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IN R

JEAN-BAPTISTE BOYER

IMB, Université de Bordeaux / MODAL’X, Université Paris-Ouest Nanterre

ABSTRACT. Let p be a borelian probability measure on SLg4(R). Consider the random
walk (X,) on R?\ {0} defined by p : for any z € R\ {0}, we set Xo = x and
Xnt1 = gnt1Xn where (gn) is an iid sequence of SLg(R)—valued random variables
of law p. Guivarc’h and Raugi proved that under an assumption on the subgroup
generated by the support of p (strong irreducibility and proximality), this walk is
transient.
In particular, this proves that if f is a compactly supported continuous function on
R?, then the function Gf(z) := E; 3.1 f(X,) is well defined for any = € R®\ {0}.
Guivarc’h and Le Page proved the renewal theorem in this situation : they study
the possible limits of Gf at 0 and in this article, we study the rate of convergence in
their renewal theorem.
To do so, we consider the family of operators (P(it))ier defined for any continuous
function f on the sphere S?~! and any = € S¢~! by
Plinf)= [ e () )
SL4(R) gz ||
And we prove that, for some L € R and any to € R},
sup 1 ||(1a — P(it))_lu is finite
ter [t["
[t|>to

where the norm is taken in some space of holder-continuous functions on the sphere.
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1. INTRODUCTION

1.1. Main results. Let p be a borelian probability measure on SL4(R) (2 < d € N) and
let z € R?\ {0}. We define a random walk on R%\ {0} starting at = by

X() = T
Xnt1 = Gnr1Xn
where (g,) € SLg(R)Y is an iid sequence of SLq(R)—valued random variables of law p.

In the sequel, we will say that a closed subgroup of SL;(R) acts strongly irreducibly
and proximally on R¢ if it doesn’t fix any finite union of non trivial subspaces of R? and
if it contains an element which has an eigenvalue that is strictly larger than the other
ones and whose eigenspace has dimension 1. We will also that a borelian probability
measure on SLy(R) is strongly irreducible and proximal it it’s support generates a group
that has these two properties.

If p is strongly irreducible, proximal and has a moment of order 1!, then a result by

Furstenberg and Kesten (see [Fur63] and [GR85]) shows that, if ||. || is a norm on R,
then, for any = € R%\ {0},

1
(1.1) —In|lgn...qz|| = XAy = / / In||gz||dp(g)dv(z) >0 p®N —ace.

n G JP(R?)

where v is a stationary measure on P(R?) (which is unique as we will see in proposi-
tion 2.5).
In particular, this implies that the walk on R?\ {0} is transient.

Given a continuous function f on R%, such that for some o € R* ,

T
sup A 3| < +oo and sup [[z[|*|f(z)| < +oo,
zere ||| z€RY

we study the function
+oo

(1.2) (3: — Gf(z) := ZEJ(X,J)
n=0

Lie. Jo [In]gllldp(g) is finite.
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Since the walk is transient and our assumptions on f, this function is well defined and
even continuous on R?\ {0} (the series converges uniformly on every compact subset of
R4\ {0}) and we would like to study it’s behaviour at 0. This is what we call the renewal
theorem in R? by analogy to the situation in R (see for instance [Bla4s]).

Guivarc’h and Le Page proved in [GL12] that if 7, the sub-semigroup generated by
the support of p, fixes a non trivial convex cone in R? then, there are two stationary
borelian probability measures v and v, on the sphere S~ ! and the space of P—invariant
continuous functions on the sphere has dimension 2, a basis being given by two non
negative functions pq, p2 such that p; +p2 = 1 and p; |supp v; = 0;j where ¢ is Kronecker’s
symbol; on the other hand, if 7}, doesn’t fix any non trivial convex cone in R?, then,
there is a unique stationary borelian probability measure v; on S*! and we note p; the
constant function taking the value 1 on the sphere.

In both cases, we define an operator on the space of continuous functions on R? that
decay with a polynomial rate at infinity? setting, for such a function f and z € R?\ {0},

13) 0/ (x Zp@<|x”) L] s Sane

where, r € {1,2} is the number of 7),—invariant closed subsets on the sphere.
They also proved the following

Théoréme 1.1 (Guivarc’h - Le Page in [GL12]). Let p be a strongly irreducible and
prozimal borelian probability measure on SLg(R).
Then, for any v € RY and any continuous function f on R? such that

sup ()] and sup ||v||”|f(v)| are finite
veR4\{0} [[v]|? vERE

we have that

z—0

Where \,, G and Iy are defined in equations (1.1), (1.2) and (1.3).

. 1
lim <G - )\_pHO> flx)=0

In particular, this theorem shows that if f is a compactly supported hélder-continuous
function on R? such that f(0) = 0, then the function (G — )\LPHO) f can be extended at

0 to a continuous function on R%.
So, the continuity of Gf at 0 is equivalent to the one of Il f.
Thus, in the case of a unique invariant closed subset on the sphere, we have that

. = n 1 e du
i > i) = |t

z—0 u

and in the other case, we only have a “directional limit” : for any = € R%\ {0},
+o0o

. n 1 oo du
iy 2 P = Zpl(rmu)/ oo TS

2There is o € R% such that sup,cga [|2||*[f(z)] is finite.
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And, in particular, the function Gf cannot be extended to a continuous function at 0 in
general.

Example 1.1. If T}, contains only matrices having positive coefficients, then it fixes
the cone C of the vectors having only positive coefficients and it’s opposite. Therefore,
taking a positive regular function f supported in C, we see that Gf = 0 on —C whereas
G f(z) will eventually be non negative on C. Thus, we won’t be able to extend it to a
continuous function at 0.

We would like to compute the modulus of continuity of G f at 0 and, to do so, we want
to study the rate of convergence in Guivarc’h and Le Page’s result. To simplify our study,
we will only consider (G — %Ho) f and that will allow us to make no distinction between

the number of closed invariant subsets on the sphere (and we will see in proposition 4.14
that it is more than a computational trick). Thus, we will only have to study the modulus
of continuity of Ilyf to get the one of Gf and, as we have an easy formula for Ilyf, it
will be easy to find conditions that guarantee that Gf can be extended to a continuous
function at 0 and to get it’s modulus of continuity.

In [BDP15], Buraczewski, Damek and Przebinda considered the case where T}, is
(conjuguated to) a subgroup of R* x O(d) and a diophantine condition is satisfied by
the projection of p on RY . They prove their result by going back to the 1—dimensional
case (this is why they need this diophantine condition that is necessary in this case (see
for instance [Car83]) ; this hypothesis will always be satisfied in our case as wee will see
in section 3).

Our study (and the one of Guivarc’h and Le Page) takes place in the opposite case
where the subgroup generated by the support of p contains an element having a strictly
dominant eigenvalue (this is our proximality assumption).

More specifically, we will prove the following

Théoreme 1.2. Let p be a strongly irreducible and proximal borelian probability measure
on SLy(R) having an exponential moment®.

Then, for any v > 0 small enough and any compact subset K of R, there are C,a €
R such that for any continuous function f € C%7V(R?) supported in K and such that
f(0) =0 and for any = € R?,

1 C
(6= 5m0) 16| < e I

Where \,, G and I1y are defined in equations (1.1), (1.2) and (1.3).

If one studies the linear random walk on the torus T¢ := R?/Z? defined by a probability
measure on SLy(7Z) (see for instance [BFLM11]), it appears that there are finite invariant
subsets (e.g. the set {0}). If A is one of them that is also minimal, then one can identify
a neighbourhood of A in the torus to a neighbourhood of {0} x A in R% x A.

This is why, from now on, noting I', the subgroup of SL;(R) generated by the support
of p, we study the renewal theorem on the product of R? and a finite T p—set A on which

3There is € € R% such that [ [lg[|°dp(g) is finite.
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the walk defined by p is irreducible and aperiodic and we consider hélder continuous
functions f on R% x A.

Remark that if Gf(z,a) = 3120 P"f(z,a) has a limit g(a) when x goes to 0, then
(Is— P)g(a) = f(0,a) and so g is a solution to Poisson’s equation for f restricted to A
(in particular, this implies that ), f(0,a) = 0).

Remark also that for any f € C°(R? x A) such that >, f(0,a) = 0 and any a € A,
St o P"£(0,a) is well defined since the random walk on A is irreducible and aperiodic.

We modify our operator Il to account of the dependence in A and we note, for

any continuous function f on R% x A that decays at polynomial rate at infinity?, any
€ R4\ {0} and any a € A,

A i |A|Zzpl<|$\|>/sd1/lmll ) o)

a’'€eA

Remark that if s f(0,a) = 0 and for any a € A, the function f(.,a) is holder-
continuous at 0 then the limit of IIp f(x, a) at 0 is well defined (only radially if r = 2).

The main result of this article is the following

Théoreme 1.3. Let p be a strongly irreducible and proximal borelian probability measure
on SL4(R) having an exponential moment.

Let A be a finite I' ,—set such that the random walk on A defined by p is irreducible
and aperiodic.

Then, for any v > 0 small enough, there are constants C' € R and o € R such that
for any function f on R* x A such that

|f(z,a) = f(y,a)
= 1 (1 v
(Al w:ﬂg})\{o}( + [lz[)7 (1 + llyll) R

Ay
acA

< 400,

and such that for any a € A,
lim f(z,a) =0 and ZfO a) =0

T—00
a€A

We have that for any a € A,

lim (G— )\—H0> ZP" 0,a)

Moreover, for any z,y € R4\ {0} and any a € A,

<G - )\ipH0> f(z,a) - (G - )\ipﬂo> f(y,a)

4There is some a € R’ such that sup, ,)eraxa [|2]|%[f(2)] is finite.

< Cwolz,y)|| f1ly
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where 1y is the operator defined in equation (1.4) and where we noted, for any x,y €

R\ {0},

2
el =kl + 2 ]
A+ T eI + [ 51D

wo(x,y) =

Remarque 1.4. The definition of the function wy may seem complicate but we will see
that it is a kind of conical distance on R%. We will give more details about this function
in section 4.4.

Remarque 1.5. The assumption on f guarantees that limy, f(.,a) = 0 and that there is
a constant C' such that for any =,y € R? and any a € A,

|z — ]| !
[F(@,a) = f(y,0) < C <<1 2l + HyH)>

In particular, compactly supported holder-continuous functions on R% x A satisfy this
assumption. Moreover, letting y go to infinity, the equation shows that for any = € R¢,

C

So these functions vanish at polynomial speed at infinity.
We will not only consider compactly supported functions because our assumption will
become very natural after identifying R%\ {0} and S%~! x R in chapter 4.

Remarque 1.6. As we already said, it is the continuity of Gf that interests us but it is
very easy to have the one of Ilyf.

To prove this theorem, we will study an analytic family of operators (see section 4)
defined on C%7(S%~! x A) for z € C with |R(z)| small enough, a function f € C%7(S4~! x
A) and some point (z,a) of ST~ x A by

P(2)f(x.a) = /G ' f (g, ga)do(g)

Indeed, we will prove in section 4 that the rate of convergence in the renewal theorem
is linked to the growth of the norm of (I; — P(z))~! along the imaginary axis.

To get a control of ||(I;— P(it))~! lco.v (s4-1x A for large values of ¢, we will adapt in 2
the arguments developed by Dolgopyat in [Dol98] for Ruelle operators and we will prove
proposition 2.22 which links the norm of ||(I; — P(it))~!|| to the diophantine properties
of the logarithms of the spectral radii of elements of I',,.

Then, we will prove that in a strongly irreducible and proximal subgroup of SLy(R),
we can construct elements for which the logarithm of the spectral radius is very well
controlled. This is what we will do in section 3 and more specifically in proposition 3.19.
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1.2. Proofs.
In this paragraph, we prove the results that we stated in this intro-
duction from the ones we will prove in more general settings in the
following ones.

Proof of theorem 1.2 from theorem 1.3.
Let v €]0,1] and K a compact subset of R?. Then, there is a constant C such that
for any y—holder continuous function f on R? such that supp f C K,

sup (1 -+ (1 + DI gy,
rue\{o) lz =yl
Ty

We can now apply theorem 1.3 to find constants C,« such that for any ~y—holder-
continuous function f with supp f C K and any z,y € R\ {0},

KG—%EOﬂM—(G—%ﬂOf@ﬂéCWMw@wW

and

But, we also have that
1

1 I
H%wo(w y) = 1+ |In||z]||

and this proves theorem 1.2. O

Proof of theorem 1.3.

This is a direct application of our theorem 4.1.

Indeed, noting X = S%~! x A and H = {I,9} where ¥ is the antipodal application
on the sphere and identity on A, we have that H acts by isometries on X x A and
(X x A)/H, that we identify with the product of the projective space and A is well
(p,7y, M, N)—contracted over A (see example 2.4 and lemma 3.7). Moreover in section 3,

we saw that the cocycle o defined on G x P(RY) by o(g, X) = ””gx”“ for x € X'\ {0}

also belong to ZM (P(R?)) and the result by Furstenberg that we already gave in this
introduction proves that o, > 0.

Moreover, we saw in theorem 3.1 that for any ¢ty € R’ there are constants C, L such
that for any ¢t € R with [¢| > ¢,

I(Za = P(it) 7| < CJt|*”

This proves that we can actually apply theorem 4.1 to any function f that satisfies
the assumption of theorem 1.3 since such a function can be identified to a function f in
CH(X x R) such that Y, 4 limy,_ f(z,a) = 0 and lim, o f(z,a) = 0 by the map
(z,t) — e'x from ST x R to R%\ {0}. O
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1.3. Notations and conventions. For any continuous function f on a topological
space X, we note supp f the support of f. In the same way, if v is a borelian measure
on X, we note supp v it’s support.

Moreover, we note

[flloc = sup |f ()|
zeX

For any complex-valued function f on a metric space (X,d) and any v € |0, 1], we

note
() = ()]
m~(f) = sup ————=== and || f||~ = ||f|lcc + m~(f
() = sp =L a1y = o+ (1)
Moreover, we note C%7(X) the space of y—hélder-continuous functions on X that we
endow with the norm ||. .

For n € R%, we note
Cp ={z € C[[R(2)| <n} and C; = {z € C||R(2)| < n}

For any A, B C R, we note A® iB = {a +ibla € A, b € B} and in particular, if
A CR, then A iR = {z € C|R(z) € A}

For f € LY(R), we note fthe Fourier-Laplace transform of f that is defined for any
z € C such that the integral is absolutely convergent by

fe) = [ e

2. UNITARY PERTURBATIONS OF MARKOV OPERATORS

In this section, we study the perturbation of Markov operators coming
from group actions by kernels of modulus one given by cocycles. The
alm is to prove proposition 2.22 that shows that if the perturbated
operator has an eigenvalue close to 1, then the cocycle is close to a
coboundary.

Let p be a borelian probability measure on R having an exponential moment and a
drift A = [ ydp(y) > 0.

In [Car83], Carlsson proved that to obtain the rate of convergence for the renewal
theorem, we have to find some constant [ € Ry such that

1-— / eitydp(y)‘ > 0.
R

This condition is linked to the diophantine properties of the p—generic elements (see for
instance [Bre05] where a slightly different but similar condition is studied).

More specifically, is such a parameter [ exists, then the rate of convergence in the
renewal theorem is polynomial and if we can even take | = 0 (which is always the
case if p is spread-out as proved by Riemann-Lebesgue’s lemma) then we can obtain an
exponential rate of convergence (see [BG07]).

lim inf ||’
t—too

In this section, G will be a second countable locally compact group acting continuously
on a compact metric space (X, d). We will fix a function ¢ : G x X — R (that will be a
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cocycle) and we will study the family of operators (P(it))tcr defined for any continuous
function f on X and any xz € X by

P(it) (x) = /G e 1792) £ (gz)dp(g)

To simplify notations, we simply note P (or sometimes P, to insist on the measure p)
the operator P(0). It is clear that if G acts continuously on X, then P preserves the
space of continuous functions on X.

What corresponds to the diophantine condition for measures on R will be the existence
of a constant [ € Ry such that

1
limsup — /(g — P(it))™1|| is finite.
t—+oo t‘

Where the norm is taken in some Banach space (the space of hélder-continuous functions
in our study).

To obtain this kind of control, we adapt a theorem proved for Ruelle operators by
Dolgopyat in [Dol98] : this will be our proposition 2.22 which is the aim of this section.

2.1. Preliminaries.
Before we state proposition 2.22 properly, we introduce in this section

a few technical notions.

2.1.1. Contracting actions. From now on, we assume that X fibers G—equivariently
over a finite G—set A. This means that we have a continuous map ma : X — A that is
G—equivariant : for any z in X and any g in G,

TA(gr) = gTa(T)

Definition 2.1 (Contracting action). Let G be a second countable locally compact
group, N : G — [1, +o0o[ a submultiplicative function on G and let (X, d) be a compact
metric space endowed with a continuous action of G.

We assume that X fibers G—equivariantly over a finite G—set A.

Let p be a borelian probability measure on G and v, M € R .

We say that X is (p,y, M, N)—contracted over A if

(1) For any g € G and any z,y € X,
d(gz, gy) < MN(g)™d(x,y)

(2.1) /GN(g)M“/dp(g) is finite

(3) For some ng € N* we have that

d(gz, gy)7 | .
su 7(1 no < 1
5 /G @,y (9)

where mp : X — A is the G—equivariant projection.
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Remark 2.2. If X is (p,~y, M, N)—contracted over A, then P preserves the space C*7(X)
of v—Holder-continuous functions on X.

Remark 2.3. This notion is used for instance by Bougerol and Lacroix in [BL85] to study
random walks on the projective space but the definition with such a generality is given
in [BQ15] where the reader will find more details.

We could have defined N(g) as the maximum d(gzx,gy)/d(z,y) (assuming that it is
finite) since this is a submultiplicative function on G ; however, in our applications,
there will be a natural function N associated to G.

Example 2.4. Our main example will be the case where G is a strongly irreducible
and proximal subgroup of SL4(R), p is a borelian probability measure on G having an
exponential moment and whose support generates G and X will be the product of the
projective space P4(R) (which is contracted according to the theorem 2.3 in chapter V/
in [BL85]) and of a finite G—set A endowed with the discrete distance (for any s, € A,
d(s,s') =0if s = ¢’ and 1 otherwise).

Remark that the sequence (u,,) defined for any n € N by

d(gz,9y)” . .
Up =  sup / ——=—dp™" (g
a:,y;X G d(x7y)’y ( )
Tty

7a(z)=mA(y)

is submultiplicative. Therefore, if X is (p,~y, M, N)—contracted over A, then there are
constants C',d € R% such that for any n € N and any x,y € X such that ma (z) = 7a(y),

(2.2) /G d(gz, gy)'dp*"(g) < Cre*"d(z,y)

Remark also that if 4/ € ]0,~] then the function ¢ — ¢7'/7 is concave on [0, Diam(X)]
so if the space X is (p,v, M, N)—contracted, it is also (p,~', M, N')—contracted.

Let X be a compact metric space and P a positive operator® on C°(X). We say
that the operator P is equicontinuous if it is power-bounded and if for any f € C%(X),
the sequence (P"f)nen is equicontinuous. We refer to [Rau92] for the properties of
equicontinuous operators.

Proposition 2.5. Let G be a second countable locally compact group, N : G — [1, +o0|
a submultiplicative function on G and p a borelian probability measure on G.

Let (X,d) be a compact metric space endowed with a continuous action of G and
which is (p,~v, M, N)—contracted over a finite G—set A.

Then, the operator P associated to p is equicontinuous on C°(X).

Moreover, if the random walk defined by p on A is irreducible and aperiodic then there
is a unique probability measure v on X which is P,—invariant.

Finally 1 is the unique eigenvalue of P having modulus 1 and the associated eigenspace
has dimension 1.

Before we prove this result, we state a lemma about Markov chains defined by group
actions on finite sets.

5For any non negative continuous function f on X, Pf is non negative.
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Lemma 2.6. Let G be a second countable locally compact group acting on a finite set A
and let p be a borelian probability measure on G such that the random walk on A defined
by p is irreducible and aperiodic.

Then, va, the uniform measure on A, is the unique P,— stationary probability measure
on A and P, has a spectral radius strictly smaller than 1 in the orthogonal of constant
functions in L2(A,va).

Proof. According to the theory of Markov chains on finite state spaces (or more specif-
ically Perron-Frobénius’s theorem), we only have to remark that the measure va is
stationary. ]

Proof of proposition 2.5. The equicontinuity of P in the space C°(X) can be proved as
in the case of a subgroup of SLy(R) acting on P(R?) given in [BQ14]. We will give more
details in the proof of proposition 2.12 where the space is only locally contracted.

Let f € C°(X) and A a complex number of modulus 1. Assume that Pf = \f.
For any z,y € X such that 7a (z) = ma(y), we have that

N (f(z) — Fy)) = P f(x) — P f(y) = /G f(gz) — F(gy)do™(g)

But, the space is contracted over A and |\| = 1 so, we get that for any z,y € X with
7 (@) = A (y), f(2) = £(y).

Thus, eigenvectors of P in C%(X) associated to eigenvalues of modulus 1 can be iden-
tified to functions on A. As we assumed that the Markov chain defined by p on A is
irreducible and aperiodic, we have that the only eigenvectors of P associated to eigenval-
ues of modulus 1 are constants (cf lemma 2.6). Using proposition 3.2 and 3.3 in [Rau92],
this proves that the measure v is unique, that 1 is a simple eigenvalue and that there is
no other eigenvalue of modulus 1. O

We can now extend to our context the theorem 2.5 of chapter V' in [BL85] that proves
that, when the space is contracted, the operator P has a spectral gap in the space of
holder-continuous functions. This is the following

Proposition 2.7. Let G be a second countable locally compact group, N : G — [1,+o0[
a submultiplicative function on G and p a borelian probability measure on G.

Let (X,d) be a compact metric space endowed with an action of G and which is
(p,7v, M, N)—contracted over a finite G—set A on which the random walk defined by p
1s 1rreducible and aperiodic.

Note e € 10,1] and Ca € [1,400] such that for any function f on A and any
n €N,

[P [ aws| < caeani
where va is the uniform measure on A (see lemma 2.6 for the existence of ka,Ca ).
Let v be the unique P,—invariant borelian probability measure on X (given by propo-
sition 2.5).
Then, there are constants k,Co € R% that don’t depend on Ca and such that for any
n € N,

[e. 9]

| Py — HVHCM(X) < CoCae™ ™"
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where we noted 11, the operator of integration against the measure v.

Remark 2.8. We quantify the spectral gap assumption in L°°(A, va ) since this will allow
us to take a family (A;, ;) of G—finite G—sets on which P has a uniform spectral gap.

Remark 2.9. This proposition can be seen has a corollary of the quasicompacity of P in
C%7(X) that we will prove in proposition 2.12 and of the fact that, in C%(X), 1 is the
only eigenvalue of modulus 1 and it’s associated eigenspace has dimension 1. However,
what interests us is the dependence between the spectral gap in L*°(A,va) and the one

in C%7(X).

Proof. Let f € C%(X), x,y € X such that ma(x) = 7a(y) and n € N. Then, for any
n € N, we can compute

PP f(x) — P ()] < mo(f) /G d(gz, gy dp™(g) < my (F)Cred(x, y)"

where we noted C1,d the constants given by equation (2.2).
This proves that for any n € N,

m(P"f) < Cre™""m.(f)

We recall that we noted v the unique P—invariant borelian probability measure on X
(given by proposition 2.5).

Moreover, for any € X and any non zero integer n, we note v, the measure defined
by

[ ) = 18] [ 1prnaie @)

Then, for any function f € COW( ), we note

file) = [ P f@)dvity) and @) = P"f(a) = i (a)
Thus, for any =,y € X, we have that

3 (y) = my(f3)Dlam(X) < f3'(x) < f3'(y) + my(fy)Diam(X)
where we noted Diam(X) the diameter of X.
Therefore, integrating in the y variable and using the fact that [y f3'(y)dvs(y) = 0,
we get that
1/2'lloc < Diam(X)7m.(f3') = Diam(X)7m. (P" f)
And as,
P f(x) = P"(P"f)(x) = P"(f + f)(x) = P"f§(x) + P" f}'(x)
we also get that

PP = [ fedvate

<N+ [P0~ [ F@)dvala
< Diam(X)YCre " m, (f) + Cae ™A™ || P" f7]
< (Diam(X) Cre " + Cae ") | ],
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Finally, using Fubini’s lemma, we obtain that
[ sr@aat@ = [ )
A X
This last equality ends the proof of the lemma since we also have that

my(P"f) < Cre™""m(f)
And so,

szn o / Jav|| < (CCre " 4 Cre 1 Ope A | £
.

So we note x = 3 min(8, ka) and Cp = (1+ C)C; + 1. O

2.1.2. Fibered contracting actions.
In this paragraph, we study the case where the space is only locally
contracted and we recover some results of the previous paragraph.

To study the action of SLy(R) on the sphere and not only on the projective space, the
notion of contractivity of the action is not enough (since the sphere isn’t contracted as
x and —x stays at fixed distance). However, this is the only obstruction since if we note
f the application on the sphere that sends any point x onto —x, then it commutes to
the action of G and so, noting H = {I, 0}, we have the identification S¥~!/H ~ P? and
the projective space is (p,7y, M, N)—contracted (if p has an exponential moment and is
strongly irreducible and proximal) as we already noted in example 2.4.

This is why, from now on, we will consider compact metric G—spaces (X, d) endowed
with an action of a finite group H that commutes to the action of G and such that the
quotient (endowed with it’s quotient metric) is contracted. To simplify the lecture, the

reader may keep G = SLyg(R), X = S~ H = {I;,0} and X/H = P%.

Our first step is then to recover an equivalent of lemma 2.5 and proposition 2.7.
To do so, we will use the following

Theorem 2.10 (Tonescu-Tulcea and Marinescu in [ITM50]). Let (B, || .||s) be a Banach
space and P a continuous operator on B.

Assume there is a norm ||.|| on B such that the identity map between the spaces
(B, .l5) and (B,||.]|) is compact and that there are two constants r, R € Ry such that
for any f € B,

I1Pflls <rllflls + BRI
Then, the essential spectral radius of P in (B,||.||s) is bounded by r.

Example 2.11. In our examples, (B, ]|.||g) will be a space of hélder-continuous func-
tions endowed with it’s Banach-space norm and ||. || will be the uniform norm.

Proposition 2.12. Let G be a second countable locally compact group, N : G — [1, +o0[
a submultiplicative function on G and p a borelian probability measure on G.

Let (X,d) be a compact metric G—space endowed with an action of a finite group H
that commutes to the one of G and such that X/H is (p,~y, M, N)—contracted over a
finite G—set A.
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Then, there are C',8' € R* such that for any f € C%V(X) and any n € N,

ma (P"f) < C' (7 my (f) + |1/l )

In particular, P est is equicontinuous on C°(X) and it’s spectral radius in C%V(X) is
strictly smaller than 1.

Proof. We do not prove this result here but later, in lemma 4.6 when the operator is
perturbated by a cocycle. O

Finally, we study the eigenvalues of P in C°(X) having modulus 1. To do so, we begin
by studying the P—invariant borelian probability measures and then, we will see that,
contrary to what happened when the space was contracted, there can be eigenvalues of
modulus 1 and different from 1 and even non constant P—invariant functions.

This study will allow us to understand why we have to make an assumption about a
cone being fixed or not in the renewal theorem.

Lemma 2.13. Let G be a second countable locally compact group, N : G — [1,+00[ a
submultiplicative function on G and p a borelian probability measure on G.

Let (X,d) be a compact metric G—space endowed with an action of a finite group H
that commutes to the G—action and such that X/H is (p,~v, M, N)—contracted over a
finite G—set A on which the random walk defined by p is irreducible and aperiodic.

Then, there are at most |H| minimal closed invariant subsets (for the action of T,
the subsemigroup generated by the support of p) that we note Ay,...,A.. Each one is
associated to a P—invariant P—ergodic borelian probability measure v; with suppv; = A;.

Moreover, for any x € X and p®N—a.e. (g,) € GN, the sequence

1 n—1
L SLA
k=0

converges to one of the v; and if we note, fori € [1,r],

we have that the function p; is continuous, P—invariant, Y ,p; = 1, p; = d;j on A;
(where 6; j Kronecker’s symbol).
Finally, for any continuous function f on X and any x € X,

Proof. Let A be a minimal closed invariant subset (there is at least one since X is
compact) and let h € H. Then, hA is still a closed invariant subset since the actions of
G and H commute. Moreover, it is also minimal since h is invertible.

This proves that, HA is again a closed P—invariant subset. But this time, it is
also H—invariant and so g (HA) is an invariant subset of P seen as an operator on
C%7(X/H). But this closed invariant subset is unique since P is contracting on X/H
and the random walk on A defined by p is irreducible and aperiodic (see proposition 2.5).
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This proves that HA is unique and that there are at most |H| minimal closed invariant
subsets and that H acts transitively on them. We note them Aq,..., A, and we note A
their union.

We saw in proposition 2.12 that P is equicontinuous and using the propositions 3.2
and 3.3 of [Rau92|, we get that there are at most r continuous P—invariant functions
p1, ... pr forming a free family, and as each one is constant on A;, we can always assume
that p; = d; ; on A;. Thus, noting v; the P—invariant measure on A;, we have that for
any continuous function f € C°%(X),

n—1 r
1
lim — k = ; ;
im0 =3 one) [ s
k=0 =1
To conclude, we only need to check that p; really is the function we defined.

First of all, the fact that for any x € X, % Zz;é 0gy...q1z coOnverges a.e. to an ergodic
measure depending continuously on x is a consequence of the equicontinuity of P and of
the propositions of Raugi that we already used.

The fact that the function p; that we defined is P—invariant also comes from these
propositions (see also equality 2.11 in [BQ14]). So we can conclude using the unicity of
these functions p1,...,p:. O

2.1.3. Lazy random walk. Let G be a topological group. If p is a borelian probability
measure on G, we will have to introduce the lazy random walk associated to p : this is
the walk associated to the measure

1 1
2. = 6.+ =
( 3) Pe 50 2/0

The main interest of this measure is that the sequence (supp pg")nen is non decreasing.
Moreover, for any A € C,

1
Ma = Py, = 5((2A = 1)1a — Fp)

and so the spectral values of P,, and the ones of P, are linked (in particular, for A =1,
we get that Iy — Py, = 2(I; — P,)).
The following lemma proves that this measure keeps other properties of p.

Lemma 2.14. Let G be a second countable locally compact group and p a borelian
probability measure on G.

Let (X,d) be a compact metric G—space endowed with an action of a finite group H
that commutes to the G—action and such that X/H is (p,~v, M, N)—contracted over a
finite G—set A.

Then, X/H s also (pe,7y, M, N)—contracted over A.

Proof. 1t is clear that the first two properties are satisfied by pe.
Moreover, for any n € N, we have that

1 < /n
¥ *k
P’ = o (k)p
k=0
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And so, for any x,y € X such that x # y and wa(x) = ma(y) and any n € N, we have

that
d(gz,99)" o o L~ (0 [ dlgz,9y)7 |
/c; Ay )= 2",;)<k>/c A,y

1 < (n 5k 14e0\"
FEQerea()

k=0

In the same way, we prove the following

Lemma 2.15. Let G be a second countable locally compact group and p a borelian
probability measure on G.
Let (B, || .||B) be a Banach space and r : G — GL(B) a representation of G such that
GxB — B
(9:0) = r(g)b
We note P, the operator b— [5r(g)(b)dp(g).
We assume that there is an operator Ny on B and C,k € R such that for any n € N,
[Py — Nollg < Ce™"".
Then, for any n € N,

is continuous and [g ||r(g)||dp(g) is finite.

14+e"\"
172 = Nl < © (5—)

where P, s the operator associated to pe = %5(3 + % p.

2.1.4. Perturbations of Markov operators by cocycles. In this paragraph, G still is a
second countable locally compact group acting on a compact metric G—space (X,d)
that fibers G—equivariantly over a finite G—set A and p a borelian probability measure
on G.

We are going to study a kind of perturbation of the Markov operator associated to p.
To do so, we make the following

Definition 2.16 (Cocycles). Let G be a topological group and X a topological space
endowed with a continuous action of G.
We say that a continuous function ¢ : G x X — R is a cocycle if for any g1,90 € G
and any x € X,
o(g291, %) = 0(g2, g12) + (g1, @)
Among the cocycles, we call coboundaries the ones given by o(g,z) = ¢(gx) — ¢(x)
where ¢ : X — R is a continuous function.

Remark 2.17. Let o be a cocycle. Then, the operator defined for any f € C%(X) and
any « € X by
P(i)f(a) = [ 70 (ga)dp(o)
G
is continuous on C°(X) and for any f € C%(X), any z € X and any n € N, we have that

Pr(it) f(x) =/ e~ 179 f(ga)dp*™ (9) and [|P(it)" flloo < || flloo

G

It is to have this equation that we only study cocycles and not more general functions
on G x X.
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As wa are going to study contracting actions (and thus holder-continuous functions)
we want conditions that guarantee that P(it) preserves the space of holder-continuous
functions on X.

For a cocycle ¢ and g € G, we note

lo(g,z) —a(g,9)|

osup(g) = sup |o(g,x)| and or;,(9) = sup
sup(9) xex\ (g, )] p(9) b i)
TA(x)=TA (Y
TH#Y

Then, for any z,y € X with x # y and 7a(z) = A (y),

V=1 |g—ito(gx) _ —ito(g,y)

NN

So, for any g € G, if opip(g) is finite, then the function (z — e~ "7(9:7)) is holder-
continuous.
We note, for M € R,

) oLip(9) eosur(9) .
ZM(X) = { o is a cocycle|sup ~—2-22 and sup are finite
N { geG N(Q)M geG N(g)M
and, for o € Z¥(X), we note
(2.4) [o] sup OLip(9) and [o] sup 7o)
. g = g prg S
M geG N(Q)M > geG N(Q)M

The following proposition is an extension to our context of corollary 3.21 of Guivarc’h
and Le Page in [GL12].

Proposition 2.18. Let G be a second countable locally compact group, N : G — [1, +o0[
a submultiplicative function on G and p a borelian probability measure on G.

Let (X,d) be a compact metric G—space endowed with an action of a finite group H
that commutes to the one of G and such that X/H is (p,~9, M, N)—contracted over a
finite G—set A on which the random walk defined by p is irreducible and aperiodic.

Let o € ZM(X/H). Then there are C2,65 € R% such that for any t € R, any n € N
and any function f € C%7(X), we have that

me (P(it)f) < Ca (I lloo(1 + [¢]) + €% ms ()

In particular, the essential spectral radius of P(it) is smaller than e™°2.

Proof. Let f € C%7(X) and z,y € X such that # # y and 7a o ma(z) = 7a o TH(Y).
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For any n € N*, we have that

| P (it) f (x) —P"(it) f(y)] = ‘ /G e 707 f(gx) — e f(gy)dp* (g)

< [ 17(62) = £l dp™ () + e [ [e o) — o | ageri)

< ey (1) [ I qn(g)

+ 1 flloe2 Tt 0] d(, y)? / N (g)dp*"(g)
G

First of all, we note that as IV is submultiplicative, we have that

/N '\/Mdp*n </ N'\/M dp >

Moreover, since H is a finite group, there is dy € R% such that for any z,y € X, is
d(z,y) < do, then d(z,y) = d(mer(z), 7ea(y).

Thus, for any € € ]0,1] and any x,y € X such that 0 < d(z,y) < edp and Taomm(z) =
A o TH(Y), we have

In(z,y) : = /Gd(gw,gy)ydp*"(g)
= /G Li(ga,99)<do (97, 9Y)" + La(ge,gy)>do A9, gy) " dp™" (9)
:/Gld(gm,gy)gdod(gﬂ'HmagT"Hy)y+1d(gx,gy)>dod(gx7gy)ydp*n(g)
< Cre™™d(z,y)" +d(z,y) /G Li(gz,gy)>de M N (9)M7dp*™ (g)

< <0165" o [ 1MN<9)M>1/5N<g>dep*"<g>> d(z,y)"

Thus, if ng is such that Cye™%"0 < 1/4, as Jo N (9)"™Mdp*™(g) is finite, we can choose &
such that

/G Lygms1/eMTN(g)"™Mdp*™(g) < 1/4

And so, for this choice of € and ng, we have that for any z,y € X such that 0 < d(z,y) <
edy and ma o (x) = wA o TH(Y),

/ d(gz, gy)?dp*™ (g) < %d(ﬂc,y)'y
G

This proves that for any z,y € X with A o mg(x) = ma o 7a(y) and d(z,y) < edy and
any function f € C%(X),
[P (it) f (x) — P (it) £ (y)]|
d(z,y)”

< g (D + 12 ol ([ 5 a)de))
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But, as we also have, for x,y such that ma o mg(z) = A o (y) and d(x,y) > edy, that

[Pro(it) fz) = Pro(i) f(y)] _ 21/l
d(x,y)7 = (edo)

we get that for any function f € C%(X),
o (i) ) < e (1) -+ (s + 271 ([ N @00} ) 1

If we simplify the notations, what we just proves is that there is ng € N* and a constant
C € R, (depending on ng) such that for any f € C%7(X),

my (P (it) f) < %mv(f) +CA+ DI flloo

Iterating this inequality, we find that there are constants Ca,d2 € R* such that for any
n € N and any f € C%(X),

o (PP(it) ) < G (€% ma (F) + (1 -+ [£)]1f 1)

This proves, using theorem 2.10 that P(it) has an essential spectral radius smaller than
e~% and that it is equicontinuous. ]

2.1.5. Lower regularity of measures on metric spaces. Guivarc’h proved (cf. [BL85]) that
if p is a strongly irreducible and proximal borelian probability measure on SL4(R) having
an exponential moment, then there is a unique P—invariant probability measure v on
P(R?). Moreover, there are AT, C € RY such that for any = € P(RY) and any r € Ry,

v(B(z,r)) < crd’

(we refer to the chapter 12 in [BQ15] for a proof of this result).

This property of upper regularity of the measure means that v is not two much
concentrated at neighbourhood of points in the projective space : if, for instance, it had
an atom zy we would have that for any At € R% | lim,_,o+ v(B(zg,7))/r™+ = +o0.

Here, we will have to use the lower regularity of the measure v : at many steps we
will have to use the fact that the measure of a ball of radius r is polynomial in r. To
study this, we make the following

Definition 2.19. Let (X,d) be a compact metric space and v a borelian probability
measure on X.

Let A€ Ry and t,r € R}

We say that a point z € X is (A, t) — v—regular at scale r if

v(B(z,r)) > tr®
In the same way, we will say that a point is (A, ) — v—regular at any scale if

v(B)

inf iy >

re]0,1]

Finally, we say that a point of X is A — v—regular at scale r if it is (A, 1) — v-regular at
scale r.
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Remark 2.20. If X has an Hausdorff dimension smaller than A then we have (cf. [Rud87])
that

v U {z € X|z is (A,t) — v — regular at any scale} | =1
teR”

Sometimes, if g : X — Xj is a covering and v is a probability measure on Xg, we
will say that z € X is A — v-regular at scale r if my(z) is.

2.1.6. Isotypic decomposition.
In this paragraph, we recall the isotypic decomposition that generalizes
the decomposition of function on R between even and odd parts.

Let H be a finite group. For an irreducible unitary representation { = (p, V) of H, we
endow End(V) of the Hilbert-Schmidt inner product defined for any A, B € End(V) by

(A, B = trA*B

We note |.|gg the corresponding norm.

Let (X, d) be a compact metric space endowed with an action by isometries of H (this
implies in particular that H preserves the space of holder-continuous functions on X).

The action of H on X gives a representation of H in C°(X) defined for any h € H,
f€C%X) and z € X by

-1
po(h)f(x) = f(h™ x)

We note H a set of representatives of unitary irreducible representations of H up to

isomorphism. This is a finite set.
For £ = (p,V) € H, f € C°(X) and = € X, we note

(2.5) f@@(mvthx<>

’ heH
Then, we have (see theorem 8 in [Ser78|) that for any = € X,
(2.6) flx) = trf(x,€)
¢eH

However, wee will need the following relation : for any = € X and any h € H,

~

NMS(MVZf B L)) = T, €)p(h)*

h'eH

Thus, for any f € C%(X), any = € X, any £ € H and any h € H, we have that
F(he,O)lns = F(x.€)|ns

and the function (z — |f(z,&)|ns) can be identified to a continuous function on X /H.
The norm | . | zs allows us to define a uniform norm on bounded functions on X taking
their values in End(V) : we note, for such a function f,

[flloc = sup |f(z)|ms
zeX
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In the same way, we can define holder-continuous functions from X to End(V) and note
Cg”(X,End(V)) = {f € C"(X,End(V¢))|Vz € XVh € H f(ha) = f(z)p(h)*}
(To simplify notations, we will simply note this space C?’V(X) and sometimes C? 7.
We now have the following
Lemma 2.21. Let H be a group acting by isometries on a compact metric space (X, d).
Then, the space C%(X) injects into ngﬁ C?’V(X, End(V)). Moreover, for any§ € H,
the projection onto C?’V(X) is given by equation (2.5) and the reciproqual application is
given by equation (2.6).
2.2. Control of the resolvant of the perturbated operator.

2.2.1. Statement of the proposition.

We are now ready to state proposition 2.22, aim of this section.

We keep the notations of the previous part.

Let 0 : G x X — R be an H—invariant cocycle. We note, for t € R, P(it) (or
sometimes P,(it) to insist on the measure p) the operator defined for any continuous
function f on X and any z in X, by

P(it)f (x) = /G e 1702) £ (gz)dp(g)

If pe = 166 + 3p, we simply note Pe(it) = P,,(it) the operator associated to the lazy
random walk.
Finally, we define

[U]NI = Sup sup ‘O’(g, 1‘) — O’(g, y)’

geG  zyeX N(g)Md(x7 y)
Ty
7a(z)=mA(y)

We saw in paragraph 2.1.4 that if [o],, is finite and if (g — N(g)M7) is p—integrable
then P(it) preserves the space of y—holder-continuous functions on X.

The aim of this section is to study the properties of P(it) and to connect them to
the ones of P. A first example is when =% is a coboundary : e~ 7(9:%) = ¢ (gz)p(z)~"
where ¢ is a y—Holder continuous function taking it’s values in U, the set of complex
numbers of modulus 1. Indeed, in this case, P(it) is conjugated to P by the operator of
multiplication by ¢ and so, these two operators have the same spectral properties. In

particular, the operator P(it) has the eigenvalue 1 and an associated eigenvector is ¢!

We are going to see that we can have a partial reciprocal statement : the proposition
proves that if I; — P(it) is not well invertible (the norm of it’s inverse is large) then e~%°
is close to a coboundary.

Proposition 2.22. Let G be a second countable locally compact group, N : G — [1,+o0[
a submultiplicative function on G and p a borelian probability measure on G.

Let (X,d) be a compact metric G—space endowed with an action by isometries of
a finite group H that commutes to the G—action and such that the space X/H is
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(p,7v, M, N)—contracted over a finite G—set A on which the random walk defined by
p s irreducible and aperiodic. We fix a class of representatives of unitary irreducible
representations of H up to isomorphism.

Let v be the unique P—invariant borelian probability measure on X/H (see proposi-
tion 2.5).

Then, for any v > 0 small enough, any o1, 3 € R, there is ap € R, such that for
any A € Ry such that there is a point x € X/H that is A — v-regular at scale 272 (see
definition 2.19) we have that there are L,C € Ry such that for any t € R with |t| > 2,
we have that if

I(Za ~ P eonx) > Clel*

then there is ¢ € H and a function f € Cg’V(X) with || flleec < 1 and m(f) < C|t| such

that for any point x in X whose projection on X/H is A — v-regular at scale |t|~2

have that

, we

1
F@)las > 5
and ) )
—ito(g,z) _ *1 (1) <
e ptan) s a0 ) < o

where we noted

n(f,t) = [Bnt[]
and pe 1s the measure associated to the lazy random walk (see paragraph 2.1.3).
Remark 2.23. Note that in the conclusion of the proposition, it really is the measure

pe that is used and not the measure p itself. This won’t change anything in our study
study since their supports generate the same subgroup of G

Remark 2.24. We would want to take p(zx) = \/dilTVtr f(z) since this will give the

following inequality :

—ito(g,x 2 *n(S3, 1
/G ‘e 092) o(gz) — p(x)| dps" P (g) < o

And so, if ¢ didn’t vanish on X, the theorem would imply that e™*? were close to the
coboundary ¢(z)¢(gr)~!. However, our control on |f(z)|gs doesn’t give any control on

()]

2.2.2. Proof of the proposition. The proof relies on lemmas that are adapted from the
ones of Dolgopyat for Ruelle operators.

ito

The first difficulty comes from the fact that the space is only locally contracted over A.
To solve it, we are going to use the isotypic decomposition that we saw in lemma 2.21 and
the fact that G preserves this decomposition since it’s action and the H—one commutes.
Moreover, we also assumed that ¢ is H—invariant and so, we can study the operator
P(it) in each Cg’y(X).

One also has to remark that there is an equivalent to proposition 2.18 in the space
CoN(X).

Proposition 2.18 suggests that we should renormalise the norm in C%7(X) to study
P(it). This is why, we make the following
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Notation. Under the assumption of proposition 2.22; we note C> the constant given by
proposition 2.18 (we can assume without any loss of generality that Co > 1).

Let t € R with |t| > 2. Then, for any f € C%?(X), we note

f
Iy = o (11 524 )

In the same way, we define the norm || . || for functions in C?’V(X).

Remark that for any f € C%7(X),

1Al < ILFlly < (04 2C[t) [ flle)

So (C%7(X), | .]ly) and (C*7(X),]|. l(¢)) are isomorphic as Banach spaces. Moreover,
P(it) is better controlled with |[|. || as shown by next

Lemma 2.25. Under the assumptions of proposition 2.22, for any t € R with |t| > 2
and any n € N,

[1P(it)" ||y < 2C2
Remark 2.26. This lemma still holds in Cg’fy(X).

Proof. Let f € C% such that [Iflle) < 1. According to proposition 2.18, for any n € N,
we have that

my (P (it)f) _ 1 < -5 —26
—— < — (1 t 205t 2”) <1+C L 20
2051 o0 + |t + 2Cs|tle + Cae 2

Moreover, we still have that
[P(i)" flloo < [[flloc <1

and so,
[P (it) ]| < 2C2
Which is what we intended to prove. ]

For as, A, o and £ fixed, we are going to study the assumption

For any f € C?’V(X) with || f||;) < 1, there are 29 € X which is A —v-
regular at scale [t|~*2 and n € [0, |5 1n|¢]|] such that

| Pe(it)" f(z0)|us <1

H(al’ﬁ’g) :

e

Lemma 2.27. Under the assumptions of proposition 2.22, for any a1, 3 € R there is
ag € R% such that for any A € RY, there are o}, C, such that for any t € R with [t| > 2

and any & € ﬁ, we have that if the assumption H(ay, ,§) is true, then

10 = P(it)) " leor(x) < Ot
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Proof. Let € € H and f € C?’A’(X) with || fle < 1.
By assumption, there are n € [0,n(3,|t|)] and a point o € X whose projection on
X/H is A — v-regular at scale |t|~*2 such that

P2(it) f (o) s <1 —

e

We are going to prove in a first step that this control at some point xy can be extended
to a control of the uniform norm of P[*(it)f for some m and then that this implies the
expected result.

First of all, using the triangular inequality, we have that for any m,n € N with m > n
and any x € X,

[P (it) f () ns = ‘/ e17l9) Py (it)" f (gx)dpe™ " (9)
¢ Hs

é/ | P (it) f(g2) s dpg™ " (g9) = P" | Pe'(it) flms (x)
G

Moreover, since o is H—invariant and the action of H and G commutes, we also have,
by definition of Cg’V(X), that for any m € N, the function |P["*(it) f|gs is H—invariant
(cf. lemma 2.21). So, it passes to a function on X/H and we get, using proposition 2.7,
that

P\ PR (it) f(g2) s () < /

o | P2 (it) f ()| msdv(y) + CoCae ™" || P2 (it) f |,

Moreover, using lemma 2.25, the assumption on || f||(;) and the fact that C > 1, we can
compute

IPZ () Flly = P20 lloo + ma (P2 F) < 1+ Co (L4 )] f oo + €0 ms (1))
< 1+ Co(2t] + 2e7%2"Cyt])
< 5C3t]
Then, as n < Bln [t|, we also have that
M| < emﬁln\t”t‘ < ]t]”ﬁ"

And so, we get that for any m € N larger than §ln |¢t| and any z € X,
(Puit)™ ()15 < /X AU IORE STeNe
Moreover, if Z is a borelian subset of X/H and Mgz = sup,cz | P2 (it) f(x)|ns, then,
[ PR Wlrsv(s) < Mgw(2) 4020 <1+ (Mg~ 1012

Taking Z = B(mw(zo), ) where we noted 7 = (1/(10C3[t|*1+1))Y/7, we get that
sup | Pe (i) f(@)ls < [Pe' (i) f (mua(z0))l s + 1P (i8) fll d(, maa (o))
Te

1
2t

<1 +5C3|t]rT =1 —

e
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Taking now a large enough so that [t|7%2 < (1/(5C3[t|*1+ 1)1/, we get that |t|~*2 < r
and so, as xg is A — v—regular at scale [t|72,
v(Z) > |t]7*2%

and so,
n(. 1
/X/H |Pe(it) f (y) | msdv(y) <1 — W

To sum-up, we found that for any m € N larger than Sln |¢|,

. 1 _
(2.7) [ Po(it)™ flloo < 1 Sl + 5CHC A C2e™ |t |15k

2|t
To simplify notations, let ag = a3 + asA.
Let m = Kn(p,|t|) for some K that we will choose later, then
1
- 2ftes
and so, for K large enough (recall that |t| > 2), we get that
1
~ 4ftes
Moreover, for [ € N larger than m, using proposition 2.18, we find that

s (PO < P Gn) s +
1 1

4|t|a3 + 2|t|e | | 2| |

| P2 (it) || oo < 1 + 4(]00220A’t’1+ﬁn—1(55

1Pe" (it) flloo < 1

L —4(l—m) m(;
2‘t‘e m’Y(Pe (Zt)f)

2 811, |KBS
<1l- b +2C5e” 1]
So, taking | = Lm = K Ln(f, |t|), where L € N is large enough, we get that
1

—m (PGt F) <1 —

202|t|mv( e(Z )f) 8|t|a3
But, as we also have that

. ) 1

P e < 128l € 1= o

what we proved is that under the assumptions of the theorem, is H(a1, £, ) is true, then
for any f € CP7(X) with ||£]|¢ < 1,

1
8t[*s

1PE(it) fllry < 1

And so, in Cg’v(X),
(72 = Pe(it) My < 8[|
Moreover, as
-1
1
(Io = Pe(it)) ' = Po(it)*(Iq — Pe(it)') ™" and 50~ P(it))™! = 2(I; — Pe(it)) ™",
k=0
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we can compute

(I — P(it) Xy S QZHPk (it) || |(Za — Pe(it)) ") < 2C518b°3

Finally, we recall that for any f € CO’V(X),

ey < Il < (42D fll ey
and this proves that, in C?’V(X)

1(Za = P(it)~Hly < (1+ 2C2[t])16C: [t 7221

And as [ is bounded by the product of In|t| and some constant, we get the expected
result for o > 1 + as. dJ

We saw in lemma 2.27 what happens if, under the assumptions of proposition 2.22,
for any hoélder-continuous function f on X there is a point xg and an integer n such that
| P2 (it) f (zo)|ms is far from 1. We are now going to study the other alternative : the
case where there is a function f such that for any x € X, |PZ(it) f(z)|us stays close to
1 for many values of n.

To explain how this works, we begin with the extreme case where we have that
|f(x)| and |Pe(it) f(z)| are not only close to 1 but we even have that for any x € X,
|Pe(it) f(z)| = |f(x)| = 1. Then, for any = € X, Po(it) f(x) is an average of complex
numbers of modulus 1 and so, for any = € X and pe—a.e. g € G,

(28) e 100 f(ga) = Pe(it) f ()
In particular, since by definition pe(e) > 0, we get that for any x € X,
(@) = e ") f(x) = Po(it) f (v)
This proves that for any « € X and pe—a.e. g € G,
efito(g,m) _ f(x)
flgz)
ito

and so, e " is a coboundary.

We quantify this argument in next

Lemma 2.28. Under the assumptions of proposition 2.22.
Let § € H, f € C27(X) with ||fllo <1, x € X and L € N*.
Let s be such that 1 — s < |f(x)|us, |PX(it)f(x)|gs, then we have that

. 2
170 f(ga) — f(x)| | _dpeF(g) < 2P

G

Proof. Expending the following expression, we can compute
—ito(g,x) Ly; 2 * L
e~700) f(ga) — PEGt) ()] | _dpit(g)

= Py'|flirs(@) + [P (it) f () [irs — 2 P’ (it) f (2) s
1= [P (it) f(2)lFs < 25

I(x): =
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Thus,
* . 2 —ito(g,x . 2 *
pe (@) £ (@) = Pe(it)f (@) g < /G 70 f(ga) — PN f(a)| | dpiF(g) <28
This proves, using the fact that pe(e) > 1/2, that

|f(x) = PE(it) f (2)| g < V2EHs

And so, the triangular inequality proves that,

(U

And this finishes the proof of the lemma. O

2

1/2
e 10N fgr) — f(@)], e (9) ) < V() + [ f@) = Pt f(2)] s
HS

< V25 + VoLtls < V/oL+3g

Lemma 2.29. Under the assumptions of proposition 2.22.

For any a1, 3 there is ag such that for any A there are o, ' such that for any o € ZM,
and any & € H, is the assumption H(a4, f,€) is false then there is f € Cg’fy(X) with
I fll¢ry < 1 such that for any x € X whose projection on X/H is A — v-reqular at scale
|t|=*2, we have that

1
>1—-—
‘f(x)‘HS ’t’al
and
[ | ptgo) — @), ant @) < o
G HS ° =t

Proof. Fix o, ag, 3, A and take o) € R% large (we will precise this later in the proof).
If the assumption H(a/, 8, ) is not satisfied, then there is f € Cg’W(X) with || f[¢) <1
such that for any n € [0,n(8,t)] and any x € X that is A — v-regular at scale |t|7%2,

. 1
[Pe(it)" f(z)las 21— e
Using the previous lemma, we get that
2n(6,t)+3 8

2
—ito(g,x) _ d *n(B,t) < <
/G‘e flgz) — f(z) HS Pe = |t|°"1 = |t|o¢’1—61n2

And this proves the lemma if we take of > S1n2 + a1 + 3 since we have by assumption
that [t| > 2. O

Lemmas 2.27 and 2.29 prove proposition 2.22.
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3. DIOPHANTINE PROPERTIES IN LINEAR GROUPS

In this section, we prove that the logarithms of the spectral radii of
elements of strongly irreducible and proximal subgroups of SL4(R) have
good diophantine properties.

We also prove a property of lower regularity of the stationary measure
on the projective space by showing that it is lower regular at fixed
points of proximal elements.

This will allow us, in theorem 3.1, to control the operator P(it) defined
in section 2 and that appears in the study of the renewal theorem in
section 4.

In SL4(R), the application mapping a matrix to it’s spectral radius is not a group
morphism (for d > 2).

In a Zariski-dense subgroup I" of SL4(R), we can construct sequences of elements (g,,)
and (hy,) for which we have a good control of the difference between the logarithm of
the spectral radius of g,h, and the sum of the ones of g, and h, (see [Qui05]). In
particular, this proves that the logarithms of the spectral radii of proximal elements of
a Zariski-dense subgroup of SL;(R) generate a dense subgroup of R.

In this section, we quantify this construction to prove a technical result that will allow
us to check the assumption of proposition 2.22 and to prove theorem 3.1 that gives a
control of the resolvent of the pertubated operator.

More specifically, studying the renewal in R (see [Car83] and the beginning of sec-
tion 2), we see that the rate of convergence depends on a diophantine condition on the
measure and we are about to prove that it’s equivalent in SLy(R) is always satisfied
for measures having an exponential moment and whose support generate a strongly
irreducible and proximal subgroup. This will be the

Proposition (3.19). Let p be a strongly irreducible and prozimal borelian probability
measure on G := SL4(R) having an exponential moment.
Then, there are o, B € R and p € N* such that

lim inf \b\a/

b—+o0 G

where we noted \1(g) the logarithm of the spectral radius of g and
n(f,b) = [51n]b[]

We recall that an element g of SL4(R) is said to be proximal if it has a locally attractive
fixed point in P(R?).

eibA(g) _ 1‘2 dp B0 (g) > 0

We will prove the genericness of the lower regular points for the stationary measure
on the projective space, other condition that we used in the study of the perturbated
operator, in the

Corollary (3.11). Let p be a strongly irreducible and proximal borelian probability mea-
sure on SLg(R) having an exponential moment.

Let v be the unique borelian probability measure on P(R?) (existence and uniqueness
of v are proved in proposition 2.5).
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Then, for any M € RY, there are ng € N, A € R and t € R such that for any n € N
with n > ng,

p*" ({g € Gl|g is prozimal and v (B (V;r,e_M")) > e—AMn}) >1—e

where Vg+ is the locally attractive fized point of g in P(R?) and we endowed P(R?) with
the usual distance (see equation (3.1)).

These two results will allow us to prove the next

Théoréme 3.1. Let p be a borelian probability measure on SLy(R) having an exponential
moment and whose support generates a strongly irreducible and proximal subgroup I'.
Let (A,va) be a finite T'—set endowed with the uniform probability measure and as-
sume that the random walk on A defined by p is irreducible and aperiodic.
Let o : T x S% 1 x A — R be the cocycle defined for any g €T, z € S* 1 and a € A,

by

and let, for any t € R, P(it) be the operator defined on C°(S¥1 x A) by

P(it)f(z,a) = /G ¢~7@@D) f(gz. ga)dp(g)

Then, for any v > 0 small enough and any ty € RY, there are C, L € Ry such that for
any t € R with [t| > to,

1(Za = P(it)) " llcon (ga-1a) < CIH"

Proof. This is a direct use of lemma 3.12 and of proposition 3.19 that we can apply (with
the measure pe = %69 + %p) thanks to lemma 3.1 and lemma 3.7 (remark that we can
assume without any loss of generality that p = 1 since it just changes P(it) into PP(it)
and a control of (I; — PP(it))~! gives a control of (I — P(it))~! as we already saw in
the proof of lemma 2.27). O

3.1. Notations and preliminaries.

We first fix the notations that we will use in this section.

3.1.1. Prozimal elements of SLg(R). Let (V,||.]]) be a finite dimensional R—vector space
endowed with an euclidian norm and an orthonormal basis (eq,...,eq).

We define a distance on P(V) setting, for any X = Rz, Y = Ry € P(V),
[z Ayl
(3.1) d(X,Y) =
[l [[{ly ]

where we extended the scalar product of V to A2V asking the basis (e; A ej)i<i<j<i to
be orthonormal.

We also define a pairing between P(V) and P(V*), setting, for X = Rz € V and
Y =Rp € V¥,

5x,v) = LPOL e ax v
lellllzl]  yrey+

where Y1 = {Y' =Ry € Y|p(y') = 0}.
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We refer to the chapter 9 in [BQ15] for a proof of the next lemma that shows that we
really are in the context developed in section 2.

Lemma 3.1. For any g € G and any X,Y € P(RY),

d(9X. gY) < [lgl/**d(X,Y)
Moreover, there is C € R such that for any X,Y € P(RY) and any g € G,
where we noted, for X = Rx € P(RY) and g € G,

gz
Ja

So, with the notations of the previous section, we have that o € Z§(P(R?)) where we
noted N(g) = |lgl-

An element g of SL(V) is said to be prozimal if it has a locally attractive fixed point
in P(V). Equivalently, a proximal element is one having a unique eigenvalue of maximal
modulus and whose eigenspace is a line. In this case, this eigenvalue is real. We note
that g is proximal if and only if !g is proximal in V*.

If g is proximal, we note V;‘ € P(V) the space associated to it’s eigenvalue of maximal
modulus and Vg< € P(V*) the class defined by the g—invariant supplementary subspace
of Vng (or equivalently the locally attractive fixed point of tg in V*). In the sequel, we
will always note 1)3‘ a representative of Vg+ in V and g0g< a representative of Vg< in V*
and we will use these representatives in a way such that our formulas will not depend
on their choices.

For any g € G, we note A1(g),...,Aq¢(g) the logarithms of the eigenvalues of g sorted
in decreasing order and counted with multiplicities. So, g is proximal if and only if
A1(g) > A2(g). Moreover, if g is proximal, we have by definition that gv} = £1(g)eM@vf
for some €1(g) € {£1}.

For an element g € SL(V), we choose a Cartan decomposition g = kqa,4ly. This means
that kg,l; € O(V) and a4 is a diagonal matrix :

(g, X) =1

k1(9) 0
ag =
0 ra(9)
where the k;(g) are the singular values of g, and satisfy k1(g) > -+ > k4(g) and are
given by A
(]
0= Ry

where we noted A’g the endomorphism defined by the action of g in /\Z V endowed with
the scalar product induced by the one of V : this means that

Alg(og A--- Avg) = (gu1) A--- A (gug)
Moreover, we note
ralg) _ A% gll
kilg)  llgl?

K12(9) =
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Finally, for an element g € G and a choice of a Cartan decomposition g = kgjayl,, we
note
M M M
z, =kger, X, =Raxg, y)'= tlge’{ and Y;" = Ry,"

Lemma 3.2. Let V = R? endowed with an euclidian norm, g an element of SL(V),
X =Rz eP(V) and Y =Ry € P(V*).

Then,
(1)
my gzl m
(2)
M ‘gl M
5(Xg 7Y) < < 5(Xg 7Y) + "il,Z(g)
lgllllel
(3)

d(gX, X 16X, Y") < k12(9)

Proof. As the norm is supposed to be euclidian, we can assume without any loss of
generality that g is the diagonal matrix (k1(g),...,kq(g)). We write x = 1 + xo with
x1 € Vect(er) and o € Vect(ea, ..., eq).
Then,
gr1 = k1(g)r1 and [lgza| < K2(g)|z2|l
And so, using the fact that x1(g) = ||g||, we get that

el _ Mgzl _ [l [[z2]|
< < + K12(9)
-~ llgllllzll [l [l
Finally,
w — d(X, Vect(es, ..., eq)) = 5(X, V")
xr

and this proves the first inequalities.
The second ones can be proved in the same way if we work in the dual space.
Finally, the last one comes from the fact that

lgza|l lza]l _ #2(9)
= S = r1,2(9) .
gl flzll #1(g)

In the sequel, we will have to control the Cartan decomposition of products of elements
of G. To do so, we will use the following

d(gX, X)")o(X, Y™

Lemma 3.3. Foranyp e N, p>2, anye €10,1/4], any g1,...,9p € G with k12(gi) <

g3, 5(X£]1\;[+1’Y9T) > 2 and 5(Xé‘i/[,YgT+l) > 2e, we have that

w12(91) - - K1,2(9p)

k1(gp- - 91) = P Ri(gp) - mign),  m12(gp- . g1) < “20-1)
and,
M M r1,2(9p) H1,2(91)
d(Xgp---gngp) < e d(Ygﬁ--gNYgT) < —
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Proof. According to lemma 3.2, we have that for any (g;) € GP and any = € R?\ {0},
noting X = Rz,
9p - - g1zl Z llgpllllgp—1-- - 12[|6(gp—1 - .. 1 X, Yy))
(9pll - - Mlgnllllzllo(gp—1 - - 21 X, Y1) . 6(X, Yl)

Moreover, taking = orthogonal to Y[, we have that for any [ € 1, pl,

VoWV

[+1
d(glfl s ng7 YQT) P TE

Indeed, this is true for [ = 1 by assumption and by induction, we have that for any
le [Lp - 1]7
Kk12(g1) < Ly < !

N 3 X &
d(glfl...ng,YgT) [+1 l+1

d(gr-. 1 X, X <

and so,
l [+2
a5 > ¢ (22 ) = e
This proves that
lgp---quzl _ p .
= 5 llopll - lgnlle”
[l 2™
and therefore,

P,
K1(gp---01) > 5" ha(gp) - ma(g1)

Moreover, using the sub-multiplicativity of the function k1ks and that /f172(g,~) < &3, we
find that

Ko(gp---91)k1(gp---g1) 4
< K1,2(91) - - - k1,29,
k1(gp ... g1)> p2e2(p—1) (91) (9»)

k12(gp---91) =

4
gﬁﬁp 1161,2(91))

Finally, still using lemma 3.2, we have that

P o,
5(X, ngg__gl) + /11,2(91,...91) > 581) 1

and so,
Pp1 4 pio Py 8 3
5(X, Ytq?..gl) = §€p — Fep = §€p (1 — F&
This proves that

d(gp - 1 X, X,/ <=
6(Xa Y;;Tgl) p 1- 863/]93

9p---91

And so,

d(XM XM) < p ’%172(910) 2 ’%172(917)

weon S ) S T e T T8 p)

< k12(9) [ P N 2e
€ p+1  p(l—83/p3)
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This proves the third inequality since for any ¢ € |0,1/4] and p > 2, W < ﬁ.

To get the control of d(YgTZ..gNYgT)? we do the same computations in the dual space.
O

Next lemma will allow us to, knowing the Cartan decomposition of an element g of
G, prove that it is proximal and have a control on VgﬂL and V:f.

Lemma 3.4. For any ¢ € ]0,1/4] and any element g in G, if k12(9) < €
5(Xéw, Y,") > 2¢ then g is prozimal and

K1,2(9) K1,2(9)
V", X" < =25, d(VyS Y < =
Moreover,
2K2(g
MO > s (G5O YF) et g < 22

Proof. The first three inequalities come from lemma 13.14 in [BQ15].
To prove that the norm of g restricted to Vg< is controlled by k2(g), we remark that,

according to lemma 3.2, for any z € R?\ {0}, noting X = Rz, we have that

% < K1(9)5(X, Y™) + a(g)

But, for any X € V=, we have that

~—

K1,2(9
19

O(X,Yy") < d(Vy, Y <

This proves that for any = € V= \ {0},

And thus we get the last expected inequality. O

From now on, we note, for any g € SLyg(R) and X = Rx € P(R?),

(3.2) o(g,X) = IHM

kgl

Lemma 3.5. For any ¢ € |0,1/4], and any element g in G, if k12(g9) < €
d(XM,Y™) > 2, then we have that for any X € P(R?) with 6(X, V") > 2e,

4 and

X V) | mialy)

X)—A —1 <

o3
Moreover, for any X,Y € P(RY) with §(X,V,),0(Y,V,~) > 2, we have that

H1,2(g)
4et

d(gX,gY) <
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Proof. Note v, oy such that V" = Rv) and V= = Ry
Then, according to the previous lemma,

+ 1< ’fl,Q(g) 2 3
(V" )>2€_QT >2e(l—¢%) > €
For any = € R?, we can write
A B
vy (vg) * vy (vg) ?

and so, as gv;' = el(g)ekl(g)v;, we get

pg(z) | pg(z) |
gr = al(g)e)‘l(g)iv +gl|lx— v
w5 (vg) ! i (vg) !

<
But, x — 22 (z) vz{ € Vg< and so, according to lemma 3.4,

5 (vg)
oy (@) w2(g) vy (@) Ll _ r2(g) 2|l

I\ <o 9 IS "2 T o<(oh) 9 e S(Vr V<
Pg (vg ) ‘Pg(vg) 7

Thus, if x # 0,
§(X, VS §(X, VS
20 28 4y Mol g SEVE) g

5(Vg", V) ] o(Vy", V)

with

V) <x_ o5 (z)

_ d |ul| <
4T N @a(X, VIl (p;(v;)%) and ull < s ve

But, still using lemma 3.4, we have that e*(9) > 2||g||e and so,

4ra(g) o _2m2(9)
MO§(X,VS)e — e26(X, V)

So, for X with §(X, V) > 2¢, we have that

k1,2(9)

ol < 212

<e

and

5(X,V.5)

’9

In(1 = flul]) < o(g,X) — Ai(g) — hlm

< In(1+ Jul])

and we get the expected result if we use that

lull < min (“1723(9) l)
€

2
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Finally, for any X,Y € P(RY) with §(X,V,<),8(Y,V, ) > 2¢

)

d(gX. gv) = 122 9@ A kil@ra@liallyll  kilg)rale) 400" Vi)

lozllllgyl — ~  lgzlllgyll = e 240 6(X,V,)6(Y, V)
< /‘61,2(9) ]
4et

3.1.2. Genericness of proximal elements. First, recall that if p is a borelian probability
measure on SLg(R) having a moment of order 1°, then, there are A1, ..., \s € R, called
Lyapunov exponents of p, such that A\; +--- 4+ Ay = 0 and for any i € [1,d],

1 .
Eln”/\lgn...ng—>)\1+---+)\ip®N—a.e.

Moreover, if the support of p generates a strongly irreducible and proximal subgroup,
then A1 > A2 (see [GR85]).

In the sequel, we will have to produce elements in the support of p*" having good
properties. To do so, we will use the following result which is proved in the chapter 12
of [BQ15].

Lemma 3.6. Let p be a borelian probability measure on SLy(R) having an exponential
moment and whose support generate a strongly irreducible and proximal subgroup. Then,
for any e € RY, there are t € RY. and ng € N such that for any n € N with n > ng, we

have that for any x € P(R?) and any y € P((RY)*),
< 5}) >1—e "

p*n<{g€G

P ({9 € Glo(m,yy") 22 "}) 21— ™

Vi € [1,d], '%m(g) — )\i

P ({gEG‘d 9z, T My g emiAz=e)n }) >1—e

P ({g € Glo@) y) = 2e7"}) > 1"
P ({o € G|5(gx,y) > 2"} 2 1—e
p*n ({g € G"(S T4 ,yg 5"}) >1-— e tn
Moreover, we have, with lemma 3.1, the

Lemma 3.7. Let p be a borelian probability measure on G having an exponential moment
and whose support generates a strongly irreducible and proximal subgroup of G. Note,
forg € G, N(g) = ||gl-

Then, there is v € R% such that P(RY) is (p,,2d, N)— contracted.

Proof. We refer to [BL85] for a proof of this result. O

GfG In||g|ldp(g) is finite.
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3.1.3. A regularity lemma for convolution powers of measures. In this paragraph, we
prove a technical lemma about regularity of powers of convolution of measures on SLy(R).
With the language we used in the previous section, this means that for a measure on
SL4(R) having an exponential moment, there is a parameter A such that for any n large
enough, any point of supp p*™ is A—regular at scale e~ /2" except on a set of exponentially
small measure.

Lemma 3.8. Let p be a borelian probability measure on SLy(R) having an exponential
moment.

Then, for any t1,ta € RY, there are ng € N and t3 € R such that for any n € N with
n = ng, we have that

P ({9 € Glp™ (B(g,e ™) = e ")) > 1—e "

Proof. Let e € R% be such that [ [|g]|*dp(g) is finite and fix a n € N. Using Markov’s
inequality we have that for any M € R,

7 ({g € Qllgll = Mn}) < eon / lglEdo™ (g (—EM / gl oy )

So, noting €, = {g € G|||gH < eMm}, we have that

o (05) < (e [ lalFanto))

Moreover, there is a constant C'(d) depending only on the dimension d and g1, ... gy, € (Zn
such that
L

0, C | Blgi,e"/2)
i=1

and L < C(d)eM+2)4*n Now, we note, for K € R*,

n={9€{9,. .. 9.}p"(Blg,e?"/2)) = e ¥} and Q, = | Blg,e "/2)
geGn

Then, for h € Q,, there is g € G,, such that d(g,h) < e 2"/2 and so,
B(h,e 2™) > B(g,e 2" /2)
and so,
P (B(h,e™™) = p (Blg,e2"/2)) = e
Finally, as p is a probability measure we have that
1=p™ (Qg) + o™ (Qy) + p™" (ﬁn \ Qn>
But, by definition,

C(B,00,) < Le
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And so, for any n € N,

pmmm>1—G%MLﬂW%mQ)—Lf“

> 1= (e [ alFapla)) — ClageKneirien
G

And this proves the lemma since we can choose K and M as large as we want. ([l

3.2. Regular points in the projective space.
In this paragraph, we study the lower regularity of the stationary mea-
sure on the projective space at fixed points of generic proximal ele-
ments.

In our study of the perturbation of Markov operators on compact spaces (section 2),
we used an assumption of lower regularity on the points we considered and it is time to
prove that this assumption holds for the walk on the projective space.

We remind that given a compact metric space (X, d) endowed with a borelian prob-
ability measure v, we say that a point x € X is A — v-regular at scale r where r € RY.
and A € Ry, if

v(B(z,r)) = r?
We are going to prove that for a strongly irreducible and proximal subgroup of SL4(R),
the fixed points of proximal elements are regular.

First of all, we have the following

Lemma 3.9. Let p be a borelian probability measure on G whose support generates a
strongly irreducible and proximal subsemigroup T),.
Then, there is a unique borelian P—invariant probability measure v on P(RY).
Moreover, for any proximal g € T,, we have that Vg+ € suppv.

Proof. Existence and unicity of v come from [GR85].

To prove the end of the lemma, note that for any proximal g € T}, there is X € suppv
such that X ¢ Vg<. Indeed, if not, we would have some proximal g € T}, such that
suppv C V;f but this is impossible since we assumed that 7T}, is strongly irreducible.

Moreover, for any proximal g € T, and any X ¢ Vg<7 we have that

gn X V;—
and, as suppv is closed and T),—invariant, this proves that Vng € supp V. O
We are now ready to prove the regularity of the stationary measure in the

Proposition 3.10. Let p be a strongly irreducible and prozimal borelian probability
measure on SLy(R), having an exponential moment.

Let v be the unique stationary borelian probability measure on P(RY).

Then, for any m € N* and any € € R’ small enough we have that for any g € G with
k12(9) <& and 5(XgM,Y;7m) > 2e, g is prozimal and

(™" (B(g,m)™

DO | —

v(B(Vy, (k12(9)/e")™) =
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where we noted

r= ﬂl(g)f(ler)m

Proof. Let ¢ €0,1/4] and g € G such that x12(g) < € and 5(X§4,ng) > 2e.
According to lemma 3.4, g is proximal. Moreover, using the p—stationarity of the
measure v we have that for any m € N,

VB 120" = [ L g (X(X)
/ / e a(ayey (BX)AF ™ () A (X)
_ /X mn ((hhX € BV, mia(e)™)}) dv(X)
> [ spxngoar™ (AR € B, o)™} dv(X)
But, we saw in lemma 3.5 that if X € P(R?) is such that §(X,Y,™) > 2, then
XV = dlg X g < g x ) < (220

where we used that gV,m = V.
Moreover, if r € ]0,1] then for any hq,...,h, € B(g,r) we have that

lg™ = ha- -l < llg = Pallllgh™ =" + IPallllg™ " = ha . han| < m(2llgl)™

and so,

m m m— r12(9)\"™
Aty b X V) < g™ = b Bl £ dg™ X, V) < mClgl) 1r+< Zi))

Therefore, taking r = x1(g)~1T9™ and using that x,(g) = ||g|, x2(g) = x1(g)' % (since
k1(g) .- kalg) =1 and k1(g) 2 ka(g) = -+ = Ka(g)), K1,2(9) = K2(g)/k1(g), we get that

1 (r12(9)\" (eaym L (1 \™
_ ’ >
m <8nge4 > mlg)” 8t

and we can assume that € is small enough so that for any m € N*, %(854)*7” > 1.
In this way, we get that for any hy,...,h, € B(g,7),

(A ... X, V;7) <2 (M)m < (%4@)7”

4e4 €
Thus, for any X € P(RY) such that 6(X, Y") > 2e,
P ({h|hX € BV, (k12(9)/e)™)}) = (0™ (B (g,7)))™
This proves that for any g € G with 5(Xéw,ng) 2¢ and £ 2(g) < &3

I/(B(V (K1.2(9)/e")™))

, we have that
(0*"B(g,7))™ v ({X e P(RY) ‘5 (X, V") > 25}>
(p™B(g, )™ (1 — (26)°)

VoWV
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where we used the upper regularity of the measure v (see chapter 12 in [BQ15]) to have
that for some constant ¢ and e small enough,

V(X[5(X,Y) > 2) > 1 — (2)°. O

Corollary 3.11. Let p be a strongly irreducible and prozimal borelian probability measure
on SL4(R) having an exponential.

Let v be the unique P—invariant borelian probability measure on P(R?).

Then, for any M € N*, there are ng € N, A € R and t € RY such that for any n € N
with n > ng,

p*" ({g € Gl|g is prozimal and v (B (V;F,G*M")) > efAMn}) St

Proof. Let m € N, 0 < & < (A1 — A2)/4 and A = A\ — A2 — 3e. According to proposi-

tion 3.10, we have that for any n large enough and any g € G such that 1 2(g) < e\
and 5(X§4,ng) > 2e "

1

W(Blg.c™) >

In particular, taking m > M /e, we have that

(0" (B(g, e Cutararmny)) ™

- 1 *n - mn m
v(B(g,e M™)) > 3 <p (B(g,e~M1+2)(+d) )))

To conclude, we use the fact that such elements g with 5(Xé‘/1, Y,") > 27" and K1 2(g) <

e~ are generic according to lemma 3.6 and so are the elements for which we have a

good lower bound on the measure of B(g, e_()‘1+5)(1+d)m") according to lemma 3.8. [

Now, we use this regularity property to pass from a condition in proposition 2.22
where the action of G on X plays a role to a condition on G.

Lemma 3.12. Let p be a borelian probability measure on G having an exponential mo-
ment and whose support generates a strongly irreducible and prorimal subgroup.
Let X = ST x A and 0 : G x P(R?) — R the cocycle defined for any g € G and
X =Rz € P(R?) by
(0. — n L

=In
[l
that we extend to X noting for any (z,a) € X, o(g, (z,a)) = o(g,Rz).
Let v be the unique P,—invariant borelian probability measure on X /H where we noted
H = {I;,9} where V) is the involution map on X that is the antipodal application on S
and the identity on A (existence and unicity of v are given in proposition 2.5).

For any a,tg,t2,t3,8,A € RY, there are ag,C, L € RY such that for any t € R with
1(Za = P(it)) " leo(se-1xa) = Clt"
Then,

‘6—21‘|A\t>\1(9) —1 de*"(ﬁ’t) (9) < L

£

/ 1 g s proximal and
G

Vg7L is A—v-regular at scale |t|~*2

where we noted n(B,t) = [S1n|t]].
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Proof. We can assume without any loss of generality that ty = 2 (otherwise we set
o' =tgo/2 and t' = 2t/ty).

Note that as H is isomorphic to Z/2Z, it’s irreducible unitary representations are
1—dimensional and the decomposition of lemma 2.21 is just the decomposition between
even and odd parts.

Applying proposition 2.22, for any a1, 3, A € R, there are ap, C, L such that if

I(Za = P(it)) " |con(sa-1xa) = Clt["

then there are ¢ € H and a function f € C?’V(X) with || f]jce < C and m.(f) < C|t| such

that for any point z in X whose projection on X/H is A — v-regular at scale [t|~*2, we
have

[f (@) >

DN | =

and
1

|t

/ ‘ ~ito(0) f(gar) — f()| dpi @D (g) <

where we set n(8,t) = |BInlt|| and pe is the measure associated to the lazy random
walk (see paragraph 2.1.3).

To prove the proposition, we are going to make the point x in the integral depend on
the point g chosen with the measure pzn(ﬁ )
will have that gz = = and o(g,x) = A1 (9)-

To do so, we will first get a control for any point z and any g except on a set of
exponentially small measure, choose the point x we want and then integrate the result.
The cost of this operation is passing from « to aj.

to take x = Vg+ since this in this way we

We note n = n(f3,t) and for t3,t3 € R} whose value will be fixed later, we note

g is proxurnal Vs A — v-regular at scale |t|~*2 and
G, {QGG‘ ge tgn))g>e tsn
Then, for any g € G,, and any x that is A — v-regular at scale [t|~*2
: 2 1
— h, *
[ Bnestgean |70 f(ha) = f @) 4 0) <

Using the triangular inequality, we get that
= Vo (Blg,e ) [ 1709 f(ga) — f ()]

</
B(g,e~"2"m)

av
B(g,e~"2™)

+/C'ftle="mpn (B(g,e~"2m))

) 1/2
e () — f ()] dp*"<h>>

1/2
. . 2
eflto(g,m)f(gx) eflto(h,:v)f(hx)‘ dp*n(h))

1
S feer
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where we use that for any h € B(g, e %2"), we have that

e71700) f(ga) — =170 f(ha)| < | e7170) — =10 | f(ga)| + |f (ha) — f (ge)|
<20t Clo(g, z) — o(h,2)[” +my (f)d(hz, gz)?
< O'|tle 2

For some constant C’ depending on o (for more details, we refer to the computations in
the proof of proposition 2.18).
Thus, we get that for any g € G}, and any x that is A — v-regular at scale |t|~2

t3n/2

_ e
0 f(g2) = (0] < o + VO
Note now, for any = = (u,a) € S~! x A,

= H f(u’a)f(_u’a)

a€A

This function is H—invariant and moreover, we have that for any x whose projection on
the projective space is A — v-regular at scale |t|~2

6_2it|A\a(g,$)SD(gx ‘ Z Z ‘ —ito(g,x) ghx) — go(hx)‘

acA hcH

6t3n/2
<Al [ S 4 /Ot tm
IR

But, we can now use that, by definition of Gy, VgﬂL is A — v-regular at scale |t|~*2 and
so, we get that for any g € G,

72lt\A|)\1(g
g

t3n/2
<2 (w 7 mt\e—tm)

where we identified ¢ with a function on the projective space.
This proves, using that |¢(V,")| > 272IAl that for any g € Gy,

2
‘ —2it|A| A1 (g 1‘ 21+2|A”A’ <‘ ‘ //2 C”t’e—tz'yn>
tlor

Thus, we get that

/G 1¢,(9)

Moreover, we note Cp = 217241 A| and

1 1p(V,1)] = |e 208N @ gy (V) — 1 (V)]

. 2 t /2
6—2Z‘A|t)\1(g) _ 1‘ dp;ﬂ(ﬁﬂf)( ) < 21+2‘A||A| ’t’a /2 C/|t|67t2’yn

Gl .= {g € G‘g is proximal, Vg‘L is A — v-regular at scale |t|70‘2}
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‘We now have that
. 2 . 2
/G o~ 2ilAltAL(g) _ 1‘ dp:n(ﬁ,t) (9) < / ‘6721|A\t)\1(g) B 1‘ dpzn(ﬁ,t) (9) + QP*"(G%L \ Gy)

1
And so, using lemma 3.8, we get that for any ¢, s, there is t3 such that for any n large
enough,

J

So taking t; and ty large enough (this imposes a value for t3), then taking «y large
enough and using the fact that |t| > 2, we get that

J

and this is what we intended to prove. O

t3n/2

) 2
o2l AltA1(g) _ 1‘ dp" P (g) < Ca <e

- —t
TRE +V/C'tle t”") + 2e7 "

1
n

e—2ilAlthi(9) _ 1‘2dp;n(ﬁ,t> @<

1
n

3.3. Diophantine properties of the lengths of translations.
In this paragraph, we prove that for strongly irreducible and proximal
measures on SL4(R), the logarithms of the spectral radii of generic
elements satisfy a diophantine condition of the same kind of the one
used by Carlsson in [Car83] in the study of the walk on R.

Let p be a borelian probability measure on G = SLy(R). For g € G, we note A\ (g)
the logarithm of the spectral radius of g. As in the study of the renewal theorem on R,
the study of the renewal theorem on R? requires a diophantine assumption. However,
we are going to prove that it is always satisfied for measures whose support generate a
strongly irreducible and proximal subgroup.

First of all, we are going to get an estimation of the difference between \;(gh) and
A1(g) + A1(h) when g and h are proximal elements in generic position.

Lemma 3.13. There are ci,cp € R such that for any € € 10,¢1] and any g,h € G
with k12(9), k12(h) < &, (XM, V") = 26, 6(XM, V™) > 26, 6(X)1, ™) > 2¢ and
S(XM,Yy™) > 2e, we have that

g

AR ARSI k12(9)  ki2(h)
A AL(h) — AL(gh) —1 9079 )| : ,
10) + 20 = Moh) ek CQ< 200) | )

Remark 3.14. According to lemma 3.6, there are many pairs of elements g and h that
satisfy the assumption of the lemma in the support of p*”.

Proof. We take at first ¢; = 1/4 and ¢y = 1.

First, according to lemma 3.3, we have that

%1,2(9)/‘61,2(h)
e2

K/l,Q(h)

h) <
k1,2(gh) .

and so,

L d(XM XM < ’””1’26(9) and d(Y2, V") <

3
k12(gh) < & and 5(X%, on) =2e(1—¢) > 3¢

We note ¢/ = %5 and so we have that d(X%,Yg’}ff) > 2¢’ and k12(gh) < % (%)3 e L &b,
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Thus, using lemma 3.4, gh is proximal and

k1.2(gh) n 2r12(9)

AV 5 V) < d(Voh XO0) + d(Xgn, X)) + d(X ), VT <

gh>"g gh? gh> ! c
In the same way we get
K h Kk12(h
AV Vid) < AWV Yo + YY) + (v Vi) < 129yl

4
< §€3 + 2¢2 < 3e2

and so,

SVt Vis) = 26 — 36% = 2e(1 — 3¢/2) > g

So we note £” = £ and then, 5(Vh+, ngl) > 2¢” and k1 2(gh) < 64c1€™ so, assuming that

c < 6_14’ according to lemma 3.5, we have that

6(Vh+a V;;L)

r12(9h) _ 2H1,2(h)€

J(gh’ Vh+) - Al(gh) —In X /"3 = /"3

Moreover, using the cocycle relation and the fact that, by definition of V,", o(h, Vh+) =
A1(h), we get that

U(gha Vh+) = 0(97 hvh+) + U(h7 Vh+) = 0(97 Vh+) + Al(h)

and finally, we also have, still with lemma 3.5, that

(VS V)| k()
V) = A(g) —In —2 192 < 2
(9, V") = Milg) GRS 3
This leads to
5(Vh+7 V%)é(v+7 V<) K1 2(9) K1 Q(h)
A1(g) + Ai(h) = Ai(gh) —In J e 427>
(Vs Vi) 8V, Vi) &’ e?
To conclude, remark that
‘6(Vh+, V) - 8Vt V,f)‘ <AV, Vi) < 3<% and 8V, Vih) > 5

so for € small enough, we have that for some constant csg,
+

5(Vh aviqfl)

6(Vh+’ Vh<)

h h
< %d(vif?Vg?z) < 0;3 </€1’2(g ) +2K172( )>

e €

‘ln
We can control |In 5(V;{L, Vi) —no(Vy", V)| with the same kind of ideas and get the
expected result. O

In the sequel, we will need a result about the continuity of the Cartan decomposition.
This will be the following
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Lemma 3.15. Let g € G.
Then, for any h € G,

d(Xp', Xg") < (2llg = hll + r12(9)), and d (3", Y,") < (2]lg — Al + #12(9))

Moreover, there are constants c1,ca € R such that for any p € N*, any € € ]0,¢1], any
P

g in G with k1 2(g) < &3 and 5(Xéw,ng) > 2¢, any r € R with r < g2 (%@) and
any element f € B(gP,r),

m k1,2(9) m ym k1,2(9)
SXFLY) Z e, dX XN <22, d(Y) YY) <27
()2 2 ka9 Rialf) € ki alg)”
rilJ) 2 g8 TRg)l, RelJ) S Sy 2lY
+ T+ K1,2(9)" < 1< k1,2(9)"
d(V;", Vy") < e op—1 et d(V;,Vyh) < e 1

Proof. We are going to evaluate g'lne; in two ways.
First,

k1(R)zM = hlper = g'lner + (b — g)tine
= r1(9)(*lper, lgel>x£/f +u+ (h—g)'lLe;

for some u such that [ju|| < k2(g).

So,
ri(h)llzy! — (flher, lger)zg' || < |k1(g) — w1 (R)] + [lull + [lg — 7]
< r2(9) +2]lg — Al
and as [|z)|| =1 = HméwH, we can deduce that
—h
d(XéV[,Xh)—Hx A xp, H—H(xh —<lh61,tl€1> )/\xMH\/-{ ()—|—2H I

lgll

This proves the first part of the lemma since for any g € G, ||g]| = x1(g) = 1.
To get the control of d(ng, Y,™), we do the same computations in the dual space.

To prove the end of the lemma, we note that according to lemma 3.3, we have that

1
ri(g") 2 & m(9)s ma(e”) < Spmea(9)”
. (9 (9
M M ’%172 g m m KLQ g
d(Xgd, X1) < S5 d(Yg Y <
Thus, for f € B(¢?, r)

SXM YY) 2 20 — d(XM, XM — d(v, YY) — d(X M, XM — d(Y L YR

gPa gP7

> 2 — QL@ —2(2r + k12(9"))
€

> e(2 — 6¢)

and so, for maybe some smaller ¢, we have that

SXM Y =€
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Moreover,

r1(f) 2 k1(g7) =1 = R (g)f — €2 > e (g)F (1 - /1122(2)1’)

And using that k1(g) > 1 and € < ¢, we get that if ¢; is small enough,
r1(f) = e tha(g)P
Moreover, using the equality #1(g)k2(g) = r1(A%g), we have that
r1(f)r2(f) < R(gP)ra(gP) + 1 A% g7 = AP FI| < w1(g”)m2(gP) + (k1 (9P) + m(F))IIF — 97|l
S0,

k1(g”)k2(gP) | k1(g?) + ka1 (f) 16
w1 (f)? (2 N9 IS gy male) < 1667

Therefore, is c; is small enough, we get that k1 2(f) < (¢/2)3, and so, using to lemma 3.4
we find that for any f € B(gP,r), f is proximal and

k12(f)
g

k12(f) <

K12(f)

d(viH X <2 .

ot d(VF, YY) <2

Thus, using that V. =

o = Vg+, we find that

AV V) <AV XM+ d(x d(XMU V) < oy 1.2(9)"
(f’g)\(f’f)+(f’ )+(g1” ) 62p71

for some universal constant cs.
Working in the same way in the dual space, we obtain the inequalities for d(Vf<, V;f)
and finish the proof of the lemma.

We are now ready to evaluate the difference between the logarithms of the spectral
radii of well chosen elements of G. We would like to take two proximal elements g and
h and study the elements gPgh on side and ¢g? and gh on the other side (as in [Qui05]).
However, as we don’t want to study only purely atomic measures on SLy(R), we have to
take, not g” but an element f in a small neighbourhood. This is what we do in next

Lemma 3.16. There are constants c1,¢2,c3 such that for any p € N*, any € € |0, c1],
any g € G with k12(9) < &° and 6(Xé‘/1,ng) > 2¢ we have that for any h € G with

k1a(h) <&, 8(XPT Y = 2e, 6(X},Y)™") = 26, 6(X),YV,™) > 2¢ and any f € G such

that ||gP — f|| < e <M>p, we have that

5(‘/g+7 Vg<)5(gvh+a Vh<) K/LQ (g)p Iﬁg(h)
MU =N =)~ S e < o (5 22

Moreover, we note mq the projection onto Vg< parallel to V;L and we have that if X}]LV[ #*
v, d(grg XM, Y™ > 2, d(XéVI,X}]lV[) > 2¢ and k12(h)k1(g) < 33, then

53 < In 5(Vg+7 V;;<)5(gv+7 Vh<) 5172(9)
C3K1 (g)d 5(Vg+, Vh<)5(th+, Vg<) 65
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Proof. We want to apply lemma 3.13 tof and gh. To do so, we are going to prove at
first that gh is proximal.
According to lemma 3.3, we have that

k12(9)k12(h)

4
<
<e€
e2

k1,2(gh) <

and
K/LQ (h)
13

/‘61,2(9)
9

d(xF, xM) <

) and (Y}, V") <

This proves that

3
6(X%, ) > 5(ng,‘4, Y;m) — d(X;‘,{,X;‘”) —d(Y Y ) 2 2e(1—¢) > 5€

So, for ¢; small enough, gh satisfy the assumptions of lemma 3.4 and 3.5 with &/ = ¢/2.
So, gh is proximal and

Kk1,2(gh) k1,2(h)
4e't S e €

(v

oo 9Vi) = d(ghV,

gh> ghvh+) <

and

m m ym my — of12(h) | K12(gh)
AV Vi) < AV Yi) + d(Vie Vi) + (V5 ¥i) < 2718 4 208

P
Moreover, according to lemma 3.15, for f € G such that ||g? — f|| < &2 (%@) , we
have that

S Y s e, d(x),x)) <220 gy vy < 200
€ €
Moreover,
1 pa p 16 p
r1(f) = € k1(9)?,  kia(f) < mm,z(ﬂ)
and
P P
AV Vi) < 29 o v v < o 12)
Finally,

S(XPYgR) 26X, V) — d(Xp, X)) = d(Yr YR)
K12(9) Hl,z(h)>

>6<2—2
€ €

> € (2 —362)

So, is ¢1 is small enough, we have that 6(X}VI, Y,) > € and also, 6(X7p, YJ™) > €. Thus,
according to lemma 3.13,
(V1 VsV, Vi)

+ -
5(Vf ’ V;i)(;(VQh, Vf<)
This finishes the proof of the first part of the lemma since we also have seen controls on

(Ve gVih), (Vi V), d(VE,V,S) and d(Vy5, Vo).

M (f) + Ai(gh) — A(fgh) —In

<o (“L2(f) . m,z(gh)>

g2 g2
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To prove the second part, we use the equality

0(Vg" Vi )o(gVi™, Vid) _ | o5 (vh)er (gu)
(Ve Vis)o(gVi,h Vi) | er (vg ) (gurh)
(33) _ |y 4 peleeitov) — oy (v )eg (9vn)
o (v ) s (gvy)
And, as

PO e

Un h
o (vg) ! os(vg) 7 ws(vg) ?
where we noted 7, the projection on Vg< parallel to Vg+, we have that

A1(9)

+
L _wgoy)

++7Tg( i—f)

o5 (guf) = e1(g9)e™ W os (v))

and

on () + o (gmg(v)

o (vyh)
Splf (gv}JLr) = 51(9)6)\1(9)971
g

o5 (vg)
This proves that
vy (05 )er (gur) — o5 (v ey (gui) = w5 (v] e (gmguyt)
And so, replacing in equation (3.3), we get that
5(Vg+7 Vg<) (gvh+7 V<)
S(VgH ViS)o(aVi , Vie)

o) 25 0oy (gmeuy)

e (vg )og ()
Moreover, we use that ngh € V , to get, with lemma 3.4 that

( ) i Cheg) 2 2r2(g) o+

s v el S T

1+e1(g)e

lgmguy |l <

and so, using that e*(9) > 2k, (g)e, we find

ito) P (05 )¢h (gmgvyy)

eh (vg )e5 (vy)

We can also compute

C Falg ) lles o s vl < F12(9)
&3 oy (vf)es (o)) bet

<(vH) e (gmovi vt T
DG v eison i i Il Ieillomi
Ph (vg )SDg (Uh ) |80h (Ug )SDg (Uh )l
”g7T Uh ”
1 +
(3.4) > 8V, Vg Vit Vi) oy 1ot |
g™l vyl
And finally, as v, A v = vl A Tqu;, we get that
+
AV V) = log Aorll lof Amgufl < Hﬂgvfﬂ!

lvg vy I Hlvg Hllvg |
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and so, using inequality (3.4), this proves that

r e omeui) | o 1 o e v v
oy (vg )5 (vy)) (7 SR TR
To conclude, note that rg(g)...s1(g) = det(g) = 1 and r4(g) = |lg~'(|~" and so

lg= 17" = mi(g)
Moreover,

8(gmgVit Vi) = (gmgmp yi') — d(gmg Vit gmgay) — d(ViS, yil)
> 2 — ”gHHWng(Vhtx%) - d(V,f,y,T)
S 90 _ (@) F12(h) o o (1 a fﬂ(g)ffgw(h)) S
€ € €
And
h
AV V) 2 A X — (v X)) — (v X > 0e - 120 e

and so, using the fact that e=*1(9) > k;(g)~!, we find that

o~ M1(9) ‘P; (U;r)@}f (gﬂgvl—l—) 3

i (vg )y (vy) |~ malg)?

And this is what we intended to prove. O

Lemma 3.16 proved that if we make good assumptions of proximality and transversal-
ity on the elements g and h in G, then we have a good control on A1 (fgh)—XA1(f)—A1(gh)
for f in a small neighbourhood of ¢”. Using lemma 3.6 we will get that those elements
g and h are generic and this leads to the following

Lemma 3.17. Let p be a borelian probability measure on SL4(R) having an exponential
moment and whose support generates a strongly irreducible and proximal subgroup.

Let v be the unique borelian stationary measure on P(R?).

Then, there are ng,p € N et c1,co € RY such that for any az € R, there are
A, c3 € RY such that for any n € N with n > ng,

g,h and gh are prorimal, Vg+, VhJr and VgJ,rL are
PP pPn g, h A — v-reqular at scale e~ “2P" and > e B"

e " < [A1(gh) — Ailg) — Au(h)| < em2n
Proof. We note, for n € N and n,t2 € R,

*1, —ton > —t3n M my > —nn
G, ={ gea|r"Blgem) > e JX V) > 2
Vi€ {1,2} |Lri(g) — M| <n
Then, for any g € Gy,
r1alg) = 240 < ~Ou-namznm
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And so, noting € = e”™, we have that if 7 < A1 — Ao, for n large enough, g satisfy the
assumptions of lemma 3.16. Moreover, for g € G,, and p € N*, we note

g

Pig)—=Jd h
Hy(9) { € Gpn d(gﬂgX,]lV[,Yhm) > 2e M, d(XéVI,X}]LV[) > 2eM

S(XM Y = 267, S(XM, V") = 2eM }

where 7, is the projection to V;f parallel to Vg+.

If p is such that (p — 1)(A1 — A2 + 1) > A\ + 7, then for any ¢ € G, and any
h € HE(g), the pair (g, h) satisfy the assumptions of lemma 3.16 and so we have that
for any f € B(gP,e PMi—A2—mn),

d(%+7 Vg<)d(gvh+7 Vh<)

< 2626—1?()\1—)\2 —4n)n
d(Vg", V)9V, Vo)

A(fgh) = M(f) = Ai(gh) —In

and
_ n —+
e @I | d(Vy" Vi )dgVy Vis)| ey Mi—Aa=Tn)n
e3 d(%+7 Vh<)d(gvh+7 Vj(f)

Moreover, according to lemma 3.3, we also have that
h
k1,2(gh) < % < e~ P —da—dn)n

and

g g

S(X)T V) — d(X X)) — d(Yar i)
e~ _ 267()\17)\27377)n

So, according to proposition 3.10, choosing m such that m(A; — Ao — 4n) > a9, we get
that

—_

v(B(Voh, e7°2") = v(B(V, (k12(gh) /e")™) = 5 (07" (B(gh, )™

\V)

With r = e~ (A1tm(d+1)pn
Moreover, if g1 € B(g,r1) and hy € B(h,ry), then

llgh = giha || < rl|hll 4 r2fl o]
and so,
PP (B(gh,r)) = p(B(g, e 2 Dm)) prp=ln(B(p, e~ 2atn)(dtny)

Thus, taking to = 2(\; +7)(d + 1), this proves that V;{l is A — v-regular at scale e~ *2P"
for some A € Ry.
Doing the same for VfJr and Vf;h (using lemma 3.13 and lemma 3.3), we get that VfJr

—aepn

and Vth are also A — v-regular at scale e (maybe for some different A but there

- + o+ -
is one that works for Vop, Vi and Vi gh).
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We just proved that for p such that p(A — Ay — 4n) > dA; + 5,

g,h and gh are proximal, V;r, Vh+ and V;,; are
PP @ p*Pm g,h A — v-regular at scale e~ 2P and
e~ < [A1(gh) = Aig) — Au(h)| < em "

> /G 16, (9)p" "M (HE 1) (g)p™™ (B(g?, e PN =22 +0m))d 5 g)

But, according to lemma 3.6, we have that any h € Hﬁ_l(g) except a set of exponentially
small measure (to get the lower bound on 5(g7TgX,JLW ,Y;™), we do as in the proof of
inequality 13.38 in lemma 13.13 in [BQ15] to get that XM and ;¥ are essentially
independent and then guarantee that X ,]1‘4 & V;r and d(Vg<, Y,") = 2e7"). So, we only
need to find a lower bound on

/ 1c, (9)p™" (B(gF, e PR =A2tmny) g pn(g)
G

But, doing the same as previously, we find that, maybe for some other constant to, there
is a constant cg such that for any g € G,,,

p*pn(B(gp7 e—p()\l—)\g—i—n)n)) > e Can

And finally, using lemma 3.8 and lemma 3.6, we have that every g belong to G,, except
a set of exponentially small measure and this finishes the proof of the lemma. O

We can now state an “integrated version” of lemma 3.17.

Lemma 3.18. Let p be a strongly irreducible and proximal borelian probability measure
on SL4(R) having an exponential moment.
There are a, 3 € RY and p € N* such that for any ap € R, there is A € RY such

that
lim inf |b|°‘/
b—+o0 GA2(p—o2)

Where we noted, n(3,b) = |B1lun|b|| and, for r € RY,

(b )21 (0)=2 (1) _ 1| g en(8) () pon(BE) () >

A2 N . 5 | g,h and gh are proximal and
G = { 9.h) € G Vg+,Vh+,Vg4,; are A — v-reqular at scale r

Proof. We note, with the same notations as in the proof of the previous lemma, for any
n €N,
g,h and gh are proximal, Vg*7 VhJr and Vg”; are
G?:={ g,h A — v-regular at scale e~ 2P and

e~ < [Ai(gh) = Aulg) — Au(h)] < emn

We choose o, 8 € R and we will fix their value later. We note p the parameter given
by the previous lemma. For b € R, we note n = |51n|b|].
Then, for b large enough and any (g, h) € G2,

16|28 < [b]| A1 (gh) — Ai(9) — Mi(g)] < [b|e2?
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So, if 8 > 1/ca, we use the inequalities

e TR S
0< inf < sup

£ < 400
ee[-11] |z vel-11] 17|

to get that for large enough b and any (g, h) € G,
b\ (gh) =1 (9) =M (9)) _ 1‘ = [blIA1(gh) = Ai(g) = Ai(g)] = [b'~”

So, for b large enough and uniformly for any (g,h) € G2,

eibG(gh)=21(g)=M(9) _ 1| > ‘b‘lfmﬁ

Moreover, according to lemma 3.17,

p*P"(ﬁvb) ® p*pn(ﬁ,b)(Gi) > e—c3n(B.b) > ’b’—c:aﬁ

So, if « is such that o — e384+ 2(1 — ¢18) > 0, then

lim inf \b\o‘/
b—+oo GA,2(b—a2)

and this is what we intended to prove. ]

B ah)Xa(@)=M (1) _ 1] 4, Pn (B0 (g)d p B (1) > 0

We can finally prove the control on the logarithm of the spectral radii of proximal
elements of SL4(RR).

Proposition 3.19. Let p be a strongly irreducible and prozimal borelian probability
measure on SLg(R) having an exponential moment.

Then, there are o, f € RY and p € N* such that for any as € R, there is A € Ry
such that

eibA1(9) _ 1‘2 dp*pn(ﬁ,b)(g) >0

lim inf ‘b‘a /(; 1{ g 1s prozimal and }

broo Vgt is A—v-regular at scale b=o2
where we noted A\1(g) the spectral radius of g and n(5,b) = [S1n|b]].
Proof. Note, for r € R* ,
GA(T) = {g € G!g is proximal and Vg‘L is A — v-regular at scale r}

Suppose that there are no such «, 8, p. Then, for any «, 3, p,

, 2
lim inf ]b[o‘/ 1aap-a2)(9) ‘elb)q(g) - 1‘ dp 0 (g) = 0
G

b—*+oo

In particular, for any «, 8 € RY and any p € N,

eib)q (gh) _ 1 ‘ 2 dp*pn(ﬁ,b) (g)dp*pn(ﬁ,b) (h)

fminf 47 | 1ga0-0s)01)

‘ 2
= liminf ]b[“/ eibr(g) _ 1‘ dp*2p"(ﬁ’b)(g) =0
b—+oo G
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But, using the triangular inequality and keeping the notation GQA of the previous lemma,
we obtain that

I(B) : = (/(;A,2(b—a2)
< (/G 1aa-a2)(9) |€
+2 (/G 1oap-a2)(9) e

lim inf 6] 15(8) =
lim inf [b]*1,(5) = 0

1/2
eib(M1(gh)=Ai(g)=Ai(h)) _ 1‘2 dpP(B:0) (g)dp*zmwvb)(h)>

1/2
oibAi(g 1‘ dp*an( b)( )>

1/2
zb)q 1‘ dp*pn(ﬁ b)( ))

So, for any «, 3,

and this contradicts lemma 3.18. O

4. THE RENEWAL THEOREM
In this section, we link, as we said in the introduction, the rate of
convergence for the renewal theorem to the control of (I; — P(it))™*
in some Banach space.
The aim is to prove theorem 4.1 that we need to establish theorem 1.3.

4.1. Preliminaries. Given a second countable locally compact group G acting contin-
uously on a metric space X and a cocycle 0 : G x X — R (see definition 2.16), we can
define an action of G on X x R by setting

g-(z,t) = (9o, t + o (g, 7))

If p is a borelian probability measure on G, this defines a Markov chain on X x R
whose associated operator is the one defined for any continuous function f on X x R
and any (z,t) € X x R by

fa.t) = [ 1la@.0)dolo) = [ flgn.t+ olg.2)dnto)

This operator commutes to translations on R and this implies that for any f € L>°(XxR)
and any g € L'(R),

(Pf)*g=P(f*g)
where we noted, for f € L*(X x R), g € £(R) and (z,t) € X x R,

f gl t) = / f(,w)g(t - u)du

We call renewal kernel the operator G = Z+°O P™ when it is defined.

Kesten studied in [Kes74] the properties of G in a very general setting and Guivarc’h
and Le Page used his result in [GL12] to get the renewal theorem in R? associated to
a borelian probability measure on SL4(R) : this is theorem 1.1 that we stated in the
introduction.
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In this chapter, we would like to study the rate of convergence in Kesten’s theorem
but we will not do it in his general setting but directly in the case of a group contracting
some compact metric space.

So, in the sequel, we fix a second countable locally compact group G and a borelian
probability measure p on G.

Let (X, d) be a compact metric G—space endowed with an action of a finite group H
that commutes to the G—action and such that X/H is (p,~, M, N)—contracted over a
finite G—set A on which the random walk defined by p is irreducible and aperiodic (see
section 2). To simplify notations, we simply note ma the two projections of X to A and
of X/H to A.

We recall that for us, G = SLy4(R), p is a probability measure on SL4(Z), X =
S x A, X/H =P(R?) x A and A is finite I',—set.

For technical reasons that we will justify in section 4.4, we introduce the function
w: (X xR)?2 = R, defined by

(1), (o £)) = e \/d(:c, )2+ (e=t)/2 — et=0/2)% if 14 (z) = 7a (')
1 if not
and we set, for v €]0,1],
_ 1oyt
¢ ={ e xB)flwi=  sp OO IEL gy

(@), yexxr wW((@,t), (@, )7
(z,t)A (" 1)

In the same way, we note,
V[t |2 +d(z,x")?

wo((z, 1), (2, 1)) = { “enaam - S malz) =ma(e)
1 si non

and we define Coy (X x R) like Co7 (X x R).
We will see in section 4.4 that for any f in C3”, there are functions pt(f),p~(f) on
A such that for any z € X,
b (N(ma@) = lim_f(a,t) and p* (/)(ra@) = lim_f(z1)

t—+o0

We recall that for a cocycle o on X and ¢ € R, we note P(it) the operator defined for
any continuous function f on X and any =z € X by

P(it)f (x) = / e 1702) £ (gz)dp(g)

G

We refer to section 2 and more specifically to paragraph 2.1.4 for more details.
The main result of this section is the following

Theorem 4.1. Let G be a second countable locally compact group, N : G — [1, 400 a
submultiplicative function on G and p a borelian probability measure on G.

Let X be a compact metric G—space endowed with an action of a finite group H that
commutes to the G action and such that X/H is (p,~o, M, N )—contracted over a finite
G—set A on which the random walk defined by p is irreducible and aperiodic.
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Let 0 € ZM(X/H) and 0, = [q fX/H o(g,z)dv(x)dp(g) where v is the unique

P—invariant probability measure on X/H given by proposition 2.5. We assume that
o, > 0.

We also assume that there is o € |0,1] such that for any v € ]0,v)] and tg € R%,
there are Cy, L such that for any t € R with |t| > to,

1(Za — P(it)) " lconx) < Colt”

We note Iy the operator define for any f € CH(X x R) such that p*(f) =0 par

Hof (2. 1) = t+°° Nof(z, u)du

where Ny is the projector on the space of P—invariant function in C°(X) and we make
the abuse of notations Nof(x,u) = Nofu(x) with f, = f(.,u).

Then, for any v > 0 small enough, there are o, C € RY such that for any f €
CH(X x R) with p™(f) =0=>",cap (f)(a) and for any x € X,

Jim (6= 1) fe.0) = 3 P (1) (male)

neN
Moreover, (G — JLPHO)f €C5 (X xR) and

- 2n)
Op

Remark 4.2. The function G f is well defined under the assumptions of the theorem since
the convergence in the series is uniform on any compact subset of X x R.

<Ol fllyw

a,wo

Proof. To prove the theorem, we use the decomposition given in lemma 4.19, the corol-
lary 4.21 and lemma 4.22 O

4.2. Non-unitary perturbations by cocycles.
In this paragraph, we study the inverse of the operator I; — P(z) and
we prove proposition 4.3 that shows that a control of the growth of the
norm on the imaginary axis gives a control of the norm of the operator
and it’s derivatives on a neighbourhood with a nice shape.

Let G be a second countable locally compact group acting on a compact metric space
(X,d) and p a borelian probability measure on G.
For a cocycle 0 : G x X — R and g € G, we recall that we noted

lo(g,x) —a(g,9)|

Osup(g) = sup |o(g,x)| and orip(g) =  sup
sup(9) = sup |o(g, )] in(9) Sup i)
mA(2)=mA(y)
Y
And, for M € Ry and N : G — [1, 00| a submultiplicative function on G,
: oLip(9) esue(9) .
2ZM(X) = { o is a cocycle on X|sup =22 and sup are finite
N { geG N(g)M geG N(Q)M
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Finally, for o € ZM(X), we set

o1 (9) (s
ol,, = sup and [0|s = sup ——
[ ]M 9eG N(Q)M [ ] g9eG N( )
We note C,, := {z € C||R(2)| < v}. For z € C, and ¢ € Z¥(X/H), we define the
operator P(z) on C°(X) by

f%Z)f(x)==L/iez”@””f(gw)dp(g)

G

This is a continuous operator since for any continuous function f on X, any z € C, and
any r € X,

PES@I< Il [ e ™00(g) < o [ 02N ()M aplo)
and [ N(g)"™dp(g) is finite since the action is contracting.
In the sequel, we will note, for n € R%, C,, := {2z € C||R(2)| < n}.
We group the main results of this paragraph in the next

Proposition 4.3. Under the assumptions and notations of theorem 4.1.

For any v > 0 small enough, there are n,C,L,t € RY such that (z — P(z)) is an
analytic function from C,, to the space of continuous operators on C%(X). Moreover,
for any z € [0,n[®iR and any n € N,

1P(2)" |y < C(1+ |z])e RO
Finally, noting

U(2) = (Is — P(2))" — —— N,

Opz

we have that (z — U(z)) (which is definite a priori on iR \ {0}) can be extended to an
analytic function onto the space of continuous operators on C%7(X) and defined on

-1
Dyc.L = {zGC‘ O T Sa)Er <§R(z)<77}

and for any n € N and any z € D, o1,

1T ()]l < O™ L + [S2]) EHDIHD

Remark 4.4. This proposition generalises the situation in R when P(z) is the Fourier-
Laplace transform of the measure p. In this case, the same estimations can be obtained
under the “non-lattice of type p” assumption used by Carlsson in [Car83].

Before we prove each of the assertions of the proposition, we draw the zone D, ¢ ..
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-1/C {ZEC)WIZDL-H<§R(Z)<T]}

FIGURE 1. Shape of the zone D, ¢ 1,

Lemma 4.5. Under the assumptions of proposition 4.3, if o, > 0 then there are n,t,C €
R% such that for any s € [0,1] and any n € N,

sup / efsa(g,:v)dp*n (g) < Cle~tsn
zeX JG

Proof. First of all, according to Jensen’s inequality, for any 0 < s < 7,

Leanarm < ([ ena(g’ﬂdp*"(g))s/" — (P)"1(a))"

Moreover, as o, > 0, lemma 10.17 in [BQ15] and the fact that (with their notations but
reminding that their operator Py is what we called P(—i1)) and their equality 10.32,

N(0) = / P(0)1dv(z) = —0, < 0
X
prove that there are n,t,C € R? such that

sup P(n)"1(z) < Ce ™

and this is what we intended to prove. O

Lemma 4.6. Under the assumptions of proposition 4.3, for any v > 0 small enough
there is m € R such that the function (z — P(z)) is analytic from C, to the space of
continuous operators on C°Y(X) and there are t € R and C € R such that for any
z € C, with R(2) > 0, any function f € C*(X) and any n € N,

1P(2)" £l < C (e ma(f) + (1 + 121 flloo)

Remark 4.7. This proof is very close to the one of proposition 2.18. The difficulty here
is that the perturbation no longer have modulus 1.

Proof. To see that (P(z)) is an analytic family of operators, we refer to lemma 10.16
de [BQ15].
Let v > 0 small enough and n € RY.
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Compute, for z € C,, f € C®(X), z,y € X with ma omg(z) = maoma(y) and n € N,
[P(2)" f(x) = P(2)" f(y)]
< [ fe=to) p(ga) - =000 f(gy)| a9
G

(1) < [0 go) = flgn)| + 1l 7200 = 00| a7

But, using the definition of [0],, and [0]s (cf. equation (2.4)), we have that for any
e € RL

e 7o) efw(g’y)‘ < 21772 e ) (00,0 (9)) o (g, 2) — o (g, )|

< 217 2[[o] 2 N () MOHRED (1n([0]o N (9)M))' 7 [0, d(z, )
< CL|2N(g)MO+7+9) (0] [0],, d(x, y)

where we noted C. such that for any = € [1,+oo[, x < C.e®®/2177.
And so,
(4.2)

/G ‘efzo(g,x) _ efzo(g,y) dp*n(g) < CEIZHO'] M 1, y / N M (y+n+e) dp*n(g)
Moreover,
@3) [ MO0 1 (ga)  fla)dp™ (0) < mo(Dlolee [ Na) Mgz 905 o)

Let dy € RY be such that if d(z,y) < dp then d(z,y) = d(mgz,may). Then, for any
¢’ €]0,1] and any x,y with 0 < d(z,y) < €'dy, we have that

Ln(z,y) / N(g9)Md(gz, gy)'dp™(g)
/ N()M"L g, g1 <do A9, gy) dp™ (g)
+ /G N(9)"" (42,9950 (92, gy) " dp*" ()
g/GN(g)M"d(ngm,ngy)“’dp*”(g)
/ N ()" psn g1/ M N ()M d(, y)7dp™(g)

x y </ N Mn ng'H.%' gﬂ'Hy) dp n(g)
7TH33 7TH?/)

(44) +M/ N M(n+7) ]-MN(g)M21/5dp*n(g)>
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But, using Cauchy-Schwartz’s inequality and the contraction of X/H, we have that

/N Mn gﬂ'H.%' gTrHy) dp n(g)
d(raz, THY)"

n d(gruz, gray)? o N\
<( [ vigpimapg) [ AT, <g>>

n/2
(45) < VTt ([ NapPitan) )
G
We can now choose n such that /Co,e ™4 < 1/4[0]o and then, for 1 such that
e o0/t / N(g)*"dp(g) < 1
we find, with equation (4.5), that

1
x y /N Mn gﬂ'H.%' gﬂ'Hy) dp*n(g) <
7TH‘T,T(—Hy)

Moreover, for this fixed n we can choose ¢ € R such that

M/ N(yg 1MN(g)M>1/5’dp "(9) < 1/4[o]e

and this proves, with equations (4.1), (4.2), (4.3) and (4.4), that for any f € C%(X),
any x,y € X with mp o mgr(z) = wa o T (y) and d(zx,y) < £'dp,

|P(2)"f (@) = P()"f(w)] _ 1 g e
()’ < 3 (0)+ 2 lelelizleloly, [ N@) Mot )

Moreover, if d(z,y) > €'dy, then
PP (2) () — PM(2) ()] <2 f )) ol [ N6/ g)

So, what we proved is that for any ~v,7 > 0 small enough there are n € N* and a constant
C (depending on n,o and p) such that for any z € C,, and any f € Y (X),

ma(P(:)" ) < gms () + O (1t [2]) o

But, we also have, according to lemma 4.5, that for ®(z) > 0,
PG Sl < Il sup [ e RE005 ) < O e M
zeX JG

So, we obtain the expected inequalities by iterating this relations and we refer to [ITM50]
for a proof that we can choose a constant C that doesn’t depend on n nor on z. ]

An analytic family of operators (P(z)) is said to be meromorphic at zy if there is
N € N such that the family ((z — z9)"¥ P(2)) is analytic on a neighbourhood of zg.

We are now going to use a version of the analytic Fredholm theorem that holds for
quasi-compacts operators and that we state in next
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Theorem 4.8. Let (B,].||s) be a Banach space.

Let || .|| be a norm on B such that the unit ball in B for || .| s is relatively compact for
11

Let U be a connected open subset of C.

Let (P(2)).cu be an analytic family of operators defined on U such that there are
r € [0,1] and a real valued function (z — R(z)) such that for any f € B and any z € U,

1P(2)flls < 7llflls + R(2)F]

Then, we have the following alternative :

o The operator I1; — P(z) is invertible for no z € U.
o The function (z — (I; — P(2))™') is meromorphic on U.

Proof. The proof is the same as in the classic case when we remark that, according to
Ionescu-Tulcea and Marinescu’s theorem (that we recalled in theorem 2.10) we have a
control on the essential spectral radius of P(z) that is uniform in z. O

Lemma 4.9. Under the assumptions of proposition 4.3, the family (I3 — P(z))™")zec,
is a meromorphic family of operators that is analytic on 10, n[®iR.

Moreover, we can choose 1 such that there are C,t € RY such that for any z €
10,n[ @ iR and any n € N,

1P(2)" |y < C(1+ |z])e” RO
Finally, if o, # 0 and if ' is small enough, we can write, for z € B(0,7') \ {0},
1
(Ia = P(2)™" = —No + U(2)
Op2
where Ny is the operator of projection on to the space of P—invariant functions and

(U(2)) is an analytic family of continuous operators on C%Y(X) and defined on B(0,7').

Proof. For any z € [0,n] ® iR, any n € N and any f € C°(X), we have, according to
lemma 4.5, that

PGl < Il sup [ e HE00p ) < O e
zeX JG

And so, for any f € C%(X) and any n € N, (we can assume without any loss of

generality that the constants ¢ given in lemma 4.6 and lemma 4.5 are equal and the

same thing for the constants C'), according to lemma 4.6 applied to P"(z)(P"(z)f) and

then to P"(z)f, we have that

1P flly < C (7™ [P () flly + (L+ 2D [P () l]so)
< C (e7mCma () + (1 + 2N [ flloe) + Ce (1 + [2]) | oo

<AL+ f ] (7 + e

And this is what we intended to prove.

Moreover, lemma 4.6 shows that the essential spectral radius of P(z) is uniformly
bounded by e~! on C, and so we can apply theorem 4.8 to show that the family (/5 —
P(z))~! is meromorphic on C,, since we just proved that (I; — P(z))~! is well defined
on ]0,7] & iR.
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Moreover, this proves that (I; — P(z))~! has no pole in ]0, n[®iR.

Finally, we refer to lemma 3.2 de [BL85] or to lemma 10.17 in [BQ15] for the expansion
of (I; — P(2))~! on the neighbourhood of 0. Indeed, adapting their argument, we find
that there are two analytic families of continuous operators (N (z)), (U1(z)) defined on
the neighbourhood of 0 and an analytic function A such that for any non zero z in the
considered neighbourhood of 0,

_ 1
1= A(2)

This finishes the proof of the lemma since A and N are analytic, A(0) =1, \'(0) = —0, #
0 and N(0) is the projector on ker(I; — P). O

(Ia—P(2)™" N(z) + Ur(2)

Lemma 4.10. Under the assumptions and notations of proposition 4.3
We note

U(z) = (I — P(2))" — —Ng

Opz

Then, for any v,n > 0 small enough, there are C, L such that for any z € C with

-1

and any n € N, we have that
U (@), < O™ hal(L + [z])EHD0HY

Proof. First of all, we note that, according to the previous lemma, U(z) is well defined
on a neighbourhood B(0,7") of 0.

Moreover, for any hélder-continuous function f, any z € C; and any x € X, we have
that

P(2)f(z) = /G o(g, 2)e 9% f(gz)dplg)

And so, doing the same kind of computations than in the proof of lemma 4.6, we find
that for some constant C7; € Ry and any z € C,,

IP(2)lly < C1(1+ |2])
So, for any f € C%(X),
I(Za = P()flly = [1(Za = P(32) flly = [R(2) [ sup [P (2) 15111l

2 ||(Ia = P(32)) flly = CLlR)IA + [2DI £l

Thus,
— _ Pk
Feco(X)\{0} (Al FeCO(X)\{0} (Al
But, by assumption, for z € C with |z] > 7/,
(Lo — P(S2)flly 1 1

n = =
FeCO7(X)\{0} I1£1ly I(la = P(32))"Mly ~ Co(1 +[=))*
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So, for any z € C,, with |z| > 1’ and

Co
R < =———,
[R(2)] Ch(1+ 2L+t

we have that

I;— P 1
PR (070 15V i
fecor(X)\{0} 1F1l 2Co (1 + |2])
This proves, using that P(z) has an essential spectral radius strictly smaller than 1, that
I; — P(z) is invertible and that
I(Za = P(2)) |5 < 2C0(1 + [2)*
We just proved that there is a constant C' such that for any z € C,, with
1
R S 57T
R(2)] C(1+ |2])L+0

we have that U is analytic at z and
Uy <O+ 2"
Moreover, according to lemma 4.9, if z € C,, with ®(z) > 1/C(1+|z[)E*!, then, we have
that for any n € N,
1P(2)" |y < C(1+ [z])e” R
So,
C(1+ |z C(1+ |z C?(1 + |z|)E+2
||(Id _ P(Z))_lnfy < N _(e—i_to‘mg) < (t%—é_zl) ‘) < ( +t’ ‘)
And this proves that the function U is analytic on |0, n[®iR.
We just proved that for n small enough and any z € C with
-1
CA+ |zt

<R(z) <n

we have that
U ()l < C'(1+ [2)F*?
for some constant C”.
To conclude, we do the same kind of computations than Gelfand and Shilov in the
proof of theorem 15 in [GC64] to get the control of the derivatives of U on the domain
Dy cr py1- 0

4.3. The renewal theorem for regular functions.
In this paragraph, we prove a result of representation of the renewal
kernel and we deduce the rate of convergence in the renewal theorem
for regular functions.

Let v € R*%. For f € C%(X x R), we note

/
mye(f) =sup  sup e“/|t\|f(x’t)_f($,t)|
7 teR z,x'eX d(m, x/)’Y
rF£x’

ma(z)=ma(z')
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and
1 £]ly,00 = sup sup e[ f(, 1))
rzeX teR

Moreover, we note

[flly.e = [1flly.00 + mr.e(f)
And finally, we set

(4.6) V(X x R) = { € CER,COX))|vm € [0, k][l F™|,.¢ is ﬁnite}

where we noted N
" f
k
FE)(z,t) = W(%t)
And, for f € £7F(X x R),

£k = nax £ 1,

If f e &70(X xR), then, we note for z € X and ¢ € R,

Fla6) = /R e f (o, t)dt

~

It is clear that, for fixed £ the function f(.,§) is holder-continuous on X.
Moreover, R
of N
G €)= [ (e yar

And integrating by parts, we find that for any £ € R and any m € N,

~

e F(a, &) = (—i)™ /R ¢~ £ (5 p)dt
So, if f € EVF(X x R), then
(1 + 6% F (. 6)] < / o)t + /R B @, D)dE < 2l / et

In the same way, if mp o T (z) = mA o ma(2’), then

~

(14 169170, ©) -~ Fs)] < 20 o'y [ e

So, as we can do the same with the functions g%’;, we just prove the following

Lemma 4.11. Let k,1 € N. There is a constant C' such that for any f € EV*(X x R)
and any £ € R, we have that

o'f

3—51( : 75)'

Remark 4.12. This lemma shows that we recover the classical properties of the Fourier
transform that exchanges regularity of functions and decay at infinity.

£ 11k
Sl ek
X

We shall now prove that convolution with functions of £7* regularises functions of
79, As we will not need this result in full generality, we just prove it for some particular
function in £7F.
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Lemma 4.13. Let, for k € N, ¢ be the function defined fort € R by
i(t) = the 1R, (t)

Then for any v € |0,1] and any k € N, there is a constant Cy such that for any f €
EO(X x R),

Qpi1 * f € ETF(X x R)
and
||80k+1 * f||v,k < CkaH%(J

Proof. Thus usual properties of the convolution product prove that, as ¢y, € C* (R),
the function f*gyq is k—times differentiable and it k—th derivative is continuous (since
f is continuous) and for any = € X, any ¢t € R and any m € [0, k]

(g1 * )™ (z,1) = ") % f(x, 1)
But,

(m) _ — (m m—t (k+1)! 1 —t
wkﬂ(t)—;(l)(—l) lmtkH le g, (t)

So,

(g1 * )™ (1) = Z (7) (_1)m_l% /R P (2t — w)etdu

=0

and so, if 2,2’ € X are such that ma o i (z) = ma o TH(2),

Tt = |(orr+ 1) @,8) = (o + N (@,1)

" /m (k‘—|—1)! b1l i B
< E — YWe=ul g 1YY ug
& <l><k+1—l>!/M e M d(, 2')| 06

B “ k+1)! I
< e Md(a,2') | flly0 <m>(7/ MulyFHmemudy
K ; 1) (k+1=10) Jg,

where we used that for any v,w € R,

elvl=lvtwl  olwl
In the same way, we get that

Jkmat = (P41 * f)(m) (z,1)] < Ck‘,m”f”%oe_ylt‘
for some constant Cy, ,,, and this finishes the proof of the lemma. O
We can now state our proposition about representation of the renewal kernel in next

Proposition 4.14. Under the assumption of theorem 4.1, for any ~v > 0 small enough,
there is K € N such that for any f € EV5(X x R), any x € X and any t € R,

—+00

> P (et) = o (w.0) + 5= [ dU(=ie) fla.€)dg

n=0 P
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Where U is the opemtor/\deﬁned in proposition 4.3 and we made the abuse of notations
U(=i€) f(z, &) = U(=if) fe(x) with fe = f(.,€).
Proof. For s € R%, we note P; the operator defined by

Puf(at) = [ €000 f(gn.t +ola.0)dpl0)

We are first going to prove that if f is non negative

ZP"f (xz,t) = lim ZP"f (z,t)

s—0t

And then that
—+o0

> P t) =5 [ €9 Pls— 1) Fla

n=0
To prove the first equality, note that

/G e—sa(gw)f(g'(x’t))dp*n(g) = /G 6_80(g7$)(10(g7$)<0 + Lo(g.0)>0)f (9-(z,1))dp™ (9)

And the monotone convergence theorem proves that

+00 +oo
LN R STIOED ) RS TEOA

s~>04r

Moreover, lemma 4.5 and Bienaymé-Tchebytchev’s mequahty prove that for any z € X,

P79 € Glolg.n) <0) < [ e g) < Cotm
G

so the dominated convergence theorem proves that

+00 oo
lim Z/ a(g x)<0f( (1‘ t dp*n Z/ gaﬂ <Of (.%' t))dp*n( )

s—0t

And this finishes the proof of the first equality.
Moreover,

ZP”f (t,x) Z/ flgz,t+ a(g,x))dp™ (g)
_ 1 = —so(g,z) o(g,x) F| *n

_ano /G ¢~50(a / (+0(0) fga, €)dedp™ (g)

1 7 = —(s—i&)o(g,x) 7 *10
-4 /R 3 /G e~ (1070 g, €)dp™ (g)d¢

+00
=50 [ 2 Pl i) Sl )de = 3 [ €= Pls— i) fla. )¢

and this computation proves the second equality.
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Finally, we noted U(z) the family of operators defined by

(I~ P(2)"' = ——No + U(2)

Op%
and we saw in proposition 4.3 that (U(z)) is an analytic family of continuous operators
on C%7(X).
And so,
it o\ —1 7 et N d§ it Ny
e~ (Ig— P(s — i)™ f(x,§)d¢ = = Nof(x,6)—= + [ *U(s —i§) f(x,§)dE
R RS — 0§ Op R

But, for any continuous function f on X, using lemma 2.13, we can write
T
Nof () = Yomi(e) [ s
i=1

where the p; are P—invariant functions and the v; are stationary probability measures
on X. And so,

1 et - 1 < cilt
37 fy 5 ol 0 = 23 te) | [ g

r +oo
:;pi(ﬂc)/x/o fy; t + u)e™dudvi(y)

400
= Nof(z,t +u)e *“du
0

1 Foo :
— = / e~ (578,
s —1€ 0

So, for any f € L!(R) such that fe LY(R),
eiﬁt R 400 ) N 400
| efaae= [ e [ et figdau=on [ et udu
RS — 0§ 0 R 0
This proves, using the definition of Ily, that

where we used that

1€t R +00
Jim oo | Se_iSNoﬂ:c,s)ds = | Nof(wu)du=Tof (w1
Thus
= 1 1 ‘ ~
Gf(w,t) = nZOP”f(w,t) = oMo (@ 0) + lim o /R U (s = i) f (2, €)d¢

and, as, for fixed £ we have, according to proposition 4.3, that

U (s —i€) (. )]l < U (s — i)l F(z, )]y < CQA+IENE F (2, )]l

and as f € £7K(X x R), we can conclude with the dominated convergence theorem 4.11
taking K = L + 3. U
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Corollary 4.15. Under the assumption and notations of proposition 4.3, for any v > 0
small enough there are constants C, K such that for any f € EVX, any xz,2’ € X and
any t,t’ € R we have that

' <G - UipH(J) flz,t) — <G - Uipﬂo> fla' )

where,

< Ol fllyxwol(z, 1), (2',1))”

[t—t'|2+d(z,2")2 . o
wo((z, 1), (', 1)) = { T O Tale) = ma(r)
1

otherwise

Remark 4.16. Letting ' go to +o0o and using Riemann-Lebesgue’s lemma and proposi-
tion 4.14 to get that under the assumption of the corollary,

lim (G — TI)f(z,#) = 0

!
t'—+oo Op

we find that for any f € £7%(X x R), tout x € X and any ¢ € R,

‘W@ﬂ——mﬂm) 1l

Tp ' (1+ !t )7
Proof. According to proposition 4.14,

(G - ULH()) fla.t) = % / €U (—i€) f(w, €)dé
p R

So, integrating by parts and noting ¢ (x, &) = U(—i€) f(x, &), we find that for any ¢t € R*,

&t
(G- Mot =- [ £

— 2
Op t

P (x,€)dE
So, for any x,z’ € X such that ma o g (z) = ma o T (2’) and any ¢, € R*,

I, t,2!, ) 1= (G — —Tlo) f(,8) — (G — —TIg) f(a,¢)

O'p Up
1 eiét " et "
= o [ Savwone- o [ Cou o

itt it " it " "ot d
:A<%ﬁ_ it,2>¢ (x7§)_\/Ret,2 (w (x7§)_1/} (1’,5))%

) eiét
[I(@,t,2",¢)] <
R

t—2 o t/2
But, assuming that |¢/| > [t| > 1, we find that

So,

| 1 e + o [ 10, 0 0]

. e
ezft ezft

t—2 t/2

|t2 _ t/2|

v _Jt—t|
t2t/2

][]

< i 2+ €]
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And, as we also have for t € R with [t| > 1, that

1 2
— < ,
L

what we get is that

J

Moreover,

. e
62525 elﬁt

T

At — /|

A )

/@H&W@M%
R

1

|tl|2/R|’[/}’/(1-’§) —¢/I($/,§)|d§< 4d(x,y)'y

my (" (.,§))d€
T )
So we only need to check the integrability of ||[¢"(.,§)|. But,

-~ -~ -~

V(x,8) = =U"(—i§) f(z,8) — 20U (=i&) f'(x, &) + U(—i&) f" (2, )
and according to proposition 4.3 there is a constant C' such that for any m € {0, 1,2},
[Tt (=ig)[l, < C™Flml(1+ [¢]) DI+

And, as we also have, according to lemma 4.11 that for any k£ € N, there is a constant
C such that for any [ € {0, 1,2},

oF 1£ 11
a—gl(xaf)Hv < CW

we get that for some constants C, K and any function f € Eg’K(X X R), any z,2’ € X
with mp o mgg(x) = ma o (2') and any ¢,¢' € R* with [¢],[t'] > 1,

[t —t'| + d(z,z")"

(L) + [])

We can now use the fact that for some constants C-, C, we have that for any ¢,t' € R
and any z, 2’ € X,

It — | + d(z,2')" It — /| + d(z,2)\” VE—tR+d@, )2\
O+WOHW<C&O+WGHW><C@<(HMW+W))

(4.7) (2, t,2',t")| < C|lf |k

To prove that inequality (4.7) still holds for [t| < 1, we are going to use the fact that
the objects we consider behave well with the translations on R.

Indeed, if f € EVF(X x R) and if we note, for s € R, fi(t) = f(t — s) then for any
x € X and any t € R,

1 1
(G — —Ilp) f(z,t) = (G — —Io) fs(x,t + s)
op op
and
I fsllvie < €1 £ 11y
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So, if [t| < 1, we take s € [—10,10] such that 1 < |t + s| < [t/ 4+ s| and we get that for
some other constant C,

v
VIt =t +d(z,2')?
\I(x,t,m',t')] < 4C€10v”f” k
! (L4 [¢[) (1 +[#'])

and this is finally what we intended to prove. g

4.4. Renewal theorem for holder-continuous functions. Until now, we proved the
renewal theorem only for regular functions when we are interested in functions that will
just be hélder-continuous on R

To do so, we are going to regularize our functions by convolving them to regular ones
and then use tauberian theorems to get the result.

This method is the one used for instance in [BDP15] and we will use, as they do, a
tauberian theorem by Frennemo (see [Fre65] and appendix A).

We are going to define a new class of functions on X x R for which it is easy to work
for the rate of convergence in the renewal theorem.

Example 4.17. On R? we study functions having (a power of)

= =yl
(14 [l + Nyl

as continuity modulus. Using the application ® : S x R — R4\ {0} that maps (z,t)
onto e’z and identifies R?\ {0} and S x R, our function w becomes

w,(xa y) -

etz — et/x’H
(1+et)(1+et)

w’((x, t)? (117 t/)) =

But,
leta — et’x/HQ g2ty 2 2€t+t’<x’x/> _ (et _ et’>2 + et—f—t/Hx — 2
:e”#((JF#VQ—e“L”ﬁ>2+Hw—aﬂP>
So ,

This leads to the following definition when (X, d) is some compact metric space and
(2,1), (2',¥') € X x R,

w((:c,t), (x/,t/)) _ { e—ﬂ%\t \ \/d(x,x/)2 + (e(tft/)/2 — e(t/,t)/2)2 si 7TA($) — WA(CC/)

1 si non

And we note

[f(@,t) — f@ ). . .
CUXxR):={ feC’(X xR sup is finite
( ) ( ) (@), t)exxr wW((@:1), (@, ¢))
(@6)# (" )
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The following lemma proves that functions in C}, can be extended to continuous functions
on X x R.

Lemma 4.18. Let f € C)(X x R). Then, there are pt,p~ € L>(A) such that for any
xr€X and any t € R,

|[f(z,t) = p(F)(ma(@))] < 27| flly et [f(@,t) = p~ () (ma(@)] < 27| ll7

(we recall our abuse of notations : we keep the function wa for the function wa o 7 )

Proof. We only do the proof for p~ because it is the same idea for p™.
For any x € X ans any t,t' € R, we have that
[t1+]t/]

f(a,t) — fla,t)| <em 2 [e@T0/2 =02 g,

So, according Cauchy’s criterion for functions, for any = € X, (¢t — f(x,t)) has a finite
limit at —oo

So we can note p~ (f)(z) = limy—,_oo f(x,t). And then, we have, by definition of CJ,
that for any (z,t), (2/,¢') € X X R,

[f(@,t) =p~ (@] < |f,t) = f&" )] + [ f(@",¢) —p~(f)(2)]
< fllyww((@, 1), (2, ¢))7 + | f (@, ¢) = p~ (f) ()]
So, letting ' go to —oo, we find that for any ¢t € R and any x,2’ € X with 7a omgy(x) =
A o T (2),
|f(,t) = p~ (F)(@)] <2 f|
And this proves that p~(f)(xz) = p~(f)(2’) and that, for any ¢t € R_,
£ @t) — (D@ < S e

For t € R, we have that

[f(@,t) = p~ (N)@)] < 20 fllos <267 f |0
and this ends the proof of the lemma. O

In the sequel, we will use a regular function v on R such that

li =1and i t)=0
Jdm 9(t) =1and lim (1)
The space of functions in C;(X x R) such that p~(f) = 0 = p*(f) has a finite codimen-
sion and this function v will allow us to make the projections onto this space and it’s
supplementary explicit.

So, from now on, we note

+oo
(4.8) P(t) = %/t ey

The choice of this particular function is arbitrary but will simplify the computations to
come.

In next lemma, we prove that the projection of a function in C,(X x R) to the space
of functions such that p*(f) = 0 = p~(f) has image in the space £7%(X x R) that we
defined in equation (4.6).
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Lemma 4.19. For any function [ € CS”Y(X x R), let

p(z,t) = fla,t) —p~ (/) @)(t) —p* (f)(2)(1 = (1))
where 1 is the function defined in equation (4.8).
Then, for any v € 0,1] there is a constant C' depending only on v such that for all
f ey (X x R), we have that ¢ € E7(X x R) and

lellyo < Cllfllye

Proof. 1t is clear that ¢ is continuous on X x R.

Moreover, using that
1 _u2/2
— | e du =1,
V2T /R

we find that for any ¢ € R and any z € X,
oz, )] < [f (2, 8) = p~ (F)@)|(t) + | £ (z,t) = p" (f)(@)](1 = ¥(t)

< [ fllew (6”1/1( ) +e (1= y(1))
So,

Mo, )] < 1l (0H00(8) + 010 (1 — (1))
This proves that there exists some C depending only on v such that
sup M@, 1)) < C|lf e
Moreover, for any x,z’ such that ma o T (z) = wa o T (2'),
(@, t) — o', 6)| = |f (w, 1) — f(a',0)] < e (@, 2')7 fl0
And this finishes the proof of the lemma. O

Lemma 4.20. Under the assumptions of theorem 4.1, for any f € Cﬂ”(X x R), any
x € X and any t,t' € R,

+o0 +oo
ST P t) = S0 P t)] < Ol (V1 -1)
n=0 n=0
Proof. Let f € CO7(X x R), z € X and ¢, € R.

Then,
+o0 +oo

It x): =Y P f(z,t) =Y P"f(x,t)
n=0 n=0

+o0
s Z/ £ (g2, + a(g,2)) = flgz, ' + a(g,2))Idp™ (9)
n=0 G
+00
< | fllwyy Z/ w(gx,t+o(g,z), gz, t' + o(g,7))dp™(g)
n=0 G

400
- ! - o(g,)|/2—|t' +0(g,x *n
Hf”w’y‘ (t=t/2 _ ol WQ‘ Z/Ge Ao (g.2)1/2=11 +o(9:2)1/2q 5 ()
n=0
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Moreover,

|6(t—t’)/2 _ e(t/—t)/2| _ |e|t—t’|/2 _ e—\t—t/\/2| — o It=t'1/2

t—t’ t—t
elt=tl — 1‘ |

So,

I(t, ', 2) < | fllwny

+o0
e|t—t" _ 1"7 Z/ 6_«/|t+o(g,x)|/2dp*n(g)
n=0 G

v =
<l [T = 1] 37 P 1
n=0

with o(z,t) = e 11H/2,

To prove the lemma, we only need to check that the series is bounded uniformly in
(x,t). We would like to apply the renewal theorem (that would prove that the considered
sum has finite limits at +0o and so is bounded) to the function ¢ but we can’t do it so
early because this function is not regular. This is why we use two regular functions that
dominate ¢ :

+00 —+o00 +oo
Z/ e o2l g7 (g) < ZP"%(&U,Z?) + ZPHSOQ(QUJ/)
n=0"G n=0 n=0

where we noted

2 tooo
o1(t) = —=€* e Pdu et po(t) =

2 2
et / e U2y
V2 ¢ V2 —0

to get that
e1(t) = 1p_ et wa(t) = e_ytlﬂg+ (t)

Then, the renewal theorem that we proved for regular functions (corollary 4.15) and
Riemann Lebesgue’s lemma, prove that

+00 +oo
lim Z()P"gpl(x,t) =0 and tEmmZ(]in1(x,t) = Nol/Rsm(t)dt
n= n=

t—+o0

So, 3228 Py is bounded on X x R. We treat 370 P"py in the same way and this

finises the proof of the lemma. O

For z,z" € X such that ma o mr(x) = ma o (') and ¢, ¢’ € R, we note

!yl _\/|t—t/|2—|—d(:c,x')2
ol 00 = e+ e

Corollary 4.21. Under the assumptions of theorem 4.1, there are constants C, K,« €
R*Jr/ such that for any f € Cg"y(X X R) with pt(f) =0 =p (f) any z,2’ € X and any
¢t €R,

(G- Uipﬂo)f(w,t) - (G- Uipﬂo)f(l",t') < COllflhwwol(z, 1), (2, ))°
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Moreover, for any x € X,

lim (G — —TIo) f(2,£) = 0

t—+o0 Op

Proof. Let, for k € N and t € R, ¢y (t) = the 1g, (¢).
We already saw in lemma 4.13 that there is a constant C} such that for any f €
EVO(X x R), f*@pp1 € EVF(X x R) and

1F* erslly ke < Crll 0
In particular, for any f € CB”, according to lemma 4.19,
1 * rrilly e < Crll Flly e
Moreover,
1 1
Pr1x (G — —1Ilo) f(x,t) = (G — —Ilo)(f * pr+1)(x, 1)

ap ap

and so, taking k large enough, corollary 4.15 proves that

1 1
Ik, t,2' ', f) : = |pps1 * (G — J—Ho)f(ﬁﬂat) — Pry1 * (G — U—Ho)f(ﬁﬂlat/)
p p

< CCwo((z, 1), (2, )71 f Il
And, as we also have that
1 1 o Y
(G = —Tlp)f(,8) = (G = —THo) f (2, )| < C|f]0 (71 = 1)
Op Op
we can conclude with the result by Frennemo stated in the appendix A. O

We can now treat functions in (X xR) that vanish at infinity. However, we would like
to study functions on R%x A that doesn’t vanish on {0} x A but such that >~ f(a,0) =
0. This is why we prove the

Lemma 4.22. Under the assumptions of 4.1, there is a constant C such that for any
p € L®(A) with 3, o p(a) =0, for any z,2" € X and any t,t' € R,

1 1
(G - _HO)f(x’t) - (G - _HO)f(x,’t/)
ap op
where we noted

< Cllpllocwo((x, 1), (', 1))

fz,t) = p(ma o ma(x))¢(t)
and v the function we defined in equation (4.8).
Moreover, if Y- ,ca p(a) =0, then for any x € X,

t——o00

+oo
lim <G - Uipno> fla,t)=>_ P'p(ra(z))
n=0

Proof. As P commutes to the derivation,

+oo
Z P f(z,t)=— / Z P f'(z,u)du
n=0 t
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But, according to proposition 4.14,

S o) = [ Nop s o L [ e f(€)d
P = o [ N s g [ Ui e
But

~ 2 Foo

F1(€) = —e¢/% and / Nof'(z,s)ds = —No f(x,u)
So,

RS P _ _1N 1 iqu . —52/2d
3P ) = i Nof (a5 [ eSUionta)e € as

This proves that

= 1 [+ 1 [t )
S P f(et)=— [ Nof(w,u)du— o ‘/ﬁwe@mmﬁﬂ@m
o op Jt 2m J, R

Moreover, noting N1 = U(0) and V(z) such that U(z) = N1 + 2V (z), we have that the
second term (that only depend on ma o g (x)) is the sum of

1 —+o00 ‘ )
%Nlp(x)/t /Rezgueé 24¢du = —Nyp(z)p(t)
and of
1 —+o00 ‘ ] X | 2
2 Jy /Rezgu(‘if)VH@W)eg Pdedu= - /Re%tw—zf)p(x)es 24¢

(to get this equality, we derive two times). And so, finally, we get that

fﬂﬂﬂbi mNﬂmWﬁwa—i/%w4OMﬁm®
n=0 7 Tp Ji R R 21 Jr b

So, according to Riemann-Lebesgue’s lemma and using the definition of Ilj,
. 1 .
im (G — U—pﬂo)f(l“,t) = lim Ny f(z,t) = Nif(z, —o0)
Now, we need to prove that
+oo

le(m, —OO) = Z Pnf(ﬂ'A e} WH(.%'))
n=0
To do so, note that these two functions are solutions of the equation ¢ — Pg = f and,
as the random walk on A is irreducible and aperiodic, there is a constant C' € R such
that for any a € A,

+oo
Nip(a) = P"pla) +C
n=0
But,

+oo
> Nipla) =YY P'pla) +|AIC =|AIC

acA acA n=0
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And so, C' = 0since Y- ca Nip(a) = 0=, o S5 Pp(a).
Finally, according to proposition 4.3,

/ efftv<—is>p<x>e—fg/2dg‘ < Iplloo / O+ |e])re ¢ 2ae
R R

and

¢ / SV (—ig)p(x)e 2 de| < [|plloC / (14 |€)*Fe¢"/2de
R R

This finishes the proof of the lemma (because p(z) only depend on the projection of x
onto A). O

APPENDIX A. REMAINDER TERMS IN WIENER’S TAUBERIAN THEOREM

In this appendix, we state Frennemo’s result about remainder terms in
Wiener’s tauberian theorem.

The aim of this section is the study of the following problem : given two functions f, ¢

on R for whoch we now the rate of convergence to 0 of |f % ¢| at infinity, can we get the
one of |f| ?

The first answer to this question is a corollary of a tauberian theorem of Wiener that
says that if f is bounded, ¢ is integrable, the Fourier-Laplace transform of ¢ doesn’t
vanish on iR and if f % ¢ converges to 0 at +o00, then, for any integrable function g on
R, f * g also converge to 0 at oc0.

This kind of result is interesting for us in the study of the renewal theorem because to
make our method work, we have to assume that our test functions are regular so we will
have to regularize them by convoling them with regular functions and these remainder
terms estimates will allow us to keep the rate of convergence to 0.

Définition A.1. Let f be a uniformly continuous function on R.
We say that a non decreasing function w : Ry — R, that is continuous at 0 and such
that w(0) = 0 is a modulus of uniform continuity for f if for any z,y € R,

[f (@) = f(y)l <w(|z —yl)

The following theorem is an adaptation of the second theorem of Frennemo in [Fre65].

Théoréme A.2. Let k € N*.

Let ¢y, be the function defined on R by ¢i(z) = aFe *1g ()

Then, there is a constant C' depending only on k such that for any uniformly contin-
uous and bounded function f on R and any x € R,

. 1 [ £ llso k 1| /
< — ) 4 0o s —
£ ()] \Cvlélﬂgj; (Wf <V> +o (V) sup e lor  f( = 1))
where wy is a modulus of uniform continuity for f.

Lemme A.3. There is a constant C' such that for any integrable any uniformly contin-
uous function f on R,

sup|f(z)| < C 1nf wf< >+sup‘/ < ’ﬂ) d§‘
zeR
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where wy is a modulus of uniform continuity for f.

Proof. This lemma is a corollary of lemma 1 in [Fre65] when we remark that if f is
uniformly continuous then

— _ iof t)—f@x) < sup  wp(lz —t]) <wp(1)V 0
a2 SO S s el =) <wp/V)

Proof of theorem A.2. For any s € R, let ug be the function defined for ¢ € R by us(t) =

J(p)emsr,
Then, for any ¢,t' € R,

g (8) — us(t)] = | 2 (£ (1) = F(E) + F(E) (e 20 — e 3=

Swp(lt=t]) + | flloolt = | sup Jule /2
u€R

So, the function ug is uniformly continuous. As it is integrable, we have, according to
the lemma, that for any V' € R’ and any ¢,s € R,

[F(B)] = lus(2)]

1 o _
<0 (o () + 1= mplote o

\%
(-3 w0
oy
Moreover, Frennemo proves that

/V ¢ €1 k " )
( ) dg' O+ V) supe gy« £t — )

-V t'eR

sup
-

This is what we intended to prove. ]

Let (X, d) be a compact metric space and v € ]0,1]. For any (x,t), (2/,t') € X x R,
we note

VIt =2+ d(z,2')?
(L + [T+ [¢])
Corollaire A.4. Let (X,d) be a compact metric space and «y € 10,1].

For any k € N, there is a constant C, € Ry and o € R such that for any continuous
bounded function f on X x R such that

£t = fa )] < (d0=1) e(), Iflle < CW)

wo((@,1), (2, 1)) =

and
lpr * fla,t) — o x f(2', )] < O(fw((,t), (2", 1))
We have that
|f(z,t) — f(2', )] < ChC(f)w((z,1), (2', )"

Proof. For any z,2' € X and s € R, we note f, . s the function defined for any ¢ € R by
fx,x’,s(t) = f(x,t) - f(xl’t + S)
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Then, for any ¢, € R,
| foar,s() = faar,s()] = [f(2,1) = f(2,t + 5) = fz,t)) + f(2", 1 + 5)]
<20, <e‘t_t,‘ — 1)y
and

|Q0k * fa:,a:’,s(t)| = |Q0k * f(x’t) — Pk X f(xl’t + S)| < C(f)w((x’t)’ (xl’t + S))

And so, according to Frennemo’s theorem,

2
/ < i A G
Frars(B] < CO(F) <V1é1ﬂ£1 2V 1) 4

+(1+V)Fsupe Mlw((a,t =), (2 t =t/ + s>>>
t’eR
But, for any t,t € R,
1 1 !
Lt
T+t—t] S 1+

This proves that

sup e 1w ((a,t — 1), (@', t = + ) Sw((@, 1), (2, + ) sup e 1FI(1 4 ¢'])
t'eR t'eR

Thus, for an other constant C' that doesn’t depend on f,

1
[fears()] < CC(F) T s (1+ V) ew((a,t), (/T + s))

Noting now, for some § € R’ that we will choose later,
V =w((z,t), ('t +5))7°
we find that for some constant C' that doesn’t depend on f,
Fa.a',8)(0)] < COMF) (7 + (14 w7)w) < CO(f)u

for § small enough and some a (where we used that w is bounded on X x R).
This ends the proof of the corollary.
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