, j1 = 0, and (b, @) satisfies
(2.10).

2.4. Case L — +o0o. Relation (2.3) implies that j1 = 0, and thus, according to (2.7), we
have jo = b. Therefore (2.3) implies that

L1+ L4)j; — Vb,
and (b, @) thus satisfies (2.10).

To make a long story short, the above formal computations pointed out five types of
asymptotic regimes. They are governed by

(1) The ordinary compressible Navier-Stokes equations with null radiation (if £ — 0 and
L2Ls —0);

(2) The compressible Navier-Stokes equation with an extra pressure term see (2.10) (equi-
librium diffusion regime corresponding to ¢ < £ and £2L£, — +o00, or £ — +00);

(3) The Navier-Stokes-Poisson equations (2.9) (or (2.11)) (case ¢ < £ < 1 and v2L2L, —
m € (0,400));

(4) The compressible Navier-Stokes equations coupled with a parabolic equation (2.5)
(nonequilibrium diffusion regime £ ~ ¢ and v2£,L% — m € (0, 4+00));

(5) The compressible Navier-Stokes equations coupled with a damped equation (2.6)
(degenerate nonequilibrium diffusion regime £ ~ ¢ and L£,£? — +0c0).

The rest of the paper is devoted to justifying rigorously the last four asymptotics globally
in time in the framework of small solutions with critical regularity. In the next section, we
introduce a few notations that will be needed to define our functional framework, and give
an overview of the strategy. Section 4 is devoted to a fine analysis of the linearized equations
(1.6) about (0,0,0,0), which turns out to be essentially the key to proving global results and
justifying the diffusive asymptotics we have in mind. The next three sections are devoted to
the rigorous justification of the nonequilibrium diffusion regime £ ~ ¢ and L£,£2 > 1, the
equilibrium diffusion regime £ — 400 and of the Poisson type diffusion regime (e < £ <1
and v2L2Ls — m € (0,+00)). In all of those sections, we establish a global-in-time existence
result for the expected limit system, and for (1.6) supplemented with uniform estimates (for
coefficients £ and L satisfying the assumptions of the studied regime), and eventually
show the convergence of the solutions of (1.6) to those of the expected limit system. Some
estimates, of independent interest, for the solutions to a class of linear ODEs corresponding
to the linearized equations of (1.6) in the Fourier space are postponed in the appendix.

3. FUNCTIONAL FRAMEWORK AND OVERVIEW OF THE METHOD

The functional framework we shall work in is modeled on the linearized equations cor-
responding to (1.6), and is thus the same as in our first paper [7] devoted to the global
well-posedness issue in critical regularity spaces for small perturbations of a stable constant
state. The key to proving asymptotic results however, is to prescribe norms depending on
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the parameters ¢, £ and L,, so as to get optimal uniform estimates, enabling our justifying
rigorously the different diffusive asymptotics exhibited above.

Let us first very briefly recall the definition of homogeneous Besov spaces Bil (the reader
is referred to [1], Chap. 2 for more details). For simplicity, we focus on the R™ case (adapting
the construction to the torus being quite straightforward). Fix some smooth radial bump
function x : R” — [0,1] with x =1 on B(0,1/2) and x = 0 outside B(0,1), nonincreasing
with respect to the radial variable. Let ¢(&) := x(£/2) — x(€£). The elementary spectral
cut-off operator entering in the Littlewood-Paley decomposition is defined by

Aju:=@@27Dyu=F L p@2 /D) Fu), jEZ
where we denote by F the standard Fourier transform in R”.

For any s € R, the homogeneous Besov space Bg,l is the set of tempered distributions
so that
- JS||A
lull gy, = 302 1Aulzz < oo,
JEZL
and
(3.1) lim x(AD)u=0 in L*.

A—+00
As pointed out in [7], scaling considerations that neglect low order terms of System (1.6)

suggest that critical regularity is 325,1_ " for Up, Jo,0 and 5170, and 325,1 for by. However, to
handle lower order terms, one has to make additional assumptions for the low frequencies. To
this end, it is convenient to introduce the following notation (where 7 stands for a positive
parameter)

4, A h, A
lully = > 2% Apullze and Jlul] = Y7 2 Awu] e,
’ 2k<2n ’ 2k>n/2

and also

ubh = E Apu and oM = E Apu.
2k<n 2k>n)

Note that HQ/WHE-;%1 < CHqugl and !’uh’"HBil < CHqugl Because the Littlewood-Paley

decomposition is not quite orthogonal, it is important to allow for a small overlap in the
above definition of norms.

In some places, we will have to specify also the behavior for the middle frequencies, by
considering for given 0 < n < 17/,

/ .
[ull 2 = > 25 Ayl 2.
32,1

n<2k<n/
Broadly speaking, our strategy to justify the different types of diffusive limits is as follows:

e Step 1: We prove ‘uniform estimates’ for the global solutions to (1.6), uniform mean-
ing that we want a bound independent of &, but the norm itself may depend ‘in a
nice way’ of the parameters ¢, £ and L;.

e Step 2: We show that the limit system is globally well-posed in the small data case.

e Step 3: We take advantage of estimates of Step 1 to exhibit weak compactness prop-
erties. Combining with the uniqueness result of Step 2, this allows to conclude to the
convergence of the whole family of solutions of (1.6) to those of the limit system.
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The most technical part is step 1, as it requires a fine analysis of the linearized equations of
(1.6) about 0 that keeps track of the coefficients £, L and e. Schematically, in the Fourier
space, one has to resort to different types of estimates for low, medium and high frequen-
cies. The low frequency analysis is carried out by considering approximate eigenmodes of
the system, that are constructed by a perturbative method from the (explicit) eigenmodes
corresponding to null frequency. A part of the difficulty is that the ‘fluid modes’ are of para-
bolic type, hence the corresponding eigenvalues tend quadratically to 0 when the frequency
size tends to 0 while the radiative modes are expected to be exponentially damped. The
high frequency analysis is inspired by the corresponding one for the barotropic Navier-Stokes
equations, after noticing that coupling between radiative and fluid unknowns occurs only
through 0 order terms, and thus tend to be negligible for very high frequencies. Last but not
least, medium frequency regime has to be looked at with the greatest care, as the low and
high frequency regimes need not overlap. There is no general strategy for handling them,
apart from guessing approximate eigenmodes of the system.

4. UNIFORM ESTIMATES FOR THE LINEARIZED EQUATIONS

In order to reduce the study to the case where the total viscosity v := A+ 2u is 1, and to
get a symmetric first order system for the radiative unknowns, let us set

(4.1) (b, @, jo, J1) (t, ) == (b°, 40, v/n j§, J5) (vt, vz).
Then (be,ﬁa,jg,ff) satisfies (1.6) if and only if (b, , jo,jl) satisfies
Ob+u-Vb+ (14 ki (b))diva =0,

Oyl + i - Vii — (1 + k(b)) Adi + (1 + k3(b)) Vb = £4(1 4 ky (b)) 1,

4.2 5 ~
4.2) edrjo + = div ji = L(b— v/ jo),
01 + F=Vio = —LMj),
with
(4.3) M:=1+L,, L:=vL and A:=v'A

The corresponding linearized system reads

O+ divu = f,

Oyii — Aii + Vb — MG — 5.

£dujo + o div i + L(jo — vib) =0,
ey 1 + ﬁ Vjo + LM, = 0.

(4.4)

On one hand, the coupling between the incompressible part of @ and fl that is P# and 73;1
where P stands for the projector on divergence-free vector-fields is obvious as
LM

(4.5) aPi — Lapa = =2 pF,,
1% mn

and
EMt —

Pii(t)=e "= Pji(0),
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hence in any functional space X we have
(4.6) LM||Pjilrix) < ellPir(0)llx-

On the other hand, the coupling between b, d := A~!divd, jo and j; := Afldivfl (where
A% := (=A)*/?) is quite complicated: in Fourier variables, we have

0 0 0

b P 2 b 0
(4.7) | d R _Zﬁ1 ! X
. -1 = + VL L ~ =
dt | jo = 0 2 NG Jo 8
S M S
J1 0 0 —ﬁ == J1

The analysis that has been performed in [7] pointed out the following necessary and sufficient
stability condition

(4.8) E>%u+wrw

So we shall make this assumption in all that follows. Of course one also has to keep in mind
that M > 1, a consequence of M := 1+ L;. For notational simplicity, we shall simply denote
L by L in the following computations.

4.1. Estimates for small p. In order to prove estimates in the case 0 < p < C; (with
C1 > V1 +n~1), we shall use that (4.7) enters in the class of ODEs that has been considered
in the Appendix. Indeed, it corresponds to (A.3) with

LM nl L 1 LM
S=—, n \/_ ) 5:_7 o= —, Y=
n € € evn €

4.1.1. The case L 2 1 and LeM = 1. We shall follow the first approach proposed in
Appendix A. It corresponds to the following matrices Ag, A1, A and By

(4.9)

00 0 0 0 ) 1 0 0
00 0 0 —-1—-= 0 0 0
A0: L ) Al: " 14e2 ’
00 £ o0 00 0 U=
00 0 £M 0 0 —— 0
€ Vne
0o 0 0 = 000 0
_ 0 0 =5 0 o100 -=£
Bi==t o a0 o ™ A=1¢99 ¢
10 o0 o0 000 O
Therefore we set
2
0 0 e
4.10 P .= n3/2L ,
(4.10) L
-7 0 0 0
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which corresponds to the change of unknowns

o~ 2 o~
‘ Lo e\ ([
0 —nZP 32 P n d
(4.11) ~ " " 2 ~
Jo —Vn —@P 1 vyl Jo
j1 —zwr 0 0 1 Jn

According to (A.8), working with (a, C/l:;o,;l) or (E, /D\,/j\o,/j\l) is equivalent whenever
L M).
Let us first compute the matrices PBy, [P, A;] and As appearing in (A.2)
-Mt 0 0 0

(4.12) p < Lmin(e

£ 0 -1 0 0
PBi =7 0 0 1 0 g
0 0 0 Mt
0 0 — LA 0
1 0 0 0 1+€2(1+./\/é_1(n+1))
[P, Ay] = 7| 14+214M(14n)) " )
et 2lAn) 0 0 0
ev/n M
0 Y 0 0
0 2_22 0 nl:gs.;\42
€ (14+n—1)e? 0 € g2 0
A 1| TM T M Lyn ~ 2032
T 0 0 0 _elxel)
j Vn(LM)?
0 0 yENG 0

Because £ 2 1, we thus have |A3| < %+ Hence, up to a O(ep®/L) term, the equations for
(b,9) read

d (b 0 1\ (b of —fq O b
ils) ol tm o) (5) () 5

e(1+M~1) 0 "
— 52 n3/2L Jo .
=p 0 e 14e2(14M -1 (n+1)) 3
n n2L

In order to estimate (E, 5), we just follow the method of Appendix B, which requires Condition
(4.8) and

V1+n-t

(4.13) p= M
nl
Keeping (4.12) in mind and noticing that
~ € 1
—1-"q
7 nﬁ( + M),

is of order 1 for small e, we thus conclude that if

(4.14) p<V1+n1l and p< Lmin(e"! M),
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then

~

(4.15) (6, 0)()] + p* !b )| dr < 1(6,)(0)]

) t p3 ~ o~ o~
+p/0<—hoy+<e+ >]11]>d7'+7/ (6,970, )1)| dr.

Next, we see that the equations for (/J'\O,/J'\l) read (omitting the O(ep®/L) term)

> 2 " "
(4.16) d (o) BT 0 o)y 2 ( 0 1+¢’ ) Jo
dt \ j 0 EM nLM i1 Vne\ -1 0 i

_ 1+€2(1+M(1+n)) 0 E
— p2 ev/n LM -
0 LA ( 0 >

Therefore, computing
d o~
(1.17) Z(RP+ 0+ RP)

so as to eliminate the term in p, we end up with

o L[t~ ~ N
@18) (6o O+ [ ol dr < 1Ga i) 0)

t 1 - P
+p/<( Y ﬁ)ybH \a])dr+—/!b .Jo,71)| dT.

Now, adding up (4.15) and (4.18), we easily conclude that if ¢ is small enough and
(4.19) Lmin(1,eM) 2 1

then we have
(4.20) 106,3,30, 7)1 |+p/|b|m+ /|mnm~q@ahim»

whenever 0 < p <1 +n-1.

Now, resuming to the Tl equation in (4.16), and evaluating the first order term according
0 (4.20), we deduce that, in addition

LM [*~ NI
@.21) =2 [ lar < 1E3Rd0)

4.1.2. The case ¢ < L <1 with eL2L%2 > 1 and L2Ls > 1. If £ < 1 then plugging (4.15)

in (4.18) does not allow to get (4.20) any longer. In order to overcome this, we shall follow

the second approach proposed in Appendix A with coefficients defined as in (4.9): we set

0 0 0 e
00 Ty 0
P = 0 _ﬂ 0 1+62 )
L Vn(1—M)L
-1 0 1 0

M Vn(—-M)L
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and we thus have, remembering that M — 1 = L,

o~ 2 o~
b 1 0 0 AV b
o~ 5 13 £ -~
d —nzPp 1 areLP n d
4.22 v=|~ | = 2 IS
(4.22) o —vn =Y 1 —hEMy 7o
1 LML, 0 T nL.L 1 J1
The determinant of the above matrix is
2 2 2
% 5 € 9 1+¢e2
14— 14+ ———p?) — ——
( +n£2p>< +n£2./\/l2p> ni2cz’

Hence working with (/b\, c/l\jojl) or (B, 5,?0,?1) is equivalent whenever

(4.23) and p<+/nLLs.

~

<L
3

Then following the computations of Appendix A, second approach, and setting As := (PAg—
A1)P? + Ao P leads to

0 1 00
d -1-X 00 0
0 000
——=ar’ 0 0 0
0 1—-5)p? 0 0 .
+ L 1+e2 p?
0 0 feErE)E 0
1 2
0 0 0 e + (nEEM - naneﬁs)
0 0 (12.9/42_;)8 0 2
0 0 0 e lie? e (1dn)
= P2 1+4e2 (n+1)e 0 0 " ik 0 LM |4
TevnLsL T nL )
0 ~IZ.M 0 0

+ p3(I 4 pP)As(I + pP)'V.

Let us bound As in order to determinate for which values of p the last term in (4.24) is
indeed negligible. Just writing that |As| < |P[>(|P||Ao| + |A1]|) + |A2| |P| using the explicit
values of Ay, A1 and Ay and

(4.25) P < %max<€, %)

does not provide an accurate enough bound for As. Hence one has to go to further compu-
tations. Now, we get

g2 £ 14e2 &2
02 nL2L 0 ) n2L2( L2 Mz)
l+e 1 (14e2 2
pAP2— | "ML, 0 n5/252( £z — ¢ ) 0
ol = 0 _ (4eHM 0 (14+e3HM (i o 1+52) )
9 VnL2L32 n3/2eL L2 \ M? L2
e(14e?) c 9 142
_TLEQM,C% 0 n3/2L, L2 (E - 2 ) 0
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2
0 0 0 0 0 — 0 —e)
£ £ (1+n—1)e2 (14+n—1)e?
AyP = nEOM 8 n362£ 8 and A, P? = nLnQ.MQE 0 nstzng
0 0 0 0
O 0 0 0 0 0 0 0

Hence, given that ¢ < £ < 1 and that £5 ~ M in the regime that we are considering, one
may conclude that

€ 1 1
4.2 As| < S .—
( 6) ’ 3‘Nmax<£7ﬁ2ﬁs7€£2£g>

Note that we still have 7 — 1 for ¢ — 0. Hence applying the method of the appendix to
handle (b,0), we find out that if (4.8), (4.13) and (4.23) are fulfilled then

/\/\ t g ~ 1/,\
63101+ 57 [ 16.9ar < 15901 +6° [ (Sl + il )ar
0

i e 1 1 /t Vid
max| =, =5, —5—=5 T.

p L 2L, =22 ) J,

As regards the radiative modes, we have

o~ L 14 ¢? ,02 t/,\ o~ 9 t 1 g\~
= L < =
oo+ (£ 4 (4 25) 25) [ Tolar < Bt + ¢6* [ (- + 5 ) blar
3 e 1 1 /t
S . d
+Cp maX(ﬁ’E2E3’6E2E§> ; |V|dr,
~ LM £ L+e2\ L\ [T~ ~ 02 t
t - dr < d
o1+ (4 (i~ wmee)?) [ Blar < o+ o [plar

+Op® max( S SE N N /t|V|dT
P L 2L, =22 ) J, '

From the above three inequalities, we get for any A € (0, 1]

16,3)(0)] + Afo()] + fut |+p/|b )| dr + A= /|lo|d7+—/|11|d7

5)(0)|+A|jo(0)|+|jl(0)|+/)/0<—|Jo|+—|11|>dT+AP/O<€E1E = Jlar

P’ > 3 e 1
old = o~ V|dr.
e /0 Rl dr +p max(ﬁ’ 2L, ec%g) /0 Vidr
Now, we notice that taking A = ¢omin(1,eLL;) for a sufficiently small constant ¢y allows
to absorb all the terms of the r.h.s. (but the data) by the Lh.s. provided we have 0 < p <

V14n!
(4.27) e< LS, eL?L2>1 and L2L,> 1.
We thus conclude that for all 0 < p < v/1+n—1, we have

o~

S (b,

o~

L
(4.28) |(6,3, min(1,LL S0 1) (8)] + 0 / (6.9)]dr + £ min(1,2LL,) / ol dr

LM / fildr < C|(6.9, min(L, L, o, 11)(0)].
0
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Let us point out that in the case where £2Ls &~ 1 (even if £ ~ ¢ in fact) then the same
computation will lead to (4.28), but only for 0 < p < ¢, with ¢ a small enough constant.

4.1.3. The case ¢ < L < /2 and L2L, ~ 1. As the value V1 +n~! will not play any
particular role, we fix some C] > ¢ in the following computations. We want to get (4.28) for

p € [¢,C1]. To this end, we introduce {y and ¢; such that

o~~~

Then we discover that (b,d, C07C1) fulfills

( 8t3+pcj: 0,
atzwéa):—%a—ﬁ%a
\@CH‘ <M— EgZM)Zl:ﬁiM(l"‘ 522M><0

Let p bein [, Cq]. For the first two equations, performing the standard barotropic estimates
(which rely on the use of U, defined in (4.43)) leads to

(4.29) (b, d)(t) \+/ \(b,d)| dr < (5, d)(0 \+/ Goldr + £L, / & dr.
For 207 it is obvious that

R rorto. R o t t
4.30 Col(t —|——/ ColdT < [(o(0 —|——/ C1d7'+,0\/ﬁ/ d| dr,
@so (Gl [ flar <Go)+ 2= [ 1

and, as our conditions on £ and Lg guarantee that p < \/n/2 LM for small enough ¢, we
also have

2 t
sy (Go1+ 2 [ alar < GO+ Ly (1422 [ e

Putting together those three inequalities, we readily get for all A, B > 0, observing that
2 2
pr LM

A~ o~

6.0+ AZG0) + BlG 0+ [ 16.Dldr+ 4 [ olar+ BLm [ Glar

A~ o~

S 16.00) + A5G0 + BAG O]+ £ [ (Gl dr

/\Co\dTJr—/ Guldr+ AS /rd\dw—/ Gl dr.

It is now clear that if one takes first A large enough (independently of ) and B much larger,
all the integrals of the r.h.s. may be absorbed by the left-hand side, as M~ < p, and we
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thus get for all p € [¢, O]

A~ N

o~ o~ t A~ A~
@32) 6.0+ Zo0)]+efG 0] + [ 16.Ddr
t R t R PR R R
+ [aldr+£a1 [ [Glar < 10,00+ ZG0)] +<(G 0).

Plugging this new inequality in (4.31), we easily deduce that

A~ N

G+ E2 [ (Glar £ GO+ 2600+ 6D

then inserting this information and (4.32) in (4.30), we discover that

A~ N

@1+ £ [ Gldr  1G01+ £GO1+ (1+ =5 ) IBDO

~

Therefore, putting (4.32) and the above two inequalities together, using that |(b, c/i\, EO, Zl)| &

1/2

|(/b\, C/i\,‘/]}(),‘/]}l” and assuming in addition that £ < e'/=, we conclude that

439 (6.8 g0l + [ 16Dlar+ £ [ Glar+ &

|(bd E]o,]1)(0)| for all ¢ < p < (.

LL;

]dT

Note that due to the expression of 61, one may replace Zl with 31 of /j\l in the integral.

Still in the case £ < /2, we claim that we have the following inequality

-~ Lt - > s € o
(4.34) !PJo(t)!Jr;/ (ol dr < [(b,d, pio, o, 1)(0)] forall 0<p <Oy,
0

which turns out to be crucial in the justification of the asymptotics toward (2.9).

Indeed, inequality (4.30) does not require any assumption on p and thus implies that

R Lot R 0 t , t
— < — .
i)+ = [ 1oaldr < 106 + L= [ (Glar+ o2y [ 1dlar

For 0 < p <e¢ (resp. ¢ < p < (1), the last term may be bounded according to (4.28) (resp.
(4.33)). Regarding the term with (;, we notice that

~

Cl_]1+££/\4<f+b>

hence (4.28) and the fact that £2£, ~ 1 guarantee that for 0 < p < c

2 t LM t/.\ £2 t ~ Y
2 [aldr s ﬁ(—/ |11|d7+—/,02|30+\/ﬁb|d7>
E\/ﬁ 0 e 0 1S 0

2\ T e
< LA+ E)|(b,d,eLLsjo, 51)(0)].

In the case £ < e/, it is obvious that Inequality (4.33) implies that the above inequality is
also true in the range ¢ < p < C1, which completes the proof of (4.34).
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4.1.4. The case L~¢ and L4 2 1. We saw that if (4.8) is fulfilled then (4.28) holds true
on some small interval [0, c]. So we have to fill in the gap between ¢ and v1+ n~!. As the
value /1 + n~1 does not play any particular role, we fix some C7 > ¢ and look for estimates
if p € [¢,C1]. For simplicity, take £ = ke/n (with x > 1 owing to (4.8)).

Setting Zl = 31 — m p}o = 31 — n\s//?/t p}o as before, we observe that

61@4— p(/j\: 0,

(435) dyd + p*d — pb = —Ljo + MG,
. ~ 2 ~ ~
Orjo + (%JFJTM)JHW@ NGl

01+ (5 — i) Q1 = S (14 g ) o — el
Let us focus on the subsystem corresponding to the first three equations, namely
Ab + pc/l\ =0,
(4.36) Oud + p?d — pb— 70 = |,
hjo + (£ + 5m)do — 25 =3

If we have the stronger condition 2> M — oo then we rewrite System (4.36) as follows

p b 0 p 0 b 0

(4.37) —dal+| -+ P —=||d]= f
dt \ ~ 5 K -~ 2 ~
Jo vn n Jo —weznJo t 9

The eigenvalues of the matrix M, in the left-hand side are the roots of the polynomial
— X3+ a1(p)X? — az(p) X + as(p) with

al(P):%+p2, a2(p):(1+g>pz, as(p) = (1+1>p,‘<

n
According to Routh-Hurwitz criterion, those roots have positive real part if and only if

a(p) 1 alp) 1 0
ai(p) >0, a;,(p) as(p) ‘>0 and agép) ag(()p) Z;EZ; > 0.

As ai(p) and as(p) are positive, it suffices to check the second condition, that is

K 2/6
ai(p)az(p) — as(p) = (1 + 5>p4 + /;—2(& -1)>0,

and this is indeed the case for all p > 0, as xk > 1.

In particular, all the eigenvalues of the matrix M, have positive real part if we assume p
to belong to the compact set [¢, C1]. Therefore (see [7]) there exist two positive constants co
and Cy depending only on ¢ and C1, so that the matrix M, satisfies

!e*tMP‘ < Cye ! forall t>0 and p € [c,C].

By taking advantage of Duhamel’s formula, we thus deduce that

~

t
625000+ [ 1@dldr 164001+ [ 1.9l + o [ Gl
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Of course, owing to the assumption e2M — oo, the last term of the r.h.s. may be absorbed
by the Lh.s., for € going to 0. So we get

(4.38) (5, d.50) (¢ \+/;383 dr < |(B.d.30)(0 !+/\fg!d7

In the case where €2 M does not go to oo then we have to proceed slightly differently. If we
assume (for simplicity) that e2M tends to some m > 0, then the matrix M, in (4.37) has
to be changed in

0 P 0
2
No=| =, P —onm
K p
—5 0 A4

The above analysis based on Routh-Hurwitz theorem stlll holds as the additional term has
‘the good sign’, and one may conclude, as before, that (4.38) is satisfied for all p € [¢, C1].

In every case 2M > 1, resuming to (4.35), Inequality (4.38) allows us to get for all
pE [Ca Cl]

o~

t
(4.3 G.dd00]+ [ 16250 ar <1650+ [ (Gl
Next, from the equation of 61, we readily get

G+ M [ [Gldr SO+ M [ 160
0 0

Hence, adding up to Inequality (4.39), we conclude that (4.28) is also true for all p € [¢, Cy].
This completes the proof of estimates in the low frequency regime p € [0, C1].

4.2. Estimates for middle frequencies.

The case liminf M = +oo. As in the previous paragraph, introduce 21 = jj\l — m%.
The system fulfilled by (b, d, jo, (1) reads

6t3+ pc?: 0,

dd + p*d — pb = —3%50 + M&,

ijo + (L + nLL)Jo + \/ﬁeCl Vn£b,

Gy + (B4 — )G = Tt (L + whw1)30 — .

The subsystem corresponding to the first three equations is

(4.40)

(9t3+ ,OC/Z\: 0,
(4.41) Qyd + p*d — pb — L7 = f,

Bjo + £ (1 + LzM)Jo Vnkb =3
with
(4.42) 7= Z and §=— \/%g G

Assume that (f,§) = (0,0) for a while and set

A~ o~ PN

(4.43) u? :=2|(b,d)|* — 2pRe (bd) + |pb|*.



eq:diff-mf0

DIFFUSIVE LIMITS FOR A BAROTROPIC MODEL OF RADIATIVE FLOW 17

On one hand, we have

ld, 272 2| 712 NN
(4.44) S S+ T+ 1% = —LoRe (20— 8) o),
and on the other hand,
1d~ 2, L 2 5
1 b
2dt|‘70| ( + £2M>|Jo| \/_ Re( J0)-
Therefore
Ld (o PP o w2 P p? ~ 1 ~
—— — b,d =14+ —— =2—— d jo)-
2dt<up+n2£|p.70| >+p|( ) )| +7”L2 +n£2M |J0| 3/2Re( ]0)
Now, by using the fact that
= 1  ~ A
25 Re (d jo) < —|d* + me
n
and by taking A = 3/4, we conclude that for p? > m we have

@(Uﬁ + T’PJO\Q) + ﬁ’( ,d, jo)|* <0,

%1) <1+ —, we get for some universal positive constants ¢y and C

/b\c/l\ H‘\/ ’PJO < /I;c/i\ \—1—1/ \pjo > for p>+V1+n-!

Resuming to the equation fulfilled by jo in (4.41), the above inequality implies (still assuming
that f =9 =0) that

L p? to ~ N L ~ L ~ ~
—|1 < - <4/ = =
8( + nﬁzM>/0 lpjoldr < |pjo(0)] + = /O |pbl dr S 4/ < |pio(0)] + —(d, p0)(0)],

then plugging this inequality in the equation for c/i\, we get in addition

t
~ o~ ~ £, ~
7 [ 1@ 1301+ 180) + |/ 210

Repeating the above computations in the case of general source terms f and g, we conclude
that the solution (b,d, jo) to (4.41) satisfies for all p > /1 + n~!, assuming only that £ 2 ¢

~ o~ L
bd|+¢ﬁmo|a/| Dlar+£(1+ ﬂM)/mmm
€E>H-—MWW+ (1714 [ loal) ar)-
EPJO EPQ T

Resuming to the value of f and ¢ in (4.42), we thus get for p > V1 +n=! and L > ¢

whence, because

419 (.00 + 2]+ [ 1685 Dlar+ E(1+ L) [l ar

§C< (pb, d)( |+\/7|P]0 |+<5M+\/T>/O|C1|d7>'
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Next, it is clear that the equation for (; implies that whenever p < \/g LM

1 p2 j/t ~ 1 J[t ~
. —_— < — .
1) G+ 2 [ ialar < GO (14255 ) [l drs o [l

Hence, we get if M is large enough and p? < £3/2M?21/?

(4.47) r<1<\+—/\<1\d7<c<\<1<>r+— (.50 + /2 o)) )

Then plugging that inequality in (4.45) implies that

419 8. D01+ 2100+ [ ar+ [ 1l ar + £ (1+ EW)/WOW

L /2,2 \
gC( (pb, d)(0)| + I,OJO )|+ 6+M£3/2>|C1(0)|>,

whenever 1+ 1/n < p? < L32M?e1/2,

Here is another method that gives decay estimates in the range LV M < p < LM if M
is large enough. From the first two equations of (4.40), we have

(4.49) |(pb,d)(t)| + p* / \d]dTJr/ pb| dr < |(pb, d)(0 3/2/ \JO\dT+—/ (1| dr.

The equations for jo and Cl give if p< \/j LM

t
-~ n ™
s ol + (e =2) [ldr <o)+~ [ ialar+ £2 [ plar

2 t t
p 14 -~ P ~
. —_— < —_— .
sy G E2 [ alar < GO+ =L (L) [alars 2 [ Blar
Plugging (4.50) in (4.51), we discover if p < LM that
(4.52) Gt |+—/ Gldr < GO)]+ 22 o(0 / ol d.

Inserting that inequality in (4.49), we conclude that the last term of (4.49) may be absorbed
by the Lh.s. if M is large enough. Now, Inequality (4.50) guarantees that

€EAA -~
3/2/ [do| dr < —<£p2T+>|JO(0)|

QEAA t
(o) [ tar+ (spga—s) [ oiblar

Again, resuming to (4.49), we see that the second term in the r.h.s. may be absorbed by the
Lh.s. This is also the case of the last one if p? > L£2M. If all those conditions are fulfilled
then we end up if LVM < p < \/gﬁ./\/( with

(4.53) (b, D)(0)] + p? / |d|d7+p/ |b|d7+p/ ol dr

~

+£M/ &l dr < |(b, d)(0)] + €
0

MG0)] + <G 0)]
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Resuming to (4.50) and (4.52), we thus easily deduce first that

~

Gt |+—/ Gldr S GO+ Go0)] + =1, DO,

and next that

~

2 t . - ~
o0+ 2 (2 +257) [ Toldr  (o0) + 2571601+ £ (b )01

Our estimates and the definition of (; allow us to change ¢; to j; in (4.53). So finally, in
the case eM 2 1 we get for some large enough C7 and small enough ¢ independent of ¢

t t
(@50 10,0, 1+ 55001+ [ |abldr+ g [ |dlar
0 0

b LM [t~ ~
+ (L2 [l + =2 [ (Gl dr 5 168,30+ 455001

whenever C1LV M < p < cLM.

The case e2M < 1/2 and L > . Let (o := jo — v/nb. We start from
6t3—|— p(/i\: 0,
Od+ p*d — pb = 47y,
BiCo + £Co + 7%31 —Vnpd =0,

01 + £, — \/%EEO —£h=0.
In order to show the exponential decay, we set
(4.55) U2 = 22 + 2|d® + |pb* — 2pRe (bd) and T2 :=|Cof* + 1]
We easily get for all K > 0,
; Ldy o 2 2, £ P 2
(456) 52 (U2 + KT ) + 76, + K= ( (Gl + MG
LM > R K LM N Ol
= QTRG( 1d) +P<; - T)Re (J1b) + Kv/nRe (pd (o).

It is thus natural to take K = %E./\/l to cancel out the second term of the r.h.s. For the first
and the last terms, we write that

K/nRe (pd o) < 1p? ycﬂ2+nK2yjo—ﬁZy2
LMRe (i d) = 2 Re (1 d) < 32112 + 25 1]

Note that the last terms above may be absorbed by the l.h.s. of (4.56) if, say

2K
nK < £ and —— < LMp?
2e €

Given the value of K, the first condition is equivalent to e2M < 1/2, whereas the second
one means that p?n > 2. Under this latter condition, we thus end up with

eL M

d
am e BN e+ S (e i) <o
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which implies, according to (4.8), the following exponential decay estimate for some small
enough k > 0

(4.58) U (1) + eLMT2(t) < e (u,f(o) LM == J2(0 )) it p>+\/2/n.

To exhibit the parabolic decay for d, we introduce 61 = ;1 — (vnLM)~1 ,050, and get

(9,55%—,067: 0,
Btc/i\—i—pzc/l\—p(l-i- )/b\ TM21+n3/2207

~ ~ ~ ~ 2 ~
atC0+l( nEM)C P C :\/ﬁpd_\/ﬁiﬁMba

O+ (B4 - ) 1:\/E£Ms(£+ )0 + nframd-

We thus have for 1/2/n < p < \/n/2LM
t t R
[ ittar g [1diar < 168,801+ E2 [ iGjar 2 /rco\dT
0 0

1 p2 /t ~ —~ p / —~ / ~ /t ~
Z < £ [ —
€< nﬁM) 0 ’CO’dT = ‘CO(O)‘—F \/ﬁg 0 ‘C1’d7—+\/ﬁp 0 ’d‘ dT+ \/ﬁ&ﬁM 0 ‘pb’dT7

ﬁM t > ~ p p2 t ~ p2 t Y
< S o — .
o | lar < GO+ =L (e o) [ aldr+ L [ iblar

Combining the inequalities for Eo and 21, we easily get if p < cLM with ¢ small enough

t ~
er [ 6l dr S G0+ Ly (a0l +pe [ idar+ Lo [ iblar ).
—~ ~ t A~
(c+ L) [ faldr < )+ Lol +pe [ idar+ o [ il am

Now, the exponential decay pointed out in (4.58) allows to bound the last terms above, and
we get

(4.59) EM/ C1| dm < UL(0) + VELMT,(0) /|p2d|d7-
ao0) (£+27) [ faldr < <lG G0 + E@(upm)wemm))m [ ar

whereas using UPQ allows to get directly

o~

t R t
¢ [ Wdldr < (b D)+ M [ [l
0 0
Using the definition of ;1 and, again, Inequality (4.58), we may replace ;1 with El as follows

t R t . t .
@61 / dl dr < U,(0) + VEEMUT,(0) + LM / Gldr+ / Gy dr.
0 0 0
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Then plugging (4.59) and (4.60) in (4.61) and observing that ¢ < LM, we get
t o~

o / ] dr < U(0) + VELMT,(0)
0

LM ~ ~ t
e (G 8O+ g @0+ VEERZ0) + e [l ar):

Because we assumed that £ > ¢, the last term may be absorbed by the Lh.s. Using in
addition that e2M < 1, we end up with

t o~
o / dl dr <U(0) + VELMI,(0).
0

Then resuming to (4.59), (4.60), we obtain

t N t .
(4.62) ) / Goldr + LM / &l dr < U, (0).
0 0

Obviously, this inequality implies that
t
(463) £M [ [ldr SUp(0) + VEEM ,0) + el G, GO0
0

Of course, we get the same inequality if replacing (o and (; with jo and j;. So one can

conclude that for 1/2/n < p < c¢LM, we have (4.58) and
aot) [ dar+em [ Gildr+p [ Goldr S 1GBDO)| + VEEMIGo )0}

4.3. High frequencies. We eventually come to the proof of decay estimates for p > cLM,
where ¢ is some given positive constant. We shall use that fact that the systems satisfied by
(b,d) and by (jo,71), respectively, tend to be uncoupled for p — +o00. As regards (b, d), the
classical approach for the barotropic Navier-Stokes equation, based on the study of

9 9 N ~9
Uy = 2|(b,d)|” — 2pRe (bd) + [pbl*,
guarantees, if p > ¢, that

t t
(465)  |(ob. ()| + 0 /0 dldr + /O plbl dr < 1(ob. d)(0)] + ZM / (] dr.
Next, from the system fulfilled by (30,31), we get
1d Ly LM~ L =
5 (o + [ P) + S0P + =0 = vaZRe (o),
e Godn) + £+ MIRe Gor) + —L[1]2 = —L[ol? = vaZRe (57))
dt JoJ1 - JoJ1 \/— J1 \/— Jo - J1)-

Therefore, for any x > 0

o7 (!Jo! + 171 P Re (]0]1)) + <1 + \/ﬁM> - ljol* + —(1 f>"“’
KL2M

~ = ~r~ KLM =
(1 + M)Re (o 31) + vin e (5 (3o - =)
For p > cLM, it is clear that our choosing x small enough implies that
e the first term of the r.h.s. may be absorbed by the second and third ones of the L.h.s.,
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o we have [jol? + [72]* — 2G4 Re (o 1) ~ [jol® + [,

e we have (1+ in./\/l)§|j7\o|2 +(1- i)%IiIQ > BLM (1502 4 [5,]2).

vn vn = 2/ne
Therefore, we end up with the following inequality
t b
(4.66) cA G0 )01 + £M [ 1Go. Tl dr < 2\ 0O + £ [ Bl
0 0
Combining with (4.65), we conclude that if
(4.67) p>cmax(l,LM) and p>CL,
for a large enough constant C' then
t t
(4.68) (b, )(t)!+p2/ \d!dT+/p!b!dT§ |(pb, d, o, €51)(0)],
0 0
. -~ ﬁM t O ﬁ ~ ~ A~
(4.69) (o)1 + == 1o 0l dr < 21 (eb: d)(O)] + 1. j1)(O)]:
whence
O gt/\ N LM [t~ = o~ s
(@.70) 1(6b 50 G0)(O1 + 2 [ 1dldr+ [ olar+ =2 [1Godoldr S165.d.50.3) O]
0 0 0

The only case where the condition p > C'L may be stronger than p > c¢LM is when M
is bounded. From our study for small p’s, we must assume that £M > 7!, and thus c£LM
is still much larger than /2/n. Therefore, one may take advantage of (4.58) to bound the
r.h.s. of (4.66), and combining with (4.65), we get for p ~ L

t t
eq:diffa| (4.71) |[(pb,d,VeLijo, VeLjr)(t)| +p2/ |d| dr +/ p|bl dr
0 0

t
i / 1Gos G0l dr < (06, d, VL0, VLT O)].
0

5. THE NON-EQUILIBRIUM DIFFUSION REGIME

This section is devoted to the study of the so-called non-equilibrium diffusion asymptotics.
Assuming that for some k > 1 and m > 0, we have
L

K m
eq:diffasymp| (5.1) Pl and L2Lg — Pk

we want to prove the convergence of the solutions of (1.6) to those of (2.5) or (2.6) if m < +o0
or m = +00, respectively, when ¢ goes to 0.

The first subsection concerns the proof of global existence with ‘uniform’ estimates for the
radiative Navier-Stokes equations (1.6) in the asymptotic (5.1), in the small data case with
critical regularity. Next, still for small critical data, we establish the global existence for the
limit systems (2.5) and (2.6). In the last part of the present section, we combine the uniform
estimates with compactness arguments in order to justify the convergence of (1.6) to (2.5)
or (2.6).
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5.1. Global existence and uniform estimates for (1.6) with £ ~¢ and £2£, > 1. In
order to get a global-in-time existence statement for (1.6) in the non-equilibrium diffusion
regime, we first put together the estimates that we obtained in the previous section, in
the case £ ~ ¢ and L£2L, > 1. Even though localizing the linearized equations by means
of Littlewood-Paley operators allows to get essentially optimal estimates for the linearized
equations of (1.6), it is not enough for our purpose, owing to the convection term - Vb that
may cause a loss of one derivative. The difficulty may be overcome by paralinearizing the
whole system, as explained below. After that, it is easy to prove global in time estimates
for the solutions to (1.6) just by combining the estimates for the paralinearized system, and
standard product laws in Besov spaces to handle the other nonlinear terms.

5.1.1. Linear estimates. Performing the change of variables (4.1) reduces the study to that
of the linear system (4.4).

Low frequencies estimates. Using (4.28), the comment that follows, (4.39) and the fact that
|(b,d, jo, j1)| =~ \(b,ﬁ,jo,jl)], we get for the solution (b,d, jo,j1) to (4.7),

t
(52) (.70 1 t>\+p2/0 15, o 70) rdT+/ \Jo\dr+M/ fuldr

o~

< C|(b,d, jo, 1)(0)] forall 0<p<Cy,

with! jg = jo—V/nb—/n%pd and j ::jl—ﬁ%MgoJruM

Middle frequencies estimates. If L2L, ~ 1 then using (4.54), and the definition of 61 versus
that of j1, we get

t t t
(53) (b Jo. t>r+p2/0 ’(dJo)\dTer/O rbrdT+M/0 il dr
< C|(pb,d, jo, 1)(0)] for all Cy < p < cLM.

If £2£, — +oo then (4.47) and (4.48) ensure that

t t t
(5.4) \(pb,d,pjo,jl)(t)\wz/o \d!dT+p/0 \(b,jo>\dr+M/0 fildr
< C|(pb, d, pjo, 31)(0)] for all \/1+n1<p<evvM,

and, according to (4.54)

t t
655 |h.d 1+ 2205505001+ [ |blar+ 7 [ idlar
t t
+ (o) [ ool dr + M [ ildr S 108, 1+ 2590, 5) O),
0 0
whenever Cievy M < p < cev M.

INote that the last term of jo given by (4.22) is negligible for p < 1 and may thus be omitted.
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Hence
t
~ . — < T 2\
(56) \(pb,d,max(l,mln(p,p 1821/M))]07]1)(t)’+p/0 ‘(bamln(latﬁpﬁ)jO)’dT

t t
4 / dl dr + M / fuldr < Cl(pb, d, max(1, min(p, p~ 20 M)) o, 1) (0)].
0 0

High frequencies estimates. Using (4.70), we have

(5.7) (b, dJon7)(0)] + / |d|d7+,o/ |b|dT+M/ 1GosG)l dr

< C|(pb, d, jo, 1)(0)| for p > cLM.
For notational simplicity, we shall slightly abusively change ¢ and C; to 1 in all the

following computations.

Optimal estimates in Besov spaces. If L£2L, ~ 1 then localizing (4.4) with nonzero source
terms f and § according to Littlewood-Paley operator Ay, using (4.5) and following the
computations leading to (5.2), (5.3) and (5.7) (combined with Fourier-Plancherel theorem)
we end up for all s € R with?

L. = 2,1
(5:8) 1@, jo, 71) (@)l 5 +Hb(t)HBs + [[b(t) Bs+1+/ 1]l g2 d

Tt
/ 105,50, + / oL dr + / liolly

0.LM - m 1, LM h2M
bt [ [ 1ol [ G G ar

o . 2,1 2,1 —
sH(u,yo,m(owgil+Hb<o>HBS F O+ [ 1, +HfHBs+1+H9HBgJ)dT

with
(5.9) o= jo— vib— visdivi and Tii= i+ —=—Vj !
. Jo:=Jo —VvVNOL—ynN=divu an 1: =71 ——=—VJo— =
L vn LM LLM
According to our previous work in [7], the critical regularity framework corresponds to s =
n/2 — 1. Therefore, the following quantities will play an important role

Vb.

0.0, )l = 1By + 1011+ 1o, )l -1
21 21 2,1

and
106 o, 1)l = sup 1. 7. OO + [ (11 o+ PGy + 1 300 )ar

tZO R+ 21 2,1

Lev M lev M h,ev M
(MBI ol Lol MG Tl
Ry 21 21 B3y

We denote by X and Y the correspondlng functional spaces (where time continuity is im-
posed rather than just boundedness) and agree that Y (¢) stands for the restriction of Y to
the interval [0, ¢].

2Further explanations on the method will be supplied to the reader in the next paragraph.
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In the case 2L, — +00, we have to change slightly the definition of the norms |- || x and
| - Iy as the middle frequencies obey (5.6). Consequently, we change | - ||x to | -||x. with

1B, @, o, 1)1 = (1011 3t Ibll" o3 Tl B4

21 21

h,ev M — A
+loll} a3 T ol 5_17 > 2% max(1, 25, min(2 *e?v M) [ Arjo | 2
21 21 1<k <e M

and || - |y to

16 1) e 2= 50 0o )@+ [ (1B + 101+ 100 )
t>0 R4 2 Bsa

2 1 2 1
lev M h,ev M
w (M ol +wwmmMF”)m
Ry BQ 1
/ 2 min(1, 225720 MY || Aol L2
Ry 1<2k<e M

To prove global estimates for the nonlinear system (1.6), the natural next step would be to
take advantage of (5.8) with s = n/2 — 1 and all the nonlinear terms in the r.h.s. Unfor-
tunately, this does not work for the convection term « - Vb causes a loss of one derivative

.n .n_q

(indeed, if b is in B3, then u- Vb cannot be smoother than Bg, ). A nowadays standard
way to overcome the difficulty is to paralinearize (1.6), that is to add to (4.4) the principal
parts of the convection terms. This is the aim of the next paragraph.

5.1.2. The paralinearized system. Before introducing the paralinearized system associated to
(1.6), let us shortly recall the definition of the paraproduct, according to the pioneering paper
[2] by J.-M. Bony. The (homogeneous) paraproduct between two tempered distributions U
and V satisfying (3.1) is given by

TyV ::ZSk_lUAkV with  Sp_1 := x(2¥71D).
k

We also introduce
ToU == SpaV AU,
k

and, observe that, at least formally

UV =TyV + TLU.

To some extent, if U is smooth enough then TyyV may be seen as the principal part of the
product UV. This motivates our considering the following system

( 01+ Ty - Vb +divi = F,
8tu+T~-Vu—Au+Vb——]1 =G,
atjo+ﬁdivj1+g(jo—\/ﬁb) =0,
Bt + ﬁvjo + ETMfl =0,

(5.10)

where A = pA+(A+p)Vdiv, M :=1+L,, ¥ and G are given time dependent vector-fields,
and F' is a given real valued function.
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Proposition 5.1. For any smooth solution (b, , jo,jl) we have the following a priori esti-
mate if 0 < m < +00

t
1(b, 2, jo, 1)y ) < C(H(b,ﬁ,jo,jl)(o)llx +/0 V@]l L ([ (b, 4, jo, g1) | x dr

t t
+ [IORAN, ar+ [P =T 90,6~ T Va5 d7>-
0 B} 0 B}

21 21

A similar inequality holds if m = 400, with Xoo(t) and Yso(t) instead of X (t) and Y (t).
Proof: Localizing System (5.10) by means of A, yields

AR+ Ap(Ty - Vb) + div At = A, F,

Oy At + Ay(Ty - Vi) — ADgii + VAR — EMA G = A,

oty O Arjo + ﬁ div Ay + %(Akjo — V/nAgb) =0,

O ARjL + ﬁ VAgjo + ETMAkﬁ = 0.

The important point is that in order to obtain all the estimates corresponding to p > C1,
one only has to resort to combinations between fluid unknowns on one side, and radiative
unknowns, on the other side. This will enable us to use exactly the same energy method for
(5.10) as for (4.4), in the middle and high frequency regimes, without introducing unwanted
parts of convection terms in the inequalities.
1. Low frequencies: 2k < Y.

Including the para-convection terms in the source terms of (5.11) and repeating the compu-
tations leading to (5.2), we get after taking L? norms and using Fourier-Plancherel theorem

t t
(512) 1A, @, jos 1) ()l g2 + 22 / | Au(b, @)l dr + / | Aol 12 dr
0 0
t
L, / 1A 2 dr < 1Ak, o, J1)(O)]] 12
0
t . t . —
T / |AW(E — Ty - Vb2 dr + / VAWG = Tz - Vid) | 12 dr.
0 0

2. Medium frequencies: Cy < 2k < CEES.
Keeping in mind the proof of (5.3), we see that it is suitable to introduce
1

_’Z:_f—i—ifvv‘.
G=n Jn M Jo

Now, because we have
O AL + div Agit = ALF,
{ 0 Ay — AAyi + VARG = VAL + EMAG + AG,
we easily get by computing

1d Ca . . o
(5.13) - QH(Akb, Aku)H%Q + HAkva%Q + Q(Aka’Aku)L2 s
2dt
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and by using Lemma 4.1 in [7] to handle the para-convection terms, the following inequality
for all 28 >

t t
1890 A Oz +2% [ |8l dr+ [ 18650l dr S I(3T0 A O]
0 0
t t ~ Lo
+ [ NATE8G) i dr + [ 198kl dr+ EM [ [T A2 dr
0 0 0

t
+> / V3| Lo | (Agr Vb, AgriD)|| 2 .
K~k O
Then looking at the equations satisfied by Ajjo and AyG (in the spirit of (4.40)), we derive
inequalities similar to (4.50) and (4.51) for |[Agjollz2 and ||AxCi]|z2, and thus following the
computations leading to (4.54), we end up in the case m < oo with

t t
(5.14) [|AR(Vb, @, Vo, 11)(8) |2 + 22 / 1(Awit, Ajo)l 2 dr + / 1AWVl dr
0 0
t t
L, / 1AGCil 2 dr < [ AR(VD, @ Vo, 71) (0)]| 12 + / | AWV E, G) 2 dr
0 0

t
L / 18] | Ag (VB @) 12 dor.
K~k 0

Comparing the definition of 51 and 171, we see that one may replace 51 with ;1 above, if
Cy <28 < eLL.

The obvious modifications to be done if m = +o0 are left to the reader.
3. High frequencies: 2% > c¢LL,.

Again, we compute (5.13) to bound the fluid unknowns. In addition, to handle radiative
unknowns, we compute for some small enough x (see the proof of (4.66)) the following

quantity

1d,, . . .- ~ Y T S S
55(\\&&70\\%2 + | Aggill72 — KEM 2725 (Aol Apdiv j1) 12).

Combining the computations leading to (5.7) with Fourier-Plancherel theorem and Lemma
4.1 in [7] eventually yields

t t t
|1Ak(Vb, @, jo, 71) (t)]| 2 +2% / | Agd| 12 dT+2k/ | Ab|| 2 dT+Vﬁs/ |(Akjo, Akj)l 2 dr
0 0 0

t t
< | A(Vb, @, jo. J1)(O)1 22 + / |AKYE, G2 dr + 3 / I3 1o | A (V. @) | 12 dr.
0 L~k 0

Finally, multiplying (5.12), (5.14) and the above inequality by 2k(3=1 and summing up over
k completes the proof of the proposition. O

5.1.3. A global existence result. According to the computations of the previous paragraph and
to the change of variables (4.1), it is suitable to introduce the following norms for getting

global solutions with uniform estimates in the case® m < +o00
oL fpt hy~t S
10, @, jo, )| xy = DI —y + w017y + (@ do, 1)l 51
By, By, 21

3Writing out the corresponding definition if m = +oo is left to the reader.
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and

16, o, J1)llve 1= sup ||, o, 1) (0)]Lxv + / (uubu o IO vl g )dr
t>0 R+ B 2.1

2,1 21

teM _ e heM
[ MIRIEGS + v il s+ vl v MG J) 5 ),
Ry 21 Bsy 21 B2,1

with jo := jo — b — zdivd and 1= J1+ WVjo — me.
Of course, if (b’,ﬁ’,j{],j{) and (b, @, jo,j1) are interrelated through (4.1) and v£ is used
for (V/,d, jj, j1) instead of £, then we have
W@, 30, 7))l xx = v (6, o, 1) lxe and |V, g, 1)y = v (B, @, o, 51) v
Theorem 5.1. Assume that £ ~ 1, that liminfe 'nvL > 1 and that L2L, ~ 1. There

exists a positive constant n depending only on p/v, n and on the pressure law such that if
e is small enough and the data (b5, U5, j§ 0, J1,0) Satisfy

eq:small-diff| (5.15) 1085, @5 36,00 31,0) |l x2 < v,

b€ e

then System (1.6) admits a unique global solution (

(5.16) 107, 55, 75) v < OIS, 5. 36 0. 75 0)x-

A similar result holds true if L2L, — 4o00.

,jo,jl) in YX. In addition, we have

Proof: Performing the change of variables proposed in (4.1) reduces the proof to the case

v =1 (changing £ into £ := vL). Hence we consider a smooth enough solution to (4.2),
and show that one may close the estimates globally* under Assumption (5.15).

Let us set Up := ||( 8,11’6,]’870,;%)”)(51 and U(t) := H(be,ﬁa,jg,ff)HyEl(t). In what follows,
we drop exponents e for notational simplicity. Finally, to shorten the presentation, we just
treat the case where £2L, ~ 1.

Now applying Proposition 5.1 with 7 = @, F := =T, - @ — k1 (b)divd and
- - LM -
G := _TV” U + kQ( )Au — kg(b)Vb + T k4(b)]1,
yields for all ¢ > 0

t
(5.17) U(t)sc(Uo+ | IVl b0, )l dr
0
t
+ /0 (I1F 0,5+ 1F = Tie- Vbl g2 + Gl + 175 Vil )dT)

Using standard continuity results for the paraproduct and remalnder, and comp051tion esti-
mates leads to

2

T -l 5. < CIVbl g 1] 5.0

N
-

I (0)div il 5 < Clbl 3 vl 5
2, 2,1

4Existence follows from spectral truncation as in e.g. [1], Chap. 10, and is thus omitted. As for uniqueness,
we refer to [7].
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Hence we have

(518) [ 11,5 ar < v,

We also have
- 9l 5+ < Ol 5 1193

1T - UH B3 < OV B}, I .21,
21 B21

() A 31 < CI] 3 ||v2ﬁuBa_1,

2
2,1

[[k3 (b )VbH g1 <ol 5 IIVbII

1

Bounding ZMk4( )]_1 is slightly more involved as it is not true that the low frequencies of

-1
j1 are bounded in L'(Ry; B 1 ). However, one may write that

LMy = LM LM + LMY LM + Es—lvyz,i/vz _ n71/2vj(l;,£~/\/t.

Therefore
LMIks Oy 5 S LMl th(f_;l e \\ifg7_1>\\ s
ol 52, (£ el ‘g;_l) + Vol fg;l_l))
Hence
(5.19) /t(HT~-VuH i+ 16 32) dr < CU0)
Finally

- Vbl g5 <Cllal] ;5 HVbH Ao

|1 (b)div | i <CHbH HdIVUH 5B

By

Therefore, by Cauchy-Schwarz mequahty

t
(5:20) | IF = T Vbl g0 dr < CU0),
0 2,1

Inserting (5.18), (5.19), (5.20) in (5.17) and remembering that BQ%1 — L™ (to ensure that,
say, |b] <1/2 if [|b].

53 is small enough), we end up with
21
U(t) < C(Uy + U?(t)) forall t>0.
By a standard bootstrap argument, we easily deduce that

U(t) <2CUp for all ¢t >0,

provided the data have been chosen so that 4C%U, < 1. O



30 RAPHAEL DANCHIN *, BERNARD DUCOMET **

5.2. Study of the limit system. In this paragraph, we prove the existence and uniqueness
of strong (small) solutions with critical regularity for Systems (2.5) and (2.6). We shall give
a common proof that works for both systems.
Before giving the global existence statement, let us introduce the solution space
e If m € (0,+00) (that is for System (2.5)) then Initial data will be taken in the space
X" which is the set of triplets (b, @, jo) satisfying
o . g’ —1 h, -1 - 3 & -1 1 - h, -1
10, o) e = 1015+ wlbl™ "+ 1] g + vl + v ol ™ < oo,
322,1 B22,1 3271 322,1 B22,1
and the solution space Y will be the set of triplets (b, @, jo) in Cp(R4; X”) satisfying
1

. L . s n g,l/_ — " - h,l/_l
1030l = sp 0 o) O+ | (Lin=bl 3 -+ V1B 4 1] e+ il )

2,1 B2,1 2.1

o If m = +oo (that is for System (2.6)), Initial data will be taken in the space X%
which is the set of triplets (b, , jo) satisfying

Lo Lyt hw~
16 o)l <= B+ b

1
+ gl oy +v ol .n < 00
3l gy < oo

and the solution space Y2 will be the set of triplets (b, 4, jo) in Cp(Ry; XY) satisfying
1(b, %, jo)llyx, := sup [[(b, @, jo) (£)[|xz,
>0

. ! i7 . hoyt
[ (lho—=bl5 + 1Bl + vl o+ il Jar < .

2, By 2,1
Theorem 5.2. There exist two positive constants ¢ and C so that if
aq:smallnonqu‘ (5.21) |(bo, o, Joo)l|avr < cv  (case m < 400),
0q: smallnoneql‘ (5.22) or Il (bo, ﬁOJO,O)HXgO <cv (case m = +o0),

then System (2.5) (resp. (2.6)) admits a unique solution in the space YV (resp. V% ) satis-
fying in addition,

eq:estnoneq2| (5.23) I1(b, @, jo)|ly» < C||(bo, to, joo)l|xr if m < +oo,

eq:estnoneql| (5.24) (b, 4, jo)llyy, < Cll(bo, W0, jo0)l|lxz, —if m = +oo-

Proof: Set k¥ := k/n and m := mn. As usual, it is enough to treat the case v = 1 as
performing the change of unknowns

(byw, Jo)(t, ) = (b, @ jo) (v~ 't,v '),
gives Systems (2.5) or (2.6) for (b, @, jo) with v =1 and A := A/v and, obviously
(b1, jo) ()l oew = | (B, 8, Jo) (v )|l an and [|(b,u, jo)|lyr = v[|(B, T, o) [y
Let us start with the study of the linearized equations with no source term, namely
Osb+ diva =0,
(5.25) Oy — A+ Vb +n~1Vj, =0,
Aejo + R(jo — m ' Ajo — b) = 0.
The divergence-free part Piu of the velocity satisfies

P — pAPT =0,
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while the coupling between b, d := A~'div@ and jy is described by
ob+ Ad =0,

(5.26) Ovd — Ad — Ab — n"'Ajy = 0,
Aejo + R(jo — m ' Ajo — b) = 0.

Note that the stability of a similar system has already been established in the previous section
for k > 1 (or, equivalently, K > 1/n).

Linear estimates for low frequencies. We introduce (y := jo — b — & 'Ad and notice that
b+ ,oc?: 0,
Od + p*(1 = Z)d = (14 5)pb = %o,
oo+ R+ (& + 2o =—((1+ DE+ E)o%+ ((1- £)i - &)o*d

On one hand, because kn > 1, the method described in the appendix (see in particular (B.7))
allows to write that, omitting the dependence with respect to k

~

105, d)(1)] + o2 |38 < |(b.d)(0) |+P/|C0|d7

On the other hand, the last equatlon directly gives

~ % t
G+ (7+ 2+ 2057) [ Glar < Gl +C(1+ )2 [ (Bl i

Hence plugging the second inequality in the first one

Ga0 [ 16.01dr $16. DO s (GO 1m0 [ 16D dr)

It is clear that the last term may be absorbed by the integral of the Lh.s. if p < .- Hence
we eventually get for some small enough p, > 0

o~ o~ ¢ _~ T
6520 6.4 01+ [ 1B.Dldr+ [ aldr S16.Lo01 it o< (T2

Linear estimates for high frequencies. We set 6 := d — A~'b and notice that
Btg—i-g = —pg,
00+ (p? — 1)0 = p~ b+ n"Lpjo,
dijo + 7 (1+ 2)jo = #b.
Therefore
R ) t R L[t e 1 [t
G0+ 2= 1) [ Blar < 5O1+07 [ Blar+ [ ol

At the same time
t t
(o)) + / Bldr < [6(0)] + p / 5 dr,

Goltl +&(1+ 2 /\JO’dT<UO r+n/ b dr.
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Hence
~ t ~ 1 JANES
2
_ < 4z

58)] + (p 1)/0 Blar < 5(0)1+ (5 + £ )bo)]
n~1k1 -~ P’ fa
— )plj 1+ ————— ol dr.

+(1+T7L*1p2>p|30(0)| (1t n(1+r7zlp2))/0| |dr

Therefore there exists a constant pp, depending only on m and n (with n > 2 if m = 4+00)
such that for p > pp, we have

t t
5:28) (6,30 + min(p.mp ) io(®)+p [ |GGl dr+ 6 [ [8ldr (D5, i) O).

Of course, one may replace ¢ with d in (5.28).

Linear estimates for medium frequencies. The stability argument used just below (4.37)
allows to write that there exist two constants ¢ and C' depending continuously on 1/m, such
that if p €[5 pe, pn] then

A~ o~ o~

(5.29) (b, d, 50)(1)] < Ce=!|(b,d, jo)(0)].

Estimates for the paralinearized system. The previous steps allow us to get handy estimates
for the following paralinearized version of System (2.6)

Ob+Ty-Vb+divii = F,
eq:1-diff10] (5.30) Oyt + Ty - Vit — Al + Vb+n"'Vjo = G,
Ajo + K(jo —m ™ Ajo — b) = 0.

More precisely, following the steps leading to (5.27), (5.28) and (5.29), introducing (p :=
jo —b—F~1div#, and arguing as in Subsection 5.1.2 we end up with?

t
- . 01 , 01 . 21 A
eq:1-diff11) (5.31) [jo(®)ly + 1O @O+ [ (ldo =0l +6 D) sy, ) dr

B2 B2 0 B B2

2
2,1 2,1 2,1 2,1

. e,
< o(0)14Y
B3, 2,1 0 2.1

t
1 o 0,1 2,1 5 0,1
b IO+ [ (18 =T VB, 416 - Ty Vil )ar
B B B2,

For high frequencies, we get, in the case m = +oo

t
- . h,1 VRN N _ih,1
sqtaittiz] (532) 0O + 1T+ [ (el +lally.,)

2,1 2,1 2,1 2,1

t
. 1 Sl h,1 S0kl
< o) )™ + [1a0)"_, + / (IFI™, + 16" )dr
B B 0 B2, B

2,1 2,1

t
+ [ 19T (1l + 1)

2,1 By

SHere we do not track the dependency with respect to m.
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and if 0 <m < +00

t
h,1 . h,1 —r o 1h1 N _nh,1
(5:33) IOy + Lo+ 1O+ [ (Gl + sy, dr
B B B 0 B B

2
2,1 2,1 2,1 2,1 2,1

t
h,1 . h,1 - h,1 h,1 Snh,1
S D)™, + 150", + 170)1"5_, + / (1E1"y + 16" )dr
B B B 0 B2, B

2,1 2,1 2,1 2, 2,1

t
V|| zee (16]] .z + ll7oll™ 5 il g1)dr.
# AT (5 + il o+ 1 2) e
Proof of existence. We only establish global-in-time a priori bounds in the space ' or Y1
for the solutions to (2.5) or (2.6) with data satisfying (5.21) or (5.22). Our proof is based on
(5.31), (5.32) and (5.33) with v =4

F=—TL, - T—k)divi and G =T, @+ ko(b)Ad — k3(b)Vb — n " ky(b)V7o.
Bounding ||F — Ty - Vb|[*},_, and HFHhI% relies on (5.18) and (5.20). As regards G, the
B B

G-1
2,1 2,1
computations that we did in the proof of Theorem 5.1 ensure that the first three terms may

be bounded as in (5.19). To handle the last term, k4(b)Vjo, in the case® m < +oo we use
the decomposition

k4(b)Vjo = ka(b)Vb + k4(b)V (jo — b).
The first term may be bounded quadratically exactly as k3(b)Vb. As for the last term, we
may write

1E4()V (Go — D)

hence it is also bounded by C/||(b, d, jo)H%ﬂ(t).

IV (jo — bl

11y
L;(Bgy )

S b
S

| 53 X
Ly (32,1 Lfo(Bz,l)

This enables to conclude that we do have for all t € Ry
(0. @, jo)llyr 1y < C (10, @ Go) (O)lar + (b, T, jo) 131 s))-
This obviously yields (5.24) if (5.22) is fulfilled.

Proof of uniqueness. It works the same as for the standard barotropic Navier-Stokes equa-
tions: we look at the system satisfied by the difference (&b, du, Jjp) between two solutions
(b, @', j3) and (b?, @2, j3) of (2.5), namely (denoting K; = 1+ k; for i = 1,2,3,4)
O + @ -V = —di - Vb! + (K1 (b') — K1 (b?))diva? — K1 (b')div i,
O + w2V i + dii- Vit — (K2(b?)— Ka(bh))Au? — Ko(b')Adii + (K3(b%)— K3(b'))Vb?
—i—Kg(bl)V(Y) + nil(K4(b2)—K4(bl))Vj01 + n’1K4(b2)V(5j0 =0,
0:djo + %(5]0 - — %Aéjo) =0.
Now, exactly as for the barotropic Navier-Stokes equations, it is possible to bound &, &
and §jp just resorting to basic estimates for the transport and heat equations. However,

the hyperbolic nature of the first equation forces us to estimate (b, du, djp) with one less
derivative, namely in

L°(0,T; BE ') x (L0, T3 BE, 2) N LY0, T3 BE,))" x L0, T; B, ).

In dimension n = 3 combining estimates for the transport and the heat equation allows to
get uniqueness on a small time interval, then on the whole Ry by induction. In dimension

6The case m = 400 does not require that decomposition.
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n = 2, this is slightly more involved as some product laws do not work correctly if estimating
(b, dit, gjo) in the above space (some regularity exponents become too negative). Nevertheless
this may be overcome by combining logarithmic interpolation and Osgood lemma (see e.g.
[6] for more details). This completes the proof of the theorem. O

Remark 5.1. If 0 < m < +oo then one may alternately assume that jo is in 325,1 Taking
advantage of the parabolic smoothing given by the equation for jy, it is not difficult to get a
solution (b, d,jo) with

i / I7oll 3.2 = € (1ol 3 + VIl g + 1ol -1 + ol 3 )
2 2,1 2,1

5.3. Weak convergence. Here we justify the weak convergence of (1.6) to (2.5) or (2.6)

under the assumption that liminfe?L, > 0 and that £ tends to ~2 for some K > 1.

Theorem 5.3. Let the family of data (b, 5, j§ 0,]1 0)o<e<1 satisfy Condition (5.15). As-
sume in addition that

L
(5.34) L2Lw? — m € (0,4+00] and MR ke (1, +00).
€
Then the global solution (bs,ﬁe,jg,ff) given by Theorem 5.1 satisfies
Fio0 i LRy B+ B2,
and, if (b, 5, J50) — (bo,to,Jo0) then (b%,4°,j§) converges weakly to the unique solution
(b,4,jo) of (2.5) supplemented with initial data (by, o, joo)-
Proof: From (5.16) we gather that

7 - . 551

() M=0M™) and (G M=0M™) in L'(R;B3, ).
Therefore, taking advantage of the boundedness of the low frequencies of Vb* and Vjj in
L'(Ry; B;’l), and of the fact that

— Vi + ViE,

5 =31 — !
L= ﬁM LLM

we get

. i .n_q . n
(5.35) ji=0() in LYRy; B, + B3)).

n

Next, we observe that (5.16) implies that (b°) and (@) are bounded in LOO(]RJF;B;;l N
B221) N Ll(R+7B221 + B;l) and LOO(R+;B§1_1) N LI(RJF;B;{H), respectively. Note that
this implies that @ is bounded in L%(Ry; 325,1) Because

Ob® = —u® - Vb — ki (b°)div @,

and the product maps B;;l X 325,1 in B;;l, we thus get in addition that 9:b° is bounded in
L*(Ry; B;;l), and thus (b°) is bounded in C2 (Ry; B;;l) Interpolating with the bound in

Cp(Ry; 32%71), we thus have (b°) bounded in C2 (R ; Bgl_a) for all a € [0,1]. Then combining
locally compact Besov embeddings and Ascoli theorem allows to conclude that there exists b
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.n_q

in L®(Ry; By N B;l) NLY(Ry; B;lﬂ + B;l) and a sequence (eg)ren going to 0 so that,
for all ¢ € S and all « € (0,1]

«

(5.36) o0 — ¢b in Li(Ry; BEY).

From (5.16), we readily get for some sequence (e)ren tending to 0
(5.37) @ =i i LRy BE ) NLY R BEY)  weak ¥,
which, combined with (5.36) is clearly enough to pass to the limit in the mass equation.

Next, we see that (5.16) implies that (j§) is bounded in L*>®(Ry; Bil_l) Hence there exists

Jo € L>®(Ry; B;;l) and a sequence (gx)gen going to 0 so that

n

JoF —Jjo in LOO(]RJF;B;l_l) weak *.
Because
1 -, L 1 1 -

5.38 —divji = —— | m57—5= |Ajg — == 0div ji,
(5:38) e T <£2(1 +£S)> DT L L)
and (5.35) implies that &Jf — 0 in the sense of distributions, we deduce that

1 -

—div j] — —ﬂAjO in &

€ nm
Note that the right-hand side is 0 if m = 4o00. Therefore (b, jo) satisfies the third line of

(2.5) (case m < 400) or (2.6) (case m = +00).

Let us finally pass to the limit in the second equation of (1.6). The main difficulty is
that, owing to the radiative term which is only bounded in a L!-in-time type space (namely

L0 . L,

LY(Ry; B, ) or so), one cannot take advantage of some suitable bound of 8;@® so as to
glean some equicontinuity and then resort to Ascoli theorem. To overcome this, we use the
fact that, owing to (5.38)

8, (ﬁ + %(1 + k4(b5))ff> = @ Vi + (1 + ko (0F)) AT

1 —
—(1+ k3(67) VB — — (14 ka(6°)) Vg + %kﬁ(ba)ﬁtbgﬁ-

.n_q

Now, because (i) is bounded in the space L®(Ry;BZ, )N L*(Ry; 32%1), (45) is bounded
in LOO(RJF;B;;l) and (b°) is bounded in (L? N Lw)(R+;B§1), product laws in Besov
spaces ensure that the first four terms of the r.h.s. are bounded in L2(R+;B§; 2) (only
in LZ(R+;B§ 0_02) if n = 2). The same property holds true for the last term for (0;b%) is
bounded in L2(R+;B§; 1) and (j5) is bounded in LOO(RJ’_;B;; 1). Using locally compact
Besov embedding and Ascoli theorem, one can now conclude that there exists some ¥ in
L>®(Ry; B;;l) so that for all ¢ in & and a € (0,1), we have, up to extraction

. I - R . PR -
o(F + (1 + k() ) — 67 in LRy BE )
Of course, combining with (5.35), we discover that ¢ = @. Hence we also have

$iF — ¢7 in LS(RyBE, %) forall g€ .
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It is now easy to conclude that the second line of (2.5) is fulfilled by (b, , jo).

Finally, that the whole family (b, %%, j§) (and not only subsequences) converges to (b, @, jo)
stems from the fact that the solution to (2.5) or (2.6) is unique. O

Remark 5.2. It is also possible to justify the strong convergence of the solutions of (1.6) to
(2.5) or (2.6) using (5.35) and performing the difference between (b°,4*,j§) and the solution
(b,, jo) to the limit system. Again, taking advantage of the decay properties of j5 is crucial.
Note however that, exactly as in the proof of uniqueness, owing to the hyperbolic nature of the
density equation, one cannot prove the strong convergence in the solution space. There is a
loss of one derivative that may be partially compensated by combining with uniform estimates.
As we do not think this approach to bring much compared to weak compactness, we leave the
details to the reader.

6. THE EQUILIBRIUM DIFFUSION REGIME

This section is devoted to the mathematical justification of the equilibrium diffusion regime
given by (2.10). To avoid useless technicality, we focus on the case where

(6.1) L— 400 and eL M =1.

6.1. Linear estimates. Let us gather the estimates we proved for (4.7) for the above asymp-
totics in Section 4.
Regarding low frequencies, one may combine (4.20) and (4.21) to get

o~

©2) 16255000 [ Bdlr+ L [ olar+ 22 [ jar
< O|(b,d, G0, 1)(0)] for 0<p<V1+n,
WithEN::VE JO —]0—\/_b—\/_ pd and lejl —Lb
For middle frequencies, we have according to (4.58) and (4.64)
t t t _ t
63) 102503001+ [ Igblar + [[1dar+p [ Golar+ [ [ilar

A~~~ o~

< C|(pb,d, Jo, 1)(0)| for /2/n < p< LM,

and (4.70) gives, if M is large enough

SUSGEN t t o LM [t P
©4) Vb 3o, 300N+ [ dlar+p [ Blar+Z24 [1GoGolar
< C|(pb, d, jo, 1)(0)| for p > cLM.

If M is bounded then we must assume that p > Clﬁ./\/l for some C; > ¢. However, we have
(4.71) and M bounded implies that e£ ~ 1. Therefore (6.3) is satisfied up to p < C1LM.
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For the whole system (4.4) with nonzero source terms f and g, we thus obtain (taking
slightly abusively ¢ = C7 = 1 for notational simplicity)

(65) 1o F)Ollgg, + OIS + IO + \Iu\lBs+2dT+ ||;ou
2,1 32 B
M [t d ! b TG g i LEM m,LLMd
L Ay Al s ||Jo||35+11 "+ EM u r
h,CM - .
/ rrbrrBs+1d r 2 / 1Gio. 7 dT<H<u,yo,gl><o>Hgg,l

t
01 0,1 o
Jer(O)HBz + [|6(0 )HBs+1+/O (HfHBS +Hf”Bs+1+H9HB§’1)dT

with
€ - - 1
0 Jo 7 1=J1 M

Back to the original variables, that linear analysis induces us to introduce the following norms

10,7, o, 1)l 3= 0I5 s+ IS+ 1 g+ G0, Tl g0 and

21 21 2’1

16, @, jo, 1)l g := sup [[(6, 7, jo, 1) (6) | 0 + V/ (H(b7j07j1)H EIE S e >dT
€ t>0 € R+ B21 1

h,v™
v [ (et + 2R + Sl )d
Ry 21 21 21

=1 LM LM = oM
- (HJ Iy M MG R o ) )d
Ry € B3y

21 B3
with jg := 70 — b — %divﬁ and ;1 = ;1 + ﬁVb

We denote by )Z';’ and 576” the corresponding functional spaces (where time continuity is
imposed rather than just boundedness). Of course, we still have

H(blaﬁl7]67;{)ufg :V_lu(baﬁ7j07jl)u)zg and H(blaﬁlaj&fi)u?gl :V_lu(baﬁ7j07jl)”?su7
through the change of variables (4.1), if we replace £ by £ in the left-hand side.

6.2. The paralinearized equations. In the equilibrium diffusion limit case the estimates
for the paralinearized system

Ob+T5-Vb+diva = F,

0yt + Ty - Vi — At + Vb — B 5 — G

Do + UYL 4 L, —b) =0,

01 + % + wﬁ =0.

(6.6)

recast as follows
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Proposition 6.1. For any smooth solution (b, , jo,jl) we have the following a priori esti-
mate for (5.10)

t
||(b’ﬁ,]05.]1)||17vt §C<H(baﬁa.]0’]1)(0)”)?l +/ ||V6||L°°H(baﬁa](],jl)u)zv dr
/II (VF,G)l ’?15 1d7+/ |(F~TyVb,G Ty V)| ?13 1d7+/ | T3 Vb— FHW’I’LMd)

Proof: Except in the middle frequencies range, the proof goes along the lines of the
corresponding result in the non-equilibrium case. Still assuming that v = 1 and replacing
L with £ = vL then, working directly on the localized paralinearized system (6.6), and
combining Inequalities (6.2) to (6.4) with estimates for the para-convection terms gives
1. Low frequencies: 2F < C4.

A - . 2 t A - . 2 EM ¢ A
IA0(bu o F) O+ 2 [ IR o) o dr + 52 [ 1A 12 e
L [t . , -
2 [ WAviollzz dr < 184030, 7O

t t
—|—/ HAk(F —T5- Vb)HLQ dr —|—/ HAk(G —T5- VZ_[)HLQ dr.
0 0

2. Medium frequencies: Cyp < 2k < cLM.

One has to keep in mind that in order to derive (6.3) from (4.58) and (4.64), one has to
consider the system that is fulfilled by (b, u, Co,jl) with (g := jo —+/nb. In particular, a part
of the the paraconvection term of b enters in the equation for (3 as we have

1 o
gﬁdivjl —v/ndivi = /n(T5 - Vb —F).

Therefore, following the computations leading to (4.58) and (4.64), and using Lemma 4.1 in
[7] to bound the convection terms coming from the equations for b and @, we end up with

L
@@+g®+

t t
| AR (VD, T, jo, 1) (E)]] 12 +22k/ | Agi]| 2 dT+2k/ |(Agb, Agjo)l| 12 dr
0 0
t t
L0+ L) / 1Al dr < ARV, @, jos J1)(O)12 + / | AWV E, G)|p2 dr
0 0
t t
4 / |AK(Ts - Vb — F)|2dr + 3 / V8] 2o | A (Vh, @) 12 dr.
0 B 0

3. High frequencies: 2% > cLM. We get

t _ t .
1AR(TS, @, jo, T2 + / (22 Ayl 2+ 2| Arbl2) dr + EMe / 1 AwGios )12 dr
0 0
t
<ALV, T, jo, 1) O]z + / VAWV E,G)l,» dr
0

Y / V8 | A (Vb @) 2 do.

K~k
Putting together all those inequalities completes the proof. O
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6.3. A global existence result. Our global existence result with uniform estimates reads

Theorem 6.1. There exists a positive constant n depending only on u/v, n and on the
pressure law such that if € € (0,1) and the data (bf, g, jg o, JT o) Satisfy

(67) 185, 5. 50075 0) g < 0

then System (1.6) admits a unique global solution (b°, _'5,j8,ff) n }76”. In addition, we have
(6.8) ||(b€,ﬁ€,j8,jf)||f/5u < C|| (b5, 5, jg 0,31 0)||)~(E»-

The proof relies on Proposition 6.1. Note in particular that the ‘new’ last term in the
estimate of (6.1) does not entail a loss of derivative as we simply have

1,EM . =
T Vb= PS50 <15l o) S 10 0 1B
Ly (B3, ) t(Bs

The rest of the proof works exactly the same as in the non—equlhbrlum case. U

253 )"
L2(B2))

6.4. Weak convergence. Here we justify weak convergence to (2.10) when assumption (6.1)
is fulfilled.

Theorem 6.2. Let the family of data ( 6,ﬁ6,j8,o,jf,o)0<e<1 satisfy (6.7). Then the global
solution (be,ﬁe,jg,ff) in 175” given by Theorem 6.1 satisfies

Ji=0 in L'ReBi + B,
and if (bg,U4y) — (bo, Up) then (b°, 4", j§) converges weakly to (b,u,b) where (b, ) stands for
the unique solution of

b+ u-Vb+ ki(b)diva =0,
Ol + 10 - Vi — ka(b).AT + (k3(b) +n~ ks (b)) Vb = 0.

supplemented with initial data (bg, dp).

(6.9)

Proof: Let ]_% = ;f + %- From (6.8), we have

ﬁM v v
1 M +VHVb€H€ g FLMIFEIM L < O

€ LY (R4 221 ) LY (R4 21) LY (Ry;B 21 )
Hence, given (6.1), we deduce that

-1 .n

(6.10) ji=0() in L'(Ry; Bf, +B3)).

Using the equation of ;f, this gives
(6.11) Vije + L1+ L£,)55 — 0 in the sense of distributions.
As in the non-equilibrium case, (6 8) 1mphes that the famlhes (b°) and (_' ) are bounded in
L°°(R+;BQ%71_1HB )ﬂLl(R+,3221 —|—B 1) and LOC’(RJHBQ%1 )ﬁLl(RJHB2 1+1), respectively.
Hence (9;b°) is bounded in L2 (}RJF,BZ1 1) and we can thus deduce that there exists b in
L>(Ry; 32%1—1 N 32%1) NLY(Ry; Bflﬂ + 32%1) and a sequence (g )ken going to 0 so that, for
all $ €S and all a € (0,1]

—a

(6.12) pbF — b in L¥(Ry;BE, °).

For (@®), we still have the weak convergence result given by (5.37), which suffices to pass to
the limit in the mass equation.
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Next, we observe that (6.8) implies that (j§) is bounded in L'(R; 3221 —i—BQJr ). Hence,

there exists a sequence (gx)ken going to 0 so that ji* — jo in the sense of distributions.
Moreover, we have

j& — b = =L div 55 — eL710,55.
Remembering (6.10) and (6.1), we see that the first term of the r.h.s. is O(e) in a suitable
space. The second one also tends to 0 in the sense of distributions as e£~' — 0. Hence

(6.13) jo = b.

In order to pass to the limit in the velocity equation, we proceed as in the non-equilibrium
case. First we use (5.37) and next, the fact that

> > 1
) (Fﬁ + % k4(b€)jf> = T VT + ka(b) AT — ks (b°) VI + %k@(b&)@tbe Ji = = ka(6%) V3.

Taking advantage of (6.8) and of product laws in Besov spaces, we readily obtain that the

four first terms of the r.h.s. are bounded in LQ(]RJF;B%Q) (or only in LQ(I&L,B2 ) if
n =2). To handle the last term, we observe that accordmg to (6 8), Vi is bounded in

n__

L~ (R+,B ) hence the term k4 (b°)Vj5 is bounded in L®(Ry; B2, 51 2) (or LOO(RJF,B2 )
if n=2).

As in the non-equilibrium case, it is now easy to conclude that there exists some ¢ in
.n_q )
L>®(R4; By, ) so that for all ¢ in S and «a € (0,1), we have

k
gb(ﬁak + %Jik> - @17 in LZOC(RJraB;l_l O‘)
Of course, combining with (6.10), this implies that ¢ = u, and (b, @) thus satisfies the second
line of (6.9).

Finally, that the whole family (b%, 4", jg,ff) converges to (b,,b,0) stems from the fact
that the solution to (6.9) is unique (note that it is just the standard barotropic Navier-Stokes
equations with a modified but still stable pressure law). O

7. THE POISSON DIFFUSION REGIME
This section is devoted to the study of the asymptotics regime where
(7.1) e< L<SeY? and L2Ly~ 1.

According to the formal computations of Section 2, we expect the solutions of (1.6) to tend
to those of the Navier-Stokes-Poisson sytem (2.9).

The general scheme of the proof that we here propose is the same as in the study of the
other asymptotics: we first perform a fine analysis of the linearized equations so as to check
the long-time stability and exhibit the quantities that are likely to be bounded uniformly
when ¢ — 0, then tackle the proof of the global existence. We rapidly justify that the limit
system is globally well-posed in a functional framework that is consistent with the analysis
we used for (1.6), and eventually take advantage of compactness arguments so as to prove
the expected convergence result. As in the other regimes, the fact that the limit system has
a unique solution will guarantee that the whole family of solutions to (1.6) converges to the
solution to (2.9).
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7.1. Linear analysis of (1.6) in the Poisson regime (7.1). We here gather the estimates
for (4.7) that have been obtained in Section 4. Recall that £ := vL.

Small frequencies. Using (4.28), (4.33), (4.34) and the fact that \(/b\,c?jo,;l)] ~2 ](E, 53031)]
and that the last term in the original definition of jy in (4.22) has a negligible contribution
with respect to j1, we get

I t gt
(1:2) 16,8 Zhos o, T)(0) + 7 /|de Gldr+ [ foldr+Z [ 16
0 0

" > € A
—/0 |]1|d7— < C|(b?d, ZV]O’pJO,jl)(ON for all 0 < p< Cl’

with jo 1250—\/51)—\/5%,061, Co = Jjo — \/fz b and j; :=j; — \/‘EMJ‘H'LLM'

I+ nL2M

Middle frequencies. Combining (4.54) and the definition of 21 versus that of ?1, we get

78) Wb a0 +o [ Bir+ ot [ ilar s [ Goldr
+—/ fuldr < (65,40, 71)(0)] for Cu < p < cEM.

Large frequencies. Finally, using (4.70), we have

SO [t b LM [t~ =
cqimonedptt] (7.4) [(pb.d.3o.30)(0)| + 77 [ Idldr+p [ Blar+ =2 [ (Gog)lr
0 0 0
< C|(pb, d, jo, 1)(0)| for p > cLM.

Therefore, localizing (4.4) (with nonzero source terms f and g) according to Littlewood-
Paley operator Ay, using (4.5), following the computations leading to the above three in-

equalities and using Fourier-Plancherel theorem, we end up with the following inequality for
all s e R

- L = 01 : 01 . h,1
j:noneqPestlin| (7.5) |[(if,51)(¢)ll 55, +Hb(t)HBs +Hb()HBs+1+ ~HJo(t)HBS +HJo(t)HBs+1+HJo()H

A
/ 1] gt + / 10550, )l r + = / HCoHBs+1dT+ / lolly
ZE . 1L h
£ / M ar + £ / ol + / ol dr + Z22 / IGo,JlM dr

2 47 ‘67
S (@, 0)(0)] gy, +116(0 )”32 +16(0 )HBHI + ~HJo( )HBE + 1170 (0 )HBLI

O+ [ 1%+ 15k + 161y, )
with jg := jo — \/ﬁb— \/ﬁ%divﬁ,

. 1 -1 > 2 .
Co = Jo — \/E<Id— n£~2MA> b and j1:=51+—=—Vio— =
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As in the previous sections, owing to the convection term in the equation for b, the above
inequality does not allow to prove the global existence for (1.6), and one has to consider the
paralinearized system (5.10). Adapting the proof of Proposition 5.1, we get the following

Proposition 7.1. If the coefficients L, Ly and e fulfill (7.1) then for any smooth solution
(b, d, jo,fl) to (5.10), one has the following inequality

t
16,0, 7))l 0y < C(\\(b=ﬁ7joaj1)(0)HXg + [ 19T b )l

2,

/H (VF,G)| ’?15 1d7+/ |(F =Ty Vb,G — Ty - Vu)u?ln_lcz7>,
Bl

with

1, %, jo, j1) |l v = [1(@, 1)l . f—1+HbH __1+VHbH —HJoH __1+VHJOH 3 - Il Py
2 21 21 21 21 21

and

16, @, o, 1) (V)llye o 2= sup_ (|6, @, o, 1) (7)ll

0<r<t
t
v EAA
+V/(HUH 7+1+H(b Jl)H.nH £ H.m dr + — /HC e
ZEAA h, h,LM
ettty ar+ £ RIS d¢+/ Iy dr + =2 uuo,;l)ug tar
2,1
Above, we set
0 = jo— b——divid, (o:=jo—|1d LAY b and T i+ L v
= — 00— —=dlvu = — —_ an = — .
Jo = Jo T » 60 = Jo nL2ZM J1: =N M Jo LLM

7.2. Uniform global well-posedness in the Poisson regime. In this paragraph, we
sketch the proof of the following global existence result.

Theorem 7.1. There exists a positive constant n depending only on u/v, n and on the
pressure law such that if € € (0,1) and if the coefficients L and Ly fulfill (7.1) then any data
(05, @5 5,01 7.0) satisfying

(7.6) 1065, o, 30,00 31,0l xv < 1,

generates a unique global solution (bs,ﬁe,jg,ff) in Y? to System (1.6).
Furthermore, we have

(7.7) (6%, u %,J'o,h)Hyu < C|[(bg, o Jo, 0,31 0)”)2;-

Proof. Assuming with no loss of generality that v = 1, the proof relies on Proposition 7.1
with, dropping the indices ¢ for better readability, ¥ =«

~ L
F:=—TL, - i—k(()divi and G:= U+ ka(b) AU — k3(b)Vb + —Mk4(b)
Let us just explain how to handle the last term, as it cannot be bounded exactly as in the
proof of Theorems 5.1 or 6.1 due to the difference between the spaces Y and Y. We use
the fact that
LMy = LMjy + LV — Vo,
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and thus
LMEs(b)j1 = LMEs(0) Gy +T75M) + £7 ka(0) VM — ey (0) V555
It is clear that

Ika (0) 77

S el M

n ||J

n
2

. .n_q
L1(3271 ) 2

Ll(B ) S (‘CM)_lu(b’ﬁ’jO,jl)HYEla
2,1

L= (B2,
that the second term in the r.h.s. may be bounded in the same way, and that the third one
can be bounded as the pressure term k3(b)Vb. For the last term, one just has to observe that
the definition of || - ||y: guarantees that

7.8 Viol“*M. < |(b, i, do, 1) |1
(r.5) IVl S 100 3
and that
ka(b a2 <|b n o
TR
The rest of the proof is standard, and thus left to the reader. O

7.3. Study of the limit system. We introduce the following norms
Lo tv~ h,
10,3, o)L = I1BI1% ", + v[Bll g 5 +HuH 3ot 1ol e 2ol n+27
B2,1 21 21 21

and

16, @, jo) | v := sup [|(b, @, jo) (£l ¢
t>0

. hp~1
+u/ (I G5 + 15 )dt+/ (ol "+ 2ol ) .
R4 B3y 1 R4

2 1 2 1
Theorem 7.2. Let the data (by, U, jo,0) satisfy for a small enough constant ¢ > 0
4, h,
(7.9) [[bol i_l +vliboll s Nl g < ev,
2 1 2,1

and the compatibility condition
2

. 1% .
Jo,0 — —AJjo,0 = bo.
nm
Then System (2.9) admits a unique global solution (b, jo) in the space YV, satisfying in

addition for a large enough constant C independent of v

A7 5
(7.10) 100, )l < C (ol + vl + ol 5 ).

21 21 2,1

Proof. We just sketch the proof as it is very similar to the standard one for the barotropic
Navier-Stokes equations. As usual, it suffices to treat the case v = 1.
The first step is to analyse the linearized system

8tb+leﬁ: f,
(7.11) O — A + Vb + 1vjy =g,
( d— —A)]Q =b.
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A~ o~

To this end, we set d = (—A)*l/ 2div i and observe that in the Fourier space, (b,d) fulfills
the following ODE if f =g =0

(9,53%— ,OC/l\: 0,
Btc/i\—i- P2C/l\— pap/b\ =0

with p:=|{| and a, :=1 + - Of course, jo may be computed from b by the relation
jo=——"">0.
Jo 2 + nm

Introducing the following Lyapunov and diffusion functionals
E% = 2ap|/l;|2 +2[d]? + |pb]* — 2Re (p/l;g\) and ’Hi = ,02(ap|/l;|2 +|d?),
we see that

1d 2 2_
thﬁp—i—?-[ 0.

Because we have afl < ¢g for some ¢y independent of p, one can thus conclude exactly as
in the standard barotropic case that for all £ > 0 and p >0

o~ o~ o~ -~

(6.8, + min(rp) [ otlar +52 [ 1dar <168, D O

Back to (7.11), one may combine Fourier-Plancherel theorem and Duhamel formula to get
the following estimate for all s € R

t
B _ . A
0, 90, DOl g5, + 1o (O)llz; gso + /0 (il g2 + 16 Jo) 1) 7

t
/ (HbuBsH+rryo\\Bs+3>dTsc(mbo,wo,ﬁo)rrggl+ / H(fﬂf,g)HB;ldT)-
k) 0 k)

However, because of the convection term in the equation for b, this does not allow to prove
estimates for the nonlinear system (2.9). Therefore, mimicking the standard approach for
the compressible Navier-Stokes equation we ‘paralinearize’ the system and get the following
result

Proposition 7.2. The solutions to the following paralinearized system
ob+ Ty -Vu+diva = f,
Qi + Ty - Vi — A + Vb + 1Vjo = g,
(Id — L A)jo = b.

fulfill the following a priori estimate

t
1.9 2055, + Ui s + [ (g + 1030 550) dr
+ [0t + il dr < € (100 Sl + [ 10697901, dr

t
+ [ 19816925, a7).
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Now, in order to estimate the solutions of the nonlinear system (2.9), it suffices to apply
the above proposition with ¥ =

f=-T.-Vb—ky(b)divii and §=—T%, Vii+ ko(b)Ai — ks(b)Vb — n~ ks (b)Vo.

All the terms but the last one of § are already present in the barotropic Navier-Stokes
equations, and may be bounded quadratically in terms of ||(b, @, jo)||y:. Now, we have

1 n < n 1 n
Hk‘l(b)vjouBgfl ~ HbHBgl HJOHB;;

hence

1£4(0)Vjol| S 1ol

(lldo H

sty (0125 Ly + ol

1) 288,
and one can thus conclude that whenever the solutlon (b, jo) ex1sts we have

16, @, jo)lly1 0y < € (Ilboll ains, t HuoHBQg;l + 116y @, o) 1351 4))

2,1

LlB2 1

which allows to get (7.10) if (7.9) is fulfilled with a small enough c. O

7.4. Weak convergence. Here we justify weak convergence to (2.9) when assumption (7.1)
is fulfilled and, in addition

(7.12) VL2 L, — m € (0,400).

Theorem 7.3. Let the family of data (b§, 5, j§ 0,]1 0)o<e<1 satisfy (7.6). Then the global
solution (b°,u _'5,j0,]1) in Y given by Theorem 7.1 satisfies

(7.13) Fi=oL) in L\Ry;BE '+ BE),

and, up to extraction, (b%,1,j5) converges weakly to some solution (b, , jo) in V¥ of System
(2.9) when € goes to 0.
If in addition
(714) ( 8, ﬂ%,jo 0) (bo, ﬁo,j&o) with — IJQA.]'()’Q + nm(j(),o — b(]) = 0,
then the whole family (b°, 4", j5) converges to the unique solution (b, ,jo) corresponding to

the initial data (bo,do,joo), given by Theorem 7.2.

Proof: Let us first prove (7.13). From (7.7), we already know that (_‘ﬁ)g’ﬁM and (j§)mEM
are O(eL) in L! (R+,B 1) Now, we have

V<.

E __ 3E
=0T EC ECM

It is easy to see that the last term is O(L£3) in L'(Ry; 3221 + B;; ), and that, according

to (7.8) and L2L, ~ 1, the last but one term is O(£) in L'(R; BQ% ), which completes the
proof of (7.13).

Next, let us turn our attention to the convergence of j. First (7.7) and the definition of

. —1
| - [ly» ensure that (j &)»£M is bounded in, say, L? (R+,B ). Next, using the bound for
the middle frequen(nes of jo and for the low frequencies of Co, we discover that (j§)“*M is

bounded in L? (R+,B 51)- Hence, up to an omitted extraction

(7.15) j5—jo weak x in L*(Ry; B '+ BE).
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Now, taking the divergence of the equation of ff, then using the equation of j§ gives
(7.16) Ajg = —L(1+ L) (nL(b° — j5) — endyj) — e0pdiv j.

Given (7.13), one can assert that the last term tends to 0 in the sense of distributions. We
also know that, up to an omitted extraction, j5 — jo in the sense of distributions, hence
given that L£(1 + L5)e — 0, the term with 0;j§ also tends to 0. Finally, exactly as in the

cases treated before, (b°) is bounded in LOO(R+;B§1_ "N B; 1) hence weakly converges to
some b € L*(Ry; B;l_l N B25,1) As (7.12) has been assumed, passing to the limit in (7.16)
gives
V2 Ajo = —nm(b — jo).
Passing to the limit in the equation of b goes along the lines of the non-equilibrium case

. . . 55 —1 .
we notice that (9;b°) is bounded in L?(R;;Bg$, ) and we thus have, up to an omitted
extraction

(7.17) $b° — ¢b in L¥Ry;BF; ") forall e (0,1).
As (7.7) also implies that (@°) is bounded in L>°(Ry; B;;l)le(RJ’_; B;jl), we have @° — @
weakly * in that space, which is enough to justify the first equation of (2.9).
In order to pass to the limit in the velocity equation, we use again the fact that
- - 1
O <ﬁ€ + k4(b€)jf> = —u" - VU + ko (0°) AU — k3(b°)VD® + Ekﬁ;(be)&gbe 71 — — ka(d%) V5.
n n n
As in the other asymptotic regimes, the first four terms of the r.h.s. are bounded in
LQ(R+;B§;2) (or in LQ(R+;B§;2) if n = 2). To handle the last term, we observe that
according to (7.7) and (7.15), (Vj§) is bounded in L2(R+;B§1_2 + B;l_l) Because (b°) is
bounded in L*°(R; B;l_l N B;l), this implies that k4(b°)Vj§ is bounded in L?(R; 325,1_2)
(or L?(Ry; B;;j) if n=2), and thus 9, (@ + £ ka(b°) ) is bounded in the same space.
As in the already studied cases, we conclude that there exists some @ in L*(Ry; B; L 1)

so that for all ¢ in S and a € (0,1), we have

o(F+25) —on i LERaBL ).
Finally, in the case where (7.14) is fulfilled, the limit system (2.9) supplemented with initial
data (bo, Uo, jo,0) possesses a unique solution (b, u, jo) given by Theorem 7.2, and the whole
family (b°,4°, j§) thus converges to (b, , jo). O

APPENDIX A. ESTIMATES FOR A TOY LINEAR DIFFERENTIAL EQUATION

The appendix is devoted to the proof of decay estimates for the solutions to systems of
ODE:s of the form

(E) U + AU + p (A1 + By) U + p* AU =0,

where p is a nonnegative parameter, and Ag, A, By and Ay are given N x N matrices.
We have in mind System (4.7) in which case, after suitable change of unknowns (see (A.4)),
Ap is a degenerate nonnegative diagonal matrix, As has nonnegative eigenvalues and A is
skewsymmetric up to some positive diagonal symmetrizer.
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A.1. A general approach. The basic idea is to set V := (I 4+ pP)U where P is a suitable
matrix, so as to eliminate the bad first order term pB;U. Now, whenever (I+4pP) is invertible,
the equation for V' reads

OV + AoV + p(A1 + By + [P, Ao))V + p*([Ao, PIP + [P, A1] + [P, B1] + A2)V

+03(I + pP)((A1 + B1)P? — AgP? — Ay P)(I + pP)~'V = 0.
Therefore, if one can find some matrix P so that
(A.1) [Ag, P] = By,
then we have
(A2) OV + AgV + pA1V + p? (Ay + PBy + [P, A1) V = p*(I + pP) A3 (I + pP)~1V,
where Ag := (PAy — A1)P? + AP,

The gain is clear as the matrix B; now appears at order 2 instead of order 1. Hence the
system for V' is more likely to be tractable for small enough p as we shall see below.

A.2. Application to the linearized system for barotropic radiative flows. The sys-
tem we are interested in reads

a 0O p 0 0 a 0
d d —-p P> 0 — d 0

A3 — | = + -~ = ,
(4.3) dt | Jo -n 0 B ap Jo 0
J 0 0 —ap v J 0

where all the coefficients of the matrix are positive.

To bound the solutions of (A.3) for small enough p (under some stability condition that
we will discover below), we propose two different approaches, the first one being appropriate
to handle the case where 8 and v are of the same order of magnitude, and the second one,
to the case where /v < 1 or v/8 < 1 (of course only v > [ is relevant as far as (4.7) is
concerned).

A.2.1. First approach. Making the change of unknown

1 00 0 a
0 10 < d
= v o~
(A.4) U - 1010 |
0 00 1 0

and setting & := a + %, we see that U satisfies a system of type (E) with

00 0 0 0 1 0 0
00 0 0 —1-27 ¢ 0 0
A:: A:: 67
0 008 0| 1 0 0 0 a |’
00 0 ~ 0 0 —a 0
0 0 0 = 000 0
0 0 & 0 010 —<
= — v = v
By 0 2 0 0 and Ay : 000 0
g 0 0 0 000 0
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Note that the above matrices may be written in block form as follows

(0 B} {0 0 (AL 0 (Pt p2
Bl_(B% 0>7 A0—<0 A)’ A1—<0 A2 ) P=1 pa p»
Computing the commutator
0 —P2A
(A5) [AO,P] - < A P21 [A,P”] > )
we see (A.1) is satisfied if
PY.=0, P®:.=0, P?:=-BiA7! P?.=A"1B
In other words
0 0 =
0 0 & }/)
— B
(A.6) P 0 _% A E
_an
7 0 0 0
which, remembering (A.4), corresponds to the following change of unknowns
b 1 0 0 2P a
3 _asn 1 as s T
(A7) v=| 2= "B , & 4
Jo T LT ||
i1 —ByP 0 0 1 il
Note that the determinant of the matrix (I 4+ pP) is
agn o asn o
1+—p ><1+—,0 >
< B3y B3
and is thus of order 1 whenever p satisfies the smallness condition
(A.8) 0 < 2L min(82,42)
asn
In order to go further in the estimates of V, we compute
_asn
o A
_( —BiATBj 0 - T By
PBy = < 0 A~'B}B} ) |l o 0 %1 o0 and
1D1 B2y
asn
0 0 0 3=
P, A = 0 —BIAT1A? + Al BIA!
HT L ATIBAL - A2A'B? 0
1,1
0 0 —%(B—i-;) ~ 0
B 0 0 0 G+ (1+ 5]
T | aan 0 asn
By +52(1+67) om01 ) 0 0

) .



eq:hydrolf

eq:stabcondl

eq:hydrolfla

eq:hydrolf2

DIFFUSIVE LIMITS FOR A BAROTROPIC MODEL OF RADIATIVE FLOW 49

Finally, A3 := (PAg — A;)P? + Ay P reads

0 = 0 —5

o 1_ i(l—i—M) 0 L_2a

(A.9) Ay =B v T2 By nT By
B 0 o 0 5

0 0 —% 0

Therefore, resuming to (A.2), we conclude that

d
VAV oAV 4 2(PBy + A2)V = p*[A1, PIV + O(p%).

Of course, the remainder term O(p3) strongly depends on the coefficients of the system.
We shall see below that the structure of [A;, P] will enable us to treat p?[A;, P] and the
nondiagonal term of Ay as small error terms as well.

Let us focus on the system satisfied by (E, /D\) for a while. We have
d (% 0 1 b of 32 O b
A10) — | =~ o ~ By o ~
a5 (5) (o s o><a>+P< S A

%(l_{_l) : ><A>

— 52 Y\B Ty Jo

=p v ad asm +O( )
< 0w saasm )5

For small enough p, optimal estimates may be proved by taking advantage of the results of
Appendix B. Indeed, denoting by F), the r.h.s. of (A.10), we see from (B.6) that if we set

U = <1+O/“;77>|b|2 +R2-p <1+%(%—%>>Re(ﬁﬁ),

then, under the following necessary and sufficient stability condition

1 1
(A.11) _1_(;_?<B+ >>0
we have (see (B.4) and (B.5))
N d N
(A.12) U, ~ |(b,0)| and %ug + = 22/12 SU|F,|,
whenever
14 %1
B
(A.13) p < e T 1
1+5G - 5)

So finally, we get for some appropriate constant C' = C(«, 3,7,5,7)

t
6900+ 56 [ 1GDar < (1EDO1+ 7 [ 1Gaiiidr+* [ (6:850lar ),

which, if p < ©, may be simplified into

(A.14) 1(6,2)(t)] + 7p? /0 r@,ﬁ)rchsc(\@ﬁ)(mwz /0 rGo,i)\dr)-
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The modified radiative modes jy and j; fulfill

d (o 0 a
Al — | X
(A.15) dt<j1>+p<_a0

Therefore we easily get

1d

2 O
3t (ol + SRE ) + (5 +

Qg o

5247

~ a asn
>|J0|2 + > (7 + sz

>|n|2

< C(p?((5,9)] + £*((6,,50,31)])-

Then, integrating and assuming that p < 1 yields

(A.16)

(1Go,70)(8)] + min(8, 7 /|Jo,J1|dT<C<|(10,J1)( 4 /|b |d7)

Combining with (A.14), we can conclude that there exists some positive constants pp and C

depending only on («
(A.17)

we have

,B,7,5,m) so that for all

0 < p < min(1,7) po,

(A18) |(8.9)(0)] + 710 1)(8)] + 772 /|b )| dr + 7 min(B, v / 1Go,30)l dr

~

1(6,9)(0)] + 7|(io, 11)(0)]).

A.2.2. Second approach. In the case where 8 and ~ are not of the same order of magnitude,
Inequahty (A.18) is not fully satisfactory, first because we would like to have a control on

ﬂfo |]0|d7' and 7]0 |11| dr rather than just on min(3,~y fo 10,11)|d7' and, second, because
the range for which (A.18) holds true tends to shrink to 0 if § < v or v < S.
In this paragraph, we propose another approach to handle (A.3) in the case  # 7, still
based on rewriting the system in the form (A.2), but with a different definition of A; and
1 (Ag and As being unchanged). More precisely, we now set

o O O

o O OO

0 0 0 0

0 0 0 —<
0 and Bjp:= 0 _% 0“/
0 - 0 -«

Then writing the matrices coming into play in block form, we see according to (A.5), that a

possible choice for P is

P:=0, PY?:=-B]A™},

P2l .=

A'B2 PR L (
’ B—v

) with & := a+—

en
By
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With this new definition of P, we have

_asn _as 0
572 asn 72 adg
0 — ot 0
PBy = an_q 827 asn | _ad ﬁo7
6(7 B8) N 2y Uoy- o | od
0 -5 0 B Ty
0 0 - 0
0 0 0 (149w
and [P, Aq] " acn 72 By
#(1+3) (?1 , 0 0
0 e 0 0
Therefore setting
b 1 0 =P a
3 asn 1 ag s Cj
(Alg) V= /\D = 6217/) n ﬁ'yp & 7 sn > ’
jo -5 —gr 1 (3% - TV)P Jo
: an
n o e T 5P 1 1
it is clear that working with (a, 3,30,31) or (b 2, ]0, ]1) is equivalent whenever

for some positive constant C' depending continuously on the coefficients of the system.

Putting together the previous computations, we see that V' fulfills

g;’;ﬁ 0 0 0
_asny 2
iV—F 0 (1 527)/) oz_grzO adk 2 ’ \%
dt 0 0 5—1—(6274-?),0 0
agn 2
0 0 0 T+ (53 + 55 7)p
0 100
—1-22 ¢ 0 0
By
TP 0 000 |V
0 000
as(l 1
0 0 7(B+V) . 0g -
I 0 5-%-»0+F))
5 — 5 (L 57) O?n 0 0
0 ¥(B—) 0 0

+p3(I 4 pP)As(I 4+ pP)~'V,
with A3 = (PA(] — Al)PQ + AQP satisfying |A3| < C(l + |’}/ - ﬁ|_3).

Next, arguing exactly as to handle (A.10), we discover that under the stability condition
(A.11) and for p satisfying (A.13) (and of course also p < |8 —v|?), we have

~

(420 (6.3001+5 [ (6.9]dr < (160

t o~ o~ /\ o~
+ 2/ 10,71)] dT + 3( )/ ] 1 dT)-
) (o, i) P mg (b )l
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Now, in contrast with the first method, we can bound To and 71 independently from one
another from the equation satisfied by jg, we readily get

t 2 t
~ asn o ~ ~ Cp -~
A21 t)| + < + = >/ dr < jo(0)| + / b|dr
(A.21) fio(H) + | B 7" ) |, lio| lio(0)] A b

1 PPN
+C3<1+7>/ b.2,70,71)| dr,
p =57 /. (b, 0,0, 1)

while /j\l satisfies

~ t 2 t
A22) i, s o 2) Gl dr < i Cp 3d
w2 Gl + (24 (53+57)0) [ lar <Rol+ 52 [ plar

1 b v
+Cp3<1+7>/ |(baaaj0,j1)|d7—‘
v =81*) Jo
Putting inequalities (A.20), (A.21) and (A.22) together, it is now easy to conclude that

(A23) [(0,2)®) + oy — BlGo, 1) (X)] + 7p? /0 (6,9)] dr

t t
w2t =818 [ faldr +9 [ Rilar) < CQ@DOI+ 71 - BlGa i) ).
if, for some small enough constant ¢ depending continuously on «, 3, v and ¢, we have

(A.24) p< cmin(L v, Iy = B, oy - ﬁ|3>'

APPENDIX B. OPTIMAL DECAY ESTIMATES FOR A TOY SYSTEM
For the reader convenience, we here recall some results that have been obtained in our
recent work [8] for the following linear system of ordinary differential equations
0 X +apY —bp’X = A,
0Y — cpX + dp*Y = B.
Above, p stands for a given nonnegative small parameter and a, b, ¢ and d are four real
numbers satisfying the stability condition

(B.2) a>0, ¢>0 and d—0>0.

Routine computations show that the following Lyapunov functional L2 := ¢|X|* +a|Y|* —
p(d + b)Re (XY) satisfies the relation

(B.1)

1d d—0b v’ — d? 5

=Re (cAX + aBY — p(b+d)(BX +AY)).

Now, observe that whenever p < ‘bTadC', we have
b2 — d? - d—b
(555 ) ey < (10 AP + ),
and
1 3
(B.4) 5(cy)q? +alY]?) < L3 < 5(cy)q? +alY ),
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which leadsif A= B =0 to

d o (d=Db\ .
(B.5) Lo+ <T>LP <0,
and thus
(B.6) L,(t) < e (550" L (0).

Combining with (B.4) and Duhamel’s formula, we deduce that for general source terms
and B we have

d—b

B.7) VAXOP +aY ()2 < \/ge_(T)"Qt<\/c|X(0)|2 T alY (0)2

t d=b
+/ B(T)T\/C|A|2+G|B|2d7>-
0
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