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THE RATE OF CONVERGENCE FOR THE RENEWAL THEOREM

IMB, Université de Bordeaux / MODAL’X, Université Paris-Ouest Nanterre

IN R,

JEAN-BAPTISTE BOYER

ABSTRACT. Let p be a borelian probability measure on SLg4(R). Consider the random
walk (X,) on R%\ {0} defined by p : for any z € R?\ {0}, we set Xo = z and
Xnt1 = gnt1Xn where (gn) is an iid sequence of SLg(R)—valued random variables
of law p. Guivarc’h and Raugi proved that under an assumption on the subgroup
generated by the support of p (strong irreducibility and proximality), this walk is
transient.

In particular, this proves that if f is a compactly supported continuous function on
R?, then the function Gf(z) := Eo 3% f(X») is well defined for any z € R*\ {0}.

Guivarc’h and Le Page proved the renewal theorem in this situation : they study
the possible limits of Gf at 0 and in this article, we study the rate of convergence in
their renewal theorem.

To do so, we consider the family of operators (P(it))ier defined for any continuous
function f on the sphere S%~! and any z € S¢~! by

o= [, < 5 ()

We prove that, adding an exponential moment condition to the strong irreducibility
and proximality condition, we have that for some L € R and any to € R},

sup — || (Lo — P(it)) | is finite
ter |t
[t|>to

where the norm is taken in some space of holder-continuous functions on the sphere.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Preliminaries. Let p be a borelian probability measure on a second countable
locally compact group G acting continuously on a topological space X. We define a
random walk on X starting at x € X by

X() = T
Xn+1 = gn+1Xn

where (g,) € G is a sequence of independent and identically distributed random vari-
ables of law p.

Moreover, we note P (and sometimes P, to insist on the measure p) the Markov
operator associated to p. This is the operator defined for any continuous function f on
X and any x € X by

Pf(x) = /G f(gz)dp(g)

In the case of G = SLy4(R) acting on R\ {0}, this defines a random walk that we
intend to study in this article when the starting point goes to 0.

We say that a subgroup I' of SLy(R) acts strongly irreducibly and proximally on R?
(or that I is strongly irreducible and proximal) if it doesn’t fix any finite union of proper
subspaces of R? and if there is some v € T' having an eigenvalue A whose eigenspace V;
is a line and such that the spectral radius of v in the y—invariant supplementary of V;
in R? is strictly smaller than |\|.
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If p has a finite first moment 1! and if it’s support generates a strongly irreducible
and proximal subgroup of SL4(R), then, by a result of Furstenberg (see [Fur63] and
also [GR85]) we have that, if || .|| is a norm on R?, then, for any = € R%\ {0},

1
(1.1) —In|lgn...qz|| = Ay = / / In||gz||dp(g)dv(z) > 0 p*N —ae.
n G JP(R?)

where v is a stationnary measure on P(R?) (that is actually unique in this case as shown
in [GR85)).

In particular, this shows that the random walk on R?\ {0} is transient. Thus, we can
define an operator G (the Green kernel) on compactly supported continuous functions
on R? setting, for any f € CO(RY) and any = € R?\ {0},

+oo
(12) Gfw) =Y P"f(s Z / F(g)dp™ (9)

n=0
The walk being transient and f having a compact support, it is clear that this function
is well defined and even continuous on R%\ {0} and we would like to study it’s behaviour

at 0. This is what we call the renewal theorem in R? as an analogy to the situation on
R (see [Bla48]).

Guivarc’h and Le Page proved in [GL12] that if 7),, the sub-semi-group generated
by the support of p, fixes a proper convex cone in R? then there are two stationary
probability measures v, and v on the sphere S9!, the space of continuous P—invariant
functions on the sphere has dimension two and we can choose a basis pi,py such that
p1+Dp2 =1 et Pilsupp v, = d; ; where we noted d Kronecker’s symbol ; on the other hand,
if T,, doesn’t fix any proper convex cone in R?, then there is a unique stationary measure
v1 on S9! and we note p1 the constant function that takes the value 1 on the sphere.

In both cases, we define an operator on the set of continuous functions on R? vanishing
at polynomial speed at infinity? noting, for such a function f and = € R%\ {0},

1 o) =3 () [, [ o ants

where, r € {1,2} is the number of minimal 7,,—invariant closed subsets of S,
The renewal theorem becomes now the

Theorem 1.1 (Guivarc’h - Le Page in [GL12]). Let p be a borelian probability measure
on SL4(R) whose support generates a strongly irreducible and proximal subgroup.
Then, for any v € RY and any continuous function f on R? such that

sup )] and sup ||z||7|f(z)| are finite
xR\ {0} [ zERI

we have that

lim (G - Aipm)) flz) =0

1. . .
ie. fSLd(R) In ||glldp(g) is finite.
2There is o € R% such that sup,cga [|2||*[f(z)] is finite.
3



Where \,, G and Ily are defined in equations 1.1, 1.2 and 1.5.

This theorem proves in particular that if f is a compactly sypported holder continuous
function on R? such that f(0) = 0, then the function (G — )\ipﬂo)f can be extended at 0
to a continuous function. So, the continuity of Gf at 0 is equivalent to the one of Ilyf.

In particular, if there is a unique minimal 7),—invariant closed subset on the sphere,
then

Jr
=3 du

+oo

and in the second case, we just have a “directional” limit : for any € R?\ {0},

+o0o
Jig 2 Z”(n ) L s

In particular, in this case, the function Gf can’t be extended to a continuous function
at 0 in general.

Example 1.2. If T}, only contains matrices having non negative entries, then it preserves
the cone C of vectors having non negative coefficients and also —C. Therefore, considering
an odd function f that is regular and strictly non negative on C, we see that Gf can’t
be extended to a continuous function at 0.

We would like to study the modulus of continuity of G f at 0 and to do so, we wan’t
to study the rate of convergence in Guivarc’h and Le Page’s theorel. To simplify the
study, we will consider (G — )\LPHO) f and this will allow us not to care about the number

of minimal T, —invariant closed subsets of the sphere (and we will see in proposition 4.11
that this is more than a computational trick). Then, we will only have to study the
modulus of continuity of Ilyf to get the one of Gf and, as we have a simple formula
for Iy f, it will be very easy to get necessary and sufficient conditions for Gf to be
extendable by continuity at 0.

A similar study was made in [BDP15] by Buraczewski, Damek and Przebinda ; how-
ever, their result assumes that 7), is actually (conjugated to) a subgroup of R% x O(d)
and that some diophantine condition is satisfied by the projection on R* of the measure
p. They prove their result by going back to the situation in R (this is why they need
this diophantine condition that is necessary in this case (see [Car83]) ; the equivalent of
this condition will always hold for us as we will see in section 3).

Our study (and the one of Guivarc’h and Le Page) is in an opposit case where the
subgroup generated by the support of p contains an element having a strictly dominant
eigenvalue (this is what we called a proximal element).

More specifically, we will prove the
Theorem 1.3. Let p be a borelian probability measure on SLg(R) having an exponential

moment® and whose support generates a strongly irreducible and prozimal group.

3There is £ € R% such that fSLd(R) llgll°dp(g) is finite.
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Then, for any v > 0 small enough and any M € R*, there are C, o € R such that for
any function f € C®V(RY) that vanishes on {x € RY|||x|| = M} and such that f(0) = 0
we have that for any x € R,

1
- —1II
‘ <G )‘p 0) f(x)
Where A,, G and Iy are defined in equations 1.1, 1.2 and 1.3 and
x —
1l o= sup |f(@)| + sup D =W

R4 x,yeRd ||‘T - nyy
TFy

C
< —
14 [1n ][]

1£1ly

If one studies the linear random walk on the torus T¢ := R?/Z? defined by a probability
measure on SLy4(Z), it appears that there are finite invariant subsets (e.g. the set 0). If
A is one of them that is also minimal, then one can identify a neighbourhood of A in
the torus to a neighbourhood of {0} x A in R? x A.

This is why, from now on,, noting I', the subgroup of SL4(R) generated by the support
of p, we study the renewal theorem on the product of R? and a finite I'y—set A on which
the walk defined by p is irreducible and aperiodic and we consider hélder continuous
functions f on R% x A.

Remark that if Gf(z,a) = 3120 P" f(z,a) has a limit g(a) as = converges to 0 then
(I — P)g(a) = f(0,a) and so g is a solution to the so called “Poisson’s equation” for
f restricted to A (in particular, we get that if Gf(z,a) has a finite limit at (0,a) then

2 aca f(0,a) =0).

Remark also that for any f € CO(R? x A) such that Y, A f(0,a) = 0 and for any
a € A, the function > %9 P"f(0,a) is well defined since the random walk on A is
irreducible and aperiodic.

We are going to prove the

Theorem 1.4. Let p be a borelian probability measure on SLg(R) having an exponential
moment and whose support generates a strongly irreducible and proximal subgroup I, of
SL4(R).

Let A be a non empty finite I',—set on which the random walk defined by p is irre-
ducible and aperiodic.

Then, for any v > 0 small enough, there are C € R and o € R’ such that for any
function f on R® x A with

£l = s (U el L T
z,y€R4N\{0} ch — yH’Y
acA

< 400,

and for any a € A,

lim f(z,a) =0 et Zf(O,a) =0

r—r-+00
acA
5



We have that for any a € A,

z—0

+oo
1
lim <G — )\_pH(]) flx,a) = nZZ%P"f(O, a)
Moreover, for any z,y € R4\ {0} and any a € A,

(G - Aipn()) flx,a) — (G — %pm) f(y,a)

where we noted, for x,y € R%\ {0},

< Cuwo(z,y)*| flly

2
z_ Y
=l vl H
(L T D+ [ o)

Remark 1.5. The definition of wg may seem complicate but we will see that it is a kind
of conical distance on R : we contract a neighbourhood of 0 and of infinity. The reader
may go to section 4.4 to get more details.

el i +

WO(x’ y) -

Remark 1.6. The hypothesis on f is that there is a constant C' such that for any z,y € R¢
and any a € A,

Iz =yl !
vuﬂ%ﬁwﬂﬂ<c<u+mmu+mm>

In particular, compactly supported holder continuous functions on R? x A verify this
condition. We do not study only these functions since the condition will become very
natural after we identify R\ {0} with R x S?~! in section 4.

Remark 1.7. As we already said, it is the continuity of Gf that interests us but it is
easy to get the one of IIpf and evaluate a modulus of continuity (if it is continuous).

For any metric space (X,d) and any 7 €]0, 1], we note C%7(X) the space of hélder-
continuous functions on X. These are the complex valued functions f on X such that

1£1ly == Wl flloo +my(f)

is finite where we set

[f(z) — f(y)|
= su z)| and m = sup ————
Illc = sup 17 @) and (1) = swp S0
TH#Y
To prove this theorem, we will study the analytic family of operators (see section 4)
on C%7(S%1 x A) defined for z € C with |R(z)| small enough, for any f € C%7(ST! x A)
and any (z,a) in ST x A by

llgz |l

P f(0) = [ e flge.ga)dolg)

G

Indeed, we will see in section 4 that the rate of convergence in the renewal theorem is
closely related to the growth of ||(I; — P(z))~!|| along the imaginary axis.
6



To get a control of ||(I;— P(it))™* lco.v(sa-1xa) for large values of ¢ we use in section 2
the method employed by Dolgopyat in [Dol98] for Ruelle operators and we show propo-
sition 2.23 that links ||(I; — P(it)) || to the diophantine properties of the logarithm of
the spectral radius of elements of T),.

Then, we will prove that in a strongly irreducible and proximal subgroup of SLy(R),
we can construct elements whose spectral radius have good diophantine properties. This
will be the aim of section 3 and more specifically of 3.16.

These two sections will allow us to prove the

Theorem (3.1). Let p be a borelian probability measure on SL4(R) having an exponential
moment and whose support generates a strongly irreducible and proximal subgroup I' of
SL4(R).

Let (A,va) be a non empty finite T'—set endowed with the uniform probability measure
and on which the random walk defined by p is irreducible and aperiodic.

Let, for any t € R, P(it) be the operator defined on CO(S%! x A) by

itin lozl
P f(e.a) = [ e f(gn, gyt
G
Then, for any v > 0 small enough and any ty € R* , there are C, L € Ry such that for
any t € R with [t| > to,
1(Za = P(it)) " o (sa-1ay < Clt*
Moreover, the constant L only depend on A through the spectral gap* of P in L2(A,va).

Finally, in section 4, we will use this theorem to get the rate of convergence in the
renewal theorem.

1.2. Proofs of the main results using the results of the other sections.
In this sub-section, we prove the results we stated in the introduction
of this paper with the results we will prove in the following sections.

Proof of theorem 1.3 from theorem 1.4.
Let f be a compactly supported y—hélder continuous function on R

Then,
[f(z) — f(v)]
sup  (1+ [lz])" (1 + [lyl))" —=——"—
2,y€RI\ {0} [z =yl
Therefore, we may apply theorem 1.4 to find constants C,a € R% (with C' depending on

is finite

M) such that for any compactly supported y—hélder continuous function f on R? such
that f(0) =0 and f(z) =0 on B(0, M) and any z,y € R?\ {0},

<G _ Aipno> flz) - (G = Aipﬂf)) ()

lim <G - ino) Fy) =0

y—0 )‘p

< Cllfllywo(z, y)®

and

4The spectral gap of P is the spectral radius of P in the orthogonal of the constant functions in
L2(A,va).
7



But, as we also have that

lim wo(e, ) = ——
g0 Y T ]

we get theorem 1.3. O

Proof of theorem 1.4.

This theorem is a straightforward application of theorem 4.1.

Indeed, noting X = S x A and H = {I;,9} where 9 is the antipodal map on the
sphere and identity on A, we get that H acts isometrically on X x A and (X x A)/H, that
we identify to the product of the projective space and of A is (p,~, M, N)—contracted
over A (see example 2.4). Moreover, in section 3, we saw that the cocycle o defined

for (g,Rz) € SLy(R) x P(R?) by o(g,Rz) = In % also belongs to ZM(P(R?)) and the
result of Furstenberg that we already saw implies that o, > 0.
Moreover, we saw in theorem 3.1 that for any by € R” there are constants C, L such

that for any b € R with |b| > by,
I(Za — P(ib) || < Clp|*

This proves that we really can apply theorem 4.1 to any function f that satisfies the
condition of the theorem since any such function can be identified with a function on
CH(X x R) such that > . 4lim, o f(x,a) = 0 and lim,_ f(x,a) = 0 through the
application (z,t) — e*z from S9~! x R to R\ {0}. O

2. UNITARY PERTURBATIONS OF MARKOV OPERATORS

Let p be a borelian probability measure on R having an exponential moment and a
drift A = [ ydp(y) > 0.

In [Car83], Carlsson showed that the problem of the rate of convergence in the renewal
theorem was linked to the problem of finding [ € R such that

1— / edp(y)
R

And this is closely related to to the diophantine properties of the support of p (see
e.g. [Bre05] where a stronger but of the same kind of hypothesis is studied).

In particular, if such a parameter exists, then the speed in the renewal theorem is
polynomial. If we can even take [ = 0 (which is the case if one of the powers of convolution
of p is not singular with respect to Lebesgue’s measure on R), then we can have an
exponential rate (cf. [BGO7]).

-1
lim sup < 400

t—=+o0 W

In this section, we study a group G acting continuously on a compact metric space
(X, d), a function o : GxX — R and we study the family of operators (P(it))¢cr defined
for any t € R, any continuous function f on X and any z € X by

P(it)f(x) = /G £70:2) { (g)dp(g)

We simply note P or sometimes P, the operator P(0).
8



The existence of some [ € R such that

1

limsup —|(1g — P(it))"Y| is finite.
t—Foo t|

will be the equivalent of Carlsson’s assumption in our context. The norm will be taken

for us in a space of holder continuous functions on X;

To do so, we adapt a result stated in [Dol98] for Ruelle’s operators. This will be our
proposition 2.23 which is the aim of this section.

2.1. Preliminaries.
To be able to state proposition 2.23, we introduce in this section many

technical definitions.

2.1.1. Contracting actions. We say that a G-space X is fibered over some other G-space
A is there is a continuous function ma : X — A that is G-equivariant : for any x of X
and any g of G,

ma(gz) = gra(z)

Definition 2.1 (Contracting actions). Let G be a second countable locally compact
group, N : G — [1,4o00[ a sub-multiplicative function on G and (X,d) a compact
metric space endowed with a continuous action of G.

We assume that X is fibered over the finite G-set A.

Let p be a borelian probability measure on G and v, M € RY.

We say that X is (p,y, M, N)—contracted over A if

(1) For any g € G and any z,y € X,

(2.1) d(gz, gy) < MN(g)Md(z,y)
(2)
(2.2) / N(9)M7dp(g) est finie
G

(3) For some ng € N* we have that

d(9z,9y)" | wn
su 7(1 0 < 1
5 /G @,y " (9)

where mp : X — A is the G-equivariant projection.

Remark 2.2. If X is (p,~y, M, N)—contracted over A, then the operator P is continuous
on the space C%(X) of y—hélder-continuous functions on X.

Remark 2.3. This notion is now classical in the study of random walk on reductive spaces
and the reader will find more details in [BQ15].

We could have defined N (g) as being the maximum d(gz, gy)/d(x,y) (assuming that it
is finite) since this defines a submultiplicative function on G ; however in our application,
there will be natural function N associated to G (see lemma 3.2).

9



Example 2.4. Our main example will be the case where G is a strongly irreducible
and proximal subgroup of SLy(R), p is a borelian probability measure on G having
an exponential moment and whose support generates G and X is the product of the
projective space P(R?) (which is contracted according to the theorem V in [BL85]) and
a finite G—set A endowed with the discrete distance (for any a,a’ € A, d(a,a’) = 0 if
a = a’ and 1 otherwise).

Remark that the sequence (u,,) defined for any n € N by

d(gz,9y)7 © n
Uy = sup ——d g
m,y;X /G d(x,y)’y P ( )
zFy

7a(z)=mA(y)

being submultiplicative, if X is (p,y, M, N)—contracted over A, then there are constants
C1,0 € R% such that for any n € N and any z,y € X with 7a (z) = 7A(y),

(2.3) /G d(gz, gy)7dp*"(9) < Cre”"d(z,y)"

Remark also that if 4/ €]0,~] then the function ¢ — ¢7'/7 is concave on [0, Diam(X)]
and so, if the space X is (p,~y, M, N)—contracted, it is also (p,~', M, N)—contracted.

Let X be a compact metric space and P a continuous operator on C°(X) such that
for any non negative continuous function f on X, Pf is non negative. We say that
the operator P is equicontinuous if it is power bounded® and if for any f € C%(X), the
sequence (P" f)nen is equicontinuous. We refer to [Rau92] (see also [BQ14]) for a study
of these operators.

Proposition 2.5. Let G be a second countable locally compact group, N : G — [1, 400
a submultiplicative function on G and p a borelian probability measure on G.

Let (X,d) be a compact metric space endowed with a continuous action of G and
which is (p,y, M, N)—contracted over a finite G—set A.

Then, the Markov operator P associated to p is equicontinuous on C°(X).

Moreover, if the random walk defined by p on A is irreducible and aperiodic then there
is a unique P,—stationary probability measure on X and 1 is the unique eigenvalue of P
of modulus 1, and it’s eigenspace is a line.

Before we prove the proposition, we recall a result on Markov chains defined by a
group action on a finite state space.

Lemma 2.6. Let G be a second countable, locally compact group acting on a finite set
A and let p be a borelian probability measure on G such that then random walk on A
defined by p is irreducible and aperiodic.

Then, va, the uniform probability measure on A, is the unique P,—stationary prob-
ability measure on A and the operator P has a spectral radius smaller than 1 in the
orthogonal of constant functions in L2(A,va).

5 e. sup,, ||P"||o is finite.

10



Proof of proposition 2.5. The equicontinuity of P in C°(X) can be proved as in the case
of SL4(R) acting on P(RY) studied in [BQ14]. We will prove it with more details in 2.12
where the space is only locally contracted.

Let f be a continuous function such that Pf = Af for some A € C with || = 1.
For any z,y € X such that wa (z) = wa(y), we have

N(f(x) — f(y) = P"f(x) — P"f(y) = /G flgz) — f(gy)dp™(g)

But, X is contracted over A and |A| = 1, so we get that for any z,y € X with 7a (z) =
Ta(), f(x) = fy).

Therefore, eigenvectors of P in C°(X) associated to eigenvalues of modulus 1 can be
identified to functions on A. But, as we assumed that the random walk on A defined by
p is irreducible and aperiodic, we get that the eigenvectors of P associated to eigenvalues
of modulus 1 are constants on X (see lemma 2.6).

Finally, using propositions 3.2 and 3.3 of [Rau92], we get that the stationary measure
v is unique, that 1 is a simple eigenvalue and that there are no other eigenvalue of
modulus 1. O

The previous lemma motivates the following

Definition 2.7 (Spectral gap). Let G be a second countable locally compact group
acting continuously on the probability space (X, v) preserving the measure v and let p
be a borelian probability measure on G. Note P the Markov operator on X defined by
the measure p.

Note L3(X,v) := {f € L*(X,v)| [ fdv = 0} be the orthogonal of constant functions
in L2(X,v).

Note 7 the spectral radius of P in L3(X,v).

We say that P has a spectral gap in L?(X,v) if 7 < 1 and in this case we call 1 —r
the spectral gap of P.

We shall now extend to our context the theorem 2.5 in chapter V' in [BL85] that shows
that when the space is contracted, the operator has a spectral gap in the space of hélder
continuous functions. This is the aim of the next

Proposition 2.8. Let G be a second countable locally compact group, N : G — [1,+o0[
a submultiplicative function on G and let p be a borelian probability measure on G.

Let (X, d) be a compact metric space endowed with a continuous action of G and which
is (p,7y, M, N)—contracted over a finite G—set A on which the random walk defined by
p 1s irreducible and aperiodic.

Let v be the unique P,—stationary probability measure on X (given by proposition 2.5).

Then, there are constants k,Cy € R such that for any n € N,

HP;L — H”HCOW(X) < Che™ ™

where T1,, is the operator defined on C°(X) by

I,(f) = /X fdv
11



Moreover, k depends on A only through the spectral radius of P in the orthogonal of the
constants function in L2(A).

Remark 2.9. This proposition could be seen as a corollary of the quasi-compactness of
P in C%7(X) that we will prove in proposition 2.12 and of the fact that in C%(X), 1 is
the only eigenvalue of modulus 1 and it’s eigenspace is the set of constant functions on
X. However, we state it this way to get the link between the spectral radius of P in
L2(A) and the one of P in C%(X).

Proof. First, we note Ca,ka € R% such that for any f € L*°(A) and any n € N,
+

< Cae™™ |l

HP”f - [ rava

.

where va is the uniform probability measure on A (the existence of Ca and ka are
given by lemma 2.6).

Let f € C%7(X), z,y € X such that 7o (z) = 7ma(y) and n € N. We shall assume
without any loss of generality that f is real-valued. Then, for any n € N, we compute

PP f(x) — PP ()] < mo(f) /G d(gz, gy) dp* (g) < my(F)Cre"d(z,y)"

where we noted C',d the constants given in equation 2.3.
This proves that for any n € N,

my(P"f) < Cre™""ma(f)

Where we noted v the unique P—stationary probability measure on X (given by propo-
sition 2.5).

Moreover, for any « € X and any non zero integer n we note v, the measure defined
by

/ o(y)dvz(y) = [A] /X Lo p(2)=ra(y)P(y)dr(y)

and also for any function f € C%7(X), we note
file) = [ P f@)avite) and @) = P 1) = £ (a)

Then, as f3 is continuous, real-valued and [y f3'(y)dv,(y) = 0, we have that for any
x € X, there is y € X such that 7a(z) = 7a(y) and f3'(y) = 0. But,

m(f3) = m“/(Pnf)
and so, noting Diam(X) the diameter of X, we get that
[1/2 lloc < Diam(X)7my (f3") = Diam(X)7m, (P" f)

Moreover, as,

P> f(z) = P" f}(x) + P" f{' ()
12



We have the inequalities

P f(x / f(a)dva (a

<Nl + [P0 - [ F@)dvala
< Diam(X) Cre™ " m (f) + Cae™ ™" ||P" '
< (Diam(X) Cre 5" + Cae ") | ],

And finally, using Fubini’s theorem, we have

/f1 )dva(a /f )du(y

This inequality ends the proof of the lemma since we also have that

mo (P" ) < Cre™m (f)
And so,

Hzﬂnf—/fdu

So we note x = 3 min(8, ka) et Co = (1 + C)Cy + 1. O

< (CCrem™ +Cre - operan ) | £,
.

2.1.2. Fibered actions over a contracting action.
We now study the case where the space is only locally contracted and
we try to recover the results of the previous section.

To study the action of SL4(R) on the sphere and not only on the projective space,
the notion of contracted actions is not enough anymore (since the sphere is not con-
tracted). However, it is the only obstruction and if we note § the antipodal map on the
sphere (defined by ¥(z) = —x) we have that ¥ commutes to the action of G and so,
noting H = {I,0}, we have the identification S?~! /H ~ P? and the projective space is
(p,7, M, N)—contracted (if p has an exponential moment and supp p generated a strongly
irreducible and proximal subgroup of SLy(R)) as we already saw in example 2.4.

This is why, from now on, we will consider a compact metric G—space X endowed
with an action of a finite group H that commutes to the action of G and such that
the quotient space X/H (endowed with the quotient metric) is contracted. At first
glance, the reader can always assume that G = SLg(R), X = S !, H = {I;,60} and
X/H = P(R?).

The first step is to recover proposition 2.5 and proposition 2.8.
To do so, we will use the following

Theorem 2.10 (Ionescu-Tulcea et Marinescu [ITM50)). Let (B, || . ||5) be a Banach space
and assume that there is a norm || .|| on B such that the identity map from (B, ||.||g) to
(B, -1]) is compact.
Let P be a continuous operator on B such that for some r, R € Ry we have that for
any f € B,
1Pflls < rllfls + RIS

Then, the essential spectral radius of P in (B,||.||s) is smaller than r.
13



Example 2.11. In our examples, (B, || . ||5) will be a space of hélder continuous functions
endowed with it’s Banach-space norm and || .|| will be the uniform norm.

Proposition 2.12. Let G be a secong countable locally compact group, N : G — [1, 400
a submultiplicative function on G and p a borelian probability measure on G.

Let (X,d) be a compact metric space endowed with a continuous action of G and
of an action of finite group H that commutes to the G-action and such that X/H is
(p,7v, M, N)—contracted over a finite G—set A.

Then, there are C', 0" € R such that for any function f € C%(X) and any n € N,

ma (P"f) < € (7ms () + £l )

In particular, P is equicontinuous on C°(X) and it’s essential spectral radius in C%7(X)
1s strictly smaller than 1.

Proof. We do not prove this here since we will do it in a more general setting in propo-
sition 2.18 (the operator P being perturbed by a cocycle). O

Finally, we study the eigenvalues of P of modulus 1 in C°(X). To do so, we begin by
studying the P—stationary probability measures on X then, we will see that, contrary
to the case where the space is contracted, there can be eigenvalue of modulus 1 that are
not 1 and even invariant functions that are not constant.

This study will tell us why, in the renewal theorem, the cone hypothesis is necessary
and where it comes from.

Lemma 2.13. Let G be a second countable locally compact group, N : G — [1,+00[ a
submultiplicative function on G and p a borelian probability measure on G.

Let (X,d) be a compact metric space endowed with a continuous action of G and of
an action of a finite group H that commutes to the G-action and such that X/H is
(p,7v, M, N)—contracted over a finite G—set A on which the random walk defined by p
1s 1rreducible and aperiodic.

Then, there are at most |H| minimal closed subsets of X (for the action of T,, the
semi-group generated by the support of p) that we note Ay, ..., A,. Each is associated to
a P—stationary probability measure v; with suppv; = A;.

Moreover, for any v € X and p®N—a.e. (g,) € GV, the sequence

1 n—1
LS e
k=0

converges to one of the measures v; and if we note, for i € [1,r],

n—1
pl(x) = p®N ({(gn) %Zégk...glm A Vz})
k=0

We have that the function p; is continuous, P—invariant, Y ,p; =1 and p; = ; j on A;
(where 6; ; is Kronecker’s symbol).
Finally, for any continuous function f on X and any x € X,

1n—1 i
E};)P f(x)mzpz(x)/xfdyz




Proof. Let A be a minimal closed subset of X (there exists at least one since X is
compact) and let h € H. Then,

P(1ya)() = /G 1,4 (g2)dp(g) = /G 1a(gh~12) = P(1y)(h~12)

So, hA also is a minimal closed subset. This proves that HA is also T),—invariant. But,
this time it is H—invariant and so 7 (HA) is a minimal closed subset of P seen as an
operator on C*7(X/H). But, this minimal closed subset is nique since P is contracting
on X/H avec A and the random walk defined by p on A is irreducible and aperiodic
(see proposition 2.5). This proves that the set HA is unique and so, there are at most
|H| minimal closed invariant subsets and H acts transitively on them.

We note Aq, ..., A, these minimal closed subsets and A their reunion.

But, we saw in proposition 2.12 that P is equicontinuous and using propositions 3.2
and 3.3 of [Rau92], we get that there are at most r linearly independent continuous
P—invariant functions pi,...p, with p; = §;; on A;. Moreover, if we note v; the
P—stationary probability measure on A;, we have that for any f € C%(X),

1 —

1 r
n—-+oo N kzopkf(:v) - ;pz(:ﬂ) /fdl/z‘

lim

To conclude, we just need to prove that the functions p; are indeed the ones we defined.

First, the fact that % Zz;é 0gy...q1z converges a.e. for any x € X to one of the v; is a
consequence of the equicontinuity of P and of the propositions of Raugi that we already
used.

And the fact that the function p; that we defined is P—invariant comes from inequality
2.11 in [BQ14]. So, we shall conclude by unicity of the p;. O

2.1.3. Lazy random walks. Let G be a second countable locally compact group. For a
borelian probability measure p on G, it will be useful to introduce the lazy random walk.
This is the one associated to the measure :

1 1
(2'4) Pe = 559 + 5/0
The main interest of this measure is that (supp pi”)nen is a non decreasing sequence.
Moreover, for any A € C,

1
g = Fp, = 5((2A = )Ia — P))

Thus, the spectral values of P,, and the ones of P, are linked (in particular, for A = 1,
we get that I; — P,, = 3(I; — P,) therefore, I; — P, is invertible if and only if I, — P,
is).

The following lemma proves that the measure pe keeps some other properties of p.
Lemma 2.14. Let G be a second countable locally compact group and p a borelian
probability measure on G.

Let (X,d) be a compact metric space endowed with a continuous action of G and
which is contacted over a finite G-set A.

Then, X is also (pe,7y, M, N)—contracted over A.
15



Proof. 1t is clear that the first two properties are satisfied by pe.
Moreover, for any n € N, we have that

1 " n
% *k
¢ 2n (k) p
k=0

And so, for any x,y € X such that = # y and wa (z) = wa(y) and any n € N,

gz, 9y)" g L (7 [ dlgzgy) |
/G d(x,y)“/ dpe (g)_ 2nZ<k>/G d(:ﬂ,y)'y dp (9)

k=0

1 < (n 5k 14e0\"
EE (ot ca ()

k=0

In the same way, one can prove the following

Lemma 2.15. Let G be a second countable locally compact group and p a borelian
probability measure on G.
Let (B,]|.||s) be a Banach space and r : G — GL(B) a representation such that
GxB — B
(9:0) = r(g)b
We note P, the operator b— [5r(g)(b)dp(g).
We assume that there is a continuous operator Ny on B and C,x € R such that for
any integer n, ||P} — No|lg < Ce™"", then, for any n € N,

14+e"\"
172 - vl < © (5)

is continuous and [g ||r(g)||dp(g) is finite.

where P, s the operator associated to pe = %5(3 + % p.

2.1.4. Perturbation of Markov operators by cocycles. In this section, G still is a second
countable locally compact group acting continuously on a compact metric space (X, d)
on which acts a finite group H whose action commutes to the G-action and such that
X /H is contracted over a finite G—set.

We are going to study perturbations of the Markov operator associated to a borelian
probability measure p by a kernel of modulus 1. To simplify the study, we will only
consider a kernel having a cocycle property :

Definition 2.16 (Cocycle). Let G be a second countable locally compact group and X
a topological space endowed with a continuous (-action.

We say that a continuous function o : G x X — R is a (continuous additive) cocycle
if for any g1,92 € G and any x € X,

o(g201,2) = 0(92,912) + o(g1,x)

Let o be a cocycle. We say that o is a coboundary if there is a continuous function
¢ : X — R such that for any (g,2) € G x X, 0(g,z) = p(g9z) — ¢(x).
16



Remark 2.17. Let o be a cocycle. The operator defined for any f € C°(X) and any
x € X by

P f(z) = /G €792 f(ga)dp(g)

is continuous on C°(X) and for any function f € C°(X), any # € X and any n € N, we
have

Figf(x) = /Gei"(g"’”)f(gw)dp*”(g) and [ Pig flloo < (1]l

It is to get this equality that we only consider cocycles and not arbitrary functions on

G x X.

As we are going to study Markov chains on contracted spaces (and therefore holder-
continuous functions), we are looking for conditions that guarantee that P;, preserves
holder continuous functions on X.

For a cocycle ¢ and g € G, we note

lo(g,2) —a(g,9)|

Osup(g) = sup |o(g,x)| and o1;,(9) = sup
p(9) mxl (g, )] p(9) Sup i)
Ta(z)=mA(y)
Y

Then, for any x,y € X with x # y and 7a(z) = 7wa(y),

=1 |gio(g,) _ eio(g,y)‘ io(9:2) _ giolgy) |’ <lolg, ) —ol(g,y)|

So, if oLip(g) is finite for any g € G, we have that the application (z + €9%)) is
holder-continuous.
We note, for any M € R,

sup and sup ———- are finite

ZM(X) = { 5 is a continuous additive cocycle
( ) { geG N(g)M geG N(g)M

oLip(9) osup(9) }

And, for o € ZM(X), we note

. Osup(9)
ILip(9) and [0]s = sup e

(2.5) o]\ = Sgg N(g)M

The next proposition is an extension to our context of the corollary 3.21 in [GL12].

Proposition 2.18. Let G be a second countable locally compact group, N : G — [1, +o0[
a submultiplicative function and p a borelian probability measure on G.

Let (X,d) be a compact metric G-space endowed with an action of a finite group H
that commutes to the G—action and such that X/H is (p,~o, M, N)— contracted over a
finite G—set A on which the random walk defined by p is irreducible and aperiodic.

Then, there are Cz,89 € R such that for any o € ZM(X/H), any n € N and any
function f € C%(X), we have

me (P5F) < O (Iflloe(1 4+ [0],) + €2 my (1))
17



In particular, the operator Pi, has an essential spectral radius smaller than e=%% in

CO(X).

Proof. Let f € C%(X) and z,y € X with # # y and 7a o ma(x) = 7a o TH(Y).
For any n € N*, we have

[P f (@) =Pio f(y)l = ' /G €79 f(g) — €70V f(gy)dp™ (g)

< /G F92) = Faw)| dp™ (@) + 1l /G

< d(,y)m (f) /G %dpm(g)

2 ol [ N (g1 (0
G

eia(g,:}:) - eia(g,y) ‘ dp*n (g)

First, as N is submultiplicative, we have that

/G N(g)™dp**(g) < ( /G N(g)”Mdp(g)>n

Moreover, as the group H is finite, there is dg € R’ such that for any z,y € X, if
d(,y) < do, then d(z, ) = d(msa(x), 7r(y).

So, for any € €]0,1] and any x,y € X such that 0 < d(x,y) < edy and 7a o T(z) =
A o TH(Y), we have

d(gm,gy)édod(gxa gy),y + 1d(ga:,gy)>do d(gx, gy)’ydp*n(g)

I
o

= ld(gm,gy)gdod(gﬂ-ﬂxa gﬂ—Hy)fy + 1d(g:v,gy)>dod(gxa gy)"/dp*n(g)
< Coe @) + @) [ Litgnga N6 )
< <Cle_6" + MV/G 1MN(g)M>1/5N(9)VMdP*"(9)> d(z,y)”

Thus, if we take ng with Cre™o"0 < 1/4, as [o N(g)"™dp*™(g) is finite, we can also
choose ¢ such that

/G Lyn(gvs1/eMN(g)"™dp*™ (g) < 1/4

And so, for this choice of ¢ and ng, we have that for any x,y € X with 0 < d(z,y) < edp
and ma o m(z) = A o TH(Y),

*1 1
/G d(gz, gy)’dp “(g)iid(m,y)”
18



This proves that for any x,y € X with ma o mg(x) = 7a o 7 (y) and d(z,y) < edy and
any function f € C%(X),

BT =S IO < (1) + 112 ([ ha0to))

But, since we also have, for =,y such that ma o T (x) = ma o T (y) and d(x,y) > edo,

P () = P2 _ 20l
d(x,y)'\/ h (5d0)y

we finally obtain that for any f € C%7(X),

o (Pof) < g+ (s + 27l ([ ¥ @aota)) ) 11

If we simplify notations, what we found is that there are ny € N* and a constant C' € R
(depending on ng) such that for any function f € C%7(X),

(P ) < () + O+ [0l )l e

Iterating this inequality, we get that there are Cy,d2 € R such that for any n € N and
any function f € C%(X),

mo (P F) < Co (702" ma (£) + (1 + [o],)I1 /1l )

This proves, using Ionescu-Tulcea and Marinescu’s result (that we recalled in theo-
rem 2.10), that the operator P;, has an essential spectral radius smaller than e~%2 which
is what we intended to prove. ]

2.1.5. Lower reqularity of borelian measures on compact metric spaces. Guivarc’h proved
(cf. the 12th chapter of [BQ15]) that if p is a borelian probability measure on SL;(R)
having an exponential moment and whose support generates a strongly irreducible and
proximal subgroup of SLy(R), then there is a unique P—stationary probability measure
v on P(R?). Moreover, it exists AT,C € R% such that for any x € P(RY) and any
r e R+7

v(B(z,r)) < ord’
This property of upper regularity of the measure v means that v is not too concentrated
around points of it’s support. Indeed, if ¥ had an atom zy, we would have that for any
AT e R%,
v(B(xg, T
L u(Blao,))

r—0+t ro+

= 4o00.

Here, we will have to use the lower regularity of the measure v : many times we will
have to use the fact that a ball of radius r has a v—measure larger than some power of
r. This leads us to make the following

Definition 2.19. Let (X,d) be a compact metric space and v a borelian probability
measure on X.
Let A € Ry and t,r € R%.
19



We say that a point z € X is (A, t) — v-regular at scale r if
v(B(z,r)) > tre
In the same way, we say that a point = is (A, t) — v-regular at every scales if
V(B _

’I"A -

inf
r€]0,1]

Finally, we say that it is A — v-regular at scale r if it is (A, 1) — v-regular at scale r.

Remark 2.20. Generic points of the measure v are regular at every scales : indeed, if X
has an Hausdorff dimension smaller than A then we have (cf. [Rud87]) that

v U {z € X|z is (A,t) — v — regular at every scales} | =1
teR?

We will sometimes make the following abuse of notations : if myp : X — Xg is a
finite covering and v is a borelian probability measure on Xy, we will say that z € X is
A — v-regular at scale r if so is my(x).

2.1.6. Isotypic decomposition.
In this paragraph, we recall how to generalize the decomposition of a
function between even and odd parts.

Let H be a finite group. For any irreducible unitary representation & = (p,V) of H,
we endow End(V) of Hilbert-Schmidt’s inner product defined for A, B € End(V) by

(A,B)pgs :=trA*B

We also endow it of the associated norm | . |gg.

Let (X,d) be a compact metric space on which H acts by isometries (in particular,
H preserve the space of hdlder continuous functions on X).

The action of H on X gives a representation of H in C°(X) defined for any h € H,
feC’X) and x € X by

po(h)f(z) = f(h™ )

We note H a set of representatives of irreducible unitary representations of H up to
isomorphism.

For £ = (p,V) € H, f € C°(X) and = € X, we note

(2.6) Flag) = dmV S te)

H S

It is known (see theorem 8 in [Ser78]) that trf(.,&) is the projection of f on the isotypic
component of £ and that for any z € X,

(2.7) fla) =Y trf(z,¢)

¢cH
However, we will need the following equivariant relation : for any x € X and any h € H,
dlmV . "
(2.8) fh,&) = > (TR T ) p(R)F = f(w,€)p(h)
h'eH

20



Thus, for any function f € C%(X), any = € X, any & € H and any h € H, we have that,

|f(ha,€) s = | f(2,€)|ms

o~

Moreover, the function (x — |f(z,&)|gs) can be identified to a continuous function on
X /H.

The norm |. |gg allows one to define hélder continuous functions from X to End(V)
So we note

C7(X) = {f € C"7(X,End(V¢))|Va € XVh € H f(ha) = f(x)p(h)"}
And we have the following

Lemma 2.21. Let H be a group acting by isometries on a compact metric space (X, d).
- Then, the space C%Y(X) injects in ngﬁ Cg’W(X,End(V)). Moreover, for any & €
H, the projection to Cg’W(X) s given by equation 2.6 and the inverse map is given by
equation 2.7.

We will have to quantify the irreducibility of representations of H. To do so, we will
use the following

Lemma 2.22. Let H be a finite group and H a set of choice of representatives of
representations of H up to isomorphism.

Then, there is a constant Cyg such that for any & = (p,V) € H and any A,B €
End(V),

max |Ap(h)Blgs > CulAlns|Blus
heH

Proof. Let € = (p,V) € H. We note B = {4 € End(V)||A|xg = 1} and for any A, B € B,
we define

(A, B) = max |Ap(h)B|us

Then, the function ¢ is continuous on the compact set B? and moreover, for any A, B € B,
we have that ker(A) # V and Im(B) # {0} and so, as ¢ is irreducible, there is h € H
such that p(h)Im(B) ¢ ker(A). This implies that Ap(h)B # 0 and so ¢(A, B) > 0. The
function ¢ reaches a minimum on B2. This minimum depends on ¢ but, as H has only
finitely many irreducible unitary representations up to isomorphism (since it is finite),
this finishes the proof of the lemma since the inequality also holds when A =0 or B =0
and the function ¢ satisfies that for any A, B € End(V) and any t € R,

o(tA,B) = ¢(A,tB) = tp(A, B)

2.2. Control of the resolvent of the perturbed operator.

2.2.1. Statement of the proposition.

We are now ready to state proposition 2.23, aim of this section.
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We keep the notations we used earlier.

Let 0 : G x X = R be an H—invariant cocyle. We note Pj, (and sometimes P, ;, to
insist on the measure p) the operator defined for any continuous function f on X and
any x of X, by

Pis f(x) = /G e'79%) f(ga)dp(g)

If pe = %53 + % p is the probability measure associated to the lazy random walk, we will
simply note Peiv = Py, io-
Finally, we set

[O’] = sup sup |O'(g,$) _O-(g’y)|
M geG  z,yeX N(g)Md(z,y)
TH#Y
ma(z)=mA(y)
We saw in paragraph 2.1.4 that if [o],, is finite and if (g — N(g)™7) is p—integrable
then P;, preserves the space of y—holder continuous functions on X.

The aim of this section is to study the spectral properties of P;, and to link them to
the ones of P. A first case is when €@ is a coboundary : €7(9%) = o(gx)p(x)~! where ¢
is a y—holder continuous function taking it’s values in {z € C||z| = 1}. Indeed, in this
case, the operator P, is conjugated to P by the multiplication by ¢ and so these two
operators have the same spectral properties. In particular, P;, has 1 as an eigenvalue
(an associated eigenvector being o 1).

We will see that we can get some kind of reciprocal for this result. The next proposition
proves that, under reasonable assumptions, if I; — P, is not well invertible (the norm
of the inverse operator is large) then €' is close to a coboundary.

Proposition 2.23. Let G be a second countable locally compact group, N : G — [1, +o0|
a submultiplicative function and p a borelian probability measure on G.

Let (X,d) be a compact metric G—space endowed with an action by isometries of a
finite group H that commutes to the G-action and such that the quotient space X/H is
(p,7v, M, N)—contracted over a finite G—set A on which the random walk defined by p
is irreducible and aperiodic.

Fiz a set H of representatives of irreducible unitary representations of H up to iso-
morphism.

Note ka € Ry and Cp € R, Ca > |A| such that for any function f on A and any

n €N,
‘ng_/deA

where Pe is the operator associated to the lazy random walk and va is the uniform
probability measure on A (see lemma 2.6 to get the existence of ka,Ca ).

Let v be the unique P—stationary probability measure on X/H (given by proposi-
tion 2.5).

Then, for any v > 0 small enough, any o1, 3 € R’ there is aa € Ry, such that for

any A € Ry such that there is some A — v-regular point at scale 272 in € X/H (see
22
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definition 2.19) we have that there is g, C € Ry such that for any o € ZM(X/H) we
have that if

1(Za = Pig) " leon(x) = C(Call + [o],,))™
Then, there is a y—hélder continuous function ¢ : X — R with ||¢|, < Cb such that for
any point x in X whose projection on X/H is A — v-reqular at scale b=*2, we have

1
ha)| > —
Igleaglso( )| c

and, for any h € H,
1

. 2 n
¢ (gh) — p(ha)|” dpe" P (g) < o

/;
where be noted
b=2Ca(1+ [U]NI) and n(3,b) = |BInb)|

and pe 1s the measure associated to the lazy random walk (see paragraph 2.1.3).
Finally, the constants ag, as and C only depend on A through KA .

Remark 2.24. Remark that in the conclusion of the proposition it is the measure pe that
appears and not p itself. This actually will be useful since the sequence (supp pi") is
non decreasing.

Remark 2.25. If ¢ were invertible on X, the proposition would imply that €' is close to

the coboundary ¢(x)¢(gr)~ L.

2.2.2. Proof of proposition 2.23. The proof of the proposition relies on a few lemma that
we adapt from the ones of Dolgopyat for Ruelle operators used in [Dol98]

The first point is to remove the technical difficulty that X is only locally contracted.
To do so, we will use the isotypic decomposition seen in lemma 2.21 and use the assump-
tion that the actions of H and G on X commutes which implies that G preserves the
decomposition of the lemma. Thus, as we also assumed that ¢ is H—invarient, we are
able to study P;, on each Cg’7 (X) and on these spaces, we have the equivariant relation
of equation 2.8.

Proposition 2.18 suggests that we shall normalize the norm of C%?(X) to study Pi,.
This is why we make the following

Notation. Under the assumptions of proposition 2.23, we note Cs the constant given
by proposition 2.18 (we shall assume without any loss of generality that 1 < Cy).

Let 0 € ZM. Then, for any function f € C%7(X), we note

B m'y(f)
151 = mae (17 g2 )

Remark that for any f € C%7(X),

1flle < 171 < (U4 Co( + [o]y, ) £l

So (C%(X),]l.[ly) and (C®7(X),]|.]lo) are isomorphic. Moreover, the operator Pi, is
better controlled with ||. ||, as shown by next
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Lemma 2.26. Under the assumptions of proposition 2.23, for any o € ZM and any
n €N,

1P lle < 2C2

Proof. Let f € C%7 be such that || f||, < 1. According to proposition 2.18, for any n € N,
we have

mo (Pl f) < Ca (1 lloo(1 + [o],) +€7me (£)) < Co (14 Coe™™ ) (14 [o],,)

Moreover, we also have that

1P flloo < [1f1loo
And so,
| Pl < max(1,1+ Cy) < 20,
And this concludes the proof of the lemma. O

In the next lemmas, to try to simplify a little the notations, we will always note
(2'9) b= 2CA(1 + [U]IVI)

The reader has to see that the “1+ [o],,” will allow us to study cocycles with [o],, < 1.
The “Ca” appearing here is useful to keep track of the dependence on A. Finally, the “2”
is here to have b > 2 and this will allow us to dominate any constant by an appropriate

power of b.

For as, A, 0 and £ fixed, we are going to study the hypothesis

For any function f € C?’A’(X) with ||f]l, < 1, there is ¢ € X that is
H(a1, 8, €) A — v-regular at scale b=*2 and n € [0, | In(b)]] such that

1
| Peio f(0)|Hs <1 — T

Lemma 2.27. Under the assumptions of proposition 2.23, for any oy, € RY there are
ag € RY such that for any A € R, there is ag, C, depending on A only through ka such
that for any o € ZM(X/H) and any & € H, we have that if the hypothesis H(ay, 8,€)
holds then

174 = Pio) Mo (x) < € (Call + [0],,))*

Proof. Let f € C?’A’(X) be a function such that ||f||, < 1.
By assumption, there are n € [0,n(3,b)] and a point zy € X whose projection on
X/H is A — v-regular at scale b= such that

1
|Peiof (o) |lHs <1 — bt
We are going to prove in a first time that we can extend this control at one point to a
control of P f on the whole space X for some m > n and then, that this implies the
expected result.
24



First, using the triangular inequality, we have, for any m,n € N with m > n and any
z € X,

P2 f(a |Hs—\ [ e Py (g o)

HS
/ P2y £(97) s dpi™="(g) = PL% P2 flars ()

Moreover, as ¢ is H—invariant and as the actions of H and G commute, we also have,
by definition of Cg’fy( ), that for any m € N, the function |Pg}, f|ns is H—invariant
(see. lemma 2.21). This function can be identified to a function on X/H and we have,
according to proposition 2.8, that

P P flas (@) < /X VBl Wlirsavty) + CoCac™ B

Moreover, using lemma 2.26 and the assumption that || f|l < 1 we compute

1P2io Iy = 1 Pio fllow + e (Pl £) < 14 G (1 [o],) 1 oo + €2 ma ()

But, 1+ [0],, W and my(f) < C2(1 + [o],,), so
b _sn b 9 b 202219
H ezaf”’Y I+ 02 <QC Te 02 2C > 02 C’A s CA

since b > 2CA > 2 and Cy > 1. Moreover, as n < S1nb, we also have that
PN < emﬁlnbb _ bl—l—ﬁn

Finally, we get that for any m € N larger than SInb and any x € X,
P @l < [ 1P 0)lsdvls) +200CFe bt
Moreover, if Z is a borelian subset of X/H and Mz = sup,cz | s, f(2)|ms, then,
[ P FWlrsv(s) < Maw(2) +0(2) < 1+ (045 1)u(2)

So, taking Z = B(mg(xo),r) with 7 = (Ca /(4C3b** 1)1/ we get that

Slelp| eio] (@) s < P f(mr(w0))|ms + | Peio fllvd(x, ma(70))”
1 2C3%b 1
<1— — o
b + Ca 2b1

And taking s so large that b= < (1/(4C3b*1+1))1/7, we have that b=*2 < r and so,
as x is A — v—regular at scale b~%2, we have

v(Z) > b8

Thus,

1
| Pl F s ny) <1 = s
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To sum-up, we proved that for any m € N larger than 1n(b),

1 _
(210) H elaf”oo NS W + 2000226 Hmbl+6li

To simplify the notations, we set ag = a1 + asA.
Let m = Kn(f,b) for some K € N* that we will determine later. Then,

1
H ewHOO <1- §bia3 + QCOCSbiKRﬁbIJrﬁH

And so, for K large enough (whose value doesn’t depend on C'a) we have that

1
H ewf”OO ~ 4()0‘3

Moreover, for [ € N larger than m, using proposition 2.18, we get that,

1 1
My (Pl i ) < | P flloo + ——=—€ "™ m (PT, f)
02(1 + [U]NI) 1+ [O-]M
<1- — b —=—
s T C Ca
1 2 51, KBS
<1—4ba3+402e b
So taking | = Lm = KLn(8,b), where L € N is large enough, we get that
1 1
- - p! <1-—
02(1"_[0-]]\/) ( ewf) 8ba3
Remember that we also have that
1 1
|| ezo‘HOO H erHOO X - 4b03

So, what we proved is that, under the assumptions of the proposition, if H(a1, 3,§)
holds, then for any f € Cg’V(X) such that || f]ls < 1,

1
H ewf”U <1- ]po3
And so, in Cg’V(X),
1(Za = Peiw) o < 86°
Moreover, as
_ 1 _ _
(Id_ ew Z ew ew) " and §(Id_Pi0) 1:2(Id_Pe,i0) 1’

we can compute

1(Za — Pw)i H(CO“’(X Yl-lle) 22 | ewH 1(Za — Pé io) 1”0 < 205186

k=0

Finally, as for any function f € CO’V(X),
[flle < Iflly < (14 Co(X + [0l )l fllo
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we get that, in Cg’fy(X),

I(Za = Pio) "Iy < (1+ Ca(1 + [0],,))16Cob" 441

We conclude since [ is bounded by the product of In b and of some constant not depending
on Ca and since b = 2C4 ([0],, + 1) we get the expected result for o/ > 1+ as. O

We saw in lemma 2.27 what happens if, under the assumptions of proposition 2.23,
for any holder continuous function f on X there is some point xzg and some integer n
such that | P f(x)|ms is far from 1. Now, we are going to study the other case : when
there is a holder-continuous function f on X such that for any x, |PJ f(x)|ms stays close
to 1 for many values of n.

We will need the following lemma that controls the time of first return to a fixed ball
in X/H.

Lemma 2.28. Under the assumptions of proposition 2.23, there is a consant C depend-
ing only on =y such that for any r €]0,1], any x,z9 € X such that the projection of xg
onto X/H is A — v-regular at scale r and any n € N,

e*lin

rY

Pn(lB(Hmo,Qr))(l“) 2 r — CoC

Proof. For x,z9 € X and r €]0, 1], we note

f(z) =1~ min (l, d<w,HB<xo,r>>>

r

The function f is 1/r—lipschitzian on X and for any x € HB(xo,7), f(z) = 1 and for
x € HB(x0,2r)¢, f(x)=0.
For v €]0,1] and € X, we note f,(z) = f(x)"?. This function is y—hélder continuous
and || fy|ly < Cyr~7 for some constant C,, depending only on . Moreover,
1B(xo,r) (1’) < f’y(x) < 1B(x,2r) (.%')

So, using proposition 2.8, we have that for any = € X,

P" (L) ()= P1(0) > | o= Coc™ £,
> v(B(ma(20),1)) — CoCye™""r™7
> B — CoCye "r™7
And this is what we intended to prove. ]

Lemma 2.29. Under the assumption of proposition 2.23.
Let{ € H, f € Cg’v(X) with || flloo < 1 and let © in X and L € N*.

Then, noting t = 1 —min(|f(x)|ms, \Péwf(m)]Hs, |P2L f(x)|ms), we have that for any

e, o
j €{0,1},
I,

. . . 2
e7@n pIt f(gw) — PYIF(2)| | dpst(g) <2t

Jio e,io HS
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Moreover, for any r €]0,1] and any xo € X whose projection on X/H is A — v-reqular
at scale r, if r® — CoCe "Lr=7 > 0 then

[ a0) P 0) = Py o) P25 F s < 8 (x—gtmars + 1P f 11 )

Proof. Developing the following expression, we can compute, for j € {0, 1},

Ii(z) =/G

L (J+1)L (J+1)L
= PLO|P] fﬁ'{S( ) + |Pe]w f($)| |Pe]w (x)ﬁ{S

eza

+1)L
— [PYIE ()3 < 2t

e, 1o

. 2
o0 Pl flgr) - PUVR p@)] | apit)

e,1o

This finishes the proof of the first part of the lemma.

To prove the last part of the lemma, we note, to simplify our notations, Q) = PeLw

and Qo = 0 Then, we note

7) = /G QF(02)Qf () — Flgr)Q2F (@)% dptt(g)

Using the triangular inequality and the fact that Hilbert-Schmidt’s norm is submulti-
plicative on the algebra End(V), we get that
1/2
o)

V(@) < 1Qf (@)lus ( /G
peL(9)> v

1@ @)ls ( /G
< V(@) + V() <2v2t

This proves that

IO (g2) ~ QF ()]

HS

€70 f(gz) = Qf (w

s

J(x) < 8t

Moreover, we can expand J(z) to prove that for any z¢ € X,

I@) > [ Tanagn (90) |QF (00001 (2) = £(92)Q3 (@) 35 A5 0)
> /G L1530 ) (928 (QF(@)QF () QF (92) QF (9))
+ [ Ao gt (QF(@)Q3 @) Flgo) f(g2) dpiH(0)
=2 [ Latpay (a0 (Q2F(@)Q1 @)@ (g0 f(92)) dpiH(0)

Then, if the projection of zy on X/H is A — v-regular at scale r, then noting A = f(z),
B = Qf(x0), we get that for any y € B(zg,r),

Qf(2)Qf(2)" (QF(W)(QS(y))" — BBY)|gs < 2r7[|Qf |l

As the function Qf(Qf)* is H—invariant (since f € Cg’V(X) satisfies the equivariant

relation 2.8), this inequality actually holds on HB(xq, ).
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Doing the same with f(y)f(y)* and Qf(y)f(y)*, we get that for any g € G such that
gr € HB(zg,1),

|AQf(z) — BQ*f(2)| s P LuB (o) () < J(2) + 87 |Qf 4 PEL B (k120 (%)

Where we noted A = f(zg) et B = Qf(x).

To conclude we only need to control PeLlHB(xw) (z). To do so, we are going to use
lemma 2.28. We assumed that the projection of zp on X/H is A — v-regular at scale r
and so,

PeL]-HB(:v,ro)(x) Z TA - CoceinL
And if 72 — CoCe "Lr=7 > 0, we get the expected result. O
Lemma 2.30. Under the assumptions of proposition 2.23.

Let¢eH, fe Cg’V(X) such that || flloo <1 and let x in X and K, L € N*.
Noting t = 1 —min(|f(z)|,|PEL f(x)|, |P2EE f(x)|) we assume that t # 1 and we have

e,1o

that for any xo that is A — v-reqular at scale r, if 1™ — CoCe "KLyr=7 > 0 then
. i 1/2
(1 o) ) AL ) — ) PEE ) sl o)
1
N +17Gal 1))

< -
S Cu(l-1) r& — CyCe rKLp—

Proof. Let’s compute, using the triangular inequality,

1/2
( L1670 PEL fan) PAE £ (g) — ) P <x>|2dsz<g>>

1/2
< (L 1PaE ) (e PISE pa) — PRE 5(0)) Prit o))
\PKL ( 0)Pi" f(@) = f(20) Polig f ()]

e, .o e, 1o e,1o

But, according to lemma 2.29, we have

t
KL 2KL KL
IPE ) PR @) = a0 PEEF@)] < 8 (g + 7 Callf 1L
And according to the same lemma, we also have that
pole) L [ 160 PIL f(ga) — PESE ) P o)
€e,10 €10

< / 16702 PEL £(g) — P2EE f(2)Pdpti () < 2t
G

So, finally, we find, using that pe(e) > 1/2, that

2t t
- - Y
@) <\ ooz +8 <7"A ~CoCe "KL 1T CQHfH”)
t
(K-1)L/2, /37 v
2 S <rA “CoCe KLy 17 CQHfH”)
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To conclude, we have to see that f(z¢) has to be close to PeKzg (o). To do so, we are

going to use the fact that, for the lazy random walk, at step L the probability to have
stayed at the same point (i.e. piF(e)) is large. Indeed, we have that

% 2
et (@) [(PEnf (o) — f(20)) Pesgf (2)]” < I(x)?
Doing the same computations with the hag for h € H, we get that for any h € H,

pe"(0) | (P (x0) = flao)) p(h) PISL S (@) < I(a)®
But, according to lemma 2.22
rhneaX|( Plg f(xo) = f(w0)) p(h)* Pasiz f ()| = Cul Pesg f (x0) — f(xo)|ms|Pae f () s
So,
I(x)

Cul|P&sf (@) s/ pet (e)

|PEEf(w0) — f(20)|ms <

And, as
|PEEf(2)|ms > 1—t and piF(e) > 27",
we finally get that

L/2
IPE ) = s < s

We just proved that

(1) ) PESE ) = o) PEE P 0)

2L/2
<A+ =)
(I+ Cu(1 —t)) ()
1 ¢
< — ([ oKL/2H1/op 4 o4+L/2 e
Cu(l—1t) < Vat+ A~ CoCe FKLy— +1r7Collf 4
and this is what we intended to prove. 0

Lemma 2.31. Under the assumptions of proposition 2.23.

For any a1, B there is as such that for any A there are oy, B such that for any o € ZM
and any &€ € ﬁ, if the hypothesis H(o, 5/, €) is false, then there is an holder continuous
function ¢ € C%V(X) with ||p|ls < 2Cs such that for any point x € X whose projection
on X/H is A — v-regular at scale b=*2, we have that

1

h 1— —
max |p(ha)| > 1 -5

and for any h € H,

‘ 2 1
70 p(gr) — ()| dpe™g) <

Je

Proof. Fix a1,as,3,A and take o}, € R be constant that we will specify in the
sequel.
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If the assumption H(c), 3/, €) is not satisfied, then there is f € Cy¥7(X) with || f|ls < 1
such that for any n € [0,n(6’,b)] and any = € X whose projection is A — v-regular at
scale b2,

1

b
As b > 2, we shall assume without any loss of generality that o > max(1,a1). So, we
have that

|Peiof (2)|ms > 1

1 S (1 1 1 )
— — > max(=,1 — —).
i T e
We can now use lemma 2.30 to the function f with L = n(8,b), t = b%,l, K € N* and

B > Kp to find that for any point X whose projection is A — v-regular at scale b2,

J:

j n n 2 *1
70 f (o) Py " f(g) = F o) P ™ 1 (@) " PP (g)

Kn(B,b)In2/2 —ah
2 (e (B5)In2/2 4 21n 2 L 1622 b= L g
CH ba’1/2 bang _ CObenKBf'yag

So, using the fact that b > 2 and taking «s large enough then K and finally o), we get
that for any x whose projection is A — v-regular at scale b~2,

J.

Finally, we use the fact that we can do the same computations with all the hxg with
h € H, to get, using that f € C?’W/(X), that

/G > | F@oyp(n) (@ PRV f(go) = PRIV p (@) )|

seH

io(g.2) Kn(B.5) _ Kn(B8) ()| qpen®)(g) < — B
792 f(20) Py ™ f(gz) — f(20) Paie f(x)‘HSdPe (9) < SrEpen

2 C
e P (9) < 5par

We can now conclude using lemma 2.22 that allows us to make the following computation

> 1@ty (ew@ LI f(ga) — LIV ()

HS
heH
> CH‘f(xO)’HS eio(g,:l?)PeKJZ(ﬁvb)f(gx) _ Pe[,(ig(ﬁ,b)f(m)‘HS
Cu| Kn(8,b Kn(8,b
> ZH io(g,x) i (8,b) _ : (8,b)
= 2 € Pe,la f(gx) Pe,la f(x)‘HS

This proves that

Je

Therefore, we get the expected result with ¢ = trpEnBb

e,io

n dimV _ .
Fon ™ f@) = == D (b a)o(h)
heH

. 2
ela(gv$)trPKn(ﬁ7b)f(gx) _ trPKn(Bvb)‘ dpzn(ﬁvb) g -

e,io e,io poa

)f and using that for any z € X,
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So we really get that

1\ 1
> _
max le(ha)] > (1 bm) dimV

0

To prove proposition 2.23, we can now use the isomorphism given by lemma 2.21 and
the lemma 2.27 and 2.31.

3. DIOPHANTINE PROPERTIES IN LINEAR GROUPS

In SL4(R), the application mapping a matrix to it’s spectral radius is not a morphism
(for d > 2).

In a Zariski-dense subgroup I" of SL4(R), we can construct sequences of elements (g,,)
and (hy,) for which we have a good control on the difference between the logarithm of
the spectral radius of g,h, and the sum of the ones of g, and h,, (see [Qui05]).

In this section, we use this construction (that also works for strongly irreducible and
proximal subgroups rather than Zariski-dense ones) to prove a technical result that will
allow us to use proposition 2.23 and thus show theorem 3.1 which is needed in the study
of the speed of convergence in Kesten’s renewal theorem.

More specifically, studying the renewal theorem on R (see [Car83]), we get that some
diophantine condition is needed and we are going to see that it’s equivalent is always sat-
isfied in SL4(R) for measures whose support generate a strongly irreducible and proximal
subgroup. This will be the

Proposition (3.16). Let p be a borelian probability measure on G = SLy4(R) having
an exponential moment and whose support generates a strongly irreducible and prorimal
subgroup.

Then, there are o, 3 € RY such that

lim inf |b|0‘/

b—+o0 G

where we noted \1(g) the logarithm of the spectral radius of g and
n(f,b) = [S1nb[]

We recall that an element g of SLg(R) is called proximal it has a local attractive fixed
point Vg+ in the projective space P(R?) of R?.

. 2
oibA(9) _ 1‘ dp*B (g) > 0

We are also going to prove the generecity of lower-regular points which is an other
condition we saw in the study of the perturbated operator in the

Proposition (3.18). Let p be a borelian probability measure on SLy(R) having an ex-
ponential moment and whose support generates a strongly irreducible and proximal sub-
group.

Let v be the unique P—stationary borelian probability measure on P(R?) (it’s existence
and uniqueness are proved in [GR85]).

Then, for any M € R*, there isng € N, A € R and t € R’ such that for any n € N
with n > nyg,

P ({g € G‘g is proximal and v (B (Vng,efM")) > efAM"}) >1—e ™
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where Vg+ is the locally attractive fized point of g in P(R?) and we endowed P(R?) of it’s
usual distance (see equation 3.1).

This two results and proposition 2.23 will allow us to prove the

Theorem 3.1. Let p be a borelian probability measure on SLg(R) having an exponential
moment and whose support generates a strongly irreducible and prowimal subgroup T'.
Let (A,va) be a non empty finite I'—set endowed with the uniform probability measure
and such that the random walk defined by p on A is irreducible and aperiodic.
Let 0 : T x S%1 — R be the cocycle definded for g €T and x € S by

gr
olg.) = 1221

and let, for anyt € R, P(it) be the operator on C°(S¥~1x A) defined for f € CO(S¥~1x A)
and (z,a) € ST71 x A by

P(it)f (2, a) = / 1) (e, ga)dplg)

G

Then, for any v > 0 small enough and any to € RY, there are C,L € Ry such that for
any t € R with [t| > to,

1(Za = P(it)) " Hleorsa-1ca) < CItI”

Moreover, the constant L depends on A only through the spectral gap of P in L2(A,va)
(see definition 2.7).

Proof. This is a straightforward application of proposition 2.23 (noting that in this case
the group H is isomorphic to Z/27 so it’s irreducible representations are of dimension
1), that we are allowed to apply thanks to lemma 3.2 and 3.8 whose assumptions hold
as we saw in proposition 3.16 and in lemma 3.19. ]

3.1. Notations and preliminaries.
We start by fixing the notations we are going to use in the whole
section.

3.1.1. Prozimal elements of SLg(R). Let (V,|.||) be a finite dimensional real vector

space endowed with an euclidean norm and an orthonormal basis (e1, ..., eq).
Define a distance on P(V) noting, for X = Rz, Y = Ry € P(V),
[z Ayl
(3.1) d(X,Y) =
[y

Where we extended the scalar product on V to A2V by asking the basis (e; A ej)i<i<j<d
to be orthonormal.

We also define a pairing between P(V) and P(V*) noting, for X = Rz € V and
Y =Ry € V¥,

0(X,Y):= Ie(@)]l = inf d(X,Y’)
lellllzll yrey+
where Y+ = {Y' = Ry € Y]|p(y') = 0}.
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We refer to the chapter 9 of [BQ15] for a proof the following lemma that proves that
we are in the case studied in section 2.

Lemma 3.2. For any g € G and any X,Y € P(RY),
d(9X. gY) < [lgl**d(X,Y)
Moreover, there is C € R such that for any X,Y € P(RY) and any g € G,
o9, X) = o(g,Y)| < Cllg|“d(X,Y)
where we noted, for X = Rx € P(RY),

gz
I

So, with the notations of section 2 we have that o € ZC(P(R?)).

(g, X) =1

An element g of SL(V) is said to be prozimal if it has a locally attractive fixed point
in P(V). Equivalently, a proximal element is one such that there is a decomposition
V= V;‘ <) Vg< of V into g—invariant subspaces such that Vg+ is a line and the spectral
radius of g in Vg< is strictly smaller than the one in Vg+. We also remark that g is
proximal if and only if 'g is proximal when seen as acting on V*.

For a proximal element g of SLy(R), we note V,© € P(V) the locally attractive fixed
point in P(V) and V= € P(V*) the class of the g—invariant supplementary space of V,
on V (it is a projective hyperplane that we can identify with the locally attractive fixed
point of tg in P(V*). In the sequel, we will always note 1)3‘ a representative of Vg+ inV
and Lp; a representative of Vg< in V* and we will always write our formulas in a way
such that they do not depend on the choice of the representatives.

For an element g of SL;(R), we note A1(g), ..., Aq(g) the logarithms of the modulus of
the eigenvalues of g in decreasing order and counted with multiplicities. If g is proximal,
as Vg+ is a line generated by 1)3‘ and is g—invariant, we have by definition that gvy =
e1(g)e @u with e1(g) € {£1}.

Finally, for an element g of SL4(V), we choose a Cartan decomposition g = kgagl,.
More specifically, we have that k4,1, € O(V) and a4 is the diagonal matrix

k1(g) 0
ag = t. .
0 ka(9)
where the k;(g) are the singular values of g, and satisfy k1(g) > -+ > kq(g) and
A gl
(3:2) rilg) = gL
Z A=l

where we noted A’g the endomorphism defined by ¢ in /\iV endowed with the inner
product extending the one of V :

/\ig(vl A Av) = (gur) A A (gup)

Moreover, we note
9 _ lIAN%gll

9) gl
4

lig(
Kl(
3

K12(9) =



Finally, for an element g € G and a chosen Cartan decomposition g = kya,ly, we note

xg/f = kger, Xé\/[ =Rz, y ' = f1,et and Y," =Ry,

Lemma 3.3. Let V = R? endowed with an euclidean norm, g an element of SL(V),
X =Rz eP(V), Y =Rp € P(V*).
Then,

(1)

6(X,Y)") < HgﬁﬁﬂH < (X, YY") + K1,2(9)

(2)

t
oY) < Hm'rr <X Y) + (o)

(3)
d(gX, XgN)o(X,¥") < kr2(9)
Proof. The norm being euclidean, we shall assume without any loss of generality that g
is the diagonal matrix (k1(g),...,kq(g)). We write © = x1 4+ xo with z; € Vect(e;) and
x9 € Vect(ea, ..., eq).
Then,
gr1 = k1(g)z1 et |gz2| < ra(g)llz2||
so, using the fact that k1(g) = ||g||, we have that

lzall _ gzl [l [E21
< < + K1,2(9) T
el lgllllll = fl] ]
Moreover,
HHMHH — d(X, Vect(e, ..., eq)) = d(X, V™)
x

and this proves the first inequalities.
The second ones are proved in the same way working in the dual space.
Finally, the last inequalities are proved after remarking that

graj ||T1 K2lg
_ llgzaf Jlan ]l _ ()=H,2(g)

d(gX. XM\§(X. Y™ = <
(9, XXX = gzl Tl S #alo)

O

In the sequel, we will have to control the Cartan decompositon of products of elements
of G. To do so, we will use the

Lemma 3.4. For any p € N, p > 2, any € €]0,1/4], and any g1,...,9p € G with

k12(g:) < €3, 5(X£]I\Z[+1,Y9T) > 2 and 5(Xé‘i/[,YgT+l) > 2e, we have that

w12(91) - - K1,.2(9p)

k1(gp--01) = e Ri(gp) - ma(gr),  mia(gp---g1) < 20 1)
and,
M M r1,2(9p) H1,2(91)
d(Xgp---gngp) < e d(Ygﬁ--gNYgT) < —
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Proof. According to lemma 3.3, we have that for any (g;) € GP and any = € R?\ {0},
noting X = Rz,

lgpllllgp-1- - - 1zl|o(gp—1 ... 1 X, Yy))

(9pll - - [lgrlll[zl|o(gp—1 - .- 1. X, Yg) ... 6(X, Yg)

Moreover, taking z in the orthogonal of Y', we have that for any [ € 1, pl,

oL+ 1
dgir - XYy > =

[/
Indeed, this is true for [ = 1 by assumption and, by induction, we have that for any
le [Lp - 1]7

lgp .- grz||

VoWV

e

/‘61,2(91) < l 2 « l

~X € X 93
d(gl—l---ngaYgT) [+1 [+1

d(gr . 1 X, X, <

So,
l [+2
m > o - -
g XY ) > e (2 l+1> T1°
This proves that
lgp---guz| _ p .
2 Slgpll-- - llgrlle”
] 27

Thus

P,
K1(gp---01) > 5" ha(gp) -k (g1)

Moreover, using the submultiplicativity of the function k1 k2 (see equation 3.2 that proves
that x1(g)k2(g) = || A? g||) and that r12(g;) < €, we get that

K2(gp---91)k1(gp - - g1) 4
< K1,2(91) - - - k1,29,
PR et 12 0) - m12(6)

Hl,z(gp---gl) =

4
< ng 1“172(9p)

Finally, using once again lemma 3.3, we get that

P
6(X’ Y;7T91) +’{1,2(9p---91) = §€p 1
And so,
m P _p-1 ier?_Z_) p—1 §3
6(X’Yt917~~~gl) 2 28 _p26 - 26 1—p3€
Thus

K12(9p---g1) _ 2 kK1,2(9p)
d(gp - X, X)! o) < =<7 < s
I 6(X5Y;;Tg1) p1_8€3/p3

This proves that

d(XM XM) < p ’%172(910) 2 ’%172(917)

9p---91° " "gp D +1 c 5 (1 _ 863/])3)

< k12(9) [ P N 2e
€ p+1  p(l—83/p3)
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And that proves the last inequality since for ¢ €]0,1/4] and p > 2, we have that
2 1
P83/ S P
To prove the control of d(Y;T___gl,Y;T), we do the same computations in the dual
space. O]

The following lemma will allow us to, knowing the Cartan decomposition of an element
g of SL4(R), prove that it is proximal and to have a control on the distance between VgJr
and V.

Lemma 3.5. For any ¢ €]0,1/4] and any element g of SLq(R), if k12(9) < €* and
6(Xé‘/1, Y,") = 2e then g is prozimal and

+ vM K1.2(9) < ym r1,2(9)
d(vtq?Xg)gT’ d(vgaytq )< c
Moreover,
K2(g)

MO > (90X et llgy, ] <

Proof. The first three inequalities come from lemma 13.14 in [BQ15].
To prove that the norm of g restricted to Vg< is controled by k2(g), we remark that

according to lemma 3.3, for any z € R?\ {0}, noting X = Rz, we have that

llg=ll" k1(9)0(X,Y,™) + ra(g)

[
But, for X € V5, we have that

k1,2(9)

5( vt g ) d(%’ g ) 5(X5W’ng)

And so, for any z € V= \ {0},

lgz|| ( 1 ) k1,2(9)
<ka(g) |1+ < —
lel S =9\ Sy :

And this proves the last expected inequality of the lemma. O

From now on, we note, for g € SLy(R) and X = Rz € P(RY),

(3.3) o(g, X) =1 lg=l|

=In
[l

Lemma 3.6. For any ¢ €]0,1/4], and any g of G, if k12(g9) < € and d(Xéw,ng) > 2¢,

we have that for any X € P(RY) with §(X, V) = 2,

XV | mialg)

(Vv T T e

o(9,X) — Ai(g) —In

Moreover, for any X,Y € P(R?) with §(X,V,;~),6(Y, V") > 2¢, we have that

k1,2(9)

d(gX,qY) <
(9X,9Y) < =5
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Proof. We recall that we noted v/, 5 such that V," = RuS and V= = Re;.
Then, according to the previous lemma,

+ 1< ’fl,Q(g) 2 3
sV, Vv, )>2€_QT >2e(l—¢%) > €
For z € R?, we can write
A I
vy (vg) ? w5 (vg)

and so, as gv;' = el(g)ekl(g)v;,

pg(z) | pg(z) |
gr = al(g)e)‘l(g)iv +gl|lx— v
w5 (vg) ! i (vg) !

<
But, x — 22 (z) vz{ € Vg< and so, according to lemma 3.5,

5 (vg)
oy (@) | ra2(g) pg (@) I k2(g) 2l
I\ <o 9 IS "2 T o<(oh) 9 e S(Vr V<
(Pg(vg) 909(7)9) (Qvg)
Thus, if x # 0,
§(X, VS §(X, VS
6)\1(9)¥(1_ l[ul|) < lg|| < M) ( . g ) (1+ ||ul)
(Vg™ V) [l (Vg™ V)
with
SV Vs S(z 1 2
wm 2V V) (o G ) g ) € o 2200)
eMW)§(X, V<) ©5(vg) (X, V) e
But, according to lemma3.5, e*1(9) > 2||g||e and so,
2r2(9) < K1.2(9)
MO§(X,VS)e — e26(X, V)
Thus, for X with §(X,V,~) > 2¢, we have
k12(g) _ 1
< . < =
and
in(1 = ) < (9, %) = Ma(9) ~ 10 e TT L < 1a(1 + )
n(l—|jul|) <o(g,X) — —In——>-<n u
o\g 1\g 5(Vg+,Vg<)

This proves the first inequality if we use that

lull < min (“1723(9) l)
€

2
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)

d(gX, gV) = 1A g Ayl _ ri(@)re(@)llzlllyl _ mi(g)ralg)  40(VH Vi)

Finally, for any X,Y € P(RY) with §(X,V,%),8(Y,V, ) > 2¢

lozllllgyl — ~  lgzlllgyll e 240 6(X,V,)(Y, V%)
<H1,2(9)
4t
0

3.1.2. Genericity of proximal elements. First of all, we recall that if p is a borelian
probability measure on SLy(R) having a finite first moment®, then, there are A\,..., \g €
R, called Lyapunov exponent of p, such that Ay +---+ Ay = 0 and for any 7 € [1,d],

1 .
Eln”/\zgn...glﬂ—>)\1+---+)\ip®N—a.e.

Moreover, if the support of p generates a strongly irreducible and proximal group, then
AL > Ao (See [GR85])

In the sequel, we will have to produce elements g of SLy(R) in the support of p*™ and
having nice properties. To do so, we will use the following lemma and we refer to the
chapter 12 in [BQ15] for a proof of this result.

Lemma 3.7. Let p be a borelian probability measure on SLy(R) having an exponential
moment and whose support generates a strongly irreducible and prorimal subgroup. Then,
for any e € RY, there ist € R and ng € N such that for any n € N with n > ng, we

have that for any X,Y € P(R?),
< e}) >1—e™

p*n<{g€G

P ({geGS(X, Y ) 22"} ) =1 —e ™

Vi [1,d, '%m(g) Y

p*"( gGG‘d gX, XM)<e_()‘1 —Az—e)n }) >1—e

p* ({96G|6 >2 ") 21— ™
" ({g€Glo(gX,Y) >2e"}) =1
P ({ge Gls(X) Y ) =2} ) 21—
Moreover, adding lemma 3.2, we get the

Lemma 3.8. Let p be a borelian probability measure on SLy(R) having an exponential
moment and whose support generates a strongly irreducible and proximal subgroup. For
any g € G, we note N(g) := ||g.

Then, there is v € R* such that P(RY) is (p,,2d, N)— contracted.

Proof. We refer to [BL85] for a proof of this result. O

GfG In||g|ldp(g) is finite.
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3.1.3. Regularity of powers of convolution of measures.
We state here a technical result that shows that if p is a borelian
probability measure on SLy(R) having an exponential moment, then
for any n € N, very few points of supp p*” have a small p*” —measure.

Lemma 3.9. Let p be a borelian probability measure on G = SL4(R) having an expo-
nential moment.

Then, for any t1,t2 € RY, there are ng € N and t3 € R’ such that for any n € N with
n = ng, we have

P ({9 € Glp™ (Blg,e ™) = e ")) > 1—e "

Proof. Let ¢ € R such that [ [lgl|°dp(g) is finite and fix n € N. Using Markov’s
inequality, we have that for any M € R,

7 ({g € gl > €Mm}) < e-eMn / lglFdo™ (g (EM / lglFdag )

So, noting €2, = {9 € G||lg| < €M™}, we have that

<
o (@) < (e [ laranta))
C

Moreover, there is a constant
such that

(d) depending only on the dimension d and gy, ... g1, € ﬁn

L

On C | Blgi,e"/2)
=1

and L < C(d)eM+#2)dn Noreover, for K € R%, we have
G, ={g€{g,....90}|p"(B(g,e ?"/2)) = e "} and O, = | ] Blg,e "/2)
geGn
But, for any h € €, there is g € G,, such that d(g,h) < e7?2"/2 and this proves that
B(h,e™"") > B(g,e ™" /2)

Thus,
p " (B(h,e™")) = p™ (B(g, e 2" /2)) = e

Finally, as p is a probability measure we have
1=p™ (?2%) + 0 () + ™ (Qn \ Qn)
But, by definition,
" <§n \ Qn) < Le Kn

So, for any n € N,

p*"<9n>>1—(e€M /. ||gu€dp<g>> LK

- (”M /G llg\fdp(g)) — O(d)e e H)En



And this is what we intended to prove since we can choose K and M as large as we
want. U

3.2. Diophantine properties of the lengths of translations.
The aim of this section is to prove proposition 3.16 that shows that
the logarithms of the spectral radii satisfy a diophantine condition of
the same kind of the one used by Carlsson in [Car83] in his study of
the renewal theorem on R.

Let p be a borelian probability measure on G = SLy(R). For g € G, we note A\ (g)
the logarithm of the spectral radius of g. As in the one-dimensional case, we will need a
diophantine assumption to get the speed of convergence in the renewal theorem. Yet, we
are going to prove, that this assumption always holds for measures having an exponential
moment and whose support generates a strongly irreducible and proximal group. To do
so, we will prove that we can construct elements such that the difference between A;(gh)
and A1(g) + A1(h) is well controlled.

First of all, we are going to compute the difference between A;(gh) and A;(g) + A1 (h)
when g and h are proximal elements of G being in generic position.

Lemma 3.10. There are ci,co € R such that for any € €]0,¢1] and any g,h € G
with k12(g), k12(h) < &3, 5(X§4,ng) > 2e, (XM, Y™ > 2, 5(X§4,Yhm) > 2e and

d(X,le,ng) > 2e, we have that

5(Vh+’ ViS)o(Vh Vo) k12(9)  ki2(h)
A M(B) = M (gh) —1 9 Vg )| o < : : >
1(9) + A1(h) = Ai(gh) né(Vg+,Vh<)5(Vh+,V;<) €2 =2 + =

Remark 3.11. According to lemma 3.7, there are many elements g and h satisfying the
assumptions of the lemma in the support of p*"

Proof. We take at first ¢; = 1/4 and ¢y = 1.
First, according to lemma 3.4, we have

I{LQ(h)
g

K1,2(9)
19

/‘61,2(9)/‘?1,2(h)
£2

51,2(gh) < ) d(XghaXéw) < and d(Ygrg’Yhm) <

So,

3
k12(gh) < et and 6(Xgh, oh) = 2€ (1—6)>26

We note &’ 45 and so we have that d(XJ‘ﬁ, Ym) > 2¢’ and k12(gh) < % (%)38/3 < B,
Thus, according to lemma 3.5, gh is proxnnal and

k1.2(gh) n 2r12(9)

d(Vh Vi) < d(Voh, X0 + d(XG X0 + d(X)T V) < =55 .

gh’ gh’

In the same way, we have

k1,2(gh) k1,2(h)
€

6/

d(vtqh’vh ) d(Vh’ gh) +d( gh’ )+d(Yh ’Vh )

4
< 363 + 2¢2 < 3e?
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And so,
€
O(Vif Vi) 2 2 =36 = 26(1 - 3¢) > 5

So we note ¢’ = £ and so we have that 5(Vh+,‘/§l) > 2¢" and ky2(gh) < 64c1€™.

Therefore, assuming that ¢; < 6L4’ according to lemma 3.6, we have that
5(Vh+a Vﬁ) K1 Q(Qh) K1 2(h)€3
h,V;7) = Ai(gh) — In ———L—| < 2= < 2—=
U(g Vi ) 1(9 ) n(S(V;}LL,VgE) Nz z

Moreover, using the cocycle property of o and the fact that, by definition of Vth,
o(h,V;}) = A1 (h), we have that

o(gh, Vi) = o(g. hV;) + o, Vi) = o9, Vi) + M (h)
And finally we have, using once again lemma 3.6, that
0V Vg
(Vg™ Vy)
And this is what we intended to prove. ]

K1,2(9)
63

(g, V) = Mi(g) —In

X

In next lemma, we prove a continuity result of the Cartan decomposition.
Lemma 3.12. Let g € G. Then for any h € G,
lzi" = 25"l < (2llg =kl +r12(9)) s Nlyi = vy'll < 2llg = Bl + 1,2(9))
Moreover, there are constants ci,ca € R such that for any p € N*, any € €]0,¢;], any
g in G with k12(g) <& and §(XM,Y™) > 2e, any r € R with r < &2 (%@)p and
any f € B(gP,r), we have that

m /@1,2(9) m o< m ,{1,2(9)
S 2 e A X <2 Ay Yy < 27
1 p1 P 16 »
Iil(f) Z 55 Hl(g) s I€172(f) < 52(127_1)“1,2(9)
i P
d(Vf+’Vg+) <o 51,2(9) and d(Vf<,Vg<) < CQM

€2p71 €2p71

Proof. We are going to give too expressions of g'lje;.
First of all,

k1 (R)zd = hlper = g'lner + (b — g)tine
= r1(g) <'lper, lgeq > xg/f +u+ (h— g)llper
with u such that ||u]] < ka(g).

So,
ri(h)l|lzy = <" lher,' lger > @[ < [k1(g) — ma ()] + [lull + [lg — ]
< fi2(g) + 2[lg = Al
But, as |z} =1 = ||x3/1||, we can deduce the first part of the lemma since for g € G,
rk1(g) 2 1.
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To get the control of yg* —y;", we do the same kind of computations in the dual space.

To prove the end of the lemma, we note that, according to lemma 3.4, we have that
1

wile?) 2 2 a0 mia(e?) < sppraale)”
and
K K
axf ) < 29D g v < 1200

So, for any f € B(¢?,r),

SXPT YY) =26 — d(XN X)) —d(Yyp,Y") — d(X, X0 ) — (Y[, YoP)

gl)a gP7

> 2 — QM —2(2r + k12(¢"))
€

> (2 — 6¢)

This proves that (maybe for a smaller value of ¢1) we have that
(XY > e

Moreover,

r1(f) 2 k1(g7) =1 = R (g)f — €2 > P (g)F (1 - /1122(2)1’)

And using the inequality x1(g) > 1 and € < ¢1, we have that for ¢; small enough,
ri(f) = e ri(g)

Moreover, be definition, x1(g)x2(g) = k1(A%g), and so

rL(f)ra(f) < K1(gP)Ra(gP) + | A2 g — A2 fI| < ka(gP)ma(gP) + (w1(97) + ri(gP))IIf — o7 |

This proves that

D D P 1 16
alheald) | 2D AW g g < S smalo < 6o

52(17*1)
And is ¢; is small enough, we get that 1 2(f) < (¢/2), and so, according to lemma 3.5
we find that for any f € B(gP,r), f is proximal and

k12(f) <

k1,2(f) m k12(f)
AV, X' <2 —— and AV, YY) <2 -
Finally, using that Vg‘; = Vg+, we find that
k1,2(9)

d(Vf+,Vg+) < d(Vf+,X}‘4) +d(X}”,X;‘§) + d(Xé\g’V;;*) < e

62p71
for some universal constant cs.

Working in the same way in the dual space, we can get the control of d(Vf<, Vg<) and

finish the proof of the lemma.
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We are now ready to compute the difference between the logarithms of the spectral
radii of well chosen proximal elements of G. To do so, we would like to choose elements
that writes g? and gh for generic elements g and h (as in [Qui05]). We cannot do that
since the measure p is not assumed to be purely atomic and this is why we choose
elements f and gh with f in a small neighbourhood of ¢gP. This is what we do in next

Lemma 3.13. There are constants ci,ca,c3 such that for any p € N*, any ¢ €]0,¢1],

any g € G with k12(g9) < &° and 5(X§4,ng) > 2e we have that for any h € G with

k12(h) <3, §(XM, V) > 2, 5(X,]l\/[,ng) > 2e, 5(Xé‘/1,Yhm) > 2¢ and any f € G with

P
lg? — fl < &2 <m%(g)) , we have that

SV VOV Vi) (maslal” | mia(h)
M(Fgh) = Ma(f) = Malgh) —In e T o (B2l mal)

Moreover, we note w4 the projection on Vg< parallel to Vg+. And, we have that if

d(gm, XM, Ym) > 2, d(XéV[,X}]lV[) > 2¢ and k12(h)k1(g) < 3€3, then

3 n 5(Vg+7 %<)5(gvh+7 Vh<)
(Vg™ ViS)dlgV, V)

_ &
Csffl(g)d h

K1,2(9)
64

X €3

Proof. We want to apply lemma 3.10 to the elements f and gh. To do so, we are first
going to prove that gh is proximal.
According to lemma 3.4, we have that

rk1,2(9)k1,2(h)

4
K1,2(gh) < 2 <e
e (9) (h)
d(xM xM <“1,29 tdy™ ym glﬁ,z
( ghs“*g ) c € ( gh> h) c
Thus,
3
S(X g, Yor) = 6(X)1 ) — d(X g, X)1) — d(Y3", Y5) > 2e(1—€) > €

So, for ¢; small enough, g and h satisfy to the assumptions of lemma 3.6 with &/ = ¢/2.
So, gh is proximal and

r2(9h)  k12(h)

d(V?, th+) = d(ghV’ gthJr) < co

gh’ gh’ 4et T €
and
k12(h K h
AV Vi) < (Vg Vi) + (Vg i)+ d(v, vy < 272 | raleh)
Moreover, according to lemma 3.12, for f € G with ||g? — f|| < &2 <H1’§(g) p, we have
that
K1,2(9) K1,2(9)
SXHL Y ze, dXPL X)) <2 » and d(Y}", Vy") < 2=
Moreover,
Ka() 2 52 e malf) < sl
1 = 2 1 g ) 1,2 ~ 52(]7_1) 172 g
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and

K1,2(9)"
62p71

K1,2(9)"
62p71

d(Vf+, Vg‘L) < e and d(Vf<, Vo) < e
Finally,

5(Xf 7Y ) 5(X5];\47Yhm) - d(X]]”VI7XéVI) - d(Yhm7ngf7:)
S . <2 _ 2161,2(9) _ /’61,2(h)>

9 9

e(2-3%)

So, choosing ¢; small enough, we get that 5(X}V[,Ygr,’j) > € and, in the same way,
§(X7h,Y,") = e. Thus, according to lemma 3.10, we have that

gh’
6(‘/4];’ Vﬁ)é(v—’—’ V<) K1 Q(f) K1 Q(Qh)
M(F) + M (gh) — M\ (fgh) —In —9? gh” 27 * ] <+>

And this finishes the proof of the first part of the lemma since we saw how to control
d(vg—};a th+), d(vf 5V+)a d(Vf<’Vg<) and d(‘/;;la Vh<)'
To prove the second part, note that we have the inequality

5(‘/;7+’ ‘/;7<)5(9Vh+= Vh<) _ <Pg< (U;;L)ﬁﬂ;f (QU;{)
S(Vy" ViS)o gV VS e (vg) g (guy)
(3.4) _ |y 4 Pedeitgv) — ok (v )eg (9vn)
e (v7)es (gui)
And as
+ + +
U]_l_ _ (p;(?)h) + + ]—l__ (P;(Uh) + _ (pg<(vh)v+ +7Tg(?}2—)
w5 (vg) ? es(vg) 7 es(vg) ?
where we noted 7, the projection to Vg< parallel to V;r, we have that
w5 (guih) = e1(9)e W5 (vf)
and .
ey (vy)
o (gun) = e1(9)eM D LR (vF) + ¢ (979 (0f))
SDg (Ug )
So,

e (e (gvih) — 5 (v s (gvih)

Using equation 3.4, we find that
S(Vy" V)V, Vi)
g g h h -1 + £1 (g)

5(V9+7 Vh<)5(gvh+7 Vg<) a

= o5 (v )er (gmguil)

) P (vg)er (gmguy)
oy (vg) o5 (vy))

Moreover, using the fact that ﬂgvf: € V;f, we have

529 1o | < D2 < 2
Tolllfn TS 72 5(VgH, VS) Pl
45
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So, using the inequality e*(9) > 2k, (g)e (that comes from lemma 3.5), we get that

r1.2(9) leg v Mg vt < k1,2(9)
&2 Jor(vd )eg(vih)] 4et

e~ M(9) SD; (U;_)SD}T (gﬂ'gv;{)
e (g )es ()

Moreover, we can also compute

s D )| sl lleE Mllgmei]
< < (T = 6(Vy" Vg )olgmg Vi, Vi) < < (T
ey (vg )y (vy) oy (vg )y (v
Jr
> oV Vi a(amg Vit vie 1Tl
[[og,
1 +
(35) > (V" VyOalamg Vit Vi) g L]
g™l oy I
Finally, since v; A v;{ = 1)3‘ A ngf:, we have
+ +
AV V) = lvg Avyll _ llog Amguy i < gy |
! log Mgl llog Mg | v |

and so, using inequality 3.5, we find that
o5 (v )i (gmguf) 1
i (vg )og () [l

To conclude, we note that kg(g)...x1(g9) = 1 and kq(g9) = |lg”t|7* so |lg7 )~ >

r1(g)' ™7
Moreover,

4 (9”9 Vh+7 Vh<)

5(‘/;_’ Vg<)5(97TQVh+a V,f)d(‘/;', Vth)

5(97T9th7yfT) - d(gﬂgvh—i_agﬂgxl]y) - d(V,f,y;?)
2e — |lgllllmg|d(ViF, 23") — d(Vis, yit)

k1(g) K1,2(h) k1(g)k1,2(h)
ol ., )

Z
2

WV

3

And,
K1,2(9) _ rk12(h)

d(V,5 vih) = d(x ) X3 — d(vh X)) — d(Vit, X > 2e — >e

€ €
So, using that e *1(9) > g (g)~!, we get that
) %Dg< (U;_)SD}T (gﬂgvi—:) e’
i (vg )y (uy) r1(g)?
And this is finally what we intended to prove. O

Lemma 3.13 proved that under good transversal assumptions on elements g and h,
we have a good control on the difference between A\i(fgh) and A\ (f) + A1(gh) for f in
a small neighbourhood of gP. We can finally use lemma 3.7 to get that the elements g
and h that satisfy these assumptions are generic to get the

46



Lemma 3.14. Let p be a borelian probability measure on G = SLg(R) having an ez-
ponential moment and whose support generates a strongly irreducible and proximal sub-

group.
Then, there are ng,p € N and c1,cz,c3 € RY such that for any n € N with n > ng,

P @ 7 ({(9,h) € Gle™* < [\ (gh) — Ai(g) = M (R)] < e=2m}) > 5"

Proof. Recall that, according to [GR85], we have that A\; > Ag.
We fix 1 €]0, (A — X\2)/6[. For any n € N, we note
S(XM YY) = 287
G
G {ge ‘WG{lQHnHz )\z‘|<77}
Then, for any element g € G,,, we have that
r2(g) < o~ (A1=A2—2n)n
k1(9)

So, noting € = e~ we have that for n large enough, g satisfy to the assumptions of
lemma 3.13. Moreover, for any g € G,, and p € N*, we note

(XM Ym) > 207, (XM Ym) > 2e~m }
—mm

K12(9) =

g

P _
H(9) _{ M€ G| dgmyx [t Yy > 2, A XM) > 2

where 7, is the projection onto Vg< parallel to V;‘.
So, if p is such that (p — 1)(A1 — A2 — 1) > A1 + 7 then the (g,h) satisfy to the

assumptions of lemma 3.13 and we have that for any f € B(¢P, e*p()‘r)‘?*”)”),

d(Vnga %<)d(gvh+7 Vh<)

d(Vng ) Vh< )d(th+ s Vg< )

< 2¢9 e—p()q —Xo—4dn)n

A(fgh) — Ai(f) — M(gh) —

and
e~ (dAi+5m)n _ d(VH, VS )d(gV,h Vo)
€3 h d(Vnga Vh<)d(gv+7 Vg<)
So, to prove the lemma, we take p such that p(A—A2—4n) > dA\1+5n, we set ¢; > dA\1+57

and ca < A\; — A2 — 61 and we have to prove that there is a constant ¢ € RY such that
for n large enough,

/c; 1, (9)p™ P~V (HE ) (g)p* P~ (B(gP, e PN 22790 ))dp*n (g) > e 7"

6—()\1—)\2—67])71

~X

But, according to lemma 3.7, we have that h € Hﬁfl(g) except on an a set having an
exponentially small measure and g € G,, except on a set having an exponentially small
measure. Therefore, we only need to prove that for some t € R* |

/ PP (B(gP, e PN TR dp T (g) > eI
G
But, if ¢1,... g, € B(g,7), we have that

g1 - gp — " < prilglP™
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So, taking

—p(A1—A2—¢€)n —p(A1—X2—¢€)n
€ € e—p()q—f—a)n > 6—2p(>\1+5)n
=

T = P
pllgle »

(where we used that for g € G, ||g]| < e*119)") we have that
p*pn(B(gp’ e—p()q—)\g—e)n)) > (p*n(B(g’ e—2p()\1+5)n)))p

And we can finally conclude with lemma 3.9. O

3 9

We can now prove an “ integrated version ” of lemma 3.14.

Lemma 3.15. Let p be a borelian probability measure on SLy(R) having an exponential
moment and whose support generates a strongly irreducible and proximal subgroup.
There are o, 3 € RY such that

liminf|b|a/
b—+oo QG2
Proof. Note, for any n € N,

Gr = {(g,h) € Gle™™ < |Ai(gh) = Ailg) — Mi(h)| < e"}

We choose a, 8 € R} and we will specify their values later. For b € R, we note n =

|61 [b]].
Then, for |b| large enough and any (g, h) € G2, we have that

B < [bllAs(gh) = Ailg) = Ma(g)] < [b'~27

So, if 8> 1/cy, we can use the fact that
‘eix_l{ {eim_l{
< |

0< inf ~—— sup
ve[-1,1] |z eel-1,1 |zl

(LN =X1(0) (1) _ 1] g, (8) () (BB) (B) > 0

< 400
to get that for |b| large enough and any (g,h) € G,
O =M= 1] < bl (gh) = M) = Mig)] > bl

So, we have that for |b| large enough and any (g, h) € G2,

eib(Al(gh)*)\l(g)*Al(g)) -1 > |b|17015

Moreover, according to lemma 3.14,
p*n(ﬁ,b) ® p*"(ﬁ’b)(Gg) > ecn(Bb) > |b|7036
So, if « is such that o — ¢35 4+ 2(1 — ¢18) > 0, we have that
lim inf ]b[o‘/
b—*+oo G

And this is what we intended to prove. ]

B A2 (0) _ 1] 4,5 (g)d B () > 0

Finally, we can prove the diophantine control of the logarithms of the spectral radii
of elements of SLy(R).
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Proposition 3.16. Let p be a borelian probability measure on SLy(R) having an expo-
nential moment and whose support generates a strongly irreducible and prozimal group.
Then, there are o, 3 € RY such that

lim inf |b|* /
b—+o0 G

where we noted A\1(g) the spectral radius of g and n(5,b) = [S1n|b]].

. 2
ibM(9) _ 1‘ dp*BD (g) > 0

Proof. For any «, 8 € R* | using the triangular inequality, we have that

1,2
1) : = < / @) | g (a0 (g)dp*"(ﬁ’b)(h)>
G2

1,2
< </ eib)\l(g) _ 1‘2 dp*Qn(B,b) (g)> +9 </
G G

and, according to lemma 3.15, there are o, 8 € R’} such that,
liminf |b|“(8) > 0
b—+oo

. 2 1,2
eibA(9) _ 1‘ dp*(B:b) (g)>

and this proves the lemma. O

3.3. Regular points of the projective space.
In this paragraph, we study the lower regularity of the stationary mea-
sure on the projective space at the fixed points of proximal elements.

Let us first recall the following

Lemma 3.17. Let p be a borelian probability measure on G whose support generates a
strongly irreducible and proximal subsemi-group T,.

Then, there is a unique P,—stationary measure v on P(Rd).

Moreover, for any proximal element g € T}, we have that Vg+ € suppv.

Proof. The existence and uniqueness of v come from [GR85].

To prove the last part of the lemma, note that for any g € T}, there is X € suppv
such that X ¢ Vg<. Indeed, if not, we would have some g € T, such that supprv C Vg<
but this is impossible since T}, is strongly irreducible.

Moreover, for any g € T, and any X ¢ Vg<, we have that

gn X — Vng
And, as suppv is closed and T),—invariant, this proves that V;‘ € supp v. O

We recall that for a metric space (X, d) endowed with a borelian probability measure
v, we say that some point x of X is A — v-regular at scale » where r € R* and A € Ry
if

v(B(z,r)) = r?

In our study of the perturbation of Markov operators on compact metric spaces (see
section 2), we used this lower regularity assumption and we are about to prove that for
a borelian probability measure p on SLy(R), the fixed points of proximal elements of the
subsemigroup generated by the support of p are lower regular for the unique stationary
measure on P(R?).

This is the aim of next
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Proposition 3.18. Let p be a borelian probability measure on G = SLg(R) having an
exponential moment and whose support generates a strongly irreducible and proximal
subgroup.

Let v be the unique P,—stationary borelian probability measure on P(R?).

Then, for any M € RY., there are no € N, A € R and t € R such that for any n € N
with n = ng,

" ({g € G‘g s prozimal and v (B (Vg+,e_M")) > e_AM"}) >1—etn

Proof. Let 0 < &€ < (A1 — A2)/3. Using the p—stationarity of the measure v and noting
A = A1 — A2 — 3¢, we have that for any g € G such that x12(g) < e and 6(Xé‘/1, Yo" >
2675'”

)

VB ™) = [ Ly sy (@0)(2)
= [t e () )0

_/ p*mn <{ ‘hx c B(VJF fmn)\)}> dl/( )
X
> / 15(:,3,%”)226—5”;)*7”" <{h‘hx € B(V;r, e_m"A)}> dv(z)
X
But, we saw in lemma 3.6 that if 2 € P(R?) is such that 6(X,Y;™) > 2¢~=", then
d(g" X, V") = d(g" X, g"V;H) < e Md(g"TIX, V) < et

where we used the fact that ng+ = Vg+.
Moreover, if r €]0, 1] then for any hy, ..., h,, € B(g,r) we have that

lg™ =P - F | < llg = Palllgl™ =" + o[ llg™ " = ha - Bl | < m(2lgl)™
And so,
d(hy .. i X, V) < lg™ = ha o ha| 4+ A(XLV,E) <m(2)g))™ e 4 e
Thus, for any X € P(R?) such that §(X, Y") = 27",

mn

o {050 > (57 (5 (o ) )

From now on, we note
e—Amn
/r" —_
e m(2lgl)m
And we proved that for any g € G such that 5(X§4,ng) > 2e7°" and k19(g) < e 7,

we have that
VBV, ™)) > (9™ B(g, )™ v <{X c ]P’(Rd)‘é(X, Y > 256“})

>
> (p*"B(g, rnm))™ (1 — e75)
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where we used the upper regularity of the measure v (cf chapter 12 in [BQ15]) to have
that for some constant c, if n is large enough

VX[B(X, V) 2 e ) 21— e,

To conclude, we use the fact that such elements g with 5(Xé‘/1, Y,") > 27" and K1 2(g) <
e~ are generic according to lemma 3.7 and so we proved that for some t € R* we have

that for any integer n large enough,

p*n<{g€G

To finish, we only need to get a lower bound of p*"(B(g,rn,m)). And to do so, we use
lemma 3.9. g

1
g is proximal and v(B(V,", ey > 3 (p*"B(g,V“n,m))m}> >1—e

To finish this section, we use this property of regularity of the measure to pass from
a condition in proposition 2.23 where the action of G on X is considered to a condition
only on the group G.

Lemma 3.19. Let p be a borelian probability measure on G = SLg(R), having an ex-
ponential moment and whose support generates a strongly irreducible and proximal sub-
group.

Let X = P(RY) and 0 : G x X — R be the cocycle defined for g € G and X = Rx €
P(R?) by

lga
o(g, X) = n 121
El

Let v be the unique P,—stationary probability measure on X (see proposition 2.5).

For any a1, B, aa, there are A, of such that for any b € R with |b] > by, is there is a
function ¢ on X such that for any x in X that is A — v-regular at scale (2|b|/b1)~*? we
have that

DO | —

o(x)] =

and

. 2 *n b o
ezbo(g,m)@(gx) _ (p(m')‘ dp (5,2|b|/bl)(g) < < 1 >

20p|
Je

where we noted n(B,b) = |B1n|bl].

J:

then,

Gibhi(9) _ 1‘2dp*n(ﬁ,2|bl/b1)(g) < (%) 1

Proof. The idea of this proof is to make the x in the integral depend of the element g
chosen at random with the measure p*™(3:21/01) o take z = V;‘.

To do so, we first are going to get a control holding for any regular point z and any
element g except on a set having a small measure, then chose the x we want and finally
integrate again to get the lemma. The price we have to pay is to pass from o} to «;.

We note, to simplify our notations, n = n(3,2|b|/b1).
51



We note G,, = {g € G|p*"(B(g,e "2")) > e ""}. Then, for any g € G,, and any z
that is A — v-regular at scale b2, we have that

. y 2 b a?l
67t3n|elo(g,x)sp(gx) _ @($)| < / elbkl(g) _ 1‘ dp*n(g) < ( 1 >
g 200]

Moreover, according to proposition 3.18, for any ¢ € G, except on a set having an

exponentially small measure, the point V;r is A —v-regular at scale b2 and so, for any
g € G, except on a set having exponentially small measure,

A1 (9) 1‘2 _

+ ibo(g,Vy" + + tsn [ 01 o
(V) Do) — )| < e ()

So, for any g € G,, except on a set having exponentially small measure,
4 b \ ™
ezb)\l(g) -1 2 < 2et3n e
| e

But, according to lemma 3.9, any g belong to GG,, except a set of exponentially small

measure and so,
A 2 1/ by \217Fts
ibA1(g) _ 1‘ do*™ <= 1

And this is what we intended to prove if we take o > a1 + St3. O

4. THE RENEWAL THEOREM

4.1. Preliminaries. Let G be a second countable locally compact group acting con-
tinuously on a metric space X and let 0 : G x X — R be a (continuous) cocycle (see.
definition 2.16). We can define an action of G on X x R by noting

g9-(x,t) = (g9z,t + o(g, x))
If p is a borelian probability measure on G, we can define a random walk on X x R

whose associated Markov operator is defined for any continuous function f on X x R
and any (z,t) € X x R by

P t) = /G f(gz.t + o(g, 2))dp(g)

This operator commutes to the translations on R and this imply that for any f € L>°(R)
and any g € L'(R),

(Pf)xg="P(f*g)
We call renewal kernel the operator G = ZZE% P™ when it is defined.

Kesten studied in [Kes74] the properties of the operator G in a case where X is very
general and this allows him to prove a renewal theorem used by Guivarc’h and Le Page
in [GL12] to get the renewal theorem in R that we already stated in the introduction
of this article.

In this section, we study the speed in Kesten’s renewal theorem but we will not do
so in a very general setting : we will only consider the case of a group contracting a
compact metric space.
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So, from now on, we fix a second countable locally compact group G and a borelian
probability measure p on G.

Let X be compact metric G—space endowed with an action of a finite group H that
commutes to the G—action and such that X/H is (p,~y, M, N)—contracted over a finite
G—set A on which the walk defined by p is irreducible and aperiodic (we defined these
notions in section 2).

For technical reasons that we will explain in paragraph 4.4, we introduce the function
w: (X xR)?2 = R, defined by

w((z, 1), (!, ) = { e \/d(m,gg/)z + (elt=t0/2 — e(t'—t)/Z)2 if Ta(z) =7ma(2')
S 1 if not

and we set, for any v €]0, 1],

|f(z,t) — f(2',1)]
CIXXR) = feC’XXR)||fllyw:=  sup
( ) ( ) H H'Y (1‘7t),($/,t/)€XXR w((x7t)7(x/7t/))’y
(z,t)# (2’ ')

In the same way, we note, for (z,t), (z/,t') € X x R,

Ny \/|7j_7j/|2_|_d(:c,$l)2
wol(@ 0, (=, 0) = =TT+ 1)

is finite

And we define €O (X x R) as Co7 (X x R).
We will see in paragraph 4.4 that for any function f in CE;’Y, there are function
pt(f),p”(f) on A such that for any x € X,

(D (ra(e) = lim_f(o,6) and p*(f)(ma(@) = Tim f(z,1)

t—+o0

We are going to prove the

Theorem 4.1. Let G be a secong countable locally compact group, N : G — [1,4+00[ a
submultiplicative function on G and p a borelian probability measure on G.

Let (X,d) be a compact metric space endowed with a continuous action of G and
of an action of finite group H that commutes to the G-action and such that X/H is
(p,v, M, N)—contracted over a finite G—set A on which the random walk defined by p
1s 1rreducible and aperiodic.

Let 0 € ZM(X/H) and 0, = [q fX/H o(g,z)dv(z)dp(g) where v is the unique
P—stationary probability measure on X/H given by proposition 2.5. We assume that
o, > 0.

We also assume that there is vy €]0,1] such that for any v €]0,70] and any to € R,
there are Cy, L such that for any t € R with |t| > to,

I(Za — P(it)) ™| < Colt*

We note Ty the operator defined for any f € CH(X x R) such that p™(f) =0 by

Hof(et) = | Nof(w,u)du
t
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where Ny is the projector on the space of P—invariant function in C°(X) and we made
the abuse of notions Nof(x,u) = Nofy(x) with f, = f(.,u).

Then, for any v > 0 small enough, there are o,C € RY such that for any f €
CHX x R) such that p™(f) =0=3,cap (f)(a) and for any x € X,

Jim (6= 1) fe.0) = 3 P (1)(male)

neN

Moreover, (G — U%Hg)f € C5 (X xR) and

(o-2n)+

Proof. To prove this theorem, we use the decomposition given by lemma 4.16, corol-
lary 4.18 and lemma 4.19 O

<Ol fllyw

a,wo

4.2. Non-unitary perturbations of Markov operators by cocycles.

In this paragraph, we study the inverse of the operator I; — P(z) and
we prove proposition 4.2 which proves that a control of it’s norm along
the imaginary axis gives a control on the norm of it’s derivatives on a
neighbourhood of the imaginary axis having a shape that we control
well.

Let G be a second countable locally compact group and p a borelian probability
measure on G. Let X be a compact metric space endowed with a continuous action of
G and of a finite group H such that X/H is (p,y, M, N)—contracted over a finite G—set
A.

For any cocycle o on X (see definition 2.16) and any g € G, we noted
|O-(g’ x) — O-(g’ y)|

Osup(g) = sup |o(g, x)| and opip(g) = sup
SUP( ) mGX’ ( )’ P( ) (m,)yEX( | d(:ﬂ,y)
TAa(x)=mA (Y
T#y

And, for M € Ry, we set

. . oLip(9) e=ue(9) .
2ZM(X) = { o is a continuous cocycle on X |sup =22 and sup are finites
{ geG N(g)M geG N(Q)M

Finally, for any o € ZM(X), we noted
oLip(9) g7eup(s)
ol|,, = sup and [0|s = sup ————
[ ]M geG N(g)M [ ]OO geG N(g)M

We note C,, := {z € C||R(z)| < v}. For z € C, and 0 € ZM(X/H), we define an
operator P(z) on C%(X) by

P(2)f(x) = /G e=202) f (g)dp(g)
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This is a continuous operator since for any continuous function f on X, any z € C, and
any = € X,

|P(2)f(z)| < HfHoo/ TR dp(g) < ”f”oo/[ J3N(9)dp(g)

And [ N g)"™dp(g) is finite according to the definition of the contraction of the action.
We regroup the main results of this paragraph in next

Proposition 4.2. Under the assumption of theorem 4.1.

For any ~ > 0 small enough, there are n,C,t € R* such that (z — P(z)) defines an
analytic function from C,, to the space of continuous operators on CY%(X). Moreover,
for any z € C,, with R(z) > 0 and any n € N,

1P(2)" |y < C(1+ |z])e RO
Finally, noting
_ 1
U(2) = (Is = P(2))™ = —No,

OpZ
We have that (z — U(z)) (which is defined a priori on a neighbourhood of the imaginary

azis except at 0) can be extended to an analytic function taking it’s values in the space
of continuous operators on C*7(X) and defined on

—1
o+ e <R <”}

Moreover, for any n € N and any z € Dy c,1,

[T, < nie™ 1+ [ EHD0D

Dn,C,L = {Z eC

Remark 4.3. This proposition only generalizes the situation in R when the operator P(z)
is the Fourier-Laplace transform p(z) of the measure p. In this case, the same proposition
can be obtained under the assumption “non-lattice of type p” used by Carlsson in [Car83].

Before we prove each point of the proposition, we draw the set Dy, ¢ .

ey {# € i <®) <n)

FIGURE 1. Shape of D, ¢ 1,
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Lemma 4.4. Under the assumptions of proposition 4.2, if o, > 0 then there are n,t,C €
R% such that for any s €]0,m] and any n € N,

sup / efsa(g,:v)dp*n (g) < Cle~tsn
zeX JG

Proof. First, using Jensen’s inequality, we have that for any 0 < s < 7,

s/n
[ < ([ emoagm ) = o)
G G
Moreover, as o, > 0, there are n,t,C € R’ such that
sup P(n)"1(z) < Ce™™
xX

And this is what we intended to prove. O

Lemma 4.5. Under the assumptions of proposition 4.2, for any v > 0 small enough,
there is n € R such that the function (z — P(z)) is analytic from C, to the space of
continuous operator on C%(X) and there are t € R%, and C € R such that for any
z € C, with R(z) > 0, any function f € C*7(X) and any n € N,

IP(2)" flly < C (e”™ma(f) + (1 + 2D fllo)

Proof. To get that (P(z)) is an analytic family of operators, we refer to the lemma 10.16
of [BQ15].

Let v € R be small and n € RY..

Let us compute, for z € Cy, f € C%(X), z,y € X with 7ma omr(z) = ma o TH(y) and
n €N,

[P(2)" f(x) = P(2)" f(y)|

< [ |e=o o stg) = =00 plan) 5™ a)

(a.1) < [ e go) = flgn)| + 1l 7200 = 00| a7 (g
But, using that for any a,b € C and any ~ €]0, 1],

e — e’ < 2" (max(fa], [b]))' 77 max(e™®, *)la — o]

we have that
o370 — =260 | < 1 o] RO O (04, (6)) o (g, ) — (5. )"
Now, using the definition of [0],, and [0]s (see equation 2.5), we find that for any ¢ € R*.
=500 — =206 | < 92| [o]BOIN (g) MO (1n((o]oo N (9))) " o]} ()"
< 2C:|2|N ()M O o] o [0], d(, y)
where we noted C; such that for any = € [1,4+00[, x < C.e®*. This proves that

42) [ fertan - emsetan [ apg) < 02 sldlann)” [ N9 MO g
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Moreover,

%@LLemMm”W@@—f@wawm<m%ﬁM&K;WQMW@%wW®m@)

But, there is dy € R such that if d(x,y) < do then d(z,y) = d(maz, 7ay). And so, for
any ¢’ € RY and any x,y such that 0 < d(z,y) < €'dyp, we have that

In(z,y) / N(g)""d(g, gy)7dp*™ (g)
/ N9 nld(g:v,gy)édod(gxagy)wdp*n(g)
+ /G N(9)M"La(ge gy)>do @95 9y) 7 dp*" (9)
g/GN(g)M”d(ngm,ngy)Vdp*"(g)
/ N(g nlMN( )]M>1/€MN( )M“/d(:v y) dp™(g)

d(z,y)" /N yH nga; o)’ dp™(g)
d(taz, THY)"

(4.4) +M/ N (g)M ) 1MN(g)M>1/adP*n(g)>

But, according to Cauch-Schwarz’s inequality and using the contraction of the action,
we have that

/N Mn g7TH5C gﬂ-Hy) dp n(g)
7-(-Hxa’n-l‘ly)

S (/G N(g)2Mndp*™(g) /G d(gmaz, gray)? dp*n(g)> 1/2

d(@,y)*
n/2
(4.5) < /Coye /2 ( / N(g)*™ dp(g)>
G
We can now choose n such that /Co,e %7™/* < 1/4[0]o and then, for 7 such that
et/ / N(g)""dp(g) < 1
G

we find, with equation 4.5, that

1
CE y / N Mn gﬂ—Hx gT('Hy) dp n(g) <
7TH‘T,T(—I‘Iy)

Moreover, this n being fixed, we can chose ¢’ € R¥ such that

M [ N gy o o™ (0) < 14l
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and this proves, using equations 4.1, 4.2, 4.3 and 4.4, that for any f € C%7(X), any
x,y € X with mp o mgg(z) = ma o T (y) and d(x,y) < €'dp,

Moreover, if d(ac y) = €'dy, then
PP (2) () — PM(2)f(y)] <2 f )) 1 llolo] / N(g)Mdp™(g)

What we proved is that for any v,n > 0 small enough, there are n € N* and C' (depending
on n,o and p) such that for any z € C, and any f € C%7(X),

iy (P()" ) < 5ms () + OO (14 [2]) o

Moreover, as we also have, according to lemma 4.4, that for %(z) > 0,

PG Sl < Il sup [ e H05 () < O e M
zeXJG

we get the wanted inequalities by iterating this equations and we refer to [ITM50] for a
proof that we can choose a constant C that doesn’t depend on n nor on z. ]

Let U be an open subset of C and zp € U. A family of operators (P(2)) e {2} is said
to be meromorphic at zy if there is N € N such that the family ((z — z9)"V P(2)) can be
extended to an analytic family of operators at zg.

In the sequel, we will use an analytic Fredholm theorem for quasi-compact operators
that we state in next

Theorem 4.6. Let (B,].||5) be a Banach space.

Let || .|| be a norm on B such that the unit ball of B for the norm | . |5 is relatively-
compact for || .||. Let U be a connected open subset of C.

Let (P(2))zeu be an analytic family of operators on B defined on U and such that for
some r € [0,1] and some real-valued function (z — R(z)) we have that for any f € B
and any z € U,

1P(2)flls < 7llflls + R(2)| ]
Then, the following alternative holds

o The operator Iy — P(z) is invertible for no z € U.
e The function (z — (I3 — P(2))™') is meromorphic on U.

Proof. The proof comes from the functional calculus in Banach algebras when we re-
mark that according to Ionescu-Tulcea and Marinescu’s theorem (that we recalled in
theorem 2.10) we have a control on the essential spectral radius of the operator P(z)
that is uniform in z. 0

Lemma 4.7. Under the assumptions of proposition 4.2, the family (I — P(z))™")zec,
is meromorphic on an open neighbourhood of the imaginary axis and it’s only singularity
in [0,7'[®iR is at 0.
Moreover, we can choose 1 such that there are C,t € R such that for any z €]0,n[®iR
and any n € N,
IP(2)" ]l < C(L + |2])e R
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Finally, if o, > 0 and if ' is small enough, we can write for z € B(0,7") \ {0},
1
Ij—P(2) ' '=—Ny+U
(=P = LMo+ U

where Ny is the projection on the space of P—invariant continuous functions and (U(z))
is an analytic family of continuous operators on C°7(X) defined on B(0,7').

Proof. First, for any z € [0,7] @ iR, any n € N and any function f € C%(X), we have,
according to lemma 4.4, that

PGSl < Il sup [ e R0 ) < O e M
zeX JG

And so, according to lemma 4.5, for any function f € C%7(X) and any m,n € N, (we can
assume without any loss of generality that the constants ¢ given by lemma 4.5 and 4.4
are the same and idem for (')

1P flly < C (™ IP" flly + (1+ 2D | P" fllso)
<+ []) (7 Cm () + 1 lloc) + Ce™ ™ £l

<L+ [l Sl (e + e Om)

Which is what we intended to prove.

Moreover, this proves that (I; — P(2))~! has no pole in ]0, n[®iR.

Then, lemma 4.5 proves that the essential spectral radius of P(z) is uniformly bounded
by e7* on C, and so, we can use theorem 4.6 to prove that the family of operators
(I — P(2))~! is meromorphic on C, since we just saw that I; — P(z) is invertible for
z € C, with R(z) > 0.

Finally, we refer to lemma 3.2 in [BL85] or to lemma 10.17 in [BQ15] to get the
development of (I; — P(z))~! around 0. Indeed, adapting the demonstration, we find
that there are analytic families of operators (N (z)), (U1(z)) defined on a neighbourhood
of 0 and an analytic function A such that for any z # 0 in a neighbourhood of 0 in C,

(Is— P(2)~"! N(z) + Ui(2)

_ 1
)
This finishes the proof of the lemma since A\ and N sare analytic, A(0) = 1, X'(0) =
—0, # 0 and N(0) is the projector on ker(Iy — P). O
Lemma 4.8. Under the assumptions of proposition 4.2
We note )
U(z) = (Ia = P(2)) " = ~No
Then, for any v,n > 0 small enough, there are C, L such that for any z € C with
-1
— <R <
CaFsar < R <m

and any n € N, we have that

HU(n)(Z)H < CnJrln!(l + |Z|)(L+1)(n+1)
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Proof. First of all, we note that, according to the previous lemma and to the growth
assumption we made on ||(I;— P(it)) ", (z = U(z)) is an analytic family of continuous
operators and that

1
sup ———||U (it < 400
t€£1+|t|LH ( )H’Y

Moreover, using that

sup [|P/()]], < +oc
zeCy

we can prove that there is a constant C' such that for z € C with
1
R S 57 oot
OIS carsEn
we have that U is analytic at z and
U < CL+]z)*

But, according to lemma 4.7, for any z € C, with R(z) > 1/C(1 + |S(z)|)F, we have
that for any n € N,
1P(2)" ]| < C(1 +|z])e” "

and so,
CL+]e) _ OO+ _ O3+ )P
1 —e R = teR(z) to
This proves that the function U is analytic on |0, n[@iR.

We proved that for any n > 0 small enough and any z € C with

1
O SENE = &) <

we have, for some constant C”,

I(Za = P(2)7H <

IO < C'(1+ [

To conclude, we do the same computations than Gelfand and Shilov in the proof of the
theorem 15 in [GC64] to get a control of the derivatives of U on some domain D, ¢ 141
for some constant C”'. O

4.3. The renewal theorem for regular functions.
In this paragraph, we prove a result of representation of the renewal
kernel applied to regular functions and use it to study the rate of
convergence in the renewal theorem for these functions.

Let v € R*. For any f € C%(X x R), we note

/
m'\f g(f) = sup sup e“/|t\ ’f(l',t) - f(l' 7t)’
7 teR  za'€X d(x,z")Y
x#x’

wa(z)=ma(z’)

and

1£[l,00 = sup sup | f (. t)|
zeX teR
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Moreover, we note
1fllv.e = 1 flly.00 + My e (f)
Finally, we set

(4.6) EJ*(X x R) = { € CER,COX))|Vm € [0, k][ F™|.¢ is ﬁnite}

where we noted N
" f
k
f( )(x’t) = otk (:C,t)

And, for any f € Eg’k(X x R), we set

11l = nax £ e

If f e ES’O(X x R), then, we note, for any x € X and ¢ € R,

o~

Fla,6) = /R e f ()t

~

It is clear that, for fixed &, f(x,&) is an holder-continuous function on X.
Moreover,

l/\ .
g—gju,a - /R (—it)le € f(a, t)dt

Integrating by parts, we find that for any £ € R and any m € N,

~

& fla.€) = (" [ e e
So, if f € Eg’k(X x R), then

(1 + €5 Fla. €)] < /R |z Dldt + /R O (@, 8)[dt < 20 f o /R et

In the same way, if Ta o T (z) = mA o ma(2’), then

(L+ €)1 F(x,€) = F(@',0)| < 2] f |y pd(,2’) /R“'tdt

15
As we can do the same kind of computations for the functions g—g, we just proved the

Lemma 4.9. Let k,l € N. There is a constant C' such that for any f € Eg’k(X x R)
and any & € R, we have that

af
3—51( 5€)

£ 1l e
<O
‘,Y L+ ¢l

We recover in this way the fact that the Fourier-transform exchanges regularity and
decrease at infinity.

Before we continue, we are going to prove that convolution by functions of & ok reg-
ularizes functions of £7°. As we will not use this in such generality, we only prove this
lemma with a particular function in £V
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Lemma 4.10. Let, for k € N, ¢ be the function defined for any t € R by

pr(t) = the 1R, (t)
Then, for any v €]0,1] and any k € N, there is a constant Cy such that for any f €
£°(X x R),
pri1* f € EF(X x R)
and
k41 % fllve < Crllfllyo

Proof. The usual properties of the convolution proves that, as ¢ry1 € C*(R), so does
the function f * 11 (since f is continuous) and for any x € X, any ¢ € R and any
m € [0, k]

(g1 * )™ (z,1) = ") % f(z,1)

But,
m = o, (k+1)! o
o & <7>(_1)m l(k(ﬂ i)l)ﬂtk+1 e ()
Thus,
s N w0 =3 (7)o B [ e - et
=0 CURS

And so, if z, 2’ € X are such that mp o T (z) = ma o ma(z’), we have that

Imarata = |(@rs1 % ) @8) = (orpn+ ) @)

™ m\ (k4 1) N i
< -_ ~|t u\d N ug
IZ£<Z>(I<:+1—Z)!/R+“ ¢ (@, )| flly.0e™"du

B “ k+1)! o
< e Md(a,2')7| fllv.0 <m>(7/ ey tmme=udy
7 ; 1) (k+1-0)! Jr,

where we used the fact that for any v, w € R,

elvl=lvtwl  olwl
Moreover,
Trmat = | (@rr1 * )™ (2,8)] < Crmll flly.0e~ "
for some constant Cj, ,,, and this finishes the proof of the lemma. ]
We are now ready to prove the representation of the renewal kernel in next

Proposition 4.11. Under the assumptions of proposition 4.1, for any v > 0 small
enough, there is a constant K such that for any f € SJ’K(X x R), any z € X and any
teR,

o~

- n 1 1 i€t .
3P0 = o f(r0) 5 | e Uif(e e
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Where U(z) is the operator defined in proposition 4.2 and we made the abuse of notations

U(—i€) f(x,€) = U(—i€) fe(w) with fe = [(.,€).

Proof. For s € R* | we note P; the operator defined by

Pof(a,t) = /G 99 f (g, t + 09, 2))dp(g)

We are first going to prove that for any non negative function f,

+o0o
ZP"f z,t) = lim ZP;‘f(x,t)
=0

s—0t
n=

and then that
= 1 4 .
> P t) =5 [ ¥ Pls— i) Fla ag
n=0

To prove the first equality, note that

/Ges"(g’m)f(g.(x,t))dp*"(g) - /Ges"(gvm)(lo(gmgo + 1,(.0)>0) f(9-(2,1))dp™ (9)

And the monotone convergence theorem proves that

nmz / 001, o f (- 1)de™ (g Z / L (gayo0f (9-(2,1))dp™ (9)

s~>0+

Moreover, lemma 4.4 and Bienaymé-Tchebytchev’s inequality prove that for any = € X,

p™(g € Glo(g,2) <0) < / 770 dp " (g) < Ce'"
G

And so, the dominated convergence theorem proves that

nmz / 50001, o f (9.2, 0)dp™ (g Z / Lo (g.mr<0/ (9-(2,1))dp™ (g)

3%0"'

and this finishes the proof of the first inequality.
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Moreover, proposition 4.2 proves that we can use Fubini’s theorem to make the fol-
lowing computation

+oo
ZP"f t,z) Z/ flgz,t+o(g,2))dp™ (g)

= %Z / e s70) / i8(t+0(9:2) f(gz, €)dEdp™ (g)

1

-5/ ’ffz / 619709 Fga €)™ (g)de
-5/ ’ftZPs—zs Pl €)de

QL ¢t (I — P(s —i€)) " f(z,€)de
T

And this proves the second equality.
Finally, we noted U(z) the family of operators defined by

(I;— P(2))" ! = LNO + U(2)

Op%
and we saw in proposition 4.2 that (U(z)) is an analytic family of continuous operators
on C%(X).
And so,

/Reiﬁtud—p(s_z‘s)) fla,)de = / >f AeiﬁtU<s—ifs>ﬁ<x,s>ds

But, for any continuous function f on X, accordmg to lemma 2.13, we can write

Nof(a Zp@ ) [ s

where the p; are P—invariant functions on X and v; are P—stationary measures on X.

So,

1 eiét
3 | e o (e %sz 0 [ [ i eacan

“+oo
:;pi(w)/x/o fy,t +u)em*" dudvi(y)

400
= Nof(z,t 4+ u)e *“du
0

So, using the definition of Iy, we get that

] 1 eigt N +00
lim /R S Nole, e = | Nof(ru)du = Tlo/ (a1)
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This proves that

s—0t

+o0
t) = ZP”f(x,t) = —Hof(:n t) + lim QL/ReigtU(s — zg)f(x,f)df

But, for fixed &, we have, according to proposition 4.2, that
U (s = i€) (2, )lloo < U (s = &) Iy | F @, )l < C(L+ D (@, )l

and, as f € £7F(X x R), we can conclude with the dominated convergence theorem and
lemma 4.9 if we take K = L + 3. U

Corollary 4.12. Under the assumptions of proposition 4.2, for any v > 0 small enough,
there are constants C, K € N such that for any f € EV5, any x,2' € X and any t,t’ € R
we have that

<G _ Jipn()) Fa ) — <G _ Jipn()) £ 1)

VIt =t +d(z,2')?
(L+ )@+ [2])

Remark 4.13. If we make t' go to +o0o and if we use Riemann-Lebesgue’s lemma and
proposition 4.11 to see that under the assumptions of the corollary,

. 1
(6 1) s o

Op

< CH.]CH%KWO((xv t)v (.%'/, tl))w

where,

wo((z,1), (2',1)) =

then we get that for any f € EW’K(X X R), any x € X and any t € R,

\www—jmmm>

Proof. According to proposition 4.11, we have that

(G—im>mm%7%4ﬁwh@7a&m

Op

So, integrating by parts and noting ¢ (x,§) = U(—zf)f(m, €), we find that for any t € R*,

ezft
@—imvmo:i/ i, €)de

op 2 —2

So, for any x,2’ € X such that ma o T (z) = 7a o T (2') and any ¢,t' € R*,

I, t, 2! ) = (G — —Tlo) f(,1) — (G — —Tlo) f(,¥)

O'p O'p
1 e'ét " 1 et "
= o [ Sove s o [ S one

iét 11374 Y 11374 Y d
=A<3yfw>w@o—432wu@ v 6) o



Thus,

gt it
E T

|I(z,t,2',t")| g/
R

" (a, €)]dE + / " (2,€) — 4" ()] de
E Je

But, assuming that [¢/| > |¢| > 1, we have that

’tQ _ t/2’
t2t/2

. e
62525 elﬁt

t—Z t12

|t — 1
21|

(2 +1¢1)

AN

|t — ¢

And, as we also have, for any ¢ € R with [t| > 1 that

1 2
— < —_—
bl 1+t
what we get is that
eift eift, " 4|t _ t,|
Vo ) d < 2+ " y d
|5~ G | w01 < st @+ e @ ol

Moreover,

1 " _ " 4d(z, y)" ("
7 J 1909 =014 < Gy f v ok

So, we only need to study the integrability of [|¢)”(.,&)|y. But
V(2,6) = U"(=i€) [ (2,€) — 2iU" (=i) J' (. €) + U(=i§) " (2, €)

and, according to proposition 4.2 there is a constant C' such that for any m € {0, 1,2},

[T (=ig)lly < O™ Hml(1 4 gD

Moreover, according to lemma 4.9, for any k € N, there is a constant C' such that for
any [ € {0,1,2},

This proves that there is a constant C' such that for any function f € & K(X x R), any
z,x' € X with ma o (z) = A o T (2’) and any ¢,¢" € R* with |¢], || > 1,

|t —t'| +d(x, ')

(L+ )T +[2])

We can now use the fact that for some constants C, C, we have that for any ¢,t' € R
and any z,2’ € X,

It — | + d(z, ') It — /| +d(z,2")\” VIE—tP +d(@, )\
e <) gcc’*( T+ NI+ 1eD )

a7, §)H < o Ml
v

ol 1+ |¢fk

(4.7) [I(z,t,2", )] < C||f .k

To prove equation 4.7 for [t| < 1, we are going to use that the objects we study behave
well with the translations on R.
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Indeed, if f € £7F(X x R) and if we note, for s € R, fy(x,t) = f(x,t — s) then, for
any v € X and t € R,

<G - in0> Fla,t) = (G - Jin0> Fola,t + )

Op Iz
and
1fsllie < € H1F
and so, if [t| < 1, we can take s € [—10,10] such that 1 < [t + s| < |t/ + s| and we get
that for some new constant C',

~
VIt =12 +d(z,2")2
’I(x7t7x,7t/)’ < 406107”]0” k
! (L4 [t[) (1 +[¢'])

And this is finally what we intended to prove. O

4.4. Renewal theorem for holder-continuous functions. Until now, we proved the
renewal theorem only for regular functions. Yet, we are interested in functions on R¢
that will only be holder-continuous.

This is why we are going to regularize by convolving them by regular ones and then,
use tauberian theorems to get the expected result.

This method is already used in [BDP15] to study the renewal theorem in R? for
a borelian probability measure p on SLy4(R) whose support generates a subsemigroup
that is (conjugated to) a subgroup of R% x O(d). Like them, we will use a result
about remainder terms in the renewal theorem proved by Frennemo in [Fre65] (see also
appendix A).

So, we are going to define a new class of continuous functions on X x R that we will
use in the sequel.

Example 4.14. On R%, we are interested in functions having as modulus of continuity
(a power of)

[z =y
(L4 [l + Nyl

Using the application ® : S x R — R?\ {0} that maps (z,t) onto e’z and that identifies
R4\ {0} to S? x R, our function w writes

w((x’ t)’ (x,’ t,)) =

w(xay) -

etz — et,x'H
(1+et)(1+et)

But,
! / ! / 2 !
lete — et 2’| = e + 2 — 2ett < g o >= <et _ et) +ettt |z — 2|2
— ottt <<6(t—t’)/2 _ e(t/—t)/2>2 +lz — le2>
Therefore,
o2 ot/2 5
2 t—t)/2 t'—t)/2
(@), @) = a1 \/d(x7x/) + (e0=H/2 — el =0)/2)
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Moreover, as
%

1+et
This leads us to define, if (X, d) is a compact metric space and (z,t), (¢/,t') € X x R,

= ez,

w((z,t), (', 1) = e lt/2=t']/2 \/d(m,m’)2 + (et=)/2 — g(t'=)/2)2
Then, we note
_ )
CI(X xR):={ fe (X xR) sup |f(,t) = f(a', )]

(z,t),(2’ t')eXXR W((l', t)a (.%',, t/)),y
(z,t)#£(z’ ')

is finite

The following lemma proves that functions of CJ can be extended to functions on
X x R.

Lemma 4.15. Let f € C)(X x R). Then, there are pt,p~ € L>°(A) such that for any
re€X and any t € R,
£8) = 5 () 0 mm(e)] < € et |F(ast) —p()(ma o maa(a))] < e
Proof. Note at first that for any = € X, (t— f(z,t)) has a limit at —oo since f €
CH(X x R).
So, we can set p~ (f)(x) = lim¢,_ o f(z,t) and then, by definition of CJ,, we have that
for any (z,t), (2/,t') € X x R,

[f(@,t) = p~ (/)@ < |fa,t) = f@ )+ [f(@", 1) = p~ (f) (@)

1f Iy ww((@, 1), (', )Y + [ (2, ) = p~ (f) ()]

Thus, letting ¢’ go to —oo, we find that for any ¢ € R and any x, 2’ € X with mp o (z) =
A o (),

<
<

f(@,t) = p~ (f)@)] < e
This proves that p~(f)(z) = p~(f)(2’) and that
|f (@) —p~ (f)(x)] < e
The proof of the existence of p™ and of the rate of convergence of f to p™ is done in the

same way. ]

In the sequel, we will need a function ¥ on R that is regular and such that

tilrfnoow(t) = 1 and tilgrnoow(t) =0
The space of function in C(X x R) such that p~(f) = 0 = p*(f) being of finite codi-
mension, the function ¢ will allow us to control the projection on it.
From now on, we note, for any t € R,

+oo
(4.8) P(t) = \/LQ_ﬂ/t e du

The choice of this particular function % is arbitrary but will simplify the computations
to come.
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In the following lemma, we prove that the projection of a function of C;(X x R) on
functions such that p*(f) = 0 = p~(f) belong to the space £7'°(X x R) that we defined
in equation 4.6.

Lemma 4.16. For any v €]0,1] there is C € R depending only on ~y such that for any
function f € CoV(X x R), ¢ € E79(X x R) and

ellvo < Cllif llye
where we noted, for any (z,t) € X x R,
p(z,t) = fla,t) —p~ (/)@)(t) —p" (f)(2)(1 - ¥(t))
and v is the function defined in equation 4.8.

Proof. 1t is clear that ¢ is continuous on X x R.

Moreover, using that
1 _u2/2
— | e du =1,
V2 /R

we find that for any ¢t € R and any x € X,
oz, )] < 1f (2, 8) —p~ (H)@)(t) + | £z, t) —p" (@)1 = ¥(t))
<Ml (6“1/1( ) +e (1 —9(1)
And so,
Mol )] < 1o (0 90(0) + 700 (1 — (1))
Thus, there is a constant C' € R depending only on v such that

sup Moz, )] < CIfllyw

In the same way, for 2,2’ € X such that ma o 7 (z) = 7a o T (2’), we have that
‘(p(.%’,t) - Lp(l‘l,t)‘ = ’f(xvt) - f(.%'/,t)‘ < efﬂf't‘d(mawl)wf”%w
And this finishes the proof of the lemma. O

To apply Frennemo’s result about remainder terms in the renewal theorem, we will
need to know the modulus of uniform continuity of the function ) P"(x,.). We are

going to study it in next lemma and this is where we do use that f belong to co (X xR)
and not only to £7%(X x R). To get the renewal theorem without speed, we could have
only consider functions of £70(X x R).

Lemma 4.17. Under the assumptions of theorem 4.1, for any function f € co (X xR),
any x € X and any t,t' € R,

+o0o +o0
> Prf(w,t) =Y P f(x,t)
n=0 n=0

69

<O sy (e~ = 1)




Proof. Let f € COY(X xR), z € X and t,t € R.

Then,
+o00
10,0 = Y P se) = 3PS
n=0
< Z L ’f(t + U(g,w),gx) — f(t/ + O-(gw%')agl')’dp*n(g)
n=0
+o00
<Ml > /G w(gz,t +0(g,2),92,t + o(g,2))"dp™(9)
n=0
’ ’ 2 i I 9 , )
<l (e(” )2 =t/ ( 3 /G elt+o(ga)l/ 2=+l /2 o)
n=0
Moreover,
e€0E0/2 — 02 [elt=tV/2 ot 1/2) — ot V2 (ot ] =g
So,

I(t,t', ) < | fllwy |e

|t t|_1‘ Z/ —v|t+o(g,x /de*n( )

<l |4 =1 3 Pt
n=0

with o(t) = ell/2.

To prove the lemma, we only need to prove that the series )2 is bounded on
X x R. We would like to apply the renewal theorem (that proves that the considered
sum has finite limits at 00 and so is bounded) to the function ¢ but we cannot do this
yet since @ is not regular enough. Therefore, we set

2 too e
——e" e 2du et @oft)

2 2
t = e_vt/ e v 2dy
p1(t) = 52 ), o .

to have that

+oo Pn

e1(t) = 1r_ et et wa(t) = e ’yth+(t)
Then, we have that

+oo
> / ey g) € 3 Py (at) + 3 Pa(a )
n=0 n=0

And this proves, using the renewal theorem for regular functions that we already proved
(see corollary 4.12) and Riemann-Lebesgue’s lemma that

+00 +oo
lim Z()P"gpl(x,t) =0 and tiimoozopnsm(x,t) = Nol/Rsm(t)dt

t——+o0
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So, 328 Py is bounded on X x R. Doing the same for 7% P"p, we finish the
proof of the lemma. O

For z,2’ € X such that ma o g (z) = 7a o ma(2’) and ¢,¢' € R, we note

V=P (o, o)
T+ DA+ 1]

We are finally able to prove the renewal theorem

WO((CC’ t)’ (x,’ t,)) =

Corollary 4.18. Under the assumption of theorem 4.1, there are constants C, K € R
such that for any function f € Cg’V(X x R) such that p™(f) = 0 = p~(f), for any
xz, ' € X and any t,t' € R,

‘ <G - iHo) flz,t) — (G - O_iHO> fla' )

< O\ fllywwo((x, 1), (2, ')/ O+
op ;

Moreover, for any x € X,
) 1

Proof. Let, for k € N, and t € R, ¢ (t) = the t1g  (1).
Then, we already saw in lemma 4.10 that there is a constant C} such that for any
function f € £79(X x R), f * opy1 € EVF(X x R) and

1f * @rrtllye < Crllfll40

In particular, for any f € C} with p™(f) = p~(f) = 0, lemma 4.16 proves that

1 * prrallye < Crll fllyw

Moreover,
1 1
Prt1 * (G — —1o) f(x,1) = (G — —Ilo)(f * prs1)(, 1)
ap op
So, for k = K, corollary 4.12 proves that

1 1
I(kj,x,t’xl,tl, f) P= | PR X (G - O__HO)f(xat) — Pr4+1 % (G - O__HO)f(x/’t/)
p P

< CCkUJO((CU, t)a (x,a t,)),nyH%W

Moreover, as we also have that

(G~ TIo) (1) — (G — ~THo) ()] < Cll s (1 =1
Up O'p

we can conclude with the corollary of Frennemo’s result stated in appendix A. O

We are now able to study functions of (X x R) that vanish at +o0o. This set will
contain for instance functions on A x R? that are compactly supported and that take the
value 0 at (a,0) for any a € A. Yet, we would like to study functions that doesn’t vanish
at (a,0) but just satisfy that > ., f(a,0) = 0. This is why we prove the following
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Lemma 4.19. Under the assumptions of theorem 4.1, there is C' € R such that for any
p € L®(A) with ) A p(a) =0, any x € X and any t € R,

(G — 110) f(.t) - (G - Uipnwf(xct') < Clplloowo (3, 2), (&', £))

Op

where we noted
f(@,t) = p(ma(@))¥(t)
and Y the function defined in equation 4.8.
Moreover, for any x € X,

i <G - —H0> ZP (ma(z

Proof. Since P commutes to the derivation, we have that

+oo 400 00
ZP"f x,t) / ZP"f’(a:,u)du
n=0

n=0
But,
S P = [ Nope s+ o= [ S0 ignnTe
~ bl - " 0 bl 27‘[’ R p
And,
~ 5 +oo
Pe) = —e €1, s0 / Nof'(z, 5)ds = —No f(z, u)
Therefore,
iOP"f’( ) = —Nof(z,u) + o / €y (—ig)p(a)e ¢ /2dg
2 Tr,u) = of(x,u o Re 1§ )plx)e
So,

S = du [ e £/29¢q
P - Y - gy (i -
S P = [ Nese g [ [ Ui as

Moreover, noting U(z) = N1 + 2V(z), we have that the second term of the previous
equality is the sum of

+o00 )
iNlp(fr:) / / et 2dedu = — Nyp(x)p(t)
2T t R

and of
+00 ) ) ' .
o /. /R et (—i)V (—i€)p(z)e ¢ /2ddu = % /R ¢SV (—i€)p(x)et/2dg

(to get this equality, we differentiate on both sides) So, finally, we get that

+o00 .
nzzoPnf(x,t): t+ Nof (z, w)du + Ny f(z,) — o /R OV (ieyp(a)e € 2
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And so,
lim (G — —Tlo)f(z,8) = lim Nif(z,t) = Ny f(z, —o0)

t——o00 Op n——0o0
To conclude, we only need to see that

—+00

Ny f(z,—00) = 3 P" f(ma o maa(a)

n=0

To prove this, we use that these to functions are solutions of ¢ — Pg = f and, as the
random walk on A is irreducible and aperiodic, there is a constant C' € R such that for
any a € A,

+o0
NMp(a) = P"pla) +C
n=0
But,

+oo
S Nipla) = 303 Pp(a) + |AIC = |A|C

acA ac€A n=0

And so, C = 0since ), ca Nip(a) =0=2 ca SoheS Prp(a).
Finally, using proposition 4.2, we have that

/ efftv<—is>p<x>e—fg/2dg‘ < el / C(1+ |¢))Fe € /2a¢
R R
and that

s

/ eiﬁtw—z’s)p(x)e?/?ds' < IpllC / (1+[¢])*Fe ¢ 2ag
R R

This finishes the proof of the lemma (since p(z) only depend of the projection of the
point x on A). O

APPENDIX A. REMAINDER TERMS IN THE TAUBERIAN THEOREM

In this section, we prove a theorem that controls the remainder term
in the tauberian theorem.

The aim of this section is to study the following problem : given two functions f, ¢
on R for which we know the rate of convergence to 0 at infinity of |f x|, can we get the
rate of convergence of |f| to 0 at infinity ?

The first related result is a corollary of a tauberion theorem of Wiener that states
that if the Fourier transform of ¢ doesn’t vanish on ¢R and if f x ¢ converges to 0 at
400, then so does f.

The interest for us of this kind of results is that in the study of the rate of convergence
in the renewal theorem, we will always be able to regularise the functions we study
(which is necessary for our method using the Fourier transform) but we will have a rate
of convergence anyway.
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Definition A.1. Let f be a uniformly continuous function on R.
We say that a function w : Ry — R, continuous at 0 and with w(0) = 0 is a modulus
of uniform continuity for f if for any x,y € R,

|f(x) = f(y)] < w(lz—yl)

The following theorem is an adaptation of a result of Frennemo in [Fre65].

Theorem A.2. Let k € N*.

Let ¢y be the function on R defined by ¢i(z) = aFe *1g ()

Then, there is a constant C' depending only on k such that for any uniformly contin-
uous bounded function f on R and any x € R,

; 1Y | Il ko
t)] < C_inf — )+ 22 (14 V)Es ¢l t—t
<0t (wr () + =+ 0 v supe Vg e o)
where wy is a modulus of uniform continuity (that we shall assume non decreasing without
any loss of generality) of f.

To prove this theorem, we will use the following

Lemma A.3. There is a constant C' such that for any integrable and uniformly contin-
wous function f on R,

o) <yt e (7)o [, o (1) s

where wy is a (non decreasmg) modulus of uniform continuity for f.

Proof. The proof is a minor modification of the one of Frennemo’s lemma using that if
f is uniformly continuous and wy is a non decreasing modulus of uniform continuity for
f, then

— inf t)— f(x) < su wr(lr —t]) <Swe(1/V
m<t<x+1/Vf() f( ) x<t<$£1/v f(‘ ’) f( / )
0

Proof of theorem A.2. For s € R, let us be the function defined by wus(t) = f(t)efé(tfsy.
Then, for any t,t' € R,

s () = us ()] = |e72 O (F(8) = F() + F() (7207 — 2
< wp(lt = t]) + [ flloolt — ] sup [ule />
ucR

Thus, the function wug is uniformly continuous on. As it is also integrable, we get,
according to the lemma, that for any V' € R and any s € R,

4
e <0 (wr () + sl | [ o (1= ) o))

But Frennemo proves that

\%
sup / “ (1 N @> df‘ C(1+V)Fsupe“lfpp x f(t —1)]
T -V t'eR
and this finishes the proof of the theorem. O
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Let (X,d) be a compact metric space and v €]0,1]. For (x,t),(2/,t') € X x R, we
note

VIt =t +d(z,2')?
(1 ¢+ [2])
Corollary A.4. Let (X,d) be a compact metric space and v €]0, 1].

For any k € N, there is are constants Cy, € Ry and a € R* such that for any bounded
function f on X x R with

@ t) = fa )] < (0T =1) e (), Iflle < CW)

w((@,1), (2, t) =

and
’@k * f(.%', t) — Pk * f(l'/7 t/)‘ < C(f)w((w, t)a (xla t,))’y
for some constant C(f) we have that
|f(@,t) = f(2', )] < CpC(flw((x, 1), (', 1))
Proof. For z,2’ € X and s € R, we note
fm,m/,s(t) = f(x,t) - f(xat + 5)
Then, for any ¢,t' € R,

‘fgﬁ’ﬂ’s(t) a fxvx'vs(t/)’ = ‘f(.%',t) - f(xl7t + 8) - f(x7tl) + f(-%'/,t/ + 8)‘
< 20, (e\tﬂe/\ _ 1)7

and

‘(pk * fx,x’,s(t)’ - ‘(pk * f(.%', t) — PE* f(.%'/7 i+ 8)‘ < C(f)w((x, t)7 (1,/7 t+ S))
So, according to Frennemo’s theorem, for any z,z’ € X and any t,s € R,
2

|ﬁ““@”<CCU)Q£ﬁQ(”V—DV+V

+(1+V)rsupe (@, t — ), (2t —t' + s))“’)
t'eR

But, for any t,t € R,

L _ 1+
L+t—t] 1+t
And so
supe o ((z,t — 1), ('t =t +5)) < w((x,t), (', + 5)) supe 11 +|¢'])
t'eR t'eR

Thus, for maybe another constant C' not depending on f, we get that

: 1 k /
| foars(t)] < CC(f) VE[IEfroo[W + (1 +V)*w((z,t), ('t + )7

Noting now, for 6 € R’} that we will specify later,

V =w((a,t), (2, t +5)) 7
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we get that for maybe another constant C still non depending on f,

(2,2, 5)(0)] < CO(f) (w7 + (1 + w7 )a?) < CO(fw

for § small enough and some choice of a where we used that w is bounded X x R.
And this finishes the proof of the corollary. O
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