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Abstract 

Using the unanticipated creation of a new agency in the French region of Lyon as a quasi-natural 

experiment, we question whether distance to local public employment agencies (LPEAs) is a new 

channel for spatial mismatch. Contrary to past evidence based on aggregated data and consistently 

with the spatial mismatch literature, we find no evidence of a worker/agency spatial mismatch, 

which pleads for a resizing of the French LPEA network. However, echoing with the literature on the 

institutional determinants of the local public employment agencies’ efficiency, we do find 

detrimental institutional transitory effects. 
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1 Introduction 

In many countries the unemployment rates that soared after the 2008 financial crisis are still 

unprecedentedly high: 10.9% in the Euro zone, 22.2% in Spain, 9.5% in Ireland, 10.4% in France, 

12.0% in Italy, 9.7% in Finland (Eurostat data for July, 2015). In France, in particular, between January 

2009 and January 2015, the number of jobseekers grew from 3.9 to 6.2 million (i.e. a 58% increase) 

while the number of completely unemployed jobseekers increased by 52%. At the same time, the 

average unemployment spell progressed from 390 to 542 days and the proportion of long-term 

jobseekers escalated from 30.3 to 43.3% (Cour des Comptes, 2015). 

In parallel, an extensive literature show the mostly positive effects of the active labour market public 

policies1 implemented since the 1990s in OECD countries2: Dolton and O’Neill, 2002; Blundell et al., 

2004; van der Berg and van der Klaauw, 2006; Graversen and al., 2008a and 2008b; Heckman et al., 

1999; Bell and Orr, 2002; Boone and van Ours, 2009; Borldand and Tseng, 2011; Graversen and van 

Ours, 2011, Graversen and Larsen, 2013 and Bernhard and Kopf, 2014. On the French context, 

evidence was also found that the active labour market public policies are effective: Crépon et al., 

2005; Behaghel et al., 2009; Fougère et al., 2010; Fontaine and Le Barbanchon, 2012 and Crépon et 

al., 2013. 

In this context, the role of local public employment agencies (LPEAs) on job matching efficiency has 

received an increased attention in recent empirical literature.  

First, some papers question the caseworkers’ marginal efficiency: on Dutch data, Koning (2009) finds 

that each additional marginal caseworker significantly increases the unemployment outflow rates for 

short-term jobseekers, reduce the inflow rate into social assistance protocols and increases the 

number of registered vacancies by agency. Although these effects are modest in absolute terms, he 

concludes that raising the number of caseworkers is cost-effective, and that extra costs are 

compensated by the resulting reduction in assistance benefits expenses. On Swedish data, Lagerstöm 

(2011) also shows that, when controlling for the jobseekers’ characteristics, caseworkers have a 

significant role in the jobseekers’ employment rates and future earnings.  

Second, other papers focus on understanding the causes of the heterogeneous efficiency of the 

intermediation service provided by LPEAs (Rosholm, 2014). In this respect, two main dimensions are 

investigated: 1) institutional effects and 2) geographical spatial mismatch effects.  

Institutional effects such as heterogeneous caseload congestion between agencies (Hainmueller et 

al., 2011), caseworker strategies (Behncke et al., 2010a; Lagerstöm, 2011; Bech, 2015) and social 

proximity with her clients (Behncke et al., 2010b), the managerial governance of agencies (Hill, 2006) 

or a residual effect resulting from a combination of these factors (Suárez Cano et al. 2015) have a 

                                                           
1
 Active labour market policies focus on affecting the behaviour of jobseekers to improve their job search efficiency and/or their 

employability. They furthermore involve a “mutual obligations” principle, where jobseeker benefits are keyed to their compliance to the 
active programs, with possible temporary benefit suspensions and/or exclusions (OCDE, 2007). This paper is not focused on the evaluation 
of active labour market policies. For the latest literature reviews on these issues, see for example Martin and Grubb, 2001; Card, Kluve and 
Weber, 2010; Kluve, 2010; Fougère and al., 2010; Parent, Sautory and Desplatz, 2013; Fontaine and Malherbet, 2013; or Biewen and al., 
2014. 
2 Other papers have worked on the theoretical mechanisms though which public employment services can impact on the quality of the job 
matching process. For example, after Boone and van Ours (2009) and Plesca (2006), Fougères and al. (2009) propose a structural search 
model with fixed and variable costs of search in which unemployed workers select their optimal search intensity given the exogenous 
arrival rate of job contacts coming from the public employment agency. More recently, Caliendo et al. (2015) show that the jobseekers’ 
search effort and success in finding a new job are affected by the subjective beliefs on the relative impact on the job search process of 
one’s search effort vs. of external factors, such as, in particular, the perceived efficiency of the local public employment agencies. 
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significant influence on the employment prospects of the jobseekers. Launoy and Wälde (2015) show 

that organizing the work of a LPEA in a more efficient way has much better result on unemployment 

than creating pecuniary incentives through unemployment assistance benefits. 

In parallel, a growing number of paper questions the effects on unemployment of the geographical 

distance between jobseekers and LPEAs and show that the spatial distribution of local public good 

providers (and, in particular, LPEAs) does not match the distribution of these public goods recipients 

(Allard and Danziger, 2003; Joassart-Marcelli and Wolch, 2003; Bielefeld and Murdoch, 2004; 

Joassart-Marcelli and Giordano, 2006; Allard, 2009; Suárez Cano et al. 2012a, 2012b, 2015, Wathen 

and Allard, 2014).  

This question of the effect of the accessibility to LPEAs on unemployment is relevant in two regards.  

First, from a public policy perspective, the link between distance to LPEAs and unemployment tends 

to support the preservation of a dense spatial network of LPEAs. In a context of scarce public 

spending, the cost of this network has recently been questioned. In the French context, the annual 

rent cost of maintaining the network of 9003 public employment agency network now exceeds 250 

million euros (Cour des Comptes, 2015. Maintaining a dense local network is also a source of 

organizational deleterious effects, hampering, for example the specialization of caseworkers. Thi is 

particularly the case in France where 25.3% of the agencies have 15 caseworkers of less; 71.0 have 

25 caseworkers of less (Le Monde, 2013). In public policy terms, examining whether distance to 

LPEAs affects the jobseekers’ employment prospects is relevant because it conditions the choice 

between to alternative, equalitarian vs. Rawlsian, policy orientations. In the egalitarian scenario, 

equal accessibility to the public placement service is guaranteed to all jobseekers by financing a 

dense network of LPEAs. In the Rawlsian option, spatial accessibility differentials to LPEAs are 

tolerated but compensating schemes are put in place for the jobseekers with the poorer accessibility 

to the agencies’ network (payment of transportation costs, extra monitoring through Internet 

meetings…). 

Second, from a theoretical perspective, finding an effect of the jobseeker/agency distance on 

unemployment suggests a new kind suboptimal friction to the matching process and creating a new 

source of Spatial Mismatch (Kain, 1968; Gobillon et al., 2007). 

In this paper, we rely on French exhaustive administrative geo-located data on both jobseekers and 

LPEAs location and characteristics to question this issue. Measuring the effect of distance to LPEAs on 

unemployment has methodological pitfalls due to the potentially endogeneity of the distance 

variable for two reasons. First, the agencies are not spatially randomly distributed. Second, in most 

datasets the true distance between agencies and jobseekers is affected by a measurement error bias: 

jobseekers are arbitrarily assigned to centroid of their census tract. To deal with these 

methodological problems, we take advantage of a quasi-natural experiment with the installation of a 

new agency in the French region of Lyon. 

The rest of the paper is organized as follows: in Section 2, we discuss the literature. In Section 3, we 

present the administrative datasets, the natural quasi-experiment and the econometric strategy. In 

Section 4, we present the results and discuss the findings. We conclude on public policy issues and 

further research in Section 5. 

                                                           
3 The French local public agency network has 951 agencies for a population of 66.3 million and 2.9 million jobseekers; by comparison the 
German network has only 621 local public employment agencies for a population of 81 million and 2.8 million jobseekers. 
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2 The Spatial Dimension of Public Intermediation in the Labour 
Market 

2.1 Converging Empirical Evidence 

Many recent papers put the emphasis on the spatial dimension of the public intermediation in the 

labour market as an important factor in the efficiency of the job/worker matching process.  

This concern is classically found in recent papers that focus on the evaluation of active labour market 

policies, where geographical differences are used to introduce variability in the labour market 

policies frameworks (Frölich and Lechner, 2010; Altavilla and Caroleo, 2013 and Ferracci et al., 2014). 

Other papers directly question the potentially detrimental effects of the geographical distance 

between LPEAs and their recipients.  

These papers echo the twin literature on the spatial distribution of local public goods produced by 

non-profit organization, where converging papers unearth spatial discrepancies between the spatial 

distribution of the non-profit agencies and the distribution of their recipients. Many papers show 

that when relative needs are considered, the density of non-profit agencies is looser in poorer 

neighbourhoods than in more affluent communities. See for example, Allard and Danziger (2003) for 

the Detroit metropolitan area; Joassart-Marcelli and Wolch (2003) for Southern California; Bielefeld 

and Murdoch (2004) for the metropolitan areas of Boston, Dallas/Fort Worth, Indianapolis, Memphis, 

Minneapolis/Saint Paul, Orlando, Pittsburgh, Portland (Oregon), and San Diego; Allard (2009) for 

Chicago, Los Angeles and Washington D.C and Wathen and Allard (2014) for a comparison between 

the United States and Russia. 

For LPEAs, Joassart-Marcelli and Giordano (2006) find a significant negative link between accessibility 

to LPEAs and unemployment. At the census tract level, they show accessibility differentials by 

race/ethnicity, age, and location. They also find that access to Californian One-Stop Career Centres 

reduces aggregated unemployment, with larger effects for groups who experience limited mobility 

due to gender or race, such as black and female job seekers.  

Suárez Cano et al. (2012a, 2012b, 2015) study, in the Spanish context, the effect of the accessibility 

to local public employment offices on local unemployment rates according to the distribution of 

three different types of municipalities: large urban, small urban and non-urban. They also find that, 

at the municipality level, accessibility to employment offices significantly affects the labour market 

outcomes of the jobseekers, and that this effect is particularly important in non-urban areas where 

employment opportunities are limited. 

2.2 Public Policy Implications 

These results have direct public policy implications, suggesting that a denser spatial network of LPEAs 

would effectively decrease unemployment, especially in rural areas.  

In France, this concern underlies the ongoing debate on reform of Pôle Emploi, the public 

employment service. Pôle Emploi was created in December 2008 by the merging of the former 
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institutions in charge of job seeker monitoring and control (ANPE4) and of the distribution of 

unemployment benefits (ASSEDIC5).  

Its creation, coincidental with the 2008 financial crisis, led to many institutional dysfunctions, without 

any real managerial re-organization of the new Pôle Emploi agencies (Iborra, 2013). There was also 

no redefinition of the LPEA network (Cour des Comptes, 2015): the 830 ANPE local agencies were 

became 873 Pôle Emploi local generalist agencies and 41 agencies specialized in niche labour 

markets (entertainment, handicapped workers…). The result is a very dense agency network: in 2009, 

80% of jobseekers could reach their LPEA under 30 minutes, versus 96.4 % in 2012. Comparatively, 

the average commuting time was 72 minutes for students and employed workers.  

In terms of managerial efficiency, the Audit Court6 criticizes the relative dispersion of caseworkers, 

their reduced specialization and the unnecessary duplication of tasks across agencies (human 

resources, benefit distribution, call centres). In 2014, almost a quarter (24%) of the Pôle Emploi 

workforce was not actively devoted to the counselling and monitoring of the jobseekers. More, the 

actual monitoring of the jobseekers only filled up to 37% of actual caseworkers’ time, and the 

prospection of vacancies only represented up to 7% of their time. In terms of cost, the Court reports 

that the surface occupied by LPEAs showed a 15.9% increase between 2009 and 2013; with 85% of 

this surface being rented to private landlords, the yearly rent of the LPEAs increased by 21.6% 

between 2011 and 2014, reaching 264 million euros in 2014. As a consequence, the Court prescribes 

the reduction of the number of agencies in the years to come; in a Rawlsian fashion, this measure is 

to be compensated by specific mechanisms for the jobseekers who live far away from LPEAs. 

This view is strongly opposed by Pôle Emploi, local public opinions7 and local public authorities, who 

claim that a denser network of LPEAs is necessary for strict equality’s sake but also to curb the 

potentially damaging effects of spatial mismatch. Besides warning against institutional adaptation 

costs, they also underline potential welfare effects of longer commutes to LPEAs for jobseekers who 

live in rural areas or have limited access to public transportation and car ownership. 

2.3 Theoretical Ambiguity 

The theoretical intuition between distance to LPEAs and unemployment directly echoes the Spatial 

Mismatch literature: distance to agencies is presented as a new source of friction in the matching 

process between jobs and jobseekers, necessarily leading to an increase of local unemployment 

rates. 

Since John Kain’s (1968) seminal paper, it is widely acknowledged that spatial mismatch, i.e. the 

geographical distance between jobs and workers, is a key factor when understanding individual 

differences in unemployment and job search success rates. Empirical evidence on the spatial 

mismatch between jobs and workers is plentiful, both in the US and the European context8. 

                                                           
4ANPE: Agence Nationale pour l’Emploi (National Agency for Employment). 
5 ASSEDIC: Association pour l’emploi dans l’industrie et le commerce (Association for Employment in Industry and Trade). 
6 In charge of conducting the financial and legislative audit of the French public institutions. 
7 For an example, see Merlin (2015). 
8 Empirical evidence on the spatial mismatch between jobs and workers is plentiful. On the US context, Ong and Miller (2005) show that 
poor accessibility to jobs lead to adverse effects on job search outcomes. On the European context, studies are fewer and more recent, 
since until recently the compact structure, good public transportation systems and lower segregation rates were believed to protect 
European cities from spatial mismatch issues (Korsu and Wenglenski, 2010). Spatial Mismatch evidence was however found in British cities 
(Houston, 2005; Patacchini and Zenou, 2005), in Dutch cities (Musterd et al., 2003; van der Klaauw and van Ours, 2003), in Brussels 
(Dujardin et al., 2008), Madrid and Barcelona (Matas et al., 2009) and Paris (Choffel and Delattre, 2003; Gobillon and Selod, 2007; Duguet 
et al., 2009; Korsu and Wenglenski, 2010). Further, using data on the 36 600 French municipalities, Détang-Dessendre and Gaigné (2009) 
showed a gradation of the spatial mismatch intensity between metropolitan, urban and rural areas, with an insignificant relationship 
between unemployment duration and job access for workers living in large urban centers but a linear relationship for the other workers. 
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Theoretically, different factors channel the spatial mismatch (see Gobillon et al., 2007 or Zenou, 

2009, for a literature review): 1) transportations costs limit the area where it will be profitable for 

jobseekers to search for jobs, so that they limit their prospection area; 2) information on jobs 

decreases with distance, whether because jobseekers are ignorant of the specificities of the labour 

market of unfamiliar parts of the cities or because job opportunities are advertised using local 

recruiting methods such as ‘help wanted’ signs in windows; 3) firms implement territorial statistical 

discrimination against the jobseekers who live in neighbourhoods with a bad reputations 4) firm 

redline jobseekers because too long commutes reduce their productivity and 5) cheap housing in the 

areas located the furthest from the jobs means less search incentives for the jobseekers. 

How should these determinants work if we take into account the intermediation of LPEAs between 

jobs and jobseekers? One could argue that placement agencies should be considered as a partial 

solution to rather than a further cause of spatial mismatch between jobs and workers. Indeed, public 

placement agencies are precisely dedicated to act as matching facilitators, collecting the best 

possible information on vacancies and working with firms to help them define their needs and revise 

their biases and expectations, which should help prevent spatial mismatch arising through channels 

2, 3 and 4. 

Still, distance to the LPEA could create its own spatial mismatch issues, by creating, in particular, 

frictions between jobseekers and agencies. This could arise, in line with the theoretical Spatial 

Mismatch literature, if higher transportation costs discourage jobseekers to travel to their agency, or 

if agencies discourage the enrolment of far-living, less employable jobseekers.  

However, this does not happen in practice, for three reasons. First, agencies are required by law to 

enrol all jobseekers within their catchment area, so they cannot redline workers. Second, since the 

implementation of active labour market policies, monthly meetings with caseworkers are 

compulsory: a jobseeker cannot trade off transportation costs and matching perspectives, whatever 

the housing prices in her neighbourhood. Third, caseworkers monitor the jobseeker’s search process 

and fill the informational gaps she may be facing.  

As a result, there should be no significant effect of jobseeker-to-agency distance on the matching 

process results. This theoretically-driven statement contrasts with the empirical results found in the 

literature. How is that possible? A possible explanation is that distance to LPEAs conceals other 

variables otherwise relevant to the spatial mismatch mechanism, for example distance to local 

central business districts where the administrative centres are located… as well as most of the jobs. 

Distance to LPEAs probably seems to affect local unemployment rates because it works as proxy for 

the accessibility to the local labour market. In other words, it is possible that the location of LPEAs is 

not exogenous relatively to the location of job opportunities. In this case, distance to agencies would 

work as a proxy for spatial mismatch itself.  

To shed further light on this issue, it is necessary to find an empirical strategy that allows the 

identification of ‘pure’ LPEA/jobseeker distance effects on individual labour market outcomes, 

independently of the individual characteristics of jobseekers and of congestion and institutional 

effects within the agencies. In this paper, we propose a way to do so by relying on a quasi-natural 

experiment and exhaustive administrative datasets. 

                                                                                                                                                                                     
They also find that, for workers living outside large urban centers, a rise in accessibility to jobs increases the probability of leaving 
unemployment. 
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3 Data and Empirical Strategy 

3.1 The Data 

We combine previously unexploited exhaustive individual datasets on jobseekers and LPEAs’ staff 

characteristics and structure that were exceptionally available for the French Rhône-Alpes region. 

First, we use the longitudinal Pôle Emploi dataset, which provides an exhaustive record for all the 

unemployed jobseekers (18-65 years old) during a long period of time (8 years). We focus on the 

June, 2006 to April, 2012 period in order to stay within the parameters of an single active labour 

market policy framework: as noted by Fontaine and Le Barbanchon (2012), 2005 was a turning point 

in the generalization of active labour market policies in France, with another drastic modification of 

the monitoring and control of jobseekers taking place in 2013. 

This dataset provides the following variables: unemployment duration, gender, nationality, number 

of children, marital status, educational level, age, name and location of their LPEA and residential 

location of jobseekers (at the municipality level9). This allows the computation of unemployment 

recurrence for the 2004 to 2012 period and to control for jobseeker residential moves that could 

otherwise lead the underestimation of unemployment duration. To take into account unemployment 

recurrence we first calculate the total duration of unemployment spells during the last 2 years and a 

half before each new inscription as an unemployed jobseeker in the agency register. To measure the 

durability of the exits from unemployment, we also compute the gap between the last 

unemployment spell of a jobseeker and her actual one.  

Note that for computing these two elements, we use the exit of a jobseeker from the individual Pôle 

Emploi dataset, where the motive of the exit is not notified. Global surveys establish that the 

majority of exits from the Pôle Emploi databases are “true” exits from unemployment, through job 

matches (46.7% of the exits in March 2011) or the resumption of studies (9.9% of the exits) (Bernardi 

and Poujouly, 2011). Jobseekers involuntarily exit the Pôle Emploi database because of 

administrative mishaps (“Accidental failure to renew the enrolment” and “Lack of actualisation 

followed by a re-inscription”, 24.8% of the exits). Since we use an exhaustive dataset, we can track 

the immediate re-entry of the jobseekers in the database and exclude these ‘false’ exits from 

unemployment from our variables of interest (unemployment duration and durability of the exits 

from unemployment). Jobseekers also transition to inactivity (“Retirement, exemption from the job 

search”, 0.9% of the exits) or temporary suspend their job search for maternity, military, holidays of 

medical reasons (“Temporary suspension of the job search”: 8.2% of all exits). In these cases, the 

nature of our database does not allows us to track and exclude these exits from the computation of 

our variables of interest; however the impact of this shortcoming is lessened by the fact that there is 

virtually no link between these motives of exit and the jobseeker/agency distance. By contrast, the 

rest of the motives (“Administrative radiation”, “Voluntary non-renewal of the jobseeker’s 

enrolment” and “Other”) are more problematic for us, since they can, at least partially, be caused by 

the demotivation of jobseekers, which in turn could be potentially affected by a too great distance to 

the jobseeker’s agency. A mitigating factor is that these exits are few (9.4% of all exits in March 

2011), so that the overall impact on our estimations is bound to be weak (see part 4 for a further 

discussion in light of our results). 

                                                           
9 The Pôle Emploi dataset does not provide a finer geolocation of jobseekers. 
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Another issue is the added value of the public intermediation service on the job search process: in 

2011, only 14% of the job matches were directly organized by Pôle Emploi (Bernardi, 2013). 

Moreover, 28% of the new job matches were created through personal or professional relations and 

22% through unsolicited applications, which underlines the increasing role of informal and 

decentralized search processes (such as Interned-based job search, Kuhn and Mansour, 2014) – for 

which no datasets exist. However, the mission of the public intermediation goes beyond the mere 

matching of jobs and workers: since the implementation of active labour market policies, it also 

focuses in helping the jobseekers in implementing efficient and diversified search strategies which 

has indirect positive effects on the employment prospects of jobseekers, as shown by the converging 

empirical evidence on the evaluation of active labour market policies. Caseworkers counsel 

jobseekers in writing resumes, in using the Internet in their job search, in devising an effective 

spontaneous application strategy, in identifying job opportunities and in the activating their personal 

and professional network….  

Second, we use information on the LPEAs available through the Annual Declaration of Social Data10 

dataset, which provides exhaustive data on all establishments located in France, identified through a 

unique SIRET11 number. Beyond the mere monitoring and control of jobseekers, LPEAs perform a 

varied set of tasks: benefits distribution, vacancies prospection, local public institutions and firms 

networking… We only take into account the LPEA staff members whose profession is a variation of 

‘caseworker’12. Using this information, the average congestion of the LPEA � is computed by 

measuring the average caseload of each caseworker, as in: 

��������	
 = 	����������������������� (1) 

With: 

• ����������	
 the number of jobseekers enrolled in the LPEA � during at least 3 months
13

 during the 

quarter � 

• �����������	
 the number of caseworkers of the LPEA � during the quarter � 

Third, to measure directly the distance, we rely on the original Odomatrix© dataset (Hilal, 2010), that 

provides municipality-to-municipality transportation times (by car). The distance by time is a better 

measure of accessibility than Euclidian distance because it takes into account congestion and actual 

road networks.  

3.2 Zoning Modifications as a Quasi Natural Experiment 

Our study area (called ‘Belleville zone’ throughout this paper) is located in the suburban Northern 

part of the Greater Lyon area, France’s third city in size. It is constituted of 399 municipalities located 

in six LPEA catchment areas: Roanne, Riorges, Tarare, Belleville, Villefranche, Bourg-en-Bresse and 

Trevoux (see Figure 1). 

                                                           
10 Déclaration Annuelle de Données Sociales (DADS). Pôle Emploi also publishes, since 2013 and the successful legal action carried out by 
the reference newspaper Le Monde, detailed information on the staff composition of all local public employment agencies (staff structure, 
number of caseworkers and caseload per caseworker). Sadly, this information is not available for our study period (2006-2012). 
11 SIRET: Computer System of the Firm and Establishment Directory (Système Informatique du Répertoire des Entreprises et de leurs 
éTablissements). 
12 We only keep the staff members whose profession is coded PCS 333E, PCS 343A or PCS 451C: senior advisor, advisor, deputy advisor and 
placement officer (‘conseiller principal’, ‘conseiller’, ‘conseiller adjoint de l’emploi’ and ‘prospecteur placier’). 
13 Alternative results can be provided for a 6-month threshold, with no significant differences. 
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This area is interesting because of a modification of the spatial distribution of the LPEAs that took 

place in December 2008, when Pôle Emploi was created. Before December 31st, 2008, all the 

jobseekers who lived in the 104 municipalities situated in the Belleville zone were enrolled in the 

LPEA of Villefranche-sur-Saône. In January 1st, 2009 a new agency opened in Belleville (blue symbol 

on Figure 1), its catchment area comprising the 43 northern municipalities of the zone (area in pink in 

Figure 1). The catchment area of the Villefranche agency14was reduced to the 61 southern 

municipalities of its prior catchment area (area in salmon pink in Figure 1). The creation of the 

Belleville agency created a variation in the geographical distance between jobseekers and the 

placement agencies in the area, creating a quasi-natural experiment. Controlling for all individual 

jobseeker characteristics to the use of exhaustive individual datasets (see above) it is therefore 

possible to check whether ‘pure’ spatial effects affect the unemployment prospects of jobseekers. 

Another thing is that this area is comprised of rural and semi-rural municipalities, which echoes with 

the literature. In France, evidence of job/workers spatial mismatch is more convincing for rural areas 

(Détang-Dessendre and Gaigné, 2009). Moreover, Suárez Cano et al. underline that detrimental 

effects of poor accessibility to LPEAs are more important for rural areas (Suárez Cano et al., 2012a). 

 

Figure 1. The Belleville Zone Map 

 

3.3 Identification strategy 

3.3.1 Direct measure of the distance-to-agency effect on unemployment 

This quasi-experimental settings allows us to use the difference-on-difference method to study the 

effect of distance to the LPEA on, ���, the labour market outcomes of jobseekers i at the period t. To 

do so, we use the difference-in-difference and the matching methodologies. 

                                                           
14 The Villefranche agency also moved in 2013 but this change was implemented after our period of investigation; furthermore, it remained 
within such a small perimeter (less than 500m from its initial location) that we suppose that this move is trivial and will have no impact 
whatsoever in the future. 
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We start with a simple model: 

��� = � � + "#�� + $%#&�'� + $()#&�'�*( + +�� (1) 

with: 

•   a set of individual explanatory variables (age, gender, diploma, years of professional experience, 

trimester of entry in unemployment, duration of unemployment spells in the last 30 months and a 

constant); 

• #�  dummy for the years after the change; 

• , a dummy for the residential location area of the jobseeker; 

• #&�' the distance expressed in time between the centroid of the jobseeker’s residential municipality 

and the agency location. 

The key parameters of the equation are $% and $( which represent the effects of geographical 

distance on the labour market outcomes of jobseekers. In a discrete framework, the marginal effect 

associated to the distance variable is calculated by using the following formula:  

-.�-dist3 = -Λ). *-dist3 = .�)1 − .�*)$% + 2 × $(dist3* 
With .�  the estimated probability. 

To define the labour market outcome ���, we use two measures based on different definitions of the 

jobseeker’s unemployment spells.  

- The jobseeker’s unemployment spell duration 

- A “durable exit to work” outcome, defined as the time need to find a job without entering a new 

unemployment spell during the 6 months after exiting unemployment. 

As in Crépon et al. (2005), we only keep the first observed spell of unemployment to avoid the 

possible correlation of unobservable characteristics. 

For both outcomes, we consider the probability that a jobseeker who has been unemployed more 

than 4 months15 exited unemployment within the first 9 months of her unemployment spell: 

:����)�;&'	|	> < 9	@��'ℎ�, > < 4	@��'ℎ�* 
3.3.2 The difference-in-difference model 

 

a) Control groups 

We consider two pairs of treated and control groups.  

The first treated group (in red in Figure 2) is the group of jobseekers 1) who live in the municipalities 

located in the catchment area of the new Belleville LPEA, 2) who were formerly enrolled in the 

Villefranche agency and 3) who benefited, with the creation of the Belleville agency, from a 

significant reduction of the travel time between their home and their Pôle Emploi agency (on 

average, almost a 50% decrease, dropping from 25 to 12 minutes for a one-way trip, see Figure 3). 

                                                           
15

 Since the implementation of active labour market public policies, an important landmark in the counselling is the compulsory second 

meeting with their caseworker (the first one takes place when the jobseekers is enrolled at the LPEA) where the search strategy of the 
worker is outlined. Fontaine and Le Barbanchon, 2012, established that 37% (25%) of the second caseworker/jobseeker interview take 
place after the 4th (5th) month in unemployment). With a 4-month threshold, we conservatively think that most jobseekers will have 
received the ‘added’ value counselling from their caseworker. 
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Figure 2. Control and treated groups 

 

 

The first control group (in light blue in Figure 2) is a group of jobseekers who were not affected by 

the creation of the new Belleville agency, i.e. who live in the municipalities that are located 1) inside 

the catchment areas of nearby agencies 2) not including Villefranche and 3) outside the Belleville 

Employment Zone. In Figure 3, we can check that the travel times to these jobseeker’s agencies was 

not significantly altered after the Belleville creation. First, the Roanne, Riorges, Tarare and Bourg-en-

Bresse agencies were chosen because they are geographically close16 to the Belleville-Villefranche 

areas and because, being rural or semi-rural areas, they share similar socio-economic characteristics 

(see Appendix 1 for descriptive statistics). Second, the jobseekers enrolled in the Villefranche agency 

are excluded because they can be directly affected by the creation of the Belleville agency in two 

opposite ways. On the one hand, the reduction of the catchment area of the Villefranche agency 

contributes to a reduction in the caseload of Villefranche caseworkers, which may lead to a greater 

efficiency and a better outcomes for the Villefranche jobseekers. On the other hand, the creation of a 

specific agency for the Belleville jobseekers could lead to a better placement perspectives for them, 

i.e. an increased competition for the Villefranche jobseekers leaving in the same Employment Zone. 

Third, as pointed out by RUBIN (1977) to identify causal effect it is important to be in a situation 

where we do not observe interactions between treated and control group. The well-known stable 

unit treatment value assumption (SUTVA) assumes that the treatment status of any unit does not 

affect the potential outcomes of the other units. To minimize the potential interactions between the 

treated and the control groups, we exclude from Control Group 1 all the jobseekers who live in the 

                                                           
16Other nearby areas north of the zone could also be included in the control group, but they are located outside the Rhône region, i.e. 
outside the perimeter of our datasets.  



 

11 
 

same Employment Zone than the Belleville treated group. Defined using Census data17 by the French 

National Statistics Institute (INSEE), an employment zone is a homogeneous labour market zone, i.e. 

an area within which most of the labour force lives and works, and in which firms can find the main 

part of the labour force necessary to occupy the offered jobs. Restricting the control group to 

jobseekers who live outside the employment zone of the treated group should limit the interactions 

between the two groups. We also exclude the jobseekers who live in the catchment area of the 

Trevoux agency since most of them are also located inside the Belleville employment zone. 

 

Figure 3. Time travel to the LPEA before and after the Belleville creation for the Treated and 

Control groups 

 

Source: ODOMATRIX and FHS-Pôle Emploi, first spell per jobseeker 

 

The second treated/control group pair is defined in order to disentangle institutional and distance 

effects. The second treated group is defined as the jobseekers who, inside the Belleville area, 

benefited from a substantial reduction of their travel time to their agency (more than 14 minutes on 

average, see Figure 3) (horizontal stripes in Figure 2): they were affected by both a distance and an 

institutional change. The second control group is formed by the jobseekers who were affected by the 

institutional change but who did not benefit from proximity effects after the creation of the Belleville 

agency, i.e. the jobseekers who live in the area that is close both to their former Villefranche and 

their new Belleville agencies, so that they gained less than 10 minutes (5 minutes on average, see 

Figure 3) in their time travel to their agency (diagonal stripes in Figure 2).  

 

                                                           
17The zoning used in the paper is based on the flows of movement from residence to work of active persons observed in the 2006 Census. 

0

5

10

15

20

25

30

before after before after before after before after

Treated 1 Treated 2 Control 2 Control 1

Distance to the LPEA (minutes)



 

12 
 

b) Parametric estimation 

In the second model we do not introduce the distance variable but we deal with difference-in-

difference strategy of identification. Note the labour market outcome ���D� of the treated (k=T) and 

non-treated groups (k=C) before (l=1) and after (l=0) the creation of Belleville LPEA.  

EFG
FH���%I = � � + $Jd� + +�� 				&K	' > '̅���NI = � � + +�� 				&K	' ≤ '̅���%� = � � + +�� 				&K	' > '̅���N� = � � + +�� 				&K	' ≤ '̅

 

Where '̅ is the period where the creation of the Belleville agency takes place.  

Also, to account for learning effects by caseworkers in the new agency, we introduce three dummy 

variables for the 2009, 2010 and 2011 years. 

The measure of the causal effect is represented by the coefficient on the interaction term $J in a 

regression. 

��� = � � + δ%>� + δ(d� + $Jd� × T	3 + +�� 
Note that in a logit model, the marginal effect associated to the treatment in the period where the 

treatment is implemented (d� × T	3) is obtained by using:  

-.�-d� × T	3 = ∆.�∆d� × T	3 = R) �β + $J* − R) ��* 
Where ∆). * is the différential operator and R). * = TUV	).*%WTUV	).* 
 

c) Non-parametric estimation 

In the difference-in-difference method we assume that the Treated and the Control groups are 

subject to the same aggregated labour market trends. This methodology gives the effect of the 

treatment on the treated controlling for the individual-specific effect fixed over time and time-

specific effect common for all agents.  

However, if the expectation of the individual specific effects differ between the treated and the 

control groups differs over time, the difference-in-differences estimator is inconsistent.  

To address this issue, we also implemented the matching method with differences in differences 

proposed by Blundell and Costa Dias (2000). In this framework the non-random treatment 

assignment bias is reduced by balancing the treated and the control groups on observed covariates.  

The non-parametric method of propensity matching allows to select a control group on the basis of a 

single score. Find comparable treated before the introduction of the new LPEA: 

$X = Y Z[���\I − Y��	�]I	∈I]
���]I_− [Y ��	�\`	∈`\

���\` − Y ��	�]`	∈`]
���]`_a�∈I\
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Where ��	�b represent the weights attributed to individual j in the group G (where G= C or T) at the 

period of time t when comparing with treated individual t.  

To estimate $X we compute the two propensity scores by using usual regression model for binary 

variables (i.e. the logit model): 

:Ic = :)> = 1| * 
:dc = :)� = 1| * 

Where T is a binary variable equal to 1 if the jobseeker leave in a commune in catchment area LPEA 

of Belleville and 0 otherwise and X is a vector of covariates. The selection of the control group based 

on :dc and :Ic is possible if given those probabilities (or scores) exposition to the treatment is 

independent of the covariates (X). Formally this balancing of score condition can be written as: 

>⊥ |:Ic 

�⊥ |:dc 

See Appendix table B for the presentation of matching propensity score of the treated versus control 

groups and before versus after the creation of the LPEA. 

The average treatment on the treated is obtained by using command psmatch2 in Stata© software 

(Becker and Ichino, 2002). The matching is restricted to the area of common support (see figure A in 

the appendix) and is based on the kernel matching procedure (for each treated all the controls are 

considered with a weight inversely proportional to the distance between the propensity score of 

treated individuals and control individuals). To take into account the discrete nature of the outcome 

variable, the impact of the treatment obtain with Stata© is modify by using the formula proposed by 

Blundell and Costa Dias (2000): 

$X = e)���| , > = 1, ' = 1	* − KfKg%he)���| , > = 1, ' = 1	*i − jk 
Where  

j = fKg%he)���| , > = 1, ' = 1	*i − Kg%he)���| , > = 1, ' = 0	*ik− fKg%he)���| , > = 0, ' = 1	*i − Kg%he)���| , > = 0, ' = 0	*ik 
Finally the standard error are obtain by bootstrap with 200 replications. 
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4 Results 

4.1 Accessibility Differentials to Agencies 

In our study area, we find that, on average, municipalities are located just under 30 minutes from 

their LPEA (see Table 1). Note that this result is measured at the municipality level, without 

accounting for population density disparities between municipalities. By contrast, individual travel 

times are, on average, inferior (17.8 minutes for a one-way trip), which highlights the potential bias 

that might arise when working on aggregated data.  

In line with past empirical evidence, (Allard, 2004, 2009; Allard and Danzinger, 2003; Joassart-

Marcelli and Giordano, 2006; Suárez Cano et al., 2012a, 2012b, 2015), we find notable average 

differentials in accessibility to LPEAs between municipalities: rich, educated and white collar 

municipalities are, on average, closer to LPEAs than poor, uneducated and blue collar municipalities. 

Also, supporting Suárez Cano et al. (2012a), we find that, on average, travelling to one’s LPEA takes 

almost twice the time jobseekers who live in rural municipalities than for jobseekers who live in 

urban ones (38.8 minutes versus 21.0 minutes).  

Interestingly, the municipalities with high unemployment also tend to be, on average, closest to 

LPEAs than municipalities with low unemployment rates (35.2 vs. 24.1 minutes): this result hints that 

the spatial distribution of agencies is not exogenous, but deliberately targets high-unemployment 

urban zones.  

Further, we find that, controlling for individual characteristics, distance to LPEAs significantly affects 

the probability to exit unemployment for jobseekers whose unemployment spell lasted at least 4 

months (see Table 2): for example, we find that an increase of 10 minutes of a jobseeker’s 

home/agency travel time reduces by 0.12 points the probability of exiting unemployment after an 

unemployment spell of 12 months (see Table 2). We also find that the effect of distance is not linear, 

so that the effect of the marginal minute is stronger for jobseekers who live in distant municipalities 

than for jobseekers who live in closer ones. 

These results are line with past empirical evidence: distance to LPEAs seems to affect poorly the 

jobseekers’ employment perspectives, with an increased effect on vulnerable groups. However, 

keeping in mind that the usual job/worker spatial mismatch sources shouldn’t work for 

agency/worker distances, this result could reflect the fact that distance to the LPEAs could act as a 

proxy for other factors, for example the distance to the central business (or administrative) district 

where most jobs are concentrated.  
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Table 1. Accessibility to Local Job Employment Agencies (minutes) 

Municipality profile (2012 data) Mean Std 

Metropolitan status   
Rural 38.8 8.9 
Suburban 29.0 10.4 
Urban 21.0 11.8 

Income   
Rich: top 10 municipal median income 28.6 13.2 
Poor: bottom 10 municipal median income 38.4 6.5 

Education   
High: top 10 with the highest % with a college degree 30.9 9.5 
Low: top 10 with the highest % with a diploma inferior to the Bac* 34.7 9.2 

Unemployment   
High: top 10 unemployment rate 24.1 17.3 
Low: bottom 10 unemployment rates 35.2 9.3 

Workforce    
Blue-collar: top 10 proportion of blue collar workers 36.4 8.3 
White-collar: top 10 proportion of white collar workers 35.7 7.0 

All agencies 29.1 11.2 
Sources: Odomatrix, INSEE Census. (*) The Bac (Baccalauréat) is the French equivalent of the A-Levels 
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Table 2. LOGIT model of the probability of exiting unemployment for jobseekers unemployed during at least 4 months. 

 
EXIT AFTER 

5 months 6 months 7 months 8 months 9 months 10 months 11 months 12 months 

 
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Fixed effect of LPEA 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Individual covariates(*) 
No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes 

Log Likelihood 
-1,6514 -1,6245 -23,639 -23,148 -26,432 -27,244 -30,519 -29,621 -32,052 -30,900 -31,845 -30,726 -32,150 -30,919 -32,125 -31,565 

Akaike’s info. criterion 
33,044 32,553 47,295 46,358 52,926 54,551 61,124 59,576 64,190 62,043 63,707 61,514 64,315 61,899 64,267 63,463 

Pseudo-R2 
0.15% 1.78% 0.20% 2.28% 2.94% 2.89% 0.33% 3.27% 0.30% 3.62% 0.54% 4.04% 0.54% 4.35% 0.57% 4.77% 

Distance to LEPA (hrs)  
                

Dist -0.091 
(0.181) 

0.052 
(0.183) 

-0.165 
(0.142) 

-0.009 
(0.144) 

-0.299** 
(0.130) 

-0.138 
(0.129) 

-0.371*** 
(0.119) 

-0.213* 
(0.121) 

-0.443*** 
(0.115) 

-0281** 
(0.118) 

-0.589*** 
(0.116) 

-0.288** 
(0.116) 

-0.399*** 
(0.116) 

-0.190* 
(0.112) 

-0.398*** 
(0.116) 

-0.205* 
(0.167) 

Dist*dist 0.148 
(0.260) 

0.010 
(0.263) 

0.230 
(0.205) 

0.084 
(0.207) 

0.420** 
(0.188) 

0.271 
(0.185) 

0.529*** 
(0.171) 

0.380** 
(0.174) 

0.592*** 
(0.166) 

0.440*** 
(0.170) 

0.705*** 
(0.169) 

0.426*** 
(0.160) 

0.484*** 
(0.168) 

0.295* 
(0.162) 

0.474*** 
(0.168) 

0.290* 
(0.167) 

Source: FHS-Pôle Emploi, first spell per individual. Number of observations: 46 672. (*) Covariates include: gender, diploma (3 levels), age, and time since the last unemployment 

spell, job experience and a dummy for the post 2009 period. 
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4.1 Difference-in-difference results 

Using to the quasi-experimental framework created by the creation of the Belleville agency, we are 

able to test our working hypothesis of no jobseeker/agency distance effects on the jobseekers’ job 

market outcomes (see Figure 4 for gross differences and Table 3 for the results of the difference-in-

difference and matching estimations18).  

First, let’s focus on the first part of Table 3 (Treated and Control groups 1). If our working hypothesis 

is right, the difference of the marginal effect of distance on the probability to leave unemployment 

between the treated and control group should be insignificant. On the other hand, if the distance to 

LPEAs is a new channel for spatial mismatch, the coefficients should be significantly positive.  

For durable long-term exits from unemployment (probability of not having been unemployed again 

during the 12 months that followed the exit from unemployment), our hypothesis is validated: 

neither the difference-in-difference nor the matching models show a significant difference of the 

effect of distance between the jobseekers of the Belleville area and those of the control group 1, who 

were not affected by the creation of the new agency. This is also the case for durable short-term 

exists from unemployment (6 months) and for the effect of distance on gross exits from 

unemployment (i.e. the probability of exiting unemployment after a 6 and 12 months unemployment 

spell) for the 2010-2011 period19. This is interesting since Card et al. (2105) have recently established 

that the effects of active labour market public policies had the greater positive effects in the medium 

and longer run (two years and more). 

This result does not hold for short-term exists from unemployment and for gross exits from 

unemployment if we also take into account the year 2009. For the 2009 and the 2009-2011 period as 

a whole, distance to LPEAs has a significant impact job matching outcomes. However, this impact is 

negative, not positive: we find that the Belleville area jobseekers are worse off than the jobseekers of 

the control group, which invalidates both our working hypothesis and the “new spatial mismatch 

channel” hypothesis. 

An intuitive solution to this apparent conundrum, in line with seminal papers on the institutional 

determinants of LPEAs efficiency, suggests that the poor efficiency of the Belleville agency could be 

due to transitory institutional dysfunctions during the agency’s running-in period. To test this 

explanation, we compare the outcomes of the Treated and Control groups 2, who share the 

institutional effects of the creation of the new agency but who differ in the ‘pure’ distance effect, 

since the control group’s home/agency distance was, by construction, not drastically affected by the 

creation of the new agency.  

Whatever the estimation period, the definition of exit from unemployment or the difference-in-

difference methodology, we that no coefficients are significant anymore (see Part 2 of Table 3), 

which validates our working hypothesis of no evidence of a worker/agency spatial mismatch. 

 

 

                                                           
18 More detailed results are available upon request. 
19 We focus on the three years that follow the creation of the Belleville agency: 2009, 2010 and 2011. Extending the estimation to the year 
2012 (which is the last year for which we have available data) does not change the results. 
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Table 3. Difference-in-difference results 

 Parametric  Matching  

All years 2009 2010-2011 All years 2009 
2010-

2011 

Coef (std) 
Marginal 

effect 
Coef (std) 

Marginal 
effect 

Coef (std) 
Marginal 

effect 

Marginal 
treatment 
effect on 
treated 

Marginal 
treatment 
effect on 
treated 

Marginal 
treatment 
effect on 
treated 

Part 1 – Control 1 / Treated 1 

Gross exit (difference of the effect of distance on the probability of exiting unemployment after having been unemployed for 6 

and 12 months) 

6 months 
-0.472*** 

(0.098) 
-0.071 

-1.934*** 

(0.201) 
-0.290 

-0.107 

(0.104) 
-0.017 

-0.068*** 

(0.014) 

-0.118*** 

(0.042) 

-0.007 

(0.051) 

12 months 
-0.404*** 

(0.082) 
-0.095 

-1.081*** 

(0.107) 
-0.252 

-0.082 

(0.09) 
-0.019 

-0.105*** 

(0.020) 

-0.277*** 

(0.090) 

-0.001 

(0.091) 

Durable exit (difference of the effect of distance on the probability of not having been unemployed the 6 and 12 months that 

followed an exit from unemployment) 

6 months 
-0.449*** 

(0.153) 
-0.029 

-1.487*** 

(0.229) 
-0162 

-0.113 

(0.160) 
0.002 

-0.033 

(0.074) 

-0.179*** 

(0.056) 

-0.001 

(0.021) 

12 months 
-0.124 

(0.083) 
-0.027 

-0.684*** 

(0.115) 
-0.149 

0.100 

(0.09) 
0.022 

-0.038 

(0.024) 

-0.279*** 

(0.089) 

-0.001 

(0.021) 

Part2 – Control 2 / Treated 2 

Gross exit (difference of the effect of distance on the probability of exiting unemployment after having been unemployed for 6 

and 12 months) 

6 months 
0.015 

(0.206) 
0.002 

-0.526 

(0.520) 
-0.065 

0.006 

(0.213) 
0.001 

0.013 

(0.026) 

-0.022 

(0.031) 

0.021 

(0.034) 

12 months 
0.079 

(0.172) 
0.018 

-0.010 

(0.239) 
-0.002 

0.053 

(0.185) 
0.012 

0.027 

(0.045) 

0.004 

(0.010) 

0.0150 

(0.048) 

Durable exit (difference of the effect of distance on the probability of not having been unemployed the 6 and 12 months that 

followed an exit from unemployment) 

6 months 
-0.114 

(0.246) 
-0.011 

-1.106. 

(0.767) 
-0.007 

-0.075 

(0.252) 
-0.009 

0.004 

(0.010) 

-0.024 

(0.025) 

0.014 

(0.034) 

12 months 
-0.022 

(0.173) 
-0.005 

-0.246 

(0.265) 
-0.047 

-0.007 

(0.184) 
-0.002 

-0.002 

(0.005) 

-0.022 

(0.028) 

-0.002 

(0.009) 

Source: FHS-Pôle Emploi, first spell per individual. Number of observations: Covariates include: gender, diploma (3 levels), age, and 
time since the last unemployment spell, job experience and quarter of entrance in unemployment, LPEA fixed effect 

*** significant at 1%, ** at 5%, * at 10%. Standard errors are given in parenthesis below the estimate. For the propensity score 
matching standard errors are obtain by using bootstrapping with 200 replications.  

 

To sum up, we find that controlling for individual characteristics of jobseekers and for institutional 

effects, there is evidence of a worker/agency spatial mismatch. However, we find evidence of short-

term institutional detrimental effects of the  

5 Conclusion 

In this paper, we try to provide evidence on an apparent contradiction between the spatial mismatch 

theory and past empirical evidence on the negative effect of distance to LPEAs on the employment 

prospects of jobseekers.  
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To do so, we combine exhaustive individual datasets on jobseekers, agencies and caseworkers, which 

allows us to work on actual individual unemployment durations (and not on aggregated 

unemployment rates computed at the census tract level) and to control for an extensive set of 

variables. We also take advantage of a quasi-experiment created by a zoning modification in the 

catchment area of a LPEA in the French region of Lyon. We use two different econometric strategies 

(difference in difference and matching by propensity score) that allows us to assess ‘pure’ distance 

effects on the probability of exiting unemployment. We find evidence that when controlling for 

individual characteristics, and institutional effects, distance to agencies does not affect the matching 

process efficiency. 

In terms of public policy, our results suggest that accessibility to LPEAs has no or little effects on the 

probability to exit unemployment. An explanation consistent with the spatial mismatch literature 

could be that travelling to one’s LPEA is compulsory due to the activation of labour market public 

policies: since jobseekers cannot de facto arbitrate between transportation costs and benefits from a 

travel to their LPEA, distance does not create added frictions in the matching process. The expensive 

maintenance of a very dense network of LPEAs does not appear to be a very efficient public policy, 

which gives credit to the position of the Cour des Comptes on the re-sizing of the French public 

employment agencies network (Cour des Comptes, 2015). On the contrary, echoing Launoy and 

Wälde (2015), a re-sizing of the public employment agencies network could have a positive effect on 

unemployment. 

This being said, three important issues immediately arise.  

First, we have found that the creation of the Belleville agency did have a transitory detrimental 

impact on the employment prospects of jobseekers: this means that the long-term benefits from a 

re-sizing of the French public employment agency network should be balanced with the short-term 

adverse institutional effects. In any case, this suggests that any reform should be timed with a 

reduction of the caseworkers’ caseload, i.e. should not take place in times of high unemployment.  

Second, welfare issues could be problematic since jobseekers must endure the travel cost to their 

agency, however far it is located from their home. Any loosening of the LPEA network should come 

with a compensation for the jobseekers who will incur the greatest cost (financial compensation, 

creation of specific shuttles to distant locations, reinforced phone or Internet meetings, etc.).  

Second, our evidence suggests that distance to LPEA does not create and added source of friction in 

the job search process. This goes against the idea of a spatial mismatch between agencies and 

jobseekers. However, it is important to stress that this does not mean that the spatial distribution of 

agencies has no spatial mismatch effects whatsoever. In the jobseeker/agency/jobs relationship, our 

paper examined the effect of the jobseeker/agency distance, but we say nothing about possible 

harmful effects of a too great agency –to-jobs distance. In fact, from the spatial mismatch theory’s 

perspective, distance to jobs should be problematic for the agencies’ efficiency, since it would lessen 

the quality of the information on jobs collected by the agencies. In terms of public policy, further 

research on this matter could provide evidence in favour of a dense network of agencies – density 

being measured relatively to jobs and not jobseekers. 
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7 Appendixes 

7.1 Descriptive Statistics 

Table A. Descriptive Statistics 

 
Treated 1 Control 1 Treated 2 Control 2 

All Before After All Before After All Before After All Before After 

Dist. to LPEA (min) 16.3 24.8 12.1 18.0 17.6 18.2 15.8 26.0 10.9 17.8 21.1 16.0 

5 months 10.0% 15.5% 7.2% 10.7% 12.6% 9.6% 9.9% 15.8% 6.9% 10.3% 14.7% 8.0% 

6 months 18.1% 26.3% 14.0% 19.1% 22.3% 17.4% 18.2% 26.6% 14.1% 17.9% 25.4% 13.9% 

7 months 25.2% 35.6% 19.9% 26.5% 31.3% 24.1% 25.1% 36.1% 19.7% 25.4% 34.2% 20.7% 

8 months 31.0% 43.4% 24.8% 33.0% 39.0% 29.9% 31.1% 44.1% 24.7% 30.9% 41.4% 25.3% 

9 months 36.9% 51.7% 29.6% 38.8% 45.5% 35.4% 36.9% 51.8% 29.6% 37.0% 51.1% 29.4% 

10 months 41.3% 57.0% 33.5% 43.7% 50.8% 39.9% 41.1% 56.8% 33.4% 42.2% 57.7% 34.0% 

11 months 45.7% 61.4% 37.8% 47.9% 55.4% 44.0% 45.5% 61.7% 37.6% 46.1% 60.3% 38.5% 

12 months 49.3% 64.6% 41.7% 51.6% 59.5% 47.5% 49.2% 65.1% 41.5% 49.6% 63.2% 42.3% 

Mean unemployment 
spell (months) 

15.302 11.353 17.275 14.955 12.700 16.126 15.313 11.247 17.301 15.266 11.670 17.189 

Long run 
unemployment  

50.7% 35.4% 58.4% 48.6% 40.7% 52.7% 50.8% 34.9% 58.6% 50.5% 36.8% 57.8% 

No unemployment 
days in the previous 2 
years 

80.5% 72.5% 84.6% 79.9% 73.8% 83.1% 80.6% 73.1% 84.3% 80.4% 70.7% 85.5% 

Unemployment months 
in the previous 2 years 

1.442 2.145 1.091 1.839 2.613 1.437 1.426 2.101 1.096 1.494 2.278 1.074 

[20-25[ years old 21.8% 20.0% 22.6% 23.8% 23.4% 24.1% 21.8% 19.8% 22.7% 21.7% 20.5% 22.3% 

[25-35[ years old 29.5% 31.8% 28.4% 29.2% 29.8% 28.9% 29.6% 32.5% 28.2% 29.3% 29.6% 29.1% 

[35-45[ years old 26.0% 27.0% 25.5% 23.8% 24.8% 23.3% 25.9% 26.0% 25.8% 26.3% 30.0% 24.4% 

[45-55[years old 22.7% 21.2% 23.5% 23.2% 22.1% 23.8% 22.7% 21.6% 23.2% 22.7% 19.9% 24.2% 

Males 42.2% 38.7% 43.9% 45.4% 41.7% 47.3% 43.3% 40.3% 44.8% 38.5% 33.9% 40.9% 

Education : Superior 18.3% 19.3% 17.8% 19.7% 18.9% 20.1% 17.9% 18.1% 17.8% 19.8% 22.8% 18.1% 

Education : A-level 20.6% 19.9% 20.9% 19.6% 19.3% 19.8% 19.5% 19.7% 19.4% 24.1% 20.2% 26.1% 

Education: < A-level 61.1% 60.9% 61.2% 60.7% 61.7% 60.1% 62.6% 62.1% 62.9% 56.2% 57.0% 55.7% 

Entrance in unemployment in 

Sept. –Oct. –Nov. 26.0% 27.4% 25.3% 27.5% 28.5% 26.9% 26.0% 27.2% 25.3% 26.2% 28.0% 25.3% 

Dec. –Jan. –Feb. 27.4% 27.1% 27.6% 27.5% 28.6% 27.0% 27.5% 28.0% 27.2% 27.4% 24.4% 28.9% 

March- April -May 22.6% 23.8% 22.0% 22.6% 22.6% 22.6% 22.7% 23.2% 22.4% 22.4% 25.4% 20.7% 

Jun- July -August 23.9% 21.7% 25.0% 22.4% 20.3% 23.5% 23.9% 21.6% 25.0% 24.1% 22.1% 25.1% 

No experience in the 
researched job (Nexpe) 

21.8% 29.8% 17.8% 23.3% 29.4% 20.2% 22.7% 31.3% 18.5% 19.0% 25.1% 15.7% 

Relative caseload ratio 
variation (%) 

1.137 1.003 1.205 1.031 1.000 1.047 1.138 1.004 1.204 1.135 0.999 1.207 

N obs. 3,689 1,229 2,46 37,755 12,911 24,844 2,808 922 1,886 881 307 574 

Source: FHS-Pôle Emploi, first spell per individual. 
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7.2 Ex-post controls for matching methodology 

The assumptions of overlap and covariate balance can be check after the estimations. Figure A 

presents the overlap charts used to assess whether propensity scores met the overlap assumption. 

 

Figure A. Histograms of propensity score for the treated and control groups before and after the creation 

of the Belleville LPEA 

Treated after versus treated before Treated after versus control before 

  

Treated after versus control after  

 

 

Source: FHS-Pôle Emploi, first spell per individual. 
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Table B. Means of the covariates after matching for the three control groups 

 

T=1 

and 

t=1 

T=1  

and  

t=0 

T=0  

and  

t=0 

T=0  

and  

t=1 

mean mean Difference (P value) mean Difference (P value) mean Difference (P value) 

[25-35[ years old 0.284 0.290 -0,006 0.639 0.292 -0,008 0.518 0.289 -0,005 0.699 

[35-45[ years old 0.255 0.268 -0,013 0.313 0.264 -0,009 0.468 0.237 0,018 0.140 

[45-55[years old 0.235 0.242 -0,007 0.537 0.238 -0,004 0.749 0.240 -0,006 0.627 

Men 0.439 0.430 0,009 0.530 0.423 0,016 0.267 0.469 -0,030 0.035 

Education : Superior  0.178 0.181 -0,003 0.799 0.188 -0,010 0.383 0.196 -0,018 0.110 

Superior x [25-35[ 
years old 

0.077 0.075 0,002 0.785 0.082 -0,005 0.524 0.081 -0,004 0.640 

Superior x [35-45[ 
years old 

0.047 0.050 -0,003 0.578 0.048 -0,002 0.781 0.049 -0,002 0.734 

Superior x [45-55[ 
years old 

0.020 0.021 0,000 0.944 0.022 -0,002 0.600 0.025 -0,005 0.277 

Education : A-level 0.209 0.208 0,002 0.895 0.202 0,008 0.513 0.204 0,005 0.648 

A-level x [25-35[ 
years old 

0.072 0.069 0,002 0.767 0.073 -0,001 0.891 0.069 0,003 0.708 

A-level x [35-45[ 
years old 

0.042 0.041 0,000 0.933 0.040 0,002 0.778 0.039 0,003 0.610 

A-level x [45-55[ 
years old 

0.032 0.035 -0,003 0.520 0.030 0,001 0.775 0.031 0,001 0.890 

Never 
Unemployment in 
previous 2 years 

0.081 0.080 0,001 0.911 0.088 -0,007 0.391 0.079 0,002 0.845 

Unemployment in 
the previous 2 years 
less than 6 months 

0.074 0.074 -0,001 0.942 0.076 -0,002 0.767 0.084 -0,011 0.171 

Inter in 
unemployment in 
December -January-
February 

0.253 0.258 -0,005 0.700 0.269 -0,016 0.208 0.269 -0,016 0.212 

Inter in 
unemployment in 
March- April -May 

0.276 0.278 -0,002 0.862 0.287 -0,011 0.382 0.271 0,005 0.702 

Inter in 
unemployment in 
Jun- July -August 

0.220 0.220 0,000 0.972 0.229 -0,009 0.469 0.228 -0,008 0.521 

No experience in the 
researched job 
(Nexpe) 

0.178 0.177 0,001 0.929 0.186 -0,007 0.495 0.190 -0,011 0.316 

[25-35[*Nexpe 0.048 0.049 -0,001 0.834 0.049 -0,002 0.792 0.050 -0,003 0.667 

[35-45[*Nexpe 0.034 0.036 -0,002 0.758 0.036 -0,002 0.754 0.031 0,003 0.570 

[45-55[*Nexpe 0.025 0.022 0,003 0.511 0.026 -0,001 0.813 0.027 -0,002 0.670 

N obs 2,460  1,229  15,174 29,038 

Source: FHS-Pôle Emploi, first spell per individual. 

 

Table B presents means of matching propensity score of control groups treated versus non-treated 

and before versus after. Our results reveal a high levels of covariate balance between treatment and 

matched comparison groups. All standardized differences produced coefficients with absolute values 

less than 0.1 and the p-values are all over the 0.15 threshold.  
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Finally to test the sensitivity of our results to possible unobserved variables we use the usual Mantel-

Haenszel procedures (Mantel and Haenszel, 1959; Becker and Caliendo, 2007). In fact, propensity 

score matching gives biased estimates if unobserved characteristics influence either the probability 

to be treated or the probability to be observed before the arrival of the new LPEA and the outcome 

(the probability to exit unemployment).  

If one assume that the unobserved covariate is a dummy variable and α the influence of this variable 

on the participation decision. If α=0 we have no selection bias. Conversely if α≠0 we have either a 

positive unobserved selection or a negative one. Q+ is a test given that we overestimated the 

treatment effect and Q- is the case where we have underestimated the treatment effect.  

Note for eαααα = 1 the case with no unobserved bias the treatment effect are significant for the three 

control groups. When eααααincrease similar individuals in terms of observable covariates could differ in 

their odds to be member of the treated group.  

According to table C, even for a large value of eα the treatment effect stay significant for the first 

group of control (T=1 and t=1 versus T=1 and t=0). For the second group (T=1 and t=1 versus T=0 and 

t=0) the treatment effect becomes insignificant when eααααreach 1.95. This threshold is 1.2 for the third 

group (T=1 and t=1 versus T=0 and t=1). 
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Table C. Mantel-Haenszel statistic indicating the significance of the treatment for different values. 

 

T=1 and t=1 

versus 

T=1 and t=0 

T=1 and t=1 

versus 

T=0 and t=0 

T=1 and t=1 

versus 

T=0 and t=1 

eα Q+ Q- p+ p- Q+ Q- p+ p- Q+ Q- p+ p- 

1 13,02 13,02 0,00 0,00 16,29 16,29 0,00 0,00 5,458 5,458 0,000 0,000 

1,05 13,72 12,32 0,00 0,00 17,43 15,16 0,00 0,00 6,605 4,314 0,000 0,000 

1,1 14,39 11,66 0,00 0,00 18,52 14,09 0,00 0,00 7,701 3,225 0,000 0,001 

1,15 15,03 11,03 0,00 0,00 19,57 13,07 0,00 0,00 8,751 2,185 0,000 0,014 

1,2 15,65 10,42 0,00 0,00 20,58 12,09 0,00 0,00 9,759 1,191 0,000 0,117 

1,25 16,25 9,85 0,00 0,00 21,55 11,16 0,00 0,00 10,730 0,238 0,000 0,406 

1,3 16,82 9,29 0,00 0,00 22,49 10,27 0,00 0,00 11,665 0,635 0,000 0,263 

1,35 17,37 8,76 0,00 0,00 23,40 9,41 0,00 0,00 12,569 1,517 0,000 0,065 

1,4 17,91 8,25 0,00 0,00 24,28 8,58 0,00 0,00 13,442 2,366 0,000 0,009 

1,45 18,43 7,76 0,00 0,00 25,14 7,79 0,00 0,00 14,289 3,187 0,000 0,001 

1,5 18,93 7,29 0,00 0,00 25,97 7,03 0,00 0,00 15,109 3,980 0,000 0,000 

1,55 19,42 6,83 0,00 0,00 26,78 6,29 0,00 0,00 15,906 4,748 0,000 0,000 

1,6 19,90 6,38 0,00 0,00 27,56 5,57 0,00 0,00 16,681 5,493 0,000 0,000 

1,65 20,36 5,96 0,00 0,00 28,33 4,88 0,00 0,00 17,435 6,216 0,000 0,000 

1,7 20,81 5,54 0,00 0,00 29,08 4,21 0,00 0,00 18,170 6,918 0,000 0,000 

1,75 21,25 5,14 0,00 0,00 29,81 3,56 0,00 0,00 18,886 7,602 0,000 0,000 

1,8 21,67 4,75 0,00 0,00 30,52 2,93 0,00 0,00 19,585 8,267 0,000 0,000 

1,85 22,09 4,36 0,00 0,00 31,22 2,31 0,00 0,01 20,267 8,915 0,000 0,000 

1,9 22,50 3,99 0,00 0,00 31,91 1,72 0,00 0,04 20,934 9,547 0,000 0,000 

1,95 22,90 3,63 0,00 0,00 32,58 1,13 0,00 0,13 21,587 10,164 0,000 0,000 

2 23,29 3,28 0,00 0,00 33,23 0,57 0,00 0,29 22,226 10,767 0,000 0,000 

Source: FHS-Pôle Emploi, first spell per individual. 
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Table D1. Difference in difference and matching results – Treated & Control 1 

 Difference-in-difference Matching 

All years 2010-2011 All years 2010-2011 

Coef (std) 
Marginal 

effect 
Coef (std) 

Marginal 

effect 

Marginal treatment 

effect on treated 

Marginal 

treatment effect 

on treated 

GROSS EXIT 

5 months 

 

6 months 

 

7 months 

 

8 months 

 

9 months 

 

10 months 

 

11 months 

 

12 months 

-0.537*** 

(0.123) 

-0.472*** 

(0.098) 

-0.418*** 

(0.088) 

-0.402*** 

(0.084) 

-0.456*** 

(0.082) 

-0.477*** 

(0.081) 

-0.448*** 

(0.082) 

-0.404*** 

(0.082) 

-0.050 

 

-0.071 

 

-0.079 

 

-0.085 

 

-0.103 

 

-0.111 

 

-0.106 

 

-0.095 

-0.178 

(0.129) 

-0.107 

(0.104) 

-0.050 

(0.095) 

-0.045 

(0.09) 

-0.116 

(0.089) 

-0.127 

(0.089) 

-0.100 

(0.089) 

-0.082 

(0.09) 

-0.018 

 

-0.017 

 

-0.010 

 

-0.010 

 

-0.027 

 

-0.030 

 

-0.024 

 

-0.019 

 

-0.049*** 

(0.011) 

-0.068*** 

(0.014) 

-0.078*** 

(0.016) 

-0.085*** 

(0.016) 

-0.103*** 

(0.017) 

-0.115*** 

(0.018) 

-0.112*** 

(0.020) 

-0.105*** 

(0.020) 

-0.011 

(0.012) 

-0.007 

(0.017) 

0.003 

(0.019) 

0.010 

(0.019) 

-0.004 

(0.020) 

-0.009 

(0.021) 

-0.006 

(0.021) 

-0.001 

(0.022) 

DURABLE EXIT  

5 months 

 

6 months 

 

7 months 

 

8 months 

 

9 months 

 

10 months 

 

11 months 

 

12 months 

-0,449*** 

(0,153) 

-0,270*** 

(0,116) 

-0,206** 

(0,102) 

-0,194*** 

(0,094) 

-0,198*** 

(0,089) 

-0,194*** 

(0,086) 

-0,158** 

(0,084) 

-0,124 

(0,083) 

-0,029 

 

-0,029 

 

-0,029 

 

-0,032 

 

-0,036 

 

-0,038 

 

-0,033 

 

-0,027 

-0,113 

(0,16) 

0,014 

(0,124) 

0,088 

(0,109) 

0,072 

(0,101) 

0,052 

(0,097) 

0,048 

(0,094) 

0,084 

(0,092) 

0,100 

(0,09) 

-0,008 

 

0,002 

 

0,013 

 

0,012 

 

0,010 

 

0,010 

 

0,018 

 

0,022 

-0,030 

(0.080) 

-0,033 

(0.074) 

-0,033 

(0.075) 

-0,035 

(0095) 

-0,040 

(0.082) 

-0,046 

(0.072) 

-0,043 

(0.055) 

-0,038 

(0.024) 

-0,010 

(0.083) 

-0,001 

(0.021) 

0,011 

(0.033) 

0,018 

(0.044) 

0,016 

(0.052) 

0,012 

(0.033) 

0,018 

(0.027) 

0,023 

(0.054) 

Nb. obs 41,444  27,763  41,444  27,763  

Source: FHS-Pole Emploi, first spell per individual.Covariates include: gender, diploma (3 levels), age, and time since the last 
unemployment spell, job experience and quarter of entrance in unemployment, LPEA fixed effect. 
*** significant at 1%, ** at 5%, * at 10%. Standard errors are given in parenthesis below the estimate. For the propensity 
score matching standard errors are obtain by using bootstratpping with 200 replications. . 
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Table D2. Difference in difference and matching results – Treated & Control 2 

 Difference-in-difference Matching 

All years 2010-2011 All years 2010-2011 

Coef (std) 
Marginal 

effect 
Coef (std) 

Marginal 

effect 

Marginal treatment 

effect on treated 

Marginal 

treatment effect 

on treated 

GROSS EXIT 

5 months 

 

6 months 

 

7 months 

 

8 months 

 

9 months 

 

10 months 

 

11 months 

 

12 months 

0.209 

(0.259) 

0.015 

(0.206) 

0.108 

(0.185) 

0.101 

(0.176) 

-0.017 

(0.172) 

-0.040 

(0.171) 

0.066 

(0.171) 

0.079 

(0.172) 

0.018 

 

0.002 

 

0.019 

 

0.020 

 

-0.004 

 

-0.009 

 

0.015 

 

0.018 

0.190 

(0.263) 

0.006 

(0.213) 

0.055 

(0.194) 

0.042 

(0.186) 

-0.073 

(0.183) 

-0.123 

(0.183) 

-0.002 

(0.183) 

0.053 

(0.185) 

0.021 

 

0.001 

 

0.011 

 

0.009 

 

-0.017 

 

-0.029 

 

0.000 

 

0.012 

 

0.021 

(0.018) 

0.013 

(0.026) 

0.036 

(0.028) 

0.028 

(0.032) 

0.001 

(0.039) 

0.001 

(0.040) 

0.030 

(0.042) 

0.027 

(0.045) 

0.038 

(0.026) 

0.021 

(0.034) 

0.034 

(0.040) 

0.016 

(0.043) 

-0.015 

(0.044) 

0.000 

(0.000) 

-0.020 

(0.047) 

0.0150 

(0.048) 

DURABLE EXIT  

5 months 

 

6 months 

 

7 months 

 

8 months 

 

9 months 

 

10 months 

 

11 months 

 

12 months 

-0,113 

(0,32) 

-0,114 

(0,246) 

0,028 

(0,213) 

-0,010 

(0,199) 

-0,087 

(0,187) 

-0,070 

(0,181) 

-0,011 

(0,176) 

-0,022 

(0,173) 

-0,006 

 

-0,011 

 

0,004 

 

-0,002 

 

-0,015 

 

-0,013 

 

-0,002 

 

-0,005 

-0,114 

(0,323) 

-0,075 

(0,252) 

0,047 

(0,221) 

0,021 

(0,208) 

-0,056 

(0,197) 

-0,073 

(0,192) 

-0,016 

(0,187) 

-0,007 

(0,184) 

-0,008 

 

-0,009 

 

0,007 

 

0,004 

 

-0,011 

 

-0,015 

 

-0,004 

 

-0,002 

0,003 

(0.010) 

0,004 

(0.010) 

0,020 

(0.089) 

0,011 

(0.078) 

-0,008 

(0.012) 

-0,001 

(0.005) 

0,007 

(0.012) 

-0,002 

(0.005) 

0,009 

(0.310) 

0,014 

(0.034) 

0,025 

(0.044) 

0,012 

(0.055) 

-0,009 

(0.078) 

-0,010 

(0.021) 

0,001 

(0.010) 

-0,002 

(0.009) 

Nb. obs 3,689  2,809  3,689  2, 809   

Source: FHS-Pole Emploi, first spell per individual. Number of observations: Covariates include: gender, diploma (3 levels), 
age, and time since the last unemployment spell, job experience and quarter of entrance in unemployment, LPEA fixed 
effect. 
*** significant at 1%, ** at 5%, * at 10%. Standard errors are given in parenthesis below the estimate. For the propensity 
score matching standard errors are obtain by using bootstratpping with 200 replications. . 
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7.3 Gross exits from unemployment 

Figure B. % of workers who have not been unemployed in the 5 to 12 months after exiting unemployment (durable exits) 

Part 1 – Control 1 versus Treated 1 

All years 

 

2010-2011 

 
Part 2 – Control 2 versus Treated 2 

All years 

 

2010-2011 

 
Figure C. % of workers who have exited unemployment after 5 to 12 months long unemployment spells (gross exits) 

Part 1 – Control 1 versus Treated 1 

All years 

 

2010-2011 

 
Part 2 – Control 2 versus Treated 2 

All years 

 

2010-2011 

 
Source: FHS-Pôle Emploi, first spell per individual.  
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