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COMPRESSIBLE NAVIER-STOKES SYSTEM : LARGE SOLUTIONS AND

INCOMPRESSIBLE LIMIT

RAPHAËL DANCHIN AND PIOTR BOGUS LAW MUCHA

Abstract. Here we prove the existence of global in time regular solutions to the two-
dimensional compressible Navier-Stokes equations supplemented with arbitrary large initial
velocity v0 and almost constant density ̺0 , for large volume (bulk) viscosity. The result
is generalized to the higher dimensional case under the additional assumption that the
strong solution of the classical incompressible Navier-Stokes equations supplemented with
the divergence-free projection of v0, is global. The systems are examined in R

d with d ≥ 2,
in the critical Ḃs

2,1 Besov spaces framework.

1. Introduction

We are concerned with the following compressible Navier-Stokes equations in the whole
space R

d :

(1.1)

{
̺t + div (̺v) = 0,

̺vt + ̺v · ∇v − µ∆v − (λ+ µ)∇div v +∇P = 0,

supplemented with initial data: ̺|t=0 = ̺0 and v|t=0 = v0 .

The pressure function P is given and assumed to be strictly increasing. The shear and
volume viscosity coefficients λ and µ are constant (just for simplicity) and fulfill the standard
strong parabolicity assumption:

(1.2) µ > 0 and ν := λ+ 2µ > 0.

Starting with the pioneering work by Matsumura and Nishida [18, 19] in the beginning
of the eighties, a number of papers have been dedicated to the challenging issue of proving
the global existence of strong solutions for (1.1) in different contexts (whole space or do-
mains, dimension d = 2 or d ≥ 3, and so on). One may mention in particular the works
by Zaja̧czkowski [26], Shibata [13], Danchin [4], Mucha [21, 23, 24] and, more recently, by
Kotschote [14, 15]. The common point between all those papers is that the initial velocity is
assumed to be small, and that the initial density is close to a stable constant steady state.

Our main goal is to prove the global existence of strong solutions to (1.1) for a class of large
initial data. In the two-dimensional case, we establish that, indeed, for fixed shear viscosity
µ and any initial velocity-field v0 (with critical regularity), the solution to (1.1) is global if
λ is sufficiently large, and ̺0 sufficiently close (in terms of λ) to some positive constant (say
1 for notational simplicity). This result will strongly rely on the fact that, at least formally,
the limit velocity for λ → +∞ satisfies the incompressible Navier-Stokes equations:

(1.3)





Vt + V · ∇V − µ∆V +∇Π = 0 in R+ × R
d,

divV = 0 in R+ × R
d,

V |t=0 = V0 at R
d,

with V0 being the Leray-Helmholtz projection of v0 on divergence-free vector-fields.
1



2 R. DANCHIN AND P.B. MUCHA

We are also interested in similar results in dimension d ≥ 3. However, as in that case the
global existence issue of strong solutions for (1.3) supplemented with general data is open, we
have to assume first that V0 generates a global strong solution to (1.3), and then to analyze
the stability of that solution in the setting of the compressible model (1.1) with large λ.

Let us first consider the two-dimensional case, assuming that initial data ̺0 and v0 fulfill
the critical regularity assumptions of [4], namely1

a0 := (̺0 − 1) ∈ Ḃ0
2,1 ∩ Ḃ1

2,1(R
2) and v0 ∈ Ḃ0

2,1(R
2).

Then the initial data V0 of (1.3) is in Ḃ0
2,1(R

2). Therefore, in light of the well-known embed-

ding Ḃ0
2,1(R

2) ⊂ L2(R
2), we are guaranteed that it generates a unique global solution V in

the energy class

V 1,0(R2 × R+) := Cb(R+;L2(R
2)) ∩ L2(R+; Ḣ

1(R2)),

that satisfies the energy identity:

‖V (t)‖2L2
+ 2µ

∫ t

0
‖∇V ‖2L2

dτ = ‖V0‖2L2
.

Based on that fact, one may prove that the additional regularity of V0 is preserved through
the time evolution (see Theorem 4.1 in the Appendix), that is

(1.4) V ∈ Cb(R+; Ḃ
0
2,1(R

2)) ∩ L1(R+; Ḃ
2
2,1(R

2)).

Let us now state our main existence result for (1.1) in the two-dimensional setting.

Theorem 1.1. Let µ ≤ ν . Let v0 ∈ Ḃ0
2,1(R

2) and ̺0 such that a0 := (̺0 − 1) ∈ Ḃ0
2,1 ∩

Ḃ1
2,1(R

2). There exists a large constant C such that for V0 = Pv0 , the divergence-free part
of the initial velocity, we set

(1.5) M := C‖V0‖Ḃ0
2,1

exp
( C

µ4
‖V0‖4L2

)

and if ν satisfies

CeCM
(
‖a0‖Ḃ0

2,1
+ ν‖a0‖Ḃ1

2,1
+ ‖Qu0‖Ḃ0

2,1
+M2 + µ2

)
≤

√
ν
√
µ,

where Q stands for the projection operator on potential vector-fields, then there exists a
unique global in time regular solution (̺, v) to (1.1) such that

(1.6)
v ∈ Cb(R+; Ḃ

0
2,1), vt,∇2v ∈ L1(R+; Ḃ

0
2,1),

a := (̺− 1) ∈ C(R+; Ḃ
0
2,1 ∩ Ḃ1

2,1) ∩ L2(R+; Ḃ
1
2,1).

In addition, the following bound is fulfilled by the solution:

‖Qv‖L∞(R+;Ḃ0
2,1)

+ ‖Qvt, ν∇2Qv‖L1(R+;Ḃ0
2,1)

+ ‖a‖L∞(R+;Ḃ0
2,1)

+ ν‖a‖L∞(R+;Ḃ1
2,1)

+ν1/2
(
‖Pv − V ‖L∞(R+;Ḃ0

2,1)
+ ‖Pvt − Vt, µ∇2(Pv − V )‖L1(R+;Ḃ0

2,1)

)

≤ CeCM
(
‖a0‖Ḃ0

2,1
+ ν‖a0‖Ḃ1

2,1
+ ‖Qu0‖Ḃ0

2,1
+M2 + µ2

)
.

1The reader may refer to the next section for the definition of homogeneous Besov spaces Ḃs
2,1(Rd).
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Let us emphasize that in contrast with the global existence results cited above, we do
not require any smallness condition on the initial velocity : the volume viscosity λ just
has to be sufficiently large. The mechanism underneath is that having large λ provides
strong dissipation on the potential part of the velocity, and thus makes our flow almost
incompressible. At the same time, strong dissipation does not involve the divergence free
part of the flow, but as we are in dimension two, it is known that it generates a global
strong incompressible solution. In fact, our statement may be seen as a stability result for
incompressible flows within compressible flows.

Our result has some similarity with that of the first author in [5, 6] where it is shown that
large initial velocities give rise to global strong solutions in the low Mach number asymptotics.
However, the mechanism leading to global existence therein strongly relies on the dispersive
(or highly oscillating) properties of the acoustic wave equations. This is in sharp contrast with
the situation we are looking at here, where dispersion completely disappears when λ → +∞.

There are also examples of large data generating global strong solutions to the compressible
Navier-Stokes equations, independently of any asymptotic considerations. In this regard, one
has to mention the result by Kazhikov-Weigant [12] in the two dimensional case, where it
is assumed that the volume viscosity λ has some suitable dependence with respect to the
density the density (like λ(̺) = ̺β for some β > 3). In contrast, here we do not require
any particular nonlinear structure of the viscosity coefficients, but rather that the volume
viscosity is large enough. Finally, in a recent paper [11] dedicated to the shallow water
equations (that is µ depends linearly on ̺ and λ = 0), B. Haspot established the existence
of global strong solutions allowing for large potential part of the initial velocity.

As a by product of Theorem 1.1, we get that (̺, v) → (1, V ) with a convergence rate of

order ν−1/2. This is stated more exactly in the following corollary.

Corollary 1.1. Let v0 be any vector field in Ḃ0
2,1(R

2), and M be defined by (1.5). Then
for large enough ν (or equivalently λ), System (1.1) supplemented with initial density 1 and
initial velocity v0 has a unique global solution (̺, v) in the space given by (1.6). Furthermore,
if V stands for the solution to (1.3) then (̺, v) → (1, V ) as follows:

‖̺− 1‖L∞(R+;Ḃ1
2,1)

+ ‖∇2Qv‖L1(R+;Ḃ0
2,1)

+ ‖Pv − V ‖L∞(R+;Ḃ0
2,1)

+‖Pvt − Vt, µ∇2(Pv − V )‖L1(R+;Ḃ0
2,1)

≤ Cν−1/2√µ.

Let us now describe our main result in the high-dimensional case d ≥ 3. Then it turns
out that our approach for exhibiting large global solutions is essentially the same, once it is
known that the limit system (1.3) supplemented with initial data V0 := Pv0 has a global
strong solution with suitable regularity. However, as constructing such global solutions in the
large data case is still an open question, we will assume a priori that V0 generates a global

solution V in Cb(R+; Ḃ
d/2−1
2,1 (Rd)). This only requirement will ensure, thanks to the result of

Gallagher-Iftimie-Planchon in [10], that we have in fact a stronger property, namely

(1.7) V ∈ Cb(R+; Ḃ
d/2−1
2,1 (Rd)) and Vt,∇2V ∈ L1(R+; Ḃ

d/2+1
2,1 (Rd)).

Theorem 1.2. Assume that d ≥ 3. Let v0 ∈ Ḃ
d/2−1
2,1 (Rd) and ̺0 such that a0 := (̺0 − 1) ∈

Ḃ
d/2−1
2,1 ∩Ḃ

d/2
2,1 (R

d). Suppose that (1.3) with initial datum V0 := Pv0 generates a unique global

solution V ∈ Cb(R+; Ḃ
d/2−1
2,1 ) (thus also (1.7) is fulfilled), and denote

M := ‖V ‖
L∞(R+;Ḃ

d/2−1

2,1 )
+ ‖Vt, µ∇2V ‖

L1(R+;Ḃ
d/2−1

2,1 )
.
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There exists a (large) universal constant C such that if ν satisfies

CeCM
(
‖a‖

Ḃ
d/2−1

2,1

+ ν‖a0‖Ḃd/2
2,1

+ ‖Qu0‖Ḃd/2−1

2,1

+M2 + µ2
)
≤

√
ν
√
µ,

then (1.1) has a unique global-in-time solution (̺, v) such that

(1.8)
v ∈ Cb(R+; Ḃ

d/2−1
2,1 ), vt,∇2v ∈ L1(R+; Ḃ

d/2−1
2,1 ),

a := (̺− 1) ∈ C(R+; Ḃ
d/2−1
2,1 ∩ Ḃ

d/2
2,1 ) ∩ L2(R+; Ḃ

d/2
2,1 ).

In addition,

‖Qv‖
L∞(R+;Ḃ

d/2−1

2,1 )
+ ‖Qvt, ν∇2Qv‖

L1(R+;Ḃ
d/2−1

2,1 )
+ ‖a‖

L∞(R+;Ḃ
d/2−1

2,1 )
+ ν‖a‖

L∞(R+;Ḃ
d/2
2,1 )

+ν1/2
(
‖Pv − V ‖

L∞(R+;Ḃ
d/2−1

2,1 )
+ ‖Pvt − Vt, µ∇2(Pv − V )‖

L1(R+;Ḃ
d/2−1

2,1 )

)

≤ CeCM
(
‖a0‖Ḃd/2−1

2,1
+ ν‖a0‖Ḃd/2

2,1
+ ‖Qu0‖Ḃd/2−1

2,1
+M2 + µ2

)

and (̺, v) → (1, V ) as follows:

‖̺− 1‖
L∞(R+;Ḃ

d/2
2,1 )

+ ‖∇2Qv‖
L1(R+;Ḃ

d/2−1

2,1 )
+ ‖Pv − V ‖

L∞(R+;Ḃ
d/2−1

2,1 )

+‖Pvt − Vt, µ∇2(Pv − V )‖
L1(R+;Ḃ

d/2−1

2,1 )
≤ Cν−1/2√µ.

Let us emphasize that even in dimension d ≥ 3, there are examples of large initial data
for (1.3) generating global smooth solutions. One can refer for instance to [1, 3, 20, 25] and
citations therein. Therefore, our second result indeed points out example of large data giving
rise to global strong solutions for the compressible system (1.1).

Let us finally say a few words on our functional setting. Throughout, we used the so-called
critical Besov spaces of type Ḃs

2,1(R
2), as they are known to provide essentially the largest

class of data for which System (1.1) may be solved by energy type methods, and is well-posed
in the sense of Hadamard. As a matter of fact, our proof relies on a suitable energy method
applied to the system after localization according to Littlewood-Paley decomposition (see
the definition is the next section). We believe that it would be possible to derive similar

qualitative results in the critical Lp Besov framework (spaces Ḃs
p,1 ). However, we refrained

from doing that both because it makes the proof significantly more technical, and because
there are some restrictions to the admissible values of p (e.g. 2 ≤ p < 4 if d = 2) so that
the improvement compared to p = 2 is not so big.

The rest of the paper unfolds as follows. In the next section, we introduce Besov spaces
and recall basic facts about them. Section 3 is devoted to proving both Theorem 1.1 and 1.2.
In fact, we are able to provide a common proof to both results as the only difference between
dimension d = 2 and dimension d ≥ 3 is that we are always guaranteed that V0 gives rise to
a global regular solution in the former case while it is an additional assumption in the latter
case. In Appendix we show Theorem 4.1 concerning the regularity of 2D incompressible flow.

2. Notation, Besov spaces and basic properties

The Littlewood-Paley decomposition plays a central role in our analysis. To define it, fix
some smooth radial non increasing function χ supported in the ball B(0, 43) of Rd, and with

value 1 on, say, B(0, 34 ), then set ϕ(ξ) = χ(ξ/2)− χ(ξ). We have
∑

j∈Z

ϕ(2−j ·) = 1 in R
d \ {0} and Suppϕ ⊂

{
ξ ∈ R

d : 3/4 ≤ |ξ| ≤ 8/3
}
·
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The homogeneous dyadic blocks ∆̇j are defined on tempered distributions by

∆̇ju := ϕ(2−jD)u := F−1(ϕ(2−j ·)Fu) = 2jdh(2j ·) ⋆ u with h := F−1ϕ.

In order to ensure that

(2.9) f =
∑

j∈Z

∆̇jf in S ′(Rd),

we restrict our attention to those tempered distributions f such that

(2.10) lim
k→−∞

‖Ṡkf‖L∞
= 0,

where Ṡkf stands for the low frequency cut-off defined by Ṡkf := χ(2−kD)f .

Definition 2.1. For s ∈ R the homogeneous Besov space Ḃs
2,1 := Ḃs

2,1(R
d) is the set of

tempered distributions f satisfying (2.10) and

‖f‖Ḃs
2,1

:=
∑

j∈Z

2js‖∆̇jf‖L2
< ∞.

Remark 2.1. For s ≤ d/2 (which is the only case we are concerned with in this paper),

Ḃs
2,1 is a Banach space which coincides with the completion for ‖ · ‖Ḃs

2,1
of the set S0(R

d) of

Schwartz functions with Fourier transform supported away from the origin.

In many parts of the paper, it will be suitable to split tempered distributions f (e.g. the
unknown a := ̺− 1) into low and high frequencies as follows:

(2.11) f ℓ :=
∑

2kν≤1

∆̇kf and fh :=
∑

2kν>1

∆̇kf.

The following Bernstein inequalities play an important role in our analysis:

• Direct Bernstein inequality: for all 1 ≤ p ≤ q ≤ ∞ and k ∈ N,

(2.12) ‖∆̇j∇ku‖Lq(Rd) ≤ C2
j(k+d( 1

p
− 1

q
))‖∆̇ju‖Lp(Rd).

• Reverse Bernstein inequality: for all 1 ≤ p ≤ ∞, we have

‖∆̇ju‖Lp(Rd) ≤ C2−j‖∆̇j∇u‖Lp(Rd).

The following lemma will be needed to estimate the nonlinear terms of (1.1) and (1.3). It is
just a consequence of Bony decomposition and of continuity results for the paraproduct and
remainder operators, as stated in e.g. Theorem 2.52 of [2].

Lemma 2.1. Let g ∈ Ḃs1
2,1(R

d) and h ∈ Ḃs2
2,1(R

d) for some couple (s1, s2) satisfying

s1 ≤ d/2, s2 ≤ d/2 and s1 + s2 > 0.

Then gh ∈ Ḃ
s1+s2−d/2
2,1 (Rd), and we have

(2.13) ‖gh‖
Ḃ

s1+s2−d/2
2,1

≤ C‖g‖Ḃs1
2,1
‖h‖Ḃs2

2,1
.

Finally, let us recall that any vector field w = (w1, · · · , wd) with components in S ′(Rd)
satisfying (2.10) may be decomposed into one potential part Qw and one divergence-free
part Pw, where the projectors P and Q are defined by

Q := −(−∆)−1∇div and P := Id + (−∆)−1∇div .

In particular, because P and Q are smooth homogeneous of degree 0 Fourier multipliers,
they map Ḃs

2,1(R
d) to itself for any s ≤ d/2.
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3. The proof of the main results

We shall get Theorems 1.1 and 1.2 altogether. In fact, if it is known that the limit system
(1.3) with initial data V0 := Pv0 has a unique solution in our functional setting, then the
proof is the same in any dimension d ≥ 2. The only difference is that in the 2D case the
existence of a global solution to (1.3) is ensured by Theorem 4.1 for arbitrary large data
whereas, if d ≥ 3, it is indeed a supplementary assumption.

To simplify the presentation, we assume from now on that the shear viscosity µ is 1. This
is not restrictive owing to the following change of unknowns and volume viscosity:

(3.14) (˜̺, ṽ)(t, x) := (̺, v)(µt, µx) and λ̃ = λ/µ.

We concentrate our attention on the proof of global in time a priori estimates, as the local
existence issue is nowadays well understood. For example, just assuming that ̺0 is bounded
away from zero and that the regularity assumptions of Theorems 1.1 or 1.2 are fulfilled,
Theorem 2 of [7] provides us with a unique local solution (̺, v) to (1.1) such that

(3.15) a := (̺− 1) ∈ C([0, T ); Ḃd/2
2,1 ) and v ∈ C([0, T ); Ḃd/2−1

2,1 ) ∩ L1(0, T ; Ḃ
d/2+1
2,1 ).

Furthermore, continuation beyond T is possible if

(3.16)

∫ T

0
‖∇v‖L∞

dt < ∞, ‖a‖
L∞(0,T ;Ḃ

d/2
2,1 )

< ∞ and inf
(t,x)∈[0,T )×Rd

̺(t, x) > 0.

Finally, from standard results for the transport equation, we see that the additional Ḃ
d/2−1
2,1

regularity of a is preserved through the evolution.

Next, to compare the solutions of (1.1) and (1.3), we set u := v − V. From the very
beginning, the potential Qu and divergence-free Pu parts of the perturbation of the velocity
are treated separately. On one hand, because Qu = Qv, applying Q to the velocity equation
in (1.1) yields

(Qu)t +Q((1 + a)v · ∇v)− ν∆Qu+ P ′(1 + a)∇a = −Q(avt),

hence using v = Qu+ Pu+ V and assuming P ′(1) = 1 (for notational simplicity),

(3.17) (Qu)t +Q((u+ V ) · ∇Qu)− ν∆Qu+∇a = −Q(aVt + aut)−QR2

with, denoting k(a) := P ′(1 + a)− P ′(1) = P ′(1 + a)− 1,

(3.18) R2 = (1 + a)(u+ V ) · ∇Pu+ (1 + a)(u+ V ) · ∇V + a(u+ V ) · ∇Qu+ k(a)∇a,

and a satisfying

(3.19) at + div (au) + divQu+ V · ∇a = 0.

Initial data are Qu|t=0 = Qv0 and a|t=0 = a0.

On the other hand, applying P to the velocity equation of (1.1) and subtracting the
equation for PV = V in (1.3), we discover that

(Pu)t + P((u+ V ) · ∇Pu)−∆Pu = −P(aVt + aut)

−P
(
(1 + a)(u+ V ) · ∇Qu+ (1 + a)u · ∇V + a(u+ V ) · ∇Pu+ aV · ∇V

)
,

supplemented with the initial datum Pu|t=0 = 0 (as we assumed V0 = Pv0 ).



7

Note that because Qu · ∇Qu is a gradient, one may rewrite the above equation as

(3.20) (Pu)t + P((u + V ) · ∇Pu)−∆Pu = −P(aVt + aut)− PR1

with

(3.21) R1 := (1 + a)Pu · ∇(V +Qu) + (1 + a)V · ∇Qu+ (1 + a)Qu · ∇V

+ a(u+ V ) · ∇Pu+ aV · ∇V + aQu · ∇Qu.

Let us start the computations. The general approach is adapted from [4]: we localize equa-

tions (3.17), (3.19) and (3.20) in the frequency space by means of the dyadic operators ∆̇j,
and perform suitable energy estimates. The key point is that we strive for time pointwise
estimates of u, a and ν∇a in the same (Besov) space.

In what follows, we denote by aℓ and ah the low and high frequencies parts of a, respec-
tively (see (2.11)) and set

Xd(T ) := ‖Qu, a, ν∇a‖
L∞(0,T ;Ḃ

d/2−1

2,1 )
, Yd(T ) := ‖Qut, ν∇2Qu, ν∇2aℓ,∇ah‖

L1(0,T ;Ḃ
d/2−1

2,1 )
,

Zd(T ) := ‖Pu‖
L∞(0,T ;Ḃ

d/2−1

2,1 )
, Wd(T ) := ‖Put,∇2Pu‖

L1(0,T ;Ḃ
d/2−1

2,1 )
.

We assume that the maximal solution (̺ = 1 + a, v) of (1.1) corresponding to data (̺0, v0)
is defined on the time interval [0, T⋆) and satisfies (3.15), and we fix some M ≥ 0 so that
the ‘incompressible solution’ V to (1.3) fulfills

(3.22) Vd(T ) := ‖V ‖
L∞(0,T ;Ḃ

d/2−1

2,1 )
+ ‖Vt,∇2V ‖

L1(0,T ;Ḃ
d/2−1

2,1 )
≤ M for all T ≥ 0.

As already pointed out and proved in Appendix, in the 2D case, number M may be
expressed in terms of ‖V0‖Ḃ0

2,1(R
2).

We claim that if ν is large enough then one may find some (large) D and (small) δ so
that for all T < T⋆, the following bounds are valid:

(3.23) Xd(T ) + Yd(T ) ≤ D and Zd(T ) +Wd(T ) ≤ δ.

Step 1. Estimates for the divergence-free part of the velocity. Applying ∆̇j to (3.20), taking

the L2 inner product with ∆̇jPu then using that P2 = P, we discover that

1

2

d

dt
‖∆̇jPu‖2L2

+ ‖∇∆̇jPu‖2L2
+

∫ (
∆̇j(u+ V ) · ∇Pu

)
· ∆̇jPu dx

= −
∫

∆̇j(aVt + aut +R1) · ∆̇jPu dx.

Then using Bernstein’s inequalities in the second term, swapping operators ∆̇j and u + V
in the third term, and integrating by parts, we get we get for some universal constant c > 0,

(3.24)
1

2

d

dt
‖∆̇jPu‖2L2

+ c‖∇2∆̇jPu‖L2
‖∆̇jPu‖L2

≤ 1

2

∫
|∆̇jPu|2 divu dx

+

∫ (
[u+ V, ∆̇j ] · ∇Pu

)
· ∆̇jPu dx−

∫
∆̇j(aVt + aut +R1) · ∆̇jPu dx.

It is well known (see e.g. Lemma 2.100 in [2]) that the commutator term may be estimated
as follows:

(3.25) 2j(d/2−1)
∥∥[u+ V, ∆̇j ] · ∇Pu

∥∥
L2

≤ Ccj‖∇(u+ V )‖
Ḃ

d/2
2,1

‖Pu‖
Ḃ

d/2−1

2,1

with
∑

j∈Z

cj = 1.
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Hence dividing (formally) (3.24) by ‖∆̇jPu‖L2
, multiplying by 2j(d/2−1) , integrating (3.24),

remembering that Pu|t=0 = 0 and summing over j , we obtain

(3.26) ‖Pu‖
L∞(0,T ;Ḃ

d/2−1

2,1 )
+ ‖∇2Pu‖

L1(0,T ;Ḃ
d/2−1

2,1 )

.

∫ T

0
‖∇(u+ V )‖

Ḃ
d/2
2,1

‖Pu‖
Ḃ

d/2−1

2,1

dt+

∫ T

0
‖aVt + aut‖Ḃd/2−1

2,1

dt+

∫ T

0
‖R1‖Ḃd/2−1

2,1

dt.

Next we see, thanks to Lemma 2.1 that

‖aVt + aut‖L1(0,T ;Ḃ
d/2−1

2,1 )
. ν−1‖Qut,Put, Vt‖L1(0,T ;Ḃ

d/2−1

2,1 )
‖νa‖

L∞(0,T ;Ḃ
d/2
2,1 )

. ν−1(Yd(T ) +Wd(T ) + Vd(T ))Xd(T ).

In order to bound R1, we use the fact that

‖(1 + a)Pu · ∇(V +Qu)‖
Ḃ

d/2−1

2,1
. (1 + ‖a‖

Ḃ
d/2
2,1

)‖∇(V +Qu)‖
Ḃ

d/2
2,1

‖Pu‖
Ḃ

d/2−1

2,1

and

‖(1 + a)(Qu · ∇V + V · ∇Qu)‖
Ḃ

d/2−1

2,1

. (1 + ‖a‖
Ḃ

d/2
2,1

)‖Qu‖
Ḃ

d/2
2,1

‖V ‖
Ḃ

d/2
2,1

,

whence, integrating on [0, T ] and using the interpolation inequality

‖z‖
Ḃ

d/2
2,1

≤ C‖z‖1/2
Ḃ

d/2−1

2,1

‖∇2z‖1/2
Ḃ

d/2−1

2,1

for z = V, Qu,

we get

‖(1 + a)(Qu · ∇V + V · ∇Qu)‖
L1(0,T ;Ḃ

d/2−1

2,1 )
. (1 + ν−1Xd(T ))ν

−1/2Xd(T )
1/2Y

1/2
d (T )Vd(T ).

Finally, we have

‖a(u+ V ) · ∇Pu‖
L1(0,T ;Ḃ

d/2−1

2,1 )
. ‖a‖

L∞(0,T ;Ḃ
d/2
2,1 )

‖u+ V ‖
L∞(0,T ;Ḃ

d/2−1

2,1 )
‖∇Pu‖

L1(0,T ;Ḃ
d/2
2,1 )

. ν−1Xd(T )
(
Zd(T ) +Xd(T ) + Vd(T )

)
Wd(T ),

and

‖aV · ∇V + aQu · ∇Qu‖
L1(0,T ;Ḃ

d/2−1

2,1 )
. ‖a‖

L∞(0,T ;Ḃ
d/2
2,1 )

(
‖V ‖

L∞(0,T ;Ḃ
d/2−1

2,1 )
‖∇V ‖

L1(0,T ;Ḃ
d/2
2,1 )

+‖Qu‖
L∞(0,T ;Ḃ

d/2−1

2,1 )
‖∇Qu‖

L1(0,T ;Ḃ
d/2
2,1 )

)
.

Therefore, we obtain

Zd(T ) +Wd(T ) .

∫ T

0
‖∇V,∇Pu,∇Qu‖

Ḃ
d/2
2,1

Zd(t) dt

+ν−1(Yd(T ) +Wd(T ) + Vd(T ))Xd(T ) + ν−1/2Xd(T )
1/2Y

1/2
d (T )Vd(T )(1 + ν−1Xd(T ))

+ν−1Xd(T )
(
Zd(T ) +Xd(T ) + Vd(T )

)
Wd(T ) + ν−1Xd(T )(V

2
d (T ) + ν−1Xd(T )Yd(T )).

Assuming from now on that

(3.27) Xd(T ) ≪ ν,
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and using Gronwall lemma, we conclude that

(3.28) Zd(T ) +Wd(T ) ≤ Ce
C

∫ t
0
‖∇V,∇Pu,∇Qu‖

Ḃ
d/2
2,1

dτ(
ν−1(Yd(T ) + Vd(T ) +Wd(T ))Xd(T )

+ ν−1/2Xd(T )
1/2Y

1/2
d (T )Vd(T )

+ ν−1Xd(T )
(
Zd(T ) +Xd(T ) + Vd(T )

)
Wd(T ) + ν−1Xd(T )V

2
d (T )

)
·

Step 2. Estimate on the potential part of the velocity and on the density. To estimate the
potential part of the velocity, we are required to consider the momentum and continuity equa-
tions altogether. Now, localizing (3.19) and (3.17) according to Littlewood-Paley operators,
we discover that

aj,t + (u+ V ) · ∇aj + divQuj = gj(3.29)

Quj,t +Q((u+ V ) · ∇Quj)− ν∆Quj +∇aj = fj(3.30)

where

(3.31) aj := ∆̇ja, Quj := ∆̇jQu,

(3.32) gj := −∆̇j(adivQu)− [∆̇j , (u+ V )] · ∇a

and

(3.33) fj := −∆̇jQ(aVt + aut)− ∆̇jQR2 − [∆̇j, u+ V ] · ∇Qu.

We follow an energy method to bound each term (aj ,Quj). More precisely, testing (3.29)
and (3.30) by aj and Quj , respectively, yields

(3.34)
1

2

d

dt

∫
a2j dx+

∫
ajdivQuj dx =

1

2

∫
divua2j dx+

∫
gjaj dx

and

(3.35)
1

2

d

dt

∫
|Quj |2 dx+ ν

∫
|∇Quj |2 dx−

∫
aj divQuj dx

=
1

2

∫
divu|Quj |2 dx+

∫
fj · Quj dx.

We next want an estimate for ‖∇aj‖2L2
. From (3.29), we have

(3.36) ∇aj,t + (u+ V ) · ∇∇aj +∇divQuj = ∇gj −∇(u+ V ) · ∇aj.

Testing that equation by ∇aj yields

(3.37)
1

2

d

dt

∫
|∇aj |2 dx+

∫ (
(u+ V ) · ∇∇aj) · ∇aj dx+

∫
∇divQuj · ∇aj dx

=

∫ (
∇gj −∇(u+ V ) · ∇aj) · ∇aj dx.

To eliminate the highest order term, namely the one with ∇divQuj, it is suitable to
combine the above equality with a relation involving

∫
Quj · ∇aj dx. Now, testing (3.36) by
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Quj and the momentum equation by ∇aj, we get

(3.38)
d

dt

∫
Quj · ∇aj dx+

∫
(u+ V ) · ∇(Quj · ∇aj) dx− ν

∫
∆Quj · ∇aj dx

+

∫
|∇aj |2 dx+

∫
∇divQuj ·Quj dx =

∫ (
∇gj −∇(u+V ) ·∇aj

)
·Quj dx+

∫
fj ·∇aj dx.

Note that by integration by parts, we have
∫

(u+ V ) · ∇(Quj · ∇aj) dx = −
∫

Quj · ∇aj divu dx.

Hence adding ν times (3.37) to (3.38) and noting that ∆Quj ≡ ∇divQuj , the highest
order terms cancel out, and we get

1

2

d

dt

∫ (
ν|∇aj |2 + 2Quj · ∇aj

)
dx+ ν

∫
(|∇aj |2 − |∆Quj |2) dx

=

∫ (
ν

2
|∇aj |2 +Quj · ∇aj

)
divu dx+ ν

∫ (
∇gj −∇(u+ V ) · ∇aj) · ∇aj dx

+

∫ (
∇gj −∇(u+ V ) · ∇aj

)
· Quj dx+

∫
fj · ∇aj dx.

After multiplying the above equality by ν and adding up twice (3.34) and (3.35), we get

(3.39)
1

2

d

dt
L2
j + ν

∫ (
|∇Quj |2 + |∇aj|2

)
dx

=

∫ (
2gjaj + 2fj · Quj + ν2∇gj · ∇aj + ν∇gj · Quj + νfj · ∇aj

)
dx

+
1

2

∫
L2
j divu dx− ν

∫ (
∇(u+ V ) · ∇aj

)
· (ν∇aj +Quj) dx

with

(3.40) L2
j :=

∫ (
2a2j + 2|Quj |2 + 2νQuj · ∇aj + |ν∇aj|2) dx.

At this stage, two fundamental observations are in order. First, we obviously have

(3.41) Lj ≈ ‖(Quj , aj , ν∇aj)‖L2
for all j ∈ Z

and, second,

(3.42) ν

∫
(|∇Quj |2 + |∇aj |2) dx ≥ cmin(ν22j , ν−1)L2

j .

Therefore (3.39), (3.41) and (3.42) lead to

1

2

d

dt
L2
j + cmin(ν22j , ν−1)L2

j ≤
(
1

2
‖div u‖L∞

+C‖∇(u+ V )‖L∞

)
L2
j +C‖[gj , fj , ν∇gj ]‖L2

Lj,

whence integrating in time,

(3.43) Lj(t) + cmin(ν22j , ν−1)

∫ t

0
Lj dτ

≤ Lj(0) + C

∫ t

0
‖∇(u+ V )‖L∞

Lj dτ + C

∫ t

0
‖[gj , fj , ν∇gj]‖L2

dτ.
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Note that we lost the expected parabolic smoothing of Qu because min(ν22j , ν−1) = ν−1 for
large j ’s. However, it may be recovered by starting directly from (3.35) and integrating by
parts in the term with ajdivQuj . After using Bernstein and Hölder inequalities, we arrive at

1

2

d

dt
‖Quj‖2L2

+ cν22j‖Quj‖2L2
≤ ‖∇aj‖L2

‖Quj‖L2
+

1

2
‖divu‖L∞

‖Quj‖2L2
+ ‖fj‖L2

‖Quj‖L2
,

whence, integrating in time,

‖Quj(t)‖L2
+ cν22j

∫ t

0
‖Quj‖L2

dτ ≤ ‖Quj(0)‖L2

+

∫ t

0
‖∇aj‖L2

dτ +
1

2

∫ t

0
‖divu‖L∞

‖Quj‖L2
dτ +

∫ t

0
‖fj‖L2

dτ.

Putting together with (3.43), remembering (3.41), multiplying by 2j(d/2−1) and eventually
summing up over j ∈ Z, we end up with the following fundamental inequality:

(3.44) ‖(a, ν∇a, u)(t)‖
Ḃ

d/2−1

2,1
+ ν

∫ t

0
‖∇aℓ,∇Qu‖

Ḃ
d/2
2,1

dτ +

∫ t

0
‖ah‖

Ḃ
d/2
2,1

dτ

. ‖(a, ν∇a, u)(0)‖
Ḃ

d/2−1

2,1

+

∫ t

0
‖∇(u+ V )‖L∞

‖(a, ν∇a,Qu)‖
Ḃ

d/2−1

2,1

dτ

+

∫ t

0

∑

j∈Z

2j(d/2−1)‖[gj , fj , ν∇gj]‖L2
dτ,

where notations aℓ and ah have been defined in (2.11).

To complete the proof of estimates for a and Qu, we now have to get suitable bounds for
the last term in (3.44). Let us start with the study of gj defined by (3.32). First we see that,
by virtue of Lemma 2.1, we have

(3.45) ‖adivQu‖
Ḃ

d/2−1

2,1
. ‖divQu‖

Ḃ
d/2
2,1

‖a‖
Ḃ

d/2−1

2,1

and, using rule and, again, Lemma 2.1,

(3.46) ν‖∇(adivQu)‖
Ḃ

d/2−1

2,1

. ‖∇divQu‖
Ḃ

d/2−1

2,1

‖νa‖
Ḃ

d/2
2,1

+ ‖divQu‖
Ḃ

d/2
2,1

‖ν∇a‖
Ḃ

d/2−1

2,1

.

The commutator term may be bounded as follows (the first inequality stems from Lemma
2.100 in [2], and the second one may be deduced from that lemma and Leibniz rule):

∑

j∈Z

2j(d/2−1)‖[∆̇j , (u+ V )]∇a‖L2
≤ C‖∇(u+ V )‖

Ḃ
d/2
2,1

‖a‖
Ḃ

d/2−1

2,1
,(3.47)

∑

j∈Z

2j(d/2−1)ν‖∇([∆̇j , (u+ V )]∇a)‖L2
≤ C‖∇(u+ V )‖

Ḃ
d/2
2,1

‖ν∇a‖
Ḃ

d/2−1

2,1
.(3.48)

Hence, putting (3.45) to (3.48) together, we get

(3.49)
∑

j∈Z

2j(d/2−1)‖gj , ν∇gj‖L2
≤ C‖∇(u+ V )‖

Ḃ
d/2
2,1

(
‖a‖

Ḃ
d/2−1

2,1

+ ν‖a‖
Ḃ

d/2
2,1

)
.

Next, let us bound fj defined in (3.33). To handle the terms corresponding to R2 (see
(3.18)), we use the fact that

(3.50) ‖(1+a)(u+V ) · ∇(Pu+ V )‖
Ḃ

d/2−1

2,1
.

(
1 + ‖a‖

Ḃ
d/2
2,1

)
‖(u, V )‖

Ḃ
d/2−1

2,1
‖(∇Pu,∇V )‖

Ḃ
d/2
2,1

,

(3.51) ‖a(u+ V ) · ∇Qu‖
Ḃ

d/2−1

2,1

. ‖a‖
Ḃ

d/2
2,1

‖(u, V )‖
Ḃ

d/2−1

2,1

‖∇Qu‖
Ḃ

d/2−1

2,1

,
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and (see (3.17))

(3.52) ‖k(a)∇a‖
Ḃ

d/2−1

2,1

. ‖a‖2
Ḃ

d/2
2,1

.

As for g, the commutator term of f may be bounded according to Lemma 2.100 in [2]:

(3.53)
∑

j∈Z

2j(d/2−1)‖[∆̇j , u+ V ]∇Qu‖L2
≤ C‖∇(u+ V )‖

Ḃ
d/2
2,1

‖Qu‖
Ḃ

d/2−1

2,1

.

Finally, for the terms with the time derivative, we have

(3.54) ‖aVt‖Ḃd/2−1

2,1

+ ‖aut‖Ḃd/2−1

2,1

≤ C‖Vt, ut‖Ḃd/2−1

2,1

‖a‖
Ḃ

d/2
2,1

.

From (3.50) to (3.54), we conclude that

(3.55)
∑

j∈Z

2j(d/2−1)‖fj‖L2
≤ C

(
‖(u, V )‖

Ḃ
d/2−1

2,1

‖∇Pu,∇V ‖
Ḃ

d/2
2,1

+ ‖a‖
Ḃ

d/2
2,1

(
‖(u, V )‖

Ḃ
d/2−1

2,1
‖∇u,∇V ‖

Ḃ
d/2
2,1

+ ‖Vt, ut‖Ḃd/2−1

2,1
+ ‖a‖

Ḃ
d/2
2,1

))
·

Putting (3.49) and (3.55) together in (3.44) gives us for all 0 ≤ T < T⋆,

(3.56) ‖Qu, a, ν∇a‖
L∞(0,T ;Ḃ

d/2−1

2,1 )
+ ‖Qut, ν∇2Qu, ν∇2aℓ,∇ah‖

L1(0,T ;Ḃ
d/2−1

2,1 )

. ‖(Qu, a, ν∇a)(0)‖
Ḃ

d/2−1

2,1

+

∫ T

0
‖∇u,∇V ‖

Ḃ
d/2
2,1

‖a, ν∇a,Qu‖
Ḃ

d/2−1

2,1

dτ

+
(
1 + ‖a‖

L∞(0,T ;Ḃ
d/2
2,1 )

) ∫ T

0
‖(Pu,Qu, V )‖

Ḃ
d/2−1

2,1
‖(∇Pu,∇V )‖

Ḃ
d/2
2,1

dτ

+ ‖a‖
L∞(0,T ;Ḃ

d/2
2,1 )

∫ T

0
‖(Pu,Qu, V )‖

Ḃ
d/2−1

2,1

‖∇Qu‖
Ḃ

d/2
2,1

dτ

+ ‖Vt, ut‖L1(0,T ;Ḃ
d/2−1

2,1 )
‖a‖

L∞(0,T ;Ḃ
d/2
2,1 )

+ ‖a‖2
L2(0,T ;Ḃ

d/2
2,1 )

.

Hence, using obvious interpolation to bound the last term, and also the fact that (3.27)
implies that

(3.57) ‖a‖
L∞(0,T ;Ḃ

d/2
2,1 )

≪ 1,

we get

(3.58) ‖Qu, a, ν∇a‖
L∞(0,T ;Ḃ

d/2−1

2,1 )
+ ‖Qut, ν∇2Qu, ν∇2aℓ,∇ah‖

L1(0,T ;Ḃ
d/2−1

2,1 )

. ‖(Qu, a, ν∇a)(0)‖
Ḃ

d/2−1

2,1
+

∫ t

0
‖∇Pu,∇Qu,∇V ‖

Ḃ
d/2
2,1

‖a, ν∇a,Qu‖
Ḃ

d/2−1

2,1
dτ

+ ‖(Pu, V )‖
L∞(0,T ;Ḃ

d/2−1

2,1 )
‖(∇Pu,∇V )‖

L1(0,T ;Ḃ
d/2
2,1 )

+ ‖a‖
L∞(0,T ;Ḃ

d/2
2,1 )

‖(Pu, V )‖
L∞(0,T ;Ḃ

d/2−1

2,1 )
‖∇Qu‖

L1(0,T ;Ḃ
d/2
2,1 )

+ ‖Vt,Put‖L1(0,T ;Ḃ
d/2−1

2,1 )
‖a‖

L∞(0,T ;Ḃ
d/2
2,1 )

+ ν−1
(
‖aℓ‖

L∞(0,T ;Ḃ
d/2−1

2,1 )
‖ν∇aℓ‖

L1(0,T ;Ḃ
d/2
2,1 )

+ ‖νah‖
L∞(0,T ;Ḃ

d/2
2,1 )

‖ah‖
L1(0,T ;Ḃ

d/2
2,1 )

)
.
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Hence, from Gronwall lemma,

(3.59)

Xd(T ) + Yd(T ) ≤ Ce
C

∫ t
0
‖∇Pu,∇Qu,∇V ‖

Ḃ
d/2
2,1

dτ
(
Xd(0) + (Vd(T ) + Zd(T ))(Vd(T ) +Wd(T ))

+ ν−2Xd(T )Yd(T )(Vd(T ) + Zd(T )) + ν−1(Vd(T ) + Yd(T ) +Wd(T ))Xd(T )

)
·

Step 3. Global-in-time closure of the estimates. Assuming that

(3.60) ν−1D ≪ 1,

Inequality (3.59) and hypotheses (3.22) and (3.23) imply that

Xd(T ) + Yd(T ) ≤ CeC(M+ν−1D+δ)
(
Xd(0) + (M + δ)2

+ν−2D(M + δ)Xd(T ) + ν−1(D + δ +M)Xd(T )
)

while (3.28) yields

Zd(T ) +Wd(T ) ≤ CDeC(M+ν−1D+δ)
(
ν−1(M + δ +D)

+ν−1/2M + ν−1(M +D + δ)Wd(T ) + ν−1M2
)
·

Hence, assuming in addition that

(3.61) ν−1D ≤ M and δ ≤ max{M, 1},
we get (enlarging C as the case may be)

Xd(T ) + Yd(T ) ≤ CeCM
(
Xd(0) +M2 + 1 + ν−1(M +D)Xd(T )

)
,

Zd(T ) +Wd(T ) ≤ CDeCM
(
ν−1D + ν−1/2M + ν−1M2 + ν−1(M +D)Wd

)
·

Therefore, if we make the assumption that

(3.62) D(D +M + 1)eCM ≪ ν,

then we end up with

(3.63) Xd(T ) + Yd(T ) ≤ CeCM
(
Xd(0) +M2 + 1

)

and

(3.64) Zd(T ) +Wd(T ) ≤ CDeCM
(
ν−1/2M + ν−1(D +M2 + 1)

)
·

So it is natural to take first

(3.65) D := CeCM (Xd(0) +M2 + 1)

and then to set

(3.66) δ := CeCM
(
Xd(0) +M2

)(
ν−1/2M + ν−1(Xd(0) +M2 + 1

))
·

Now, assuming that for a suitably large (universal) constant C we have

(3.67) CeCM (Xd(0) + 1 +M2) ≤
√
ν,

we see that Conditions (3.60) and (3.62) are fulfilled (and thus also (3.61) as it is weaker).
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Let us recap: if ν and the compressible part of the data fulfill (3.67) then defining D and δ
according to (3.65) and (3.66) ensures that (3.23) is fulfilled for all T < T⋆. Then, combining
with the continuation criterion recalled in (3.16), one can conclude that T⋆ = +∞ and that
(3.23) is satisfied for all time. This completes the proof of Theorems 1.1 and 1.2. Finally, in
the 2D case, Theorem 4.1 enables us to take

(3.68) M = C‖Pv0‖Ḃ0
2,1

exp
( C

µ4
‖Pv0‖4L2

)
,

which provides us with an explicit lower bound for ν depending only on the initial data,
through (3.67).

4. Appendix

We here consider the global well-posedness issue of the incompressible two-dimensional
Navier-Stokes system in the critical Besov spaces setting. Although essentially the same
result has been proved in [5] (see Theorem 6.3 therein), we here provide another (different
and more elementary) proof for the reader convenience.

Theorem 4.1. Let V0 be in Ḃ0
2,1(R

2) with divV0 = 0. Then there exists a unique solution

to (1.3) such that

(4.69) V ∈ L∞(R+; Ḃ
0
2,1(R

2)) and Vt,∇2V ∈ L1(R+; Ḃ
0
2,1(R

2)).

Furthermore, the following inequality is satisfied for all T ≥ 0:

(4.70) ‖V ‖L∞(0,T ;Ḃ0
2,1)

+ ‖Vt,∇2V ‖L1(0,T ;Ḃ0
2,1)

≤ C‖V0‖Ḃ0
2,1

exp
( C

µ4
‖V0‖4L2

)

for some universal constant C.

Proof. First recall that the space Ḃ0
2,1(R

2) for initial velocity embeds in L2(R
2). Hence we

have V0 ∈ L2(R
2) and the pioneering works by J. Leray in [17] delivers us global in time

weak solutions satisfying the energy estimate

(4.71) sup
t∈R+

‖V (t)‖2L2(R2) + 2µ

∫ ∞

0
‖∇V ‖2L2(R2) dx = ‖V0‖2L2(R2).

Then the classical result of Olga Alexandrovna [16] provides a unique global in time solution

V ∈ L∞(R+;L2(R
2))∩L2(R+; Ḣ

1(R2)). Here we want to improve the regularity to the class
defined by (4.69).

Now, real interpolation applied to (4.71) gives

V ∈
(
L∞(R+;L2(R

2)), L2(R+; Ḣ
1(R2))

)
1/2,1

,

which implies that V ∈ L4(R+; Ḃ
1/2
2,1 (R

2)).

To take advantage of that information, we look at the equation satisfied by V as a nonlinear
modification of the Stokes system, namely

(4.72)
Vt − µ∆V +∇Π = −V · ∇V,
divV = 0,
V |t=0 = V0.

Using the endpoint maximal regularity estimates of the Stokes system in homogeneous
Besov spaces (which, in R

2, coincide with those for the heat equation), we may write

(4.73) ‖V ‖L∞(0,T ;Ḃ0
2,1)

+ ‖Vt, µ∇2V ‖L1(0,T ;Ḃ0
2,1)

≤ C(‖V · ∇V ‖L1(0,T ;Ḃ0
2,1)

+ ‖V0‖Ḃ0
2,1
).
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Next we have to bound ‖V · ∇V ‖L1(0,T ;Ḃ0
2,1)

. From the energy balance (4.71) and the

interpolation property pointed out above, we know that

(4.74) µ1/4‖V ‖
L4(R+;Ḃ

1/2
2,1 )

≤ C‖V0‖L2
.

Furthermore, product laws in Besov spaces (Lemma 2.1) ensure that

(4.75) ‖V · ∇V ‖Ḃ0
2,1

≤ C‖V ‖
Ḃ

1/2
2,1

‖∇V ‖
Ḃ

1/2
2,1

.

Hence integrating (4.75) on the time interval [0, T ], and using the following interpolation
inequality:

‖Z‖
Ḃ

1/2
2,1

≤ C‖Z‖1/4
Ḃ−1

2,1

‖∇Z‖3/4
Ḃ0

2,1

,

together with Young inequality, we may write for all ε > 0,

‖V · ∇V ‖L1(0,T ;Ḃ0
2,1)

≤ C

∫ T

0
‖V ‖

Ḃ
1/2
2,1

‖∇V ‖
Ḃ

1/2
2,1

dt

≤ C

∫ T

0
‖V ‖

Ḃ
1/2
2,1

‖∇V ‖1/4
Ḃ−1

2,1

‖∇2V ‖3/4
Ḃ0

2,1

dt

≤ C

ε3µ3

∫ T

0
‖V ‖4

Ḃ
1/2
2,1

‖V ‖Ḃ0
2,1

dt+ εµ‖∇2V ‖L1(0,T ;Ḃ0
2,1)

.

Hence, reverting to (4.73) and taking ε small enough, we find that

(4.76) ‖V ‖L∞(0,T ;Ḃ0
2,1)

+‖Vt, µ∇2V ‖L1(0,T ;Ḃ0
2,1)

≤ C

(
1

µ3

∫ T

0
‖V ‖4

Ḃ
1/2
2,1

‖V ‖Ḃ0
2,1

dt+‖V0‖Ḃ0
2,1

)
.

In view of the Gronwall inequality, this gives

(4.77) ‖V ‖L∞(0,T ;Ḃ0
2,1(R

2) ≤ C‖V0‖Ḃ0
2,1(R

2) exp

(
C

µ3

∫ T

0
‖V ‖4

Ḃ
1/2
2,1

dt

)
·

Remembering (4.74), one can conclude to (4.70).

For the sake of completeness, we have to prove that ∇2V ∈ L1(R+; Ḃ
0
2,1) as it has been

assumed implicitly in the above computations. This may be obtained by bootstrap from

the property that V ∈ L4(R+; Ḃ
1

2

2,1). Indeed, because V · ∇V = div (V ⊗ V ), Lemma 2.1

gives V · ∇V ∈ L2(R+; Ḃ
−1
2,1), and thus V ∈ L2(R+; Ḃ

1
2,1) through (4.72), thanks to maximal

regularity results for the Stokes system. Knowing that V ∈ L2(R+; Ḃ
1
2,1), Lemma 2.1 now

gives us V · ∇V ∈ L1(R+; Ḃ
0
2,1), and thus (Vt,∇2V ) ∈ L1(R+; Ḃ

0
2,1). �
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