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THE RATE OF CONVERGENCE FOR THE RENEWAL THEOREM

IN R
d

JEAN-BAPTISTE BOYER

IMB, Université de Bordeaux / MODAL’X, Université Paris-Ouest Nanterre

Abstract. Let ρ be a borelian probability measure on SLd(R). Consider the random

walk (Xn) on R
d \ {0} defined by ρ : for any x ∈ R

d \ {0}, we set X0 = x and
Xn+1 = gn+1Xn where (gn) is an iid sequence of SLd(R)−valued random variables
of law ρ. Guivarc’h and Raugi proved that under an assumption on the subgroup
generated by the support of ρ (strong irreducibility and proximality), this walk is
transient.

In particular, this proves that if f is a compactly supported continuous function on
R

d, then the function Gf(x) := Ex

∑+∞
n=0 f(Xn) is well defined for any x ∈ R

d \ {0}.
Guivarc’h and Le Page proved the renewal theorem in this situation : they study

the possible limits of Gf at 0 and in this article, we study the rate of convergence in
their renewal theorem.

To do so, we consider the family of operators (P (it))t∈R defined for any continuous
function f on the sphere S

d−1 and any x ∈ S
d−1 by

P (it)f(x) =

∫

SLd(R)

e
−it ln

‖gx‖
‖x‖ f

(

gx

‖gx‖

)

dρ(g)

And we prove that, for some L ∈ R and any t0 ∈ R
∗
+,

sup
t∈R

|t|>t0

1

|t|L
∥

∥(Id − P (it))−1
∥

∥ is finite

where the norm is taken in some space of hölder-continuous functions on the sphere.
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1. Introduction

1.1. Main results. Let ρ be a borelian probability measure on SLd(R) (2 6 d ∈ N) and
let x ∈ R

d \ {0}. We define a random walk on R
d \ {0} starting at x by

{
X0 = x
Xn+1 = gn+1Xn

where (gn) ∈ SLd(R)
N is an iid sequence of SLd(R)−valued random variables of law ρ.

In the sequel, we will say that a closed subgroup of SLd(R) acts strongly irreducibly
and proximally on R

d if it doesn’t fix any finite union of non trivial subspaces of Rd and
if it contains an element which has an eigenvalue that is strictly larger than the other
ones and whose eigenspace has dimension 1. We will also that a borelian probability
measure on SLd(R) is strongly irreducible and proximal it it’s support generates a group
that has these two properties.

If ρ is strongly irreducible, proximal and has a moment of order 11, then a result by
Furstenberg and Kesten (see [Fur63] and [GR85]) shows that, if ‖ . ‖ is a norm on R

d,
then, for any x ∈ R

d \ {0},

(1.1)
1

n
ln ‖gn . . . g1x‖ −→ λρ :=

∫

G

∫

P(Rd)
ln ‖gx‖dρ(g)dν(x) > 0 ρ⊗N − a.e.

where ν is a stationary measure on P(Rd) (which is unique as we will see in proposi-
tion 2.5).

In particular, this implies that the walk on R
d \ {0} is transient.

Given a continuous function f on R
d, such that for some α ∈ R

∗
+,

sup
x∈Rd

|f(x)|
‖x‖α < +∞ and sup

x∈Rd

‖x‖α|f(x)| < +∞,

we study the function

(1.2)

(
x 7→ Gf(x) :=

+∞∑

n=0

Exf(Xn)

)

1i.e.
∫

G
| ln ‖g‖|dρ(g) is finite.
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Since the walk is transient and our assumptions on f , this function is well defined and
even continuous on R

d \ {0} (the series converges uniformly on every compact subset of
R
d \{0}) and we would like to study it’s behaviour at 0. This is what we call the renewal

theorem in R
d by analogy to the situation in R (see for instance [Bla48]).

Guivarc’h and Le Page proved in [GL12] that if Tρ, the sub-semigroup generated by

the support of ρ, fixes a non trivial convex cone in R
d then, there are two stationary

borelian probability measures ν1 and ν2 on the sphere Sd−1 and the space of P−invariant
continuous functions on the sphere has dimension 2, a basis being given by two non
negative functions p1, p2 such that p1+p2 = 1 and pi|supp νj = δi,j where δ is Kronecker’s

symbol; on the other hand, if Tρ doesn’t fix any non trivial convex cone in R
d, then,

there is a unique stationary borelian probability measure ν1 on S
d−1 and we note p1 the

constant function taking the value 1 on the sphere.
In both cases, we define an operator on the space of continuous functions on R

d that
decay with a polynomial rate at infinity2 setting, for such a function f and x ∈ R

d \{0},

(1.3) Π0f(x) =

r∑

i=1

pi

(
x

‖x‖

)∫

Sd−1

∫ +∞

‖x‖
f(uy)

du

u
dνi(y)

where, r ∈ {1, 2} is the number of Tρ−invariant closed subsets on the sphere.

They also proved the following

Théorème 1.1 (Guivarc’h - Le Page in [GL12]). Let ρ be a strongly irreducible and
proximal borelian probability measure on SLd(R).

Then, for any γ ∈ R
∗
+ and any continuous function f on R

d such that

sup
v∈Rd\{0}

|f(v)|
‖v‖γ and sup

v∈Rd

‖v‖γ |f(v)| are finite

we have that

lim
x→0

(
G− 1

λρ
Π0

)
f(x) = 0

Where λρ, G and Π0 are defined in equations (1.1), (1.2) and (1.3).

In particular, this theorem shows that if f is a compactly supported hölder-continuous
function on R

d such that f(0) = 0, then the function (G − 1
λρ
Π0)f can be extended at

0 to a continuous function on R
d.

So, the continuity of Gf at 0 is equivalent to the one of Π0f .
Thus, in the case of a unique invariant closed subset on the sphere, we have that

lim
x→0

+∞∑

n=0

Pnf(x) =
1

λρ

∫ +∞

0

∫

Sd−1

f(uy)dν(y)
du

u

and in the other case, we only have a “directional limit” : for any x ∈ R
d \ {0},

lim
t→0+

+∞∑

n=0

Pnf(tx) =
1

λρ

2∑

i=1

pi

(
x

‖x‖

)∫ +∞

0

∫

Sd−1

f(uy)dνi(y)
du

u

2There is α ∈ R
∗
+ such that supx∈Rd ‖x‖α|f(x)| is finite.
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And, in particular, the function Gf cannot be extended to a continuous function at 0 in
general.

Example 1.1. If Tρ contains only matrices having positive coefficients, then it fixes
the cone C of the vectors having only positive coefficients and it’s opposite. Therefore,
taking a positive regular function f supported in C, we see that Gf = 0 on −C whereas
Gf(x) will eventually be non negative on C. Thus, we won’t be able to extend it to a
continuous function at 0.

We would like to compute the modulus of continuity of Gf at 0 and, to do so, we want
to study the rate of convergence in Guivarc’h and Le Page’s result. To simplify our study,
we will only consider (G− 1

λρ
Π0)f and that will allow us to make no distinction between

the number of closed invariant subsets on the sphere (and we will see in proposition 4.14
that it is more than a computational trick). Thus, we will only have to study the modulus
of continuity of Π0f to get the one of Gf and, as we have an easy formula for Π0f , it
will be easy to find conditions that guarantee that Gf can be extended to a continuous
function at 0 and to get it’s modulus of continuity.

In [BDP15], Buraczewski, Damek and Przebinda considered the case where Tρ is
(conjuguated to) a subgroup of R∗

+ × O(d) and a diophantine condition is satisfied by
the projection of ρ on R

∗
+. They prove their result by going back to the 1−dimensional

case (this is why they need this diophantine condition that is necessary in this case (see
for instance [Car83]) ; this hypothesis will always be satisfied in our case as wee will see
in section 3).

Our study (and the one of Guivarc’h and Le Page) takes place in the opposite case
where the subgroup generated by the support of ρ contains an element having a strictly
dominant eigenvalue (this is our proximality assumption).

More specifically, we will prove the following

Théorème 1.2. Let ρ be a strongly irreducible and proximal borelian probability measure
on SLd(R) having an exponential moment3.

Then, for any γ > 0 small enough and any compact subset K of Rd, there are C,α ∈
R such that for any continuous function f ∈ C0,γ(Rd) supported in K and such that
f(0) = 0 and for any x ∈ R

d,
∣∣∣∣
(
G− 1

λρ
Π0

)
f(x)

∣∣∣∣ 6
C

1 + | ln ‖x‖|α ‖f‖γ

Where λρ, G and Π0 are defined in equations (1.1), (1.2) and (1.3).

If one studies the linear random walk on the torus Td := R
d/Zd defined by a probability

measure on SLd(Z) (see for instance [BFLM11]), it appears that there are finite invariant
subsets (e.g. the set {0}). If A is one of them that is also minimal, then one can identify
a neighbourhood of A in the torus to a neighbourhood of {0} ×A in R

d ×A.

This is why, from now on, noting Γρ the subgroup of SLd(R) generated by the support

of ρ, we study the renewal theorem on the product of Rd and a finite Γρ−set A on which

3There is ε ∈ R
∗
+ such that

∫

G
‖g‖εdρ(g) is finite.
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the walk defined by ρ is irreducible and aperiodic and we consider hölder continuous
functions f on R

d ×A.

Remark that if Gf(x, a) =
∑+∞

n=0 P
nf(x, a) has a limit g(a) when x goes to 0, then

(Id − P )g(a) = f(0, a) and so g is a solution to Poisson’s equation for f restricted to A

(in particular, this implies that
∑

a∈A f(0, a) = 0).

Remark also that for any f ∈ C0(Rd×A) such that
∑

a∈A f(0, a) = 0 and any a ∈ A,∑+∞
n=0 P

nf(0, a) is well defined since the random walk on A is irreducible and aperiodic.

We modify our operator Π0 to account of the dependence in A and we note, for
any continuous function f on R

d × A that decays at polynomial rate at infinity4, any
x ∈ R

d \ {0} and any a ∈ A,

(1.4) Π0f(x, a) =
1

|A|
∑

a′∈A

r∑

i=1

pi

(
x

‖x‖

)∫

Sd−1

∫ +∞

‖x‖
f(uy, a′)

du

u
dνi(y)

Remark that if
∑

a∈A f(0, a) = 0 and for any a ∈ A, the function f(., a) is hölder-
continuous at 0 then the limit of Π0f(x, a) at 0 is well defined (only radially if r = 2).

The main result of this article is the following

Théorème 1.3. Let ρ be a strongly irreducible and proximal borelian probability measure
on SLd(R) having an exponential moment.

Let A be a finite Γρ−set such that the random walk on A defined by ρ is irreducible
and aperiodic.

Then, for any γ > 0 small enough, there are constants C ∈ R and α ∈ R
∗
+ such that

for any function f on R
d ×A such that

‖f‖γ := sup
x,y∈Rd\{0}

x 6=y
a∈A

(1 + ‖x‖)γ(1 + ‖y‖)γ |f(x, a)− f(y, a)|
‖x− y‖γ < +∞,

and such that for any a ∈ A,

lim
x→∞

f(x, a) = 0 and
∑

a∈A
f(0, a) = 0

We have that for any a ∈ A,

lim
x→0

(
G− 1

λρ
Π0

)
f(x, a) =

+∞∑

n=0

Pnf(0, a)

Moreover, for any x, y ∈ R
d \ {0} and any a ∈ A,

∣∣∣∣
(
G− 1

λρ
Π0

)
f(x, a)−

(
G− 1

λρ
Π0

)
f(y, a)

∣∣∣∣ 6 Cω0(x, y)
α‖f‖γ

4There is some α ∈ R
∗
+ such that sup(x,a)∈Rd×A

‖x‖α|f(x)| is finite.
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where Π0 is the operator defined in equation (1.4) and where we noted, for any x, y ∈
R
d \ {0},

ω0(x, y) =

√
|ln ‖x‖ − ln ‖y‖|2 +

∥∥∥ x
‖x‖ − y

‖y‖

∥∥∥
2

(1 + | ln ‖x‖|)(1 + | ln ‖y‖|)

Remarque 1.4. The definition of the function ω0 may seem complicate but we will see
that it is a kind of conical distance on R

d. We will give more details about this function
in section 4.4.

Remarque 1.5. The assumption on f guarantees that lim∞ f(., a) = 0 and that there is
a constant C such that for any x, y ∈ R

d and any a ∈ A,

|f(x, a)− f(y, a)| 6 C

( ‖x− y‖
(1 + ‖x‖)(1 + ‖y‖)

)γ

In particular, compactly supported hölder-continuous functions on R
d ×A satisfy this

assumption. Moreover, letting y go to infinity, the equation shows that for any x ∈ R
d,

|f(x)| 6 C

(1 + ‖x‖)γ

So these functions vanish at polynomial speed at infinity.
We will not only consider compactly supported functions because our assumption will

become very natural after identifying R
d \ {0} and S

d−1 ×R in chapter 4.

Remarque 1.6. As we already said, it is the continuity of Gf that interests us but it is
very easy to have the one of Π0f .

To prove this theorem, we will study an analytic family of operators (see section 4)
defined on C0,γ(Sd−1×A) for z ∈ C with |ℜ(z)| small enough, a function f ∈ C0,γ(Sd−1×
A) and some point (x, a) of Sd−1 ×A by

P (z)f(x, a) =

∫

G

e
−z ln

‖gx‖
‖x‖ f(gx, ga)dρ(g)

Indeed, we will prove in section 4 that the rate of convergence in the renewal theorem
is linked to the growth of the norm of (Id − P (z))−1 along the imaginary axis.

To get a control of ‖(Id−P (it))−1‖C0,γ (Sd−1×A) for large values of t, we will adapt in 2

the arguments developed by Dolgopyat in [Dol98] for Ruelle operators and we will prove
proposition 2.22 which links the norm of ‖(Id − P (it))−1‖ to the diophantine properties
of the logarithms of the spectral radii of elements of Γρ.

Then, we will prove that in a strongly irreducible and proximal subgroup of SLd(R),
we can construct elements for which the logarithm of the spectral radius is very well
controlled. This is what we will do in section 3 and more specifically in proposition 3.19.
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1.2. Proofs.

In this paragraph, we prove the results that we stated in this intro-
duction from the ones we will prove in more general settings in the
following ones.

Proof of theorem 1.2 from theorem 1.3.
Let γ ∈]0, 1] and K a compact subset of Rd. Then, there is a constant C0 such that

for any γ−hölder continuous function f on R
d such that supp f ⊂ K,

sup
x,y∈Rd\{0}

x 6=y

(1 + ‖x‖)γ(1 + ‖y‖)γ |f(x)− f(y)|
‖x− y‖γ 6 C0‖f‖γ

We can now apply theorem 1.3 to find constants C,α such that for any γ−hölder-
continuous function f with supp f ⊂ K and any x, y ∈ R

d \ {0},
∣∣∣∣
(
G− 1

λρ
Π0

)
f(x)−

(
G− 1

λρ
Π0

)
f(y)

∣∣∣∣ 6 C‖f‖γω0(x, y)
α

and

lim
y→0

(
G− 1

λρ
Π0

)
f(y) = 0

But, we also have that

lim
y→0

ω0(x, y) =
1

1 + | ln ‖x‖|
and this proves theorem 1.2. �

Proof of theorem 1.3.
This is a direct application of our theorem 4.1.
Indeed, noting X = S

d−1 ×A and H = {Id, ϑ} where ϑ is the antipodal application
on the sphere and identity on A, we have that H acts by isometries on X × A and
(X × A)/H, that we identify with the product of the projective space and A is well
(ρ, γ,M,N)−contracted over A (see example 2.4 and lemma 3.7). Moreover, in section 3,

we saw that the cocycle σ defined on G × P(Rd) by σ(g,X) = ln ‖gx‖
‖x‖ for x ∈ X \ {0}

also belong to ZM (P(Rd)) and the result by Furstenberg that we already gave in this
introduction proves that σρ > 0.

Moreover, we saw in theorem 3.1 that for any t0 ∈ R
∗
+ there are constants C,L such

that for any t ∈ R with |t| > t0,

‖(Id − P (it))−1‖ 6 C|t|L

This proves that we can actually apply theorem 4.1 to any function f that satisfies
the assumption of theorem 1.3 since such a function can be identified to a function f̃ in
Cγ
ω(X × R) such that

∑
a∈A limx→−∞ f̃(x, a) = 0 and limx→+∞ f̃(x, a) = 0 by the map

(x, t) 7→ etx from S
d−1 × R to R

d \ {0}. �
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1.3. Notations and conventions. For any continuous function f on a topological
space X, we note supp f the support of f . In the same way, if ν is a borelian measure
on X, we note supp ν it’s support.

Moreover, we note

‖f‖∞ = sup
x∈X

|f(x)|

For any complex-valued function f on a metric space (X, d) and any γ ∈ ]0, 1], we
note

mγ(f) = sup
x 6=y

|f(x)− f(y)|
d(x, y)γ

and ‖f‖γ = ‖f‖∞ +mγ(f)

Moreover, we note C0,γ(X) the space of γ−hölder-continuous functions on X that we
endow with the norm ‖ . ‖γ .

For η ∈ R
∗
+, we note

Cη = {z ∈ C||ℜ(z)| < η} and Cη = {z ∈ C||ℜ(z)| 6 η}
For any A,B ⊂ R, we note A ⊕ iB = {a + ib|a ∈ A, b ∈ B} and in particular, if

A ⊂ R, then A⊕ iR = {z ∈ C|ℜ(z) ∈ A}

For f ∈ L1(R), we note f̂ the Fourier-Laplace transform of f that is defined for any
z ∈ C such that the integral is absolutely convergent by

f̂(z) =

∫

R

f(x)e−zxdx

2. Unitary perturbations of Markov operators

In this section, we study the perturbation of Markov operators coming
from group actions by kernels of modulus one given by cocycles. The
aim is to prove proposition 2.22 that shows that if the perturbated
operator has an eigenvalue close to 1, then the cocycle is close to a
coboundary.

Let ρ be a borelian probability measure on R having an exponential moment and a
drift λ =

∫
R
ydρ(y) > 0.

In [Car83], Carlsson proved that to obtain the rate of convergence for the renewal
theorem, we have to find some constant l ∈ R+ such that

lim inf
t→±∞

|t|l
∣∣∣∣1−

∫

R

eitydρ(y)

∣∣∣∣ > 0.

This condition is linked to the diophantine properties of the ρ−generic elements (see for
instance [Bre05] where a slightly different but similar condition is studied).

More specifically, is such a parameter l exists, then the rate of convergence in the
renewal theorem is polynomial and if we can even take l = 0 (which is always the
case if ρ is spread-out as proved by Riemann-Lebesgue’s lemma) then we can obtain an
exponential rate of convergence (see [BG07]).

In this section, G will be a second countable locally compact group acting continuously
on a compact metric space (X, d). We will fix a function σ : G×X → R (that will be a



THE RATE OF CONVERGENCE FOR THE RENEWAL THEOREM IN Rd 9

cocycle) and we will study the family of operators (P (it))t∈R defined for any continuous
function f on X and any x ∈ X by

P (it)f(x) =

∫

G

e−itσ(g,x)f(gx)dρ(g)

To simplify notations, we simply note P (or sometimes Pρ to insist on the measure ρ)
the operator P (0). It is clear that if G acts continuously on X, then P preserves the
space of continuous functions on X.

What corresponds to the diophantine condition for measures on R will be the existence
of a constant l ∈ R+ such that

lim sup
t→±∞

1

|t|l ‖(Id − P (it))−1‖ is finite.

Where the norm is taken in some Banach space (the space of hölder-continuous functions
in our study).

To obtain this kind of control, we adapt a theorem proved for Ruelle operators by
Dolgopyat in [Dol98] : this will be our proposition 2.22 which is the aim of this section.

2.1. Preliminaries.
Before we state proposition 2.22 properly, we introduce in this section
a few technical notions.

2.1.1. Contracting actions. From now on, we assume that X fibers G−equivariently
over a finite G−set A. This means that we have a continuous map πA : X → A that is
G−equivariant : for any x in X and any g in G,

πA(gx) = gπA(x)

Definition 2.1 (Contracting action). Let G be a second countable locally compact
group, N : G → [1,+∞[ a submultiplicative function on G and let (X, d) be a compact
metric space endowed with a continuous action of G.

We assume that X fibers G−equivariantly over a finite G−set A.
Let ρ be a borelian probability measure on G and γ,M ∈ R

⋆
+.

We say that X is (ρ, γ,M,N)−contracted over A if

(1) For any g ∈ G and any x, y ∈ X,

d(gx, gy) 6MN(g)Md(x, y)

(2)

(2.1)

∫

G
N(g)Mγdρ(g) is finite

(3) For some n0 ∈ N
⋆ we have that

sup
x,y∈X
x 6=y

πA(x)=πA(y)

∫

G

d(gx, gy)γ

d(x, y)γ
dρ⋆n0(g) < 1

where πA : X → A is the G−equivariant projection.
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Remark 2.2. If X is (ρ, γ,M,N)−contracted over A, then P preserves the space C0,γ(X)
of γ−Holder-continuous functions on X.

Remark 2.3. This notion is used for instance by Bougerol and Lacroix in [BL85] to study
random walks on the projective space but the definition with such a generality is given
in [BQ15] where the reader will find more details.

We could have defined N(g) as the maximum d(gx, gy)/d(x, y) (assuming that it is
finite) since this is a submultiplicative function on G ; however, in our applications,
there will be a natural function N associated to G.

Example 2.4. Our main example will be the case where G is a strongly irreducible
and proximal subgroup of SLd(R), ρ is a borelian probability measure on G having an
exponential moment and whose support generates G and X will be the product of the
projective space P

d(R) (which is contracted according to the theorem 2.3 in chapter V
in [BL85]) and of a finite G−set A endowed with the discrete distance (for any s, s′ ∈ A,
d(s, s′) = 0 if s = s′ and 1 otherwise).

Remark that the sequence (un) defined for any n ∈ N by

un = sup
x,y∈X
x 6=y

πA(x)=πA(y)

∫

G

d(gx, gy)γ

d(x, y)γ
dρ⋆n(g)

is submultiplicative. Therefore, if X is (ρ, γ,M,N)−contracted over A, then there are
constants C1, δ ∈ R

⋆
+ such that for any n ∈ N and any x, y ∈ X such that πA(x) = πA(y),

(2.2)

∫

G

d(gx, gy)γdρ⋆n(g) 6 C1e
−δnd(x, y)γ

Remark also that if γ′ ∈ ]0, γ] then the function t 7→ tγ
′/γ is concave on [0,Diam(X)]

so if the space X is (ρ, γ,M,N)−contracted, it is also (ρ, γ′,M,N)−contracted.
Let X be a compact metric space and P a positive operator5 on C0(X). We say

that the operator P is equicontinuous if it is power-bounded and if for any f ∈ C0(X),
the sequence (Pnf)n∈N is equicontinuous. We refer to [Rau92] for the properties of
equicontinuous operators.

Proposition 2.5. Let G be a second countable locally compact group, N : G → [1,+∞[
a submultiplicative function on G and ρ a borelian probability measure on G.

Let (X, d) be a compact metric space endowed with a continuous action of G and
which is (ρ, γ,M,N)−contracted over a finite G−set A.

Then, the operator P associated to ρ is equicontinuous on C0(X).
Moreover, if the random walk defined by ρ on A is irreducible and aperiodic then there

is a unique probability measure ν on X which is Pρ−invariant.
Finally 1 is the unique eigenvalue of P having modulus 1 and the associated eigenspace

has dimension 1.

Before we prove this result, we state a lemma about Markov chains defined by group
actions on finite sets.

5For any non negative continuous function f on X, Pf is non negative.
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Lemma 2.6. Let G be a second countable locally compact group acting on a finite set A
and let ρ be a borelian probability measure on G such that the random walk on A defined
by ρ is irreducible and aperiodic.

Then, νA, the uniform measure on A, is the unique Pρ−stationary probability measure
on A and Pρ has a spectral radius strictly smaller than 1 in the orthogonal of constant
functions in L2(A, νA).

Proof. According to the theory of Markov chains on finite state spaces (or more specif-
ically Perron-Frobénius’s theorem), we only have to remark that the measure νA is
stationary. �

Proof of proposition 2.5. The equicontinuity of P in the space C0(X) can be proved as
in the case of a subgroup of SLd(R) acting on P(Rd) given in [BQ14]. We will give more
details in the proof of proposition 2.12 where the space is only locally contracted.

Let f ∈ C0(X) and λ a complex number of modulus 1. Assume that Pf = λf .
For any x, y ∈ X such that πA(x) = πA(y), we have that

λn(f(x)− f(y)) = Pnf(x)− Pnf(y) =

∫

G

f(gx)− f(gy)dρ⋆n(g)

But, the space is contracted over A and |λ| = 1 so, we get that for any x, y ∈ X with
πA(x) = πA(y), f(x) = f(y).

Thus, eigenvectors of P in C0(X) associated to eigenvalues of modulus 1 can be iden-
tified to functions on A. As we assumed that the Markov chain defined by ρ on A is
irreducible and aperiodic, we have that the only eigenvectors of P associated to eigenval-
ues of modulus 1 are constants (cf lemma 2.6). Using proposition 3.2 and 3.3 in [Rau92],
this proves that the measure ν is unique, that 1 is a simple eigenvalue and that there is
no other eigenvalue of modulus 1. �

We can now extend to our context the theorem 2.5 of chapter V in [BL85] that proves
that, when the space is contracted, the operator P has a spectral gap in the space of
hölder-continuous functions. This is the following

Proposition 2.7. Let G be a second countable locally compact group, N : G → [1,+∞[
a submultiplicative function on G and ρ a borelian probability measure on G.

Let (X, d) be a compact metric space endowed with an action of G and which is
(ρ, γ,M,N)−contracted over a finite G−set A on which the random walk defined by ρ
is irreducible and aperiodic.

Note e−κA ∈ ]0, 1[ and CA ∈ [1,+∞[ such that for any function f on A and any
n ∈ N, ∥∥∥∥P

nf −
∫
fdνA

∥∥∥∥
∞

6 CAe
−κAn‖f‖∞

where νA is the uniform measure on A (see lemma 2.6 for the existence of κA, CA).
Let ν be the unique Pρ−invariant borelian probability measure on X (given by propo-

sition 2.5).
Then, there are constants κ,C0 ∈ R

⋆
+ that don’t depend on CA and such that for any

n ∈ N, ∥∥Pn
ρ −Πν

∥∥
C0,γ(X)

6 C0CAe
−κn
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where we noted Πν the operator of integration against the measure ν.

Remark 2.8. We quantify the spectral gap assumption in L∞(A, νA) since this will allow
us to take a family (Ai, νi) of G−finite G−sets on which P has a uniform spectral gap.

Remark 2.9. This proposition can be seen has a corollary of the quasicompacity of P in
C0,γ(X) that we will prove in proposition 2.12 and of the fact that, in C0(X), 1 is the
only eigenvalue of modulus 1 and it’s associated eigenspace has dimension 1. However,
what interests us is the dependence between the spectral gap in L∞(A, νA) and the one
in C0,γ(X).

Proof. Let f ∈ C0,γ(X), x, y ∈ X such that πA(x) = πA(y) and n ∈ N. Then, for any
n ∈ N, we can compute

|Pnf(x)− Pnf(y)| 6 mγ(f)

∫

G

d(gx, gy)γdρ⋆n(g) 6 mγ(f)C1e
−δnd(x, y)γ

where we noted C1, δ the constants given by equation (2.2).
This proves that for any n ∈ N,

mγ(P
nf) 6 C1e

−δnmγ(f)

We recall that we noted ν the unique P−invariant borelian probability measure on X

(given by proposition 2.5).
Moreover, for any x ∈ X and any non zero integer n, we note νx the measure defined

by ∫
ϕ(y)dνx(y) = |A|

∫

X

1πA(x)=πA(y)ϕ(y)dν(y)

Then, for any function f ∈ C0,γ(X), we note

fn1 (x) =

∫

X

Pnf(y)dνx(y) and f
n
2 (x) = Pnf(x)− fn1 (x)

Thus, for any x, y ∈ X, we have that

fn2 (y)−mγ(f
n
2 )Diam(X) 6 fn2 (x) 6 fn2 (y) +mγ(f

n
2 )Diam(X)

where we noted Diam(X) the diameter of X.
Therefore, integrating in the y variable and using the fact that

∫
X
fn2 (y)dνx(y) = 0,

we get that

‖fn2 ‖∞ 6 Diam(X)γmγ(f
n
2 ) = Diam(X)γmγ(P

nf)

And as,

P 2nf(x) = Pn(Pnf)(x) = Pn(fn2 + fn1 )(x) = Pnfn2 (x) + Pnfn1 (x)

we also get that
∣∣∣∣P

2nf(x)−
∫

A

fn1 (a)dνA(a)

∣∣∣∣ 6 ‖fn2 ‖∞ +

∣∣∣∣P
nfn1 (x)−

∫

A

fn1 (a)dνA(a)

∣∣∣∣

6 Diam(X)γC1e
−δnmγ(f) + CAe

−κAn‖Pnfn1 ‖∞
6

(
Diam(X)γC1e

−δn + CAe
−κAn

)
‖f‖γ
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Finally, using Fubini’s lemma, we obtain that
∫

A

fn1 (a)dνA(a) =

∫

X

f(y)dν(y)

This last equality ends the proof of the lemma since we also have that

mγ(P
nf) 6 C1e

−δnmγ(f)

And so, ∥∥∥∥P
2nf −

∫
fdν

∥∥∥∥
γ

6

(
CC1e

−δn + C1e
−2δn + CAe

−κAn
)
‖f‖γ

So we note κ = 1
2 min(δ, κA) and C0 = (1 + C)C1 + 1. �

2.1.2. Fibered contracting actions.

In this paragraph, we study the case where the space is only locally
contracted and we recover some results of the previous paragraph.

To study the action of SLd(R) on the sphere and not only on the projective space, the
notion of contractivity of the action is not enough (since the sphere isn’t contracted as
x and −x stays at fixed distance). However, this is the only obstruction since if we note
θ the application on the sphere that sends any point x onto −x, then it commutes to
the action of G and so, noting H = {Id, θ}, we have the identification S

d−1/H ∼ P
d and

the projective space is (ρ, γ,M,N)−contracted (if ρ has an exponential moment and is
strongly irreducible and proximal) as we already noted in example 2.4.

This is why, from now on, we will consider compact metric G−spaces (X, d) endowed
with an action of a finite group H that commutes to the action of G and such that the
quotient (endowed with it’s quotient metric) is contracted. To simplify the lecture, the
reader may keep G = SLd(R), X = S

d−1, H = {Id, θ} and X/H = P
d.

Our first step is then to recover an equivalent of lemma 2.5 and proposition 2.7.
To do so, we will use the following

Theorem 2.10 (Ionescu-Tulcea and Marinescu in [ITM50]). Let (B, ‖ . ‖B) be a Banach
space and P a continuous operator on B.

Assume there is a norm ‖ . ‖ on B such that the identity map between the spaces
(B, ‖ . ‖B) and (B, ‖ . ‖) is compact and that there are two constants r,R ∈ R+ such that
for any f ∈ B,

‖Pf‖B 6 r‖f‖B +R‖f‖
Then, the essential spectral radius of P in (B, ‖ . ‖B) is bounded by r.

Example 2.11. In our examples, (B, ‖ . ‖B) will be a space of hölder-continuous func-
tions endowed with it’s Banach-space norm and ‖ . ‖ will be the uniform norm.

Proposition 2.12. Let G be a second countable locally compact group, N : G → [1,+∞[
a submultiplicative function on G and ρ a borelian probability measure on G.

Let (X, d) be a compact metric G−space endowed with an action of a finite group H

that commutes to the one of G and such that X/H is (ρ, γ,M,N)−contracted over a
finite G−set A.
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Then, there are C ′, δ′ ∈ R
⋆
+ such that for any f ∈ C0,γ(X) and any n ∈ N,

mγ(P
nf) 6 C ′

(
e−δ′nmγ(f) + ‖f‖∞

)

In particular, P est is equicontinuous on C0(X) and it’s spectral radius in C0,γ(X) is
strictly smaller than 1.

Proof. We do not prove this result here but later, in lemma 4.6 when the operator is
perturbated by a cocycle. �

Finally, we study the eigenvalues of P in C0(X) having modulus 1. To do so, we begin
by studying the P−invariant borelian probability measures and then, we will see that,
contrary to what happened when the space was contracted, there can be eigenvalues of
modulus 1 and different from 1 and even non constant P−invariant functions.

This study will allow us to understand why we have to make an assumption about a
cone being fixed or not in the renewal theorem.

Lemma 2.13. Let G be a second countable locally compact group, N : G → [1,+∞[ a
submultiplicative function on G and ρ a borelian probability measure on G.

Let (X, d) be a compact metric G−space endowed with an action of a finite group H

that commutes to the G−action and such that X/H is (ρ, γ,M,N)−contracted over a
finite G−set A on which the random walk defined by ρ is irreducible and aperiodic.

Then, there are at most |H| minimal closed invariant subsets (for the action of Tρ
the subsemigroup generated by the support of ρ) that we note Λ1, . . . ,Λr. Each one is
associated to a P−invariant P−ergodic borelian probability measure νi with supp νi = Λi.

Moreover, for any x ∈ X and ρ⊗N−a.e. (gn) ∈ GN, the sequence

1

n

n−1∑

k=0

δgk...g1x

converges to one of the νi and if we note, for i ∈ [1, r],

pi(x) = ρ⊗N

({
(gn)

∣∣∣∣∣
1

n

n−1∑

k=0

δgk ...g1x
∗
⇀ νi

})

we have that the function pi is continuous, P−invariant,
∑

i pi = 1, pi = δi,j on Λj

(where δi,j Kronecker’s symbol).
Finally, for any continuous function f on X and any x ∈ X,

1

n

n−1∑

k=0

P kf(x) −−−−−→
n→+∞

r∑

i=1

pi(x)

∫

X

fdνi

Proof. Let Λ be a minimal closed invariant subset (there is at least one since X is
compact) and let h ∈ H. Then, hΛ is still a closed invariant subset since the actions of
G and H commute. Moreover, it is also minimal since h is invertible.

This proves that, HΛ is again a closed P−invariant subset. But this time, it is
also H−invariant and so πH(HΛ) is an invariant subset of P seen as an operator on
C0,γ(X/H). But this closed invariant subset is unique since P is contracting on X/H
and the random walk on A defined by ρ is irreducible and aperiodic (see proposition 2.5).
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This proves that HΛ is unique and that there are at most |H| minimal closed invariant
subsets and that H acts transitively on them. We note them Λ1, . . . ,Λr and we note Λ
their union.

We saw in proposition 2.12 that P is equicontinuous and using the propositions 3.2
and 3.3 of [Rau92], we get that there are at most r continuous P−invariant functions
p1, . . . pr forming a free family, and as each one is constant on Λi, we can always assume
that pj = δi,j on Λi. Thus, noting νi the P−invariant measure on Λi, we have that for
any continuous function f ∈ C0(X),

lim
n→+∞

1

n

n−1∑

k=0

P kf(x) =
r∑

i=1

pi(x)

∫
fdνi

To conclude, we only need to check that pi really is the function we defined.

First of all, the fact that for any x ∈ X, 1
n

∑n−1
k=0 δgk ...g1x converges a.e. to an ergodic

measure depending continuously on x is a consequence of the equicontinuity of P and of
the propositions of Raugi that we already used.

The fact that the function pi that we defined is P−invariant also comes from these
propositions (see also equality 2.11 in [BQ14]). So we can conclude using the unicity of
these functions p1, . . . , pr. �

2.1.3. Lazy random walk. Let G be a topological group. If ρ is a borelian probability
measure on G, we will have to introduce the lazy random walk associated to ρ : this is
the walk associated to the measure

(2.3) ρe =
1

2
δe +

1

2
ρ

The main interest of this measure is that the sequence (supp ρ⋆ne )n∈N is non decreasing.
Moreover, for any λ ∈ C,

λId − Pρe =
1

2
((2λ− 1)Id − Pρ)

and so the spectral values of Pρe and the ones of Pρ are linked (in particular, for λ = 1,
we get that Id − Pρe = 1

2(Id − Pρ)).
The following lemma proves that this measure keeps other properties of ρ.

Lemma 2.14. Let G be a second countable locally compact group and ρ a borelian
probability measure on G.

Let (X, d) be a compact metric G−space endowed with an action of a finite group H

that commutes to the G−action and such that X/H is (ρ, γ,M,N)−contracted over a
finite G−set A.

Then, X/H is also (ρe, γ,M,N)−contracted over A.

Proof. It is clear that the first two properties are satisfied by ρe.
Moreover, for any n ∈ N, we have that

ρ⋆ne =
1

2n

n∑

k=0

(
n

k

)
ρ⋆k
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And so, for any x, y ∈ X such that x 6= y and πA(x) = πA(y) and any n ∈ N, we have
that

∫

G

d(gx, gy)γ

d(x, y)γ
dρ⋆ne (g) =

1

2n

n∑

k=0

(
n

k

)∫

G

d(gx, gy)γ

d(x, y)γ
dρ⋆k(g)

6
1

2n

n∑

k=0

(
n

k

)
C1e

−δk 6 C1

(
1 + e−δ

2

)n

�

In the same way, we prove the following

Lemma 2.15. Let G be a second countable locally compact group and ρ a borelian
probability measure on G.

Let (B, ‖ . ‖B) be a Banach space and r : G → GL(B) a representation of G such that{
G× B → B
(g, b) 7→ r(g)b

is continuous and
∫
G
‖r(g)‖dρ(g) is finite.

We note Pρ the operator b 7→
∫
G
r(g)(b)dρ(g).

We assume that there is an operator N0 on B and C, κ ∈ R such that for any n ∈ N,
‖Pn

ρ −N0‖B 6 Ce−κn.
Then, for any n ∈ N,

‖Pn
ρe −N0‖B 6 C

(
1 + e−κ

2

)n

where Pρe is the operator associated to ρe = 1
2δe +

1
2ρ.

2.1.4. Perturbations of Markov operators by cocycles. In this paragraph, G still is a
second countable locally compact group acting on a compact metric G−space (X, d)
that fibers G−equivariantly over a finite G−set A and ρ a borelian probability measure
on G.

We are going to study a kind of perturbation of the Markov operator associated to ρ.
To do so, we make the following

Definition 2.16 (Cocycles). Let G be a topological group and X a topological space
endowed with a continuous action of G.

We say that a continuous function σ : G ×X → R is a cocycle if for any g1, g2 ∈ G

and any x ∈ X,
σ(g2g1, x) = σ(g2, g1x) + σ(g1, x)

Among the cocycles, we call coboundaries the ones given by σ(g, x) = ϕ(gx) − ϕ(x)
where ϕ : X → R is a continuous function.

Remark 2.17. Let σ be a cocycle. Then, the operator defined for any f ∈ C0(X) and
any x ∈ X by

P (it)f(x) =

∫

G

e−itσ(g,x)f(gx)dρ(g)

is continuous on C0(X) and for any f ∈ C0(X), any x ∈ X and any n ∈ N, we have that

Pn(it)f(x) =

∫

G

e−itσ(g,x)f(gx)dρ⋆n(g) and ‖P (it)nf‖∞ 6 ‖f‖∞

It is to have this equation that we only study cocycles and not more general functions
on G×X.
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As wa are going to study contracting actions (and thus holder-continuous functions)
we want conditions that guarantee that P (it) preserves the space of hölder-continuous
functions on X.

For a cocycle σ and g ∈ G, we note

σsup(g) = sup
x∈X

|σ(g, x)| and σLip(g) = sup
x,y∈X

πA(x)=πA(y)
x 6=y

|σ(g, x) − σ(g, y)|
d(x, y)

Then, for any x, y ∈ X with x 6= y and πA(x) = πA(y),

2γ−1
∣∣∣e−itσ(g,x) − e−itσ(g,y)

∣∣∣ 6
∣∣∣e−itσ(g,x) − e−itσ(g,y)

∣∣∣
γ
6 |t|γ |σ(g, x) − σ(g, y)|γ

6 |t|γσγLip(g)d(x, y)γ

So, for any g ∈ G, if σLip(g) is finite, then the function (x 7→ e−itσ(g,x)) is hölder-
continuous.

We note, for M ∈ R+,

ZM
N (X) =

{
σ is a cocycle

∣∣∣∣∣supg∈G

σLip(g)

N(g)M
and sup

g∈G

eσsup(g)

N(g)M
are finite

}

and, for σ ∈ ZM
N (X), we note

(2.4) [σ]
M

= sup
g∈G

σLip(g)

N(g)M
and [σ]∞ = sup

g∈G

eσsup(g)

N(g)M

The following proposition is an extension to our context of corollary 3.21 of Guivarc’h
and Le Page in [GL12].

Proposition 2.18. Let G be a second countable locally compact group, N : G → [1,+∞[
a submultiplicative function on G and ρ a borelian probability measure on G.

Let (X, d) be a compact metric G−space endowed with an action of a finite group H

that commutes to the one of G and such that X/H is (ρ, γ0,M,N)−contracted over a
finite G−set A on which the random walk defined by ρ is irreducible and aperiodic.

Let σ ∈ ZM
N (X/H). Then there are C2, δ2 ∈ R

⋆
+ such that for any t ∈ R, any n ∈ N

and any function f ∈ C0,γ(X), we have that

mγ(P
n(it)f) 6 C2

(
‖f‖∞(1 + |t|) + e−δ2nmγ(f)

)

In particular, the essential spectral radius of P (it) is smaller than e−δ2 .

Proof. Let f ∈ C0,γ(X) and x, y ∈ X such that x 6= y and πA ◦ πH(x) = πA ◦ πH(y).



18 THE RATE OF CONVERGENCE FOR THE RENEWAL THEOREM IN Rd

For any n ∈ N
⋆, we have that

|Pn(it)f(x) −Pn(it)f(y)| =
∣∣∣∣
∫

G

e−itσ(g,x)f(gx)− e−itσ(g,y)f(gy)dρ⋆n(g)

∣∣∣∣

6

∫

G

|f(gx)− f(gy)| dρ⋆n(g) + ‖f‖∞
∫

G

∣∣∣e−itσ(g,x) − e−itσ(g,y)
∣∣∣ dρ⋆n(g)

6 d(x, y)γmγ(f)

∫

G

d(gx, gy)γ

d(x, y)γ
dρ⋆n(g)

+ ‖f‖∞21−γ |t|γ [σ]
M
d(x, y)γ

∫

G

NγM (g)dρ⋆n(g)

First of all, we note that as N is submultiplicative, we have that
∫

G

N(g)γMdρ⋆n(g) 6

(∫

G

NγM (g)dρ(g)

)n

Moreover, since H is a finite group, there is d0 ∈ R
⋆
+ such that for any x, y ∈ X, is

d(x, y) 6 d0, then d(x, y) = d(πH(x), πH(y)).
Thus, for any ε ∈ ]0, 1] and any x, y ∈ X such that 0 < d(x, y) 6 εd0 and πA◦πH(x) =

πA ◦ πH(y), we have

In(x, y) : =

∫

G

d(gx, gy)γdρ⋆n(g)

=

∫

G

1d(gx,gy)6d0d(gx, gy)
γ + 1d(gx,gy)>d0d(gx, gy)

γdρ⋆n(g)

=

∫

G

1d(gx,gy)6d0d(gπHx, gπHy)
γ + 1d(gx,gy)>d0d(gx, gy)

γdρ⋆n(g)

6 C1e
−δnd(x, y)γ + d(x, y)γ

∫

G

1d(gx,gy)>d0M
γN(g)Mγdρ⋆n(g)

6

(
C1e

−δn +Mγ

∫

G

1MN(g)M>1/εN(g)γMdρ⋆n(g)

)
d(x, y)γ

Thus, if n0 is such that C1e
−δn0 6 1/4, as

∫
G
N(g)γMdρ⋆n0(g) is finite, we can choose ε

such that ∫

G

1N(g)M>1/εM
γN(g)γMdρ⋆n0(g) 6 1/4

And so, for this choice of ε and n0, we have that for any x, y ∈ X such that 0 < d(x, y) 6
εd0 and πA ◦ πH(x) = πA ◦ πH(y),

∫

G

d(gx, gy)γdρ⋆n0(g) 6
1

2
d(x, y)γ

This proves that for any x, y ∈ X with πA ◦ πH(x) = πA ◦ πH(y) and d(x, y) 6 εd0 and
any function f ∈ C0,γ(X),

|Pn0(it)f(x)− Pn0(it)f(y)|
d(x, y)γ

6
1

2
mγ(f) + ‖f‖∞21−γ |t|γ [σ]

M

(∫

G

Nγ0M (g)dρ(g)

)n
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But, as we also have, for x, y such that πA ◦πH(x) = πA ◦πH(y) and d(x, y) > εd0, that

|Pn0(it)f(x)− Pn0(it)f(y)|
d(x, y)γ

6
2‖f‖∞
(εd0)γ

we get that for any function f ∈ C0,γ(X),

mγ(P
n0(it)f) 6

1

2
mγ(f) +

(
2

(εd0)γ
+ 21−γ |t|γ [σ]

M

(∫

G

Nγ0M (g)dρ(g)

)n0
)
‖f‖∞

If we simplify the notations, what we just proves is that there is n0 ∈ N
⋆ and a constant

C ∈ R+ (depending on n0) such that for any f ∈ C0,γ(X),

mγ(P
n0(it)f) 6

1

2
mγ(f) + C(1 + |t|)‖f‖∞

Iterating this inequality, we find that there are constants C2, δ2 ∈ R
⋆
+ such that for any

n ∈ N and any f ∈ C0,γ(X),

mγ(P
n(it)f) 6 C2

(
e−δ2nmγ(f) + (1 + |t|)‖f‖∞

)

This proves, using theorem 2.10 that P (it) has an essential spectral radius smaller than
e−δ2 and that it is equicontinuous. �

2.1.5. Lower regularity of measures on metric spaces. Guivarc’h proved (cf. [BL85]) that
if ρ is a strongly irreducible and proximal borelian probability measure on SLd(R) having
an exponential moment, then there is a unique P−invariant probability measure ν on
P(Rd). Moreover, there are ∆+, C ∈ R

⋆
+ such that for any x ∈ P(Rd) and any r ∈ R+,

ν(B(x, r)) 6 Cr∆
+

(we refer to the chapter 12 in [BQ15] for a proof of this result).
This property of upper regularity of the measure means that ν is not two much

concentrated at neighbourhood of points in the projective space : if, for instance, it had
an atom x0 we would have that for any ∆+ ∈ R

⋆
+, limr→0+ ν(B(x0, r))/r

∆+ = +∞.

Here, we will have to use the lower regularity of the measure ν : at many steps we
will have to use the fact that the measure of a ball of radius r is polynomial in r. To
study this, we make the following

Definition 2.19. Let (X, d) be a compact metric space and ν a borelian probability
measure on X.

Let ∆ ∈ R+ and t, r ∈ R
⋆
+.

We say that a point x ∈ X is (∆, t)− ν−regular at scale r if

ν(B(x, r)) > tr∆

In the same way, we will say that a point is (∆, t)− ν−regular at any scale if

inf
r∈]0,1]

ν(B(x, r))

r∆
> t

Finally, we say that a point of X is ∆− ν−regular at scale r if it is (∆, 1)− ν-regular at
scale r.
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Remark 2.20. IfX has an Hausdorff dimension smaller than ∆ then we have (cf. [Rud87])
that

ν


 ⋃

t∈R⋆
+

{x ∈ X|x is (∆, t)− ν − regular at any scale}


 = 1

Sometimes, if π0 : X → X0 is a covering and ν is a probability measure on X0, we
will say that x ∈ X is ∆− ν-regular at scale r if π0(x) is.

2.1.6. Isotypic decomposition.

In this paragraph, we recall the isotypic decomposition that generalizes
the decomposition of function on R between even and odd parts.

Let H be a finite group. For an irreducible unitary representation ξ = (ρ,V) of H, we
endow End(V) of the Hilbert-Schmidt inner product defined for any A,B ∈ End(V) by

〈A,B〉HS := trA⋆B

We note | . |HS the corresponding norm.
Let (X, d) be a compact metric space endowed with an action by isometries of H (this

implies in particular that H preserves the space of hölder-continuous functions on X).
The action of H on X gives a representation of H in C0(X) defined for any h ∈ H,

f ∈ C0(X) and x ∈ X by

ρ0(h)f(x) = f(h−1x)

We note Ĥ a set of representatives of unitary irreducible representations of H up to
isomorphism. This is a finite set.

For ξ = (ρ,V) ∈ Ĥ, f ∈ C0(X) and x ∈ X, we note

(2.5) f̂(x, ξ) =
dimV

|H|
∑

h∈H
f(h−1x)ρ(h)⋆

Then, we have (see theorem 8 in [Ser78]) that for any x ∈ X,

(2.6) f(x) =
∑

ξ∈Ĥ

trf̂(x, ξ)

However, wee will need the following relation : for any x ∈ X and any h ∈ H,

f̂(hx, ξ) =
dimV

|H|
∑

h′∈H
f((h−1h′)−1x)ρ(h′)⋆ = f̂(x, ξ)ρ(h)⋆

Thus, for any f ∈ C0(X), any x ∈ X, any ξ ∈ Ĥ and any h ∈ H, we have that

|f̂(hx, ξ)|HS = |f̂(x, ξ)|HS

and the function (x 7→ |f̂(x, ξ)|HS) can be identified to a continuous function on X/H.
The norm | . |HS allows us to define a uniform norm on bounded functions on X taking

their values in End(V) : we note, for such a function f ,

‖f‖∞ = sup
x∈X

|f(x)|HS
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In the same way, we can define hölder-continuous functions from X to End(V) and note

C0,γ
ξ (X,End(V)) =

{
f ∈ C0,γ(X,End(Vξ))

∣∣∀x ∈ X∀h ∈ H f(hx) = f(x)ρ(h)⋆
}

(To simplify notations, we will simply note this space C0,γ
ξ (X) and sometimes C0,γ

ξ ).

We now have the following

Lemma 2.21. Let H be a group acting by isometries on a compact metric space (X, d).

Then, the space C0,γ(X) injects into
∏

ξ∈Ĥ C0,γ
ξ (X,End(V)). Moreover, for any ξ ∈ Ĥ,

the projection onto C0,γ
ξ (X) is given by equation (2.5) and the reciproqual application is

given by equation (2.6).

2.2. Control of the resolvant of the perturbated operator.

2.2.1. Statement of the proposition.

We are now ready to state proposition 2.22, aim of this section.

We keep the notations of the previous part.
Let σ : G × X → R be an H−invariant cocycle. We note, for t ∈ R, P (it) (or

sometimes Pρ(it) to insist on the measure ρ) the operator defined for any continuous
function f on X and any x in X, by

P (it)f(x) =

∫

G

e−itσ(g,x)f(gx)dρ(g)

If ρe = 1
2δe +

1
2ρ, we simply note Pe(it) = Pρe(it) the operator associated to the lazy

random walk.
Finally, we define

[σ]
M

= sup
g∈G

sup
x,y∈X
x 6=y

πA(x)=πA(y)

|σ(g, x) − σ(g, y)|
N(g)Md(x, y)

We saw in paragraph 2.1.4 that if [σ]
M

is finite and if (g 7→ N(g)Mγ) is ρ−integrable
then P (it) preserves the space of γ−hölder-continuous functions on X.

The aim of this section is to study the properties of P (it) and to connect them to

the ones of P . A first example is when e−itσ is a coboundary : e−itσ(g,x) = ϕ(gx)ϕ(x)−1

where ϕ is a γ−Holder continuous function taking it’s values in U, the set of complex
numbers of modulus 1. Indeed, in this case, P (it) is conjugated to P by the operator of
multiplication by ϕ and so, these two operators have the same spectral properties. In
particular, the operator P (it) has the eigenvalue 1 and an associated eigenvector is ϕ−1.

We are going to see that we can have a partial reciprocal statement : the proposition
proves that if Id−P (it) is not well invertible (the norm of it’s inverse is large) then e−itσ

is close to a coboundary.

Proposition 2.22. Let G be a second countable locally compact group, N : G → [1,+∞[
a submultiplicative function on G and ρ a borelian probability measure on G.

Let (X, d) be a compact metric G−space endowed with an action by isometries of
a finite group H that commutes to the G−action and such that the space X/H is
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(ρ, γ,M,N)−contracted over a finite G−set A on which the random walk defined by
ρ is irreducible and aperiodic. We fix a class of representatives of unitary irreducible
representations of H up to isomorphism.

Let ν be the unique P−invariant borelian probability measure on X/H (see proposi-
tion 2.5).

Then, for any γ > 0 small enough, any α1, β ∈ R
⋆
+, there is α2 ∈ R+, such that for

any ∆ ∈ R+ such that there is a point x ∈ X/H that is ∆− ν-regular at scale 2−α2 (see
definition 2.19) we have that there are L,C ∈ R+ such that for any t ∈ R with |t| > 2,
we have that if

‖(Id − P (it))−1‖C0,γ (X) > C|t|L

then there is ξ ∈ Ĥ and a function f ∈ C0,γ
ξ (X) with ‖f‖∞ 6 1 and mγ(f) 6 C|t| such

that for any point x in X whose projection on X/H is ∆− ν-regular at scale |t|−α2 , we
have that

|f(x)|HS >
1

2
and ∫

G

∣∣∣e−itσ(g,x)f(gx)− f(x)
∣∣∣
2

HS
dρ

⋆n(β,t)
e (g) 6

1

|t|α1

where we noted
n(β, t) = ⌊β ln |t|⌋

and ρe is the measure associated to the lazy random walk (see paragraph 2.1.3).

Remark 2.23. Note that in the conclusion of the proposition, it really is the measure
ρe that is used and not the measure ρ itself. This won’t change anything in our study
study since their supports generate the same subgroup of G

Remark 2.24. We would want to take ϕ(x) = 1√
dimV

trf(x) since this will give the

following inequality :∫

G

∣∣∣e−itσ(g,x)ϕ(gx) − ϕ(x)
∣∣∣
2
dρ

⋆n(β,t)
e (g) 6

1

|t|α1

And so, if ϕ didn’t vanish on X, the theorem would imply that e−itσ were close to the
coboundary ϕ(x)ϕ(gx)−1 . However, our control on |f(x)|HS doesn’t give any control on
|ϕ(x)|.
2.2.2. Proof of the proposition. The proof relies on lemmas that are adapted from the
ones of Dolgopyat for Ruelle operators.

The first difficulty comes from the fact that the space is only locally contracted over A.
To solve it, we are going to use the isotypic decomposition that we saw in lemma 2.21 and
the fact that G preserves this decomposition since it’s action and the H−one commutes.
Moreover, we also assumed that σ is H−invariant and so, we can study the operator
P (it) in each C0,γ

ξ (X).
One also has to remark that there is an equivalent to proposition 2.18 in the space

C0,γ
ξ (X).

Proposition 2.18 suggests that we should renormalise the norm in C0,γ(X) to study
P (it). This is why, we make the following
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Notation. Under the assumption of proposition 2.22, we note C2 the constant given by
proposition 2.18 (we can assume without any loss of generality that C2 > 1).

Let t ∈ R with |t| > 2. Then, for any f ∈ C0,γ(X), we note

‖ . ‖(t) = max

(
‖f‖∞,

mγ(f)

2C2|t|

)

In the same way, we define the norm ‖ . ‖(t) for functions in C0,γ
ξ (X).

Remark that for any f ∈ C0,γ(X),

‖f‖(t) 6 ‖f‖γ 6 (1 + 2C2|t|) ‖f‖(t)
So (C0,γ(X), ‖ . ‖γ ) and (C0,γ(X), ‖ . ‖(t)) are isomorphic as Banach spaces. Moreover,
P (it) is better controlled with ‖ . ‖(t) as shown by next

Lemma 2.25. Under the assumptions of proposition 2.22, for any t ∈ R with |t| > 2
and any n ∈ N,

‖P (it)n‖(t) 6 2C2

Remark 2.26. This lemma still holds in C0,γ
ξ (X).

Proof. Let f ∈ C0,γ such that ‖f‖(t) 6 1. According to proposition 2.18, for any n ∈ N,
we have that

mγ(P
n(it)f)

2C2|t|
6

1

2|t|
(
1 + |t|+ 2C2|t|e−δ2n

)
6 1 + C2e

−2δn 6 2C2

Moreover, we still have that

‖P (it)nf‖∞ 6 ‖f‖∞ 6 1

and so,

‖Pn(it)‖σ 6 2C2

Which is what we intended to prove. �

For α2,∆, σ and ξ fixed, we are going to study the assumption

H(α1, β, ξ) :

For any f ∈ C0,γ
ξ (X) with ‖f‖(t) 6 1, there are x0 ∈ X which is ∆− ν-

regular at scale |t|−α2 and n ∈ [0, ⌊β ln |t|⌋] such that

|Pe(it)
nf(x0)|HS 6 1− 1

|t|α1

Lemma 2.27. Under the assumptions of proposition 2.22, for any α1, β ∈ R
⋆
+ there is

α2 ∈ R
⋆
+ such that for any ∆ ∈ R

⋆
+, there are α′

1, C, such that for any t ∈ R with |t| > 2

and any ξ ∈ Ĥ, we have that if the assumption H(α1, β, ξ) is true, then

‖(Id − P (it))−1‖C0,γ (X) 6 C|t|α′
1
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Proof. Let ξ ∈ Ĥ and f ∈ C0,γ
ξ (X) with ‖f‖(t) 6 1.

By assumption, there are n ∈ [0, n(β, |t|)] and a point x0 ∈ X whose projection on
X/H is ∆− ν-regular at scale |t|−α2 such that

|Pn
e (it)f(x0)|HS 6 1− 1

|t|α1

We are going to prove in a first step that this control at some point x0 can be extended
to a control of the uniform norm of Pm

e (it)f for some m and then that this implies the
expected result.

First of all, using the triangular inequality, we have that for any m,n ∈ N with m > n
and any x ∈ X,

|Pm
e (it)f(x)|HS =

∣∣∣∣
∫

G

eitσ(g,x)Pe(it)
nf(gx)dρ⋆m−n

e (g)

∣∣∣∣
HS

6

∫

G

|Pn
e (it)f(gx)|HSdρ

⋆m−n
e (g) = Pm−n

e |Pn
e (it)f |HS(x)

Moreover, since σ is H−invariant and the action of H and G commutes, we also have,
by definition of C0,γ

ξ (X), that for any m ∈ N, the function |Pm
e (it)f |HS is H−invariant

(cf. lemma 2.21). So, it passes to a function on X/H and we get, using proposition 2.7,
that

Pm−n
e |Pn

e (it)f(gx)|HS(x) 6

∫

X/H
|Pn

e (it)f(y)|HSdν(y) + C0CAe
−κ(m−n)‖Pn

e (it)f‖γ

Moreover, using lemma 2.25, the assumption on ‖f‖(t) and the fact that C2 > 1, we can
compute

‖Pn
e (it)f‖γ = ‖Pn

e (it)f‖∞ +mγ(P
n
e (it)f) 6 1 + C2

(
(1 + |t|)‖f‖∞ + e−δnmγ(f)

)

6 1 + C2(2|t|+ 2e−δ2nC2|t|)
6 5C2

2 |t|
Then, as n 6 β ln |t|, we also have that

eκn|t| 6 eκβ ln |t||t| 6 |t|1+βκ

And so, we get that for any m ∈ N larger than β ln |t| and any x ∈ X,

|Pe(it)
mf(x)|HS 6

∫

X/H
|Pn

e (it)f(y)|HSdν(y) + 5C0CAC
2
2e

−κmb1+βκ

Moreover, if Z is a borelian subset of X/H and MZ = supx∈Z |Pn
e (it)f(x)|HS , then,∫

X/H
|Pn

e (it)f(y)|HSdν(y) 6MZν(Z) + ν(Zc) 6 1 + (MZ − 1)ν(Z)

Taking Z = B(πH(x0), r) where we noted r = (1/(10C2
2 |t|α1+1))1/γ , we get that

sup
x∈Z

|Pn
e (it)f(x)|HS 6 |Pn

e (it)f(πH(x0))|HS + ‖Pn
e (it)f‖γd(x, πH(x0))

γ

6 1− 1

|t|α1
+ 5C2

2 |t|rγ = 1− 1

2|t|α1
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Taking now α2 large enough so that |t|−α2 6 (1/(5C2
2 |t|α1+1))1/γ , we get that |t|−α2 6 r

and so, as x0 is ∆− ν−regular at scale |t|−α2 ,

ν(Z) > |t|−α2∆

and so, ∫

X/H
|Pn

e (it)f(y)|HSdν(y) 6 1− 1

2|t|α1+α2∆

To sum-up, we found that for any m ∈ N larger than β ln |t|,

(2.7) ‖Pe(it)
mf‖∞ 6 1− 1

2|t|α1+α2∆
+ 5C0CAC

2
2e

−κm|t|1+βκ

To simplify notations, let α3 = α1 + α2∆.
Let m = Kn(β, |t|) for some K that we will choose later, then

‖Pm
e (it)‖∞ 6 1− 1

2|t|α3
+ 4C0C

2
2CA|t|1+βκ−Kκβ

and so, for K large enough (recall that |t| > 2), we get that

‖Pm
e (it)f‖∞ 6 1− 1

4|t|α3

Moreover, for l ∈ N larger than m, using proposition 2.18, we find that

1

2C2|t|
mγ(P

l
e(it)f) 6 ‖Pm

e (it)f‖∞ +
1

2|t|e
−δ(l−m)mγ(P

m
e (it)f)

6 1− 1

4|t|α3
+

1

2|t|e
−δl|t|Kβδ4C2

2 |t|

6 1− 1

4bα3
+ 2C2

2e
−δl|t|Kβδ

So, taking l = Lm = KLn(β, |t|), where L ∈ N is large enough, we get that

1

2C2|t|
mγ(P

l
e(it)f) 6 1− 1

8|t|α3

But, as we also have that

‖P l
e(it)f‖∞ 6 ‖Pm

e (it)f‖∞ 6 1− 1

4|t|α3

what we proved is that under the assumptions of the theorem, is H(α1, β, ξ) is true, then

for any f ∈ C0,γ
ξ (X) with ‖f‖(t) 6 1,

‖P l
e(it)f‖(t) 6 1− 1

8|t|α3

And so, in C0,γ
ξ (X),

‖(Id − P l
e(it))

−1‖(t) 6 8|t|α3

Moreover, as

(Id − Pe(it))
−1 =

l−1∑

k=0

Pe(it)
k(Id − Pe(it)

l)−1 and
1

2
(Id − P (it))−1 = 2(Id − Pe(it))

−1,
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we can compute

‖(Id − P (it))−1‖(C0,γ
ξ

(X),‖.‖(t)) 6 2

l−1∑

k=0

‖P k
e (it)‖(t)‖(Id − Pe(it)

l)−1‖(t) 6 2C2l8b
α3

Finally, we recall that for any f ∈ C0,γ
ξ (X),

‖f‖(t) 6 ‖f‖γ 6 (1 + 2C2|t|)‖f‖(t)
and this proves that, in C0,γ

ξ (X),

‖(Id − P (it))−1‖γ 6 (1 + 2C2|t|)16C2|t|1+α3 l

And as l is bounded by the product of ln |t| and some constant, we get the expected
result for α′ > 1 + α3. �

We saw in lemma 2.27 what happens if, under the assumptions of proposition 2.22,
for any hölder-continuous function f on X there is a point x0 and an integer n such that
|Pn

e (it)f(x0)|HS is far from 1. We are now going to study the other alternative : the
case where there is a function f such that for any x ∈ X, |Pn

e (it)f(x)|HS stays close to
1 for many values of n.

To explain how this works, we begin with the extreme case where we have that
|f(x)| and |Pe(it)f(x)| are not only close to 1 but we even have that for any x ∈ X,
|Pe(it)f(x)| = |f(x)| = 1. Then, for any x ∈ X, Pe(it)f(x) is an average of complex
numbers of modulus 1 and so, for any x ∈ X and ρe−a.e. g ∈ G,

(2.8) e−itσ(g,x)f(gx) = Pe(it)f(x)

In particular, since by definition ρe(e) > 0, we get that for any x ∈ X,

f(x) = e−itσ(e,x)f(x) = Pe(it)f(x)

This proves that for any x ∈ X and ρe−a.e. g ∈ G,

e−itσ(g,x) =
f(x)

f(gx)

and so, e−itσ is a coboundary.

We quantify this argument in next

Lemma 2.28. Under the assumptions of proposition 2.22.

Let ξ ∈ Ĥ, f ∈ C0,γ
ξ (X) with ‖f‖∞ 6 1, x ∈ X and L ∈ N

⋆.

Let s be such that 1− s 6 |f(x)|HS , |PL
e (it)f(x)|HS , then we have that

∫

G

∣∣∣e−itσ(g,x)f(gx)− f(x)
∣∣∣
2

HS
dρ⋆Le (g) 6 2L+3s

Proof. Expending the following expression, we can compute

I(x) : =

∫

G

∣∣∣e−itσ(g,x)f(gx)− PL
e (it)f(x)

∣∣∣
2

HS
dρ⋆Le (g)

= PL
e |f |2HS(x) + |PL

e (it)f(x)|2HS − 2|PL
e (it)f(x)|2HS

6 1− |PL
e (it)f(x)|2HS 6 2s
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Thus,

ρ∗Le (e)
∣∣f(x)− PL

e (it)f(x)
∣∣2
HS

6

∫

G

∣∣∣e−itσ(g,x)f(gx)− PL
e (it)f(x)

∣∣∣
2

HS
dρ⋆Le (g) 6 2s

This proves, using the fact that ρe(e) > 1/2, that

∣∣f(x)− PL
e (it)f(x)

∣∣
HS

6
√
2L+1s

And so, the triangular inequality proves that,

(∫

G

∣∣∣e−itσ(g,x)f(gx)− f(x)
∣∣∣
2

HS
dρ⋆Le (g)

)1/2

6
√
I(x) +

∣∣f(x)− PL
e (it)f(x)

∣∣
HS

6
√
2s+

√
2L+1s 6

√
2L+3s

And this finishes the proof of the lemma. �

Lemma 2.29. Under the assumptions of proposition 2.22.
For any α1, β there is α2 such that for any ∆ there are α′

1, β
′ such that for any σ ∈ ZM ,

and any ξ ∈ Ĥ, is the assumption H(α′
1, β

′, ξ) is false then there is f ∈ C0,γ
ξ (X) with

‖f‖(t) 6 1 such that for any x ∈ X whose projection on X/H is ∆ − ν-regular at scale

|t|−α2 , we have that

|f(x)|HS > 1− 1

|t|α1

and
∫

G

∣∣∣eiσ(g,x)f(gx)− f(x)
∣∣∣
2

HS
dρ

n(β,|t|)
e (g) 6

1

|t|α1

Proof. Fix α1, α2, β,∆ and take α′
1 ∈ R

⋆
+ large (we will precise this later in the proof).

If the assumption H(α′
1, β, ξ) is not satisfied, then there is f ∈ C0,γ

ξ (X) with ‖f‖(t) 6 1

such that for any n ∈ [0, n(β, t)] and any x ∈ X that is ∆− ν-regular at scale |t|−α2 ,

|Pe(it)
nf(x)|HS > 1− 1

|t|α′
1

Using the previous lemma, we get that

∫

G

∣∣∣e−itσ(g,x)f(gx)− f(x)
∣∣∣
2

HS
dρ

⋆n(β,t)
e 6

2n(β,t)+3

|t|α′
1

6
8

|t|α′
1−β ln 2

And this proves the lemma if we take α′
1 > β ln 2 + α1 + 3 since we have by assumption

that |t| > 2. �

Lemmas 2.27 and 2.29 prove proposition 2.22.
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3. Diophantine properties in linear groups

In this section, we prove that the logarithms of the spectral radii of
elements of strongly irreducible and proximal subgroups of SLd(R) have
good diophantine properties.
We also prove a property of lower regularity of the stationary measure
on the projective space by showing that it is lower regular at fixed
points of proximal elements.
This will allow us, in theorem 3.1, to control the operator P (it) defined
in section 2 and that appears in the study of the renewal theorem in
section 4.

In SLd(R), the application mapping a matrix to it’s spectral radius is not a group
morphism (for d > 2).

In a Zariski-dense subgroup Γ of SLd(R), we can construct sequences of elements (gn)
and (hn) for which we have a good control of the difference between the logarithm of
the spectral radius of gnhn and the sum of the ones of gn and hn (see [Qui05]). In
particular, this proves that the logarithms of the spectral radii of proximal elements of
a Zariski-dense subgroup of SLd(R) generate a dense subgroup of R.

In this section, we quantify this construction to prove a technical result that will allow
us to check the assumption of proposition 2.22 and to prove theorem 3.1 that gives a
control of the resolvent of the pertubated operator.

More specifically, studying the renewal in R (see [Car83] and the beginning of sec-
tion 2), we see that the rate of convergence depends on a diophantine condition on the
measure and we are about to prove that it’s equivalent in SLd(R) is always satisfied
for measures having an exponential moment and whose support generate a strongly
irreducible and proximal subgroup. This will be the

Proposition (3.19). Let ρ be a strongly irreducible and proximal borelian probability
measure on G := SLd(R) having an exponential moment.

Then, there are α, β ∈ R
∗
+ and p ∈ N

∗ such that

lim inf
b→±∞

|b|α
∫

G

∣∣∣eibλ1(g) − 1
∣∣∣
2
dρ∗pn(β,b)(g) > 0

where we noted λ1(g) the logarithm of the spectral radius of g and

n(β, b) = ⌊β ln |b|⌋
We recall that an element g of SLd(R) is said to be proximal if it has a locally attractive

fixed point in P(Rd).

We will prove the genericness of the lower regular points for the stationary measure
on the projective space, other condition that we used in the study of the perturbated
operator, in the

Corollary (3.11). Let ρ be a strongly irreducible and proximal borelian probability mea-
sure on SLd(R) having an exponential moment.

Let ν be the unique borelian probability measure on P(Rd) (existence and uniqueness
of ν are proved in proposition 2.5).
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Then, for any M ∈ R
∗
+, there are n0 ∈ N, ∆ ∈ R and t ∈ R

∗
+ such that for any n ∈ N

with n > n0,

ρ∗n
({
g ∈ G

∣∣g is proximal and ν
(
B
(
V +
g , e

−Mn
))

> e−∆Mn
})

> 1− e−tn

where V +
g is the locally attractive fixed point of g in P(Rd) and we endowed P(Rd) with

the usual distance (see equation (3.1)).

These two results will allow us to prove the next

Théorème 3.1. Let ρ be a borelian probability measure on SLd(R) having an exponential
moment and whose support generates a strongly irreducible and proximal subgroup Γ.

Let (A, νA) be a finite Γ−set endowed with the uniform probability measure and as-
sume that the random walk on A defined by ρ is irreducible and aperiodic.

Let σ : Γ× S
d−1 ×A → R be the cocycle defined for any g ∈ Γ, x ∈ S

d−1 and a ∈ A,
by

σ(g, (x, a)) = ln
‖gx‖
‖x‖

and let, for any t ∈ R, P (it) be the operator defined on C0(Sd−1 ×A) by

P (it)f(x, a) =

∫

G

e−itσ(g,(x,a))f(gx, ga)dρ(g)

Then, for any γ > 0 small enough and any t0 ∈ R
∗
+, there are C,L ∈ R+ such that for

any t ∈ R with |t| > t0,

‖(Id − P (it))−1‖C0,γ (Sd−1×A) 6 C|t|L

Proof. This is a direct use of lemma 3.12 and of proposition 3.19 that we can apply (with
the measure ρe = 1

2δe +
1
2ρ) thanks to lemma 3.1 and lemma 3.7 (remark that we can

assume without any loss of generality that p = 1 since it just changes P (it) into P p(it)
and a control of (Id − P p(it))−1 gives a control of (Id − P (it))−1 as we already saw in
the proof of lemma 2.27). �

3.1. Notations and preliminaries.

We first fix the notations that we will use in this section.

3.1.1. Proximal elements of SLd(R). Let (V, ‖ . ‖) be a finite dimensional R−vector space
endowed with an euclidian norm and an orthonormal basis (e1, . . . , ed).

We define a distance on P(V) setting, for any X = Rx, Y = Ry ∈ P(V),

(3.1) d(X,Y ) =
‖x ∧ y‖
‖x‖‖y‖

where we extended the scalar product of V to ∧2
V asking the basis (ei ∧ ej)16i<j6l to

be orthonormal.
We also define a pairing between P(V) and P(V∗), setting, for X = Rx ∈ V and

Y = Rϕ ∈ V
∗,

δ(X,Y ) :=
|ϕ(x)|
‖ϕ‖‖x‖ = inf

Y ′∈Y ⊥
d(X,Y ′)

where Y ⊥ = {Y ′ = Ry′ ∈ Y |ϕ(y′) = 0}.
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We refer to the chapter 9 in [BQ15] for a proof of the next lemma that shows that we
really are in the context developed in section 2.

Lemma 3.1. For any g ∈ G and any X,Y ∈ P(Rd),

d(gX, gY ) 6 ‖g‖2dd(X,Y )

Moreover, there is C ∈ R such that for any X,Y ∈ P(Rd) and any g ∈ G,

|σ(g,X) − σ(g, Y )| 6 C‖g‖Cd(X,Y )

where we noted, for X = Rx ∈ P(Rd) and g ∈ G,

σ(g,X) = ln
‖gx‖
‖x‖

So, with the notations of the previous section, we have that σ ∈ ZC
N (P(Rd)) where we

noted N(g) = ‖g‖.
An element g of SL(V) is said to be proximal if it has a locally attractive fixed point

in P(V). Equivalently, a proximal element is one having a unique eigenvalue of maximal
modulus and whose eigenspace is a line. In this case, this eigenvalue is real. We note
that g is proximal if and only if tg is proximal in V

∗.
If g is proximal, we note V +

g ∈ P(V) the space associated to it’s eigenvalue of maximal

modulus and V <
g ∈ P(V∗) the class defined by the g−invariant supplementary subspace

of V +
g (or equivalently the locally attractive fixed point of tg in V

∗). In the sequel, we

will always note v+g a representative of V +
g in V and ϕ<

g a representative of V <
g in V

∗

and we will use these representatives in a way such that our formulas will not depend
on their choices.

For any g ∈ G, we note λ1(g), . . . , λd(g) the logarithms of the eigenvalues of g sorted
in decreasing order and counted with multiplicities. So, g is proximal if and only if
λ1(g) > λ2(g). Moreover, if g is proximal, we have by definition that gv+g = ε1(g)e

λ1(g)v+g
for some ε1(g) ∈ {±1}.

For an element g ∈ SL(V), we choose a Cartan decomposition g = kgaglg. This means
that kg, lg ∈ O(V) and ag is a diagonal matrix :

ag =




κ1(g) 0
. . .

0 κd(g)




where the κi(g) are the singular values of g, and satisfy κ1(g) > · · · > κd(g) and are
given by

κi(g) =
‖ ∧i g‖
‖ ∧i−1 g‖

where we noted ∧ig the endomorphism defined by the action of g in
∧i

V endowed with
the scalar product induced by the one of V : this means that

∧ig(v1 ∧ · · · ∧ vi) = (gv1) ∧ · · · ∧ (gvi)

Moreover, we note

κ1,2(g) =
κ2(g)

κ1(g)
=

‖ ∧2 g‖
‖g‖2
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Finally, for an element g ∈ G and a choice of a Cartan decomposition g = kgaglg, we
note

xMg = kge1, XM
g = RxMg , ymg = tlge

∗
1 and Y m

g = Rymg

Lemma 3.2. Let V = R
d endowed with an euclidian norm, g an element of SL(V),

X = Rx ∈ P(V) and Y = Rϕ ∈ P(V∗).
Then,

(1)

δ(X,Y m
g ) 6

‖gx‖
‖g‖‖x‖ 6 δ(X,Y m

g ) + κ1,2(g)

(2)

δ(XM
g , Y ) 6

‖tgϕ‖
‖g‖‖ϕ‖ 6 δ(XM

g , Y ) + κ1,2(g)

(3)

d(gX,XM
g )δ(X,Y m

g ) 6 κ1,2(g)

Proof. As the norm is supposed to be euclidian, we can assume without any loss of
generality that g is the diagonal matrix (κ1(g), . . . , κd(g)). We write x = x1 + x2 with
x1 ∈ Vect(e1) and x2 ∈ Vect(e2, . . . , ed).

Then,

gx1 = κ1(g)x1 and ‖gx2‖ 6 κ2(g)‖x2‖
And so, using the fact that κ1(g) = ‖g‖, we get that

‖x1‖
‖x‖ 6

‖gx‖
‖g‖‖x‖ 6

‖x1‖
‖x‖ + κ1,2(g)

‖x2‖
‖x‖

Finally,
‖x1‖
‖x‖ = d(X,Vect(e2, . . . , ed)) = δ(X,Y m

g )

and this proves the first inequalities.
The second ones can be proved in the same way if we work in the dual space.
Finally, the last one comes from the fact that

d(gX,XM
g )δ(X,Y m

g ) =
‖gx2‖
‖gx‖

‖x1‖
‖x‖ 6

κ2(g)

κ1(g)
= κ1,2(g) �

In the sequel, we will have to control the Cartan decomposition of products of elements
of G. To do so, we will use the following

Lemma 3.3. For any p ∈ N, p > 2, any ε ∈ ]0, 1/4], any g1, . . . , gp ∈ G with κ1,2(gi) 6

ε3, δ(XM
gi+1

, Y m
gi ) > 2ε and δ(XM

gi , Y
m
gi+1

) > 2ε, we have that

κ1(gp . . . g1) > εp−1κ1(gp) . . . κ1(g1), κ1,2(gp . . . g1) 6
κ1,2(g1) . . . κ1,2(gp)

ε2(p−1)

and,

d(XM
gp...g1 ,X

M
gp ) 6

κ1,2(gp)

ε
, d(Y m

gp...g1 , Y
m
g1 ) 6

κ1,2(g1)

ε
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Proof. According to lemma 3.2, we have that for any (gi) ∈ Gp and any x ∈ R
d \ {0},

noting X = Rx,

‖gp . . . g1x‖ > ‖gp‖‖gp−1 . . . g1x‖δ(gp−1 . . . g1X,Y
m
gp )

> ‖gp‖ . . . ‖g1‖‖x‖δ(gp−1 . . . g1X,Y
m
gp ) . . . δ(X,Y

m
g1 )

Moreover, taking x orthogonal to Y m
g1 , we have that for any l ∈ [1, p],

d(gl−1 . . . g1X,Y
m
gl
) >

l + 1

l
ε

Indeed, this is true for l = 1 by assumption and by induction, we have that for any
l ∈ [1, p − 1],

d(gl . . . g1X,X
M
gl
) 6

κ1,2(gl)

d(gl−1 . . . g1X,Y m
gl
)
6

l

l + 1
ε2 6

l

l + 1
ε

and so,

δ(gl . . . g1X,Y
m
gl+1

) > ε

(
2− l

l + 1

)
=
l + 2

l + 1
ε

This proves that
‖gp . . . g1x‖

‖x‖ >
p

2
‖gp‖ . . . ‖g1‖εp−1

and therefore,

κ1(gp . . . g1) >
p

2
εp−1κ1(gp) . . . κ1(g1)

Moreover, using the sub-multiplicativity of the function κ1κ2 and that κ1,2(gi) 6 ε3, we
find that

κ1,2(gp . . . g1) =
κ2(gp . . . g1)κ1(gp . . . g1)

κ1(gp . . . g1)2
6

4

p2ε2(p−1)
κ1,2(g1) . . . κ1,2(gp)

6
4

p2
εp−1κ1,2(gp)

Finally, still using lemma 3.2, we have that

δ(X,Y m
gp ...g1) + κ1,2(gp . . . g1) >

p

2
εp−1

and so,

δ(X,Y m
gp...g1) >

p

2
εp−1 − 4

p2
εp+2 =

p

2
εp−1

(
1− 8

p3
ε3
)

This proves that

d(gp . . . g1X,X
M
gp...g1) 6

κ1,2(gp . . . g1)

δ(X,Y m
gp ...g1)

6
2

p

κ1,2(gp)

1− 8ε3/p3

And so,

d(XM
gp...g1 ,X

M
gp ) 6

p

p+ 1

κ1,2(gp)

ε
+

2

p

κ1,2(gp)

(1− 8ε3/p3)

6
κ1,2(g)

ε

(
p

p+ 1
+

2ε

p(1− 8ε3/p3)

)
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This proves the third inequality since for any ε ∈ ]0, 1/4] and p > 2, 2ε
p(1−8ε3/p3)

6 1
p+1 .

To get the control of d(Y m
gp...g1 , Y

m
g1 ), we do the same computations in the dual space.

�

Next lemma will allow us to, knowing the Cartan decomposition of an element g of
G, prove that it is proximal and have a control on V +

g and V <
g .

Lemma 3.4. For any ε ∈ ]0, 1/4] and any element g in G, if κ1,2(g) 6 ε3 and
δ(XM

g , Y m
g ) > 2ε then g is proximal and

d(V +
g ,X

M
g ) 6

κ1,2(g)

ε
, d(V <

g , Y
m
g ) 6

κ1,2(g)

ε

Moreover,

eλ1(g) > κ1(g)δ(X
M
g , Y m

g ) et ‖g|
V <
g

‖ 6
2κ2(g)

ε

Proof. The first three inequalities come from lemma 13.14 in [BQ15].
To prove that the norm of g restricted to V <

g is controlled by κ2(g), we remark that,

according to lemma 3.2, for any x ∈ R
d \ {0}, noting X = Rx, we have that

‖gx‖
‖x‖ 6 κ1(g)δ(X,Y

m
g ) + κ2(g)

But, for any X ∈ V <
g , we have that

δ(X,Y m
g ) 6 d(V <

g , Y
m
g ) 6

κ1,2(g)

ε

This proves that for any x ∈ V <
g \ {0},

‖gx‖
‖x‖ 6 κ2(g)

(
1 +

1

ε

)
6

2κ2(g)

ε

And thus we get the last expected inequality. �

From now on, we note, for any g ∈ SLd(R) and X = Rx ∈ P(Rd),

(3.2) σ(g,X) = ln
‖gx‖
‖x‖

Lemma 3.5. For any ε ∈ ]0, 1/4], and any element g in G, if κ1,2(g) 6 ε4 and

d(XM
g , Y m

g ) > 2ε, then we have that for any X ∈ P(Rd) with δ(X,V <
g ) > 2ε,

∣∣∣∣∣σ(g,X) − λ1(g) − ln
δ(X,V <

g )

δ(V +
g , V <

g )

∣∣∣∣∣ 6 2
κ1,2(g)

ε3

Moreover, for any X,Y ∈ P(Rd) with δ(X,V <
g ), δ(Y, V <

g ) > 2ε, we have that

d(gX, gY ) 6
κ1,2(g)

4ε4
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Proof. Note v+g , ϕ
<
g such that V +

g = Rv+g and V <
g = Rϕ<

g .
Then, according to the previous lemma,

δ(V +
g , V

<
g ) > 2ε− 2

κ1,2(g)

ε
> 2ε(1 − ε2) >

3

2
ε

For any x ∈ R
d, we can write

x =
ϕ<
g (x)

ϕ<
g (v

+
g )
v+g + x−

ϕ<
g (x)

ϕ<
g (v

+
g )
v+g

and so, as gv+g = ε1(g)e
λ1(g)v+g , we get

gx = ε1(g)e
λ1(g)

ϕ<
g (x)

ϕ<
g (v

+
g )
v+g + g

(
x−

ϕ<
g (x)

ϕ<
g (v

+
g )
v+g

)

But, x− ϕ<
g (x)

ϕ<
g (v+g )

v+g ∈ V <
g and so, according to lemma 3.4,

∥∥∥∥∥g
(
x−

ϕ<
g (x)

ϕ<
g (v

+
g )
v+g

)∥∥∥∥∥ 6
κ2(g)

ε

∥∥∥∥∥x−
ϕ<
g (x)

ϕ<
g (v

+
g )
v+g

∥∥∥∥∥ 6
κ2(g)

ε

2‖x‖
δ(V +

g , V <
g )

Thus, if x 6= 0,

eλ1(g)
δ(X,V <

g )

δ(V +
g , V <

g )
(1− ‖u‖) 6 ‖gx‖

‖x‖ 6 eλ1(g)
δ(X,V <

g )

δ(V +
g , V <

g )
(1 + ‖u‖)

with

u =
δ(V +

g , V
<
g )

eλ1(g)δ(X,V <
g )‖x‖g

(
x−

ϕ<
g (x)

ϕ<
g (v

+
g )
v+g

)
and ‖u‖ 6

1

eλ1(g)δ(X,V <
g )

4κ2(g)

ε

But, still using lemma 3.4, we have that eλ1(g) > 2‖g‖ε and so,

4κ2(g)

eλ1(g)δ(X,V <
g )ε

6
2κ1,2(g)

ε2δ(X,V <
g )

So, for X with δ(X,V <
g ) > 2ε, we have that

‖u‖ 6
κ1,2(g)

ε3
6 ε

and

ln(1− ‖u‖) 6 σ(g,X) − λ1(g) − ln
δ(X,V <

g )

δ(V +
g , V <

g )
6 ln(1 + ‖u‖)

and we get the expected result if we use that

‖u‖ 6 min

(
κ1,2(g)

ε3
,
1

2

)
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Finally, for any X,Y ∈ P(Rd) with δ(X,V <
g ), δ(Y, V <

g ) > 2ε,

d(gX, gY ) =
‖ ∧2 g(x ∧ y)‖
‖gx‖‖gy‖ 6

κ1(g)κ2(g)‖x‖‖y‖
‖gx‖‖gy‖ 6

κ1(g)κ2(g)

e−2λ1(g)

4δ(V +
g , V

<
g )2

δ(X,V <
g )δ(Y, V <

g )

6
κ1,2(g)

4ε4
�

3.1.2. Genericness of proximal elements. First, recall that if ρ is a borelian probability
measure on SLd(R) having a moment of order 16, then, there are λ1, . . . , λd ∈ R, called
Lyapunov exponents of ρ, such that λ1 + · · ·+ λd = 0 and for any i ∈ [1, d],

1

n
ln ‖ ∧i gn . . . g1‖ −→ λ1 + · · ·+ λi ρ

⊗N − a.e.

Moreover, if the support of ρ generates a strongly irreducible and proximal subgroup,
then λ1 > λ2 (see [GR85]).

In the sequel, we will have to produce elements in the support of ρ∗n having good
properties. To do so, we will use the following result which is proved in the chapter 12
of [BQ15].

Lemma 3.6. Let ρ be a borelian probability measure on SLd(R) having an exponential
moment and whose support generate a strongly irreducible and proximal subgroup. Then,
for any ε ∈ R

∗
+, there are t ∈ R

∗
+ and n0 ∈ N such that for any n ∈ N with n > n0, we

have that for any x ∈ P(Rd) and any y ∈ P((Rd)∗),

ρ∗n
({

g ∈ G

∣∣∣∣∀i ∈ [1, d],

∣∣∣∣
1

n
κi(g) − λi

∣∣∣∣ 6 ε

})
> 1− e−tn

ρ∗n
({
g ∈ G

∣∣δ(x, ymg ) > 2e−εn
})

> 1− e−tn

ρ∗n
({
g ∈ G

∣∣∣d(gx, xMg ) 6 e−(λ1−λ2−ε)n
})

> 1− e−tn

ρ∗n
({
g ∈ G

∣∣δ(xMg , y) > 2e−εn
})

> 1− e−tn

ρ∗n
({
g ∈ G

∣∣δ(gx, y) > 2e−εn
})

> 1− e−tn

ρ∗n
({
g ∈ G

∣∣δ(xMg , ymg ) > 2e−εn
})

> 1− e−tn

Moreover, we have, with lemma 3.1, the

Lemma 3.7. Let ρ be a borelian probability measure on G having an exponential moment
and whose support generates a strongly irreducible and proximal subgroup of G. Note,
for g ∈ G, N(g) := ‖g‖.

Then, there is γ ∈ R
∗
+ such that P(Rd) is (ρ, γ, 2d,N)−contracted.

Proof. We refer to [BL85] for a proof of this result. �

6∫

G
ln ‖g‖dρ(g) is finite.
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3.1.3. A regularity lemma for convolution powers of measures. In this paragraph, we
prove a technical lemma about regularity of powers of convolution of measures on SLd(R).
With the language we used in the previous section, this means that for a measure on
SLd(R) having an exponential moment, there is a parameter ∆ such that for any n large
enough, any point of suppρ∗n is ∆−regular at scale e−t2n except on a set of exponentially
small measure.

Lemma 3.8. Let ρ be a borelian probability measure on SLd(R) having an exponential
moment.

Then, for any t1, t2 ∈ R
∗
+, there are n0 ∈ N and t3 ∈ R

∗
+ such that for any n ∈ N with

n > n0, we have that

ρ∗n
({
g ∈ G

∣∣ρ∗n
(
B(g, e−t2n)

)
> e−t3n

})
> 1− e−t1n

Proof. Let ε ∈ R
∗
+ be such that

∫
G
‖g‖εdρ(g) is finite and fix a n ∈ N. Using Markov’s

inequality we have that for any M ∈ R+,

ρ∗n
({
g ∈ G

∣∣‖g‖ > eMn
})

6 e−εMn

∫

G

‖g‖εdρ∗n(g) 6
(
e−εM

∫

G

‖g‖εdρ(g)
)n

So, noting Ω̃n =
{
g ∈ G

∣∣‖g‖ 6 eMn
}
, we have that

ρ∗n
(
Ω̃c
n

)
6

(
e−εM

∫

G

‖g‖εdρ(g)
)n

Moreover, there is a constant C(d) depending only on the dimension d and g1, . . . gL ∈ Ω̃n

such that

Ω̃n ⊂
L⋃

i=1

B(gi, e
−t2n/2)

and L 6 C(d)e(M+t2)d2n. Now, we note, for K ∈ R
∗
+,

Gn =
{
g ∈ {g1, . . . , gL}

∣∣ρ∗n(B(g, e−t2n/2)) > e−Kn
}

and Ωn =
⋃

g∈Gn

B(g, e−t2n/2)

Then, for h ∈ Ωn, there is g ∈ Gn such that d(g, h) 6 e−t2n/2 and so,

B(h, e−t2n) ⊃ B(g, e−t2n/2)

and so,

ρ∗n(B(h, e−t2n)) > ρ∗n(B(g, e−t2n/2)) > e−Kn

Finally, as ρ is a probability measure we have that

1 = ρ∗n
(
Ω̃c
n

)
+ ρ∗n (Ωn) + ρ∗n

(
Ω̃n \Ωn

)

But, by definition,

ρ∗n
(
Ω̃n \ Ωn

)
6 Le−Kn
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And so, for any n ∈ N,

ρ∗n(Ωn) > 1−
(
e−εM

∫

G

‖g‖εdρ(g)
)n

− Le−Kn

> 1−
(
e−εM

∫

G

‖g‖εdρ(g)
)n

− C(d)e−Kne(M+t2)d2n

And this proves the lemma since we can choose K and M as large as we want. �

3.2. Regular points in the projective space.

In this paragraph, we study the lower regularity of the stationary mea-
sure on the projective space at fixed points of generic proximal ele-
ments.

In our study of the perturbation of Markov operators on compact spaces (section 2),
we used an assumption of lower regularity on the points we considered and it is time to
prove that this assumption holds for the walk on the projective space.

We remind that given a compact metric space (X, d) endowed with a borelian prob-
ability measure ν, we say that a point x ∈ X is ∆ − ν-regular at scale r where r ∈ R

∗
+

and ∆ ∈ R+, if

ν(B(x, r)) > r∆

We are going to prove that for a strongly irreducible and proximal subgroup of SLd(R),
the fixed points of proximal elements are regular.

First of all, we have the following

Lemma 3.9. Let ρ be a borelian probability measure on G whose support generates a
strongly irreducible and proximal subsemigroup Tρ.

Then, there is a unique borelian P−invariant probability measure ν on P(Rd).
Moreover, for any proximal g ∈ Tρ, we have that V +

g ∈ supp ν.

Proof. Existence and unicity of ν come from [GR85].
To prove the end of the lemma, note that for any proximal g ∈ Tρ, there is X ∈ supp ν

such that X 6∈ V <
g . Indeed, if not, we would have some proximal g ∈ Tρ such that

supp ν ⊂ V <
g but this is impossible since we assumed that Tρ is strongly irreducible.

Moreover, for any proximal g ∈ Tρ and any X 6∈ V <
g , we have that

gnX −→ V +
g

and, as supp ν is closed and Tρ−invariant, this proves that V +
g ∈ supp ν. �

We are now ready to prove the regularity of the stationary measure in the

Proposition 3.10. Let ρ be a strongly irreducible and proximal borelian probability
measure on SLd(R), having an exponential moment.

Let ν be the unique stationary borelian probability measure on P(Rd).
Then, for any m ∈ N

∗ and any ε ∈ R
∗
+ small enough we have that for any g ∈ G with

κ1,2(g) 6 ε4 and δ(XM
g , Y m

g ) > 2ε, g is proximal and

ν(B(V +
g , (κ1,2(g)/ε

4)m) >
1

2
(ρ∗n (B(g, r)))m
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where we noted

r = κ1(g)
−(1+d)m

Proof. Let ε ∈ ]0, 1/4] and g ∈ G such that κ1,2(g) 6 ε3 and δ(XM
g , Y m

g ) > 2ε.
According to lemma 3.4, g is proximal. Moreover, using the ρ−stationarity of the

measure ν we have that for any m ∈ N,

ν(B(V +
g , κ1,2(g)

m)) =

∫

X

1B(V +
g ,κ1,2(g)m)(X)dν(X)

=

∫

X

∫

G

1B(V +
g ,κ1,2(g)m)(hX)dρ∗mn(h)dν(X)

=

∫

X

ρ∗mn
({
h
∣∣hX ∈ B(V +

g , κ1,2(g)
m)
})

dν(X)

>

∫

X

1δ(X,Y m
g )>2ερ

∗mn
({
h
∣∣hX ∈ B(V +

g , κ1,2(g)
m)
})

dν(X)

But, we saw in lemma 3.5 that if X ∈ P(Rd) is such that δ(X,Y m
g ) > 2ε, then

d(gmX,V +
g ) = d(gmX, gmV +

g ) 6
κ1,2(g)

4ε4
d(gm−1X,V +

g ) 6

(
κ1,2(g)

4ε4

)m

where we used that gV +
g = V +

g .
Moreover, if r ∈ ]0, 1] then for any h1, . . . , hm ∈ B(g, r) we have that

‖gm − h1 . . . hm‖ 6 ‖g − h1‖‖g‖m−1 + ‖h1‖‖gm−1 − h2 . . . hm‖ 6 m(2‖g‖)m−1r

and so,

d(h1 . . . hmX,V
+
g ) 6 ‖gm − h1 . . . hm‖+ d(gmX,V +

g ) 6 m(2‖g‖)m−1r +

(
κ1,2(g)

4ε4

)m

Therefore, taking r = κ1(g)
−(1+d)m and using that κ1(g) = ‖g‖, κ2(g) > κ1(g)

1−d (since
κ1(g) . . . κd(g) = 1 and κ1(g) > κ2(g) > · · · > κd(g)), κ1,2(g) = κ2(g)/κ1(g), we get that

1

m

(
κ1,2(g)

8‖g‖ε4
)m

> κ1(g)
−(1+d)m 1

m

(
1

8ε4

)m

and we can assume that ε is small enough so that for any m ∈ N
∗, 1

m (8ε4)−m > 1.
In this way, we get that for any h1, . . . , hm ∈ B(g, r),

d(hm . . . h1X,V
+
g ) 6 2

(
κ1,2(g)

4ε4

)m

6

(
κ1,2(g)

ε4

)m

Thus, for any X ∈ P(Rd) such that δ(X,Y m
g ) > 2ε,

ρ∗mn
({
h
∣∣hX ∈ B(V +

g , (κ1,2(g)/ε
4)m)

})
> (ρ∗n (B (g, r)))m

This proves that for any g ∈ G with δ(XM
g , Y m

g ) > 2ε and κ1,2(g) 6 ε3, we have that

ν(B(V +
g , (κ1,2(g)/ε

4)m)) > (ρ∗nB(g, r))m ν
({
X ∈ P(Rd)

∣∣∣δ(X,Y m
g ) > 2ε

})

> (ρ∗nB(g, r))m (1− (2ε)c)
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where we used the upper regularity of the measure ν (see chapter 12 in [BQ15]) to have
that for some constant c and ε small enough,

ν(X|δ(X,Y m
g ) > 2ε) > 1− (2ε)c. �

Corollary 3.11. Let ρ be a strongly irreducible and proximal borelian probability measure
on SLd(R) having an exponential.

Let ν be the unique P−invariant borelian probability measure on P(Rd).
Then, for any M ∈ N

∗, there are n0 ∈ N, ∆ ∈ R and t ∈ R
∗
+ such that for any n ∈ N

with n > n0,

ρ∗n
({
g ∈ G

∣∣g is proximal and ν
(
B
(
V +
g , e

−Mn
))

> e−∆Mn
})

> 1− e−tn

Proof. Let m ∈ N, 0 < ε < (λ1 − λ2)/4 and λ = λ1 − λ2 − 3ε. According to proposi-
tion 3.10, we have that for any n large enough and any g ∈ G such that κ1,2(g) 6 e−λn

and δ(XM
g , Y m

g ) > 2e−εn,

ν(B(g, e−mεn)) >
1

2

(
ρ∗n(B(g, e−(λ1+ε)(1+d)mn))

)m

In particular, taking m >M/ε, we have that

ν(B(g, e−Mn)) >
1

2

(
ρ∗n(B(g, e−(λ1+ε)(1+d)mn))

)m

To conclude, we use the fact that such elements g with δ(XM
g , Y m

g ) > 2e−εn and κ1,2(g) 6

e−λn are generic according to lemma 3.6 and so are the elements for which we have a
good lower bound on the measure of B(g, e−(λ1+ε)(1+d)mn) according to lemma 3.8. �

Now, we use this regularity property to pass from a condition in proposition 2.22
where the action of G on X plays a role to a condition on G.

Lemma 3.12. Let ρ be a borelian probability measure on G having an exponential mo-
ment and whose support generates a strongly irreducible and proximal subgroup.

Let X = S
d−1 × A and σ : G × P(Rd) → R the cocycle defined for any g ∈ G and

X = Rx ∈ P(Rd) by

σ(g,X) = ln
‖gx‖
‖x‖

that we extend to X noting for any (x, a) ∈ X, σ(g, (x, a)) = σ(g,Rx).
Let ν be the unique Pρ−invariant borelian probability measure on X/H where we noted

H = {Id, ϑ} where ϑ is the involution map on X that is the antipodal application on S
d−1

and the identity on A (existence and unicity of ν are given in proposition 2.5).

For any α, t0, t2, t3, β,∆ ∈ R
∗
+, there are α2, C, L ∈ R

∗
+ such that for any t ∈ R with

|t| > t0, if

‖(Id − P (it))−1‖C0,γ (Sd−1×A) > C|t|L

Then,
∫

G

1{ g is proximal and

V +
g is ∆−ν-regular at scale |t|−α2

}
∣∣∣e−2i|A|tλ1(g) − 1

∣∣∣
2
dρ∗n(β,t)(g) 6

1

|t|α

where we noted n(β, t) = ⌊β ln |t|⌋.
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Proof. We can assume without any loss of generality that t0 = 2 (otherwise we set
σ′ = t0σ/2 and t′ = 2t/t0).

Note that as H is isomorphic to Z/2Z, it’s irreducible unitary representations are
1−dimensional and the decomposition of lemma 2.21 is just the decomposition between
even and odd parts.

Applying proposition 2.22, for any α1, β,∆ ∈ R
∗
+, there are α2, C, L such that if

‖(Id − P (it))−1‖C0,γ(Sd−1×A) > C|t|L

then there are ξ ∈ Ĥ and a function f ∈ C0,γ
ξ (X) with ‖f‖∞ 6 C and mγ(f) 6 C|t| such

that for any point x in X whose projection on X/H is ∆− ν-regular at scale |t|−α2 , we
have

|f(x)| > 1

2
and ∫

G

∣∣∣e−itσ(g,x)f(gx)− f(x)
∣∣∣
2
dρ

⋆n(β,t)
e (g) 6

1

|t|α1

where we set n(β, t) = ⌊β ln |t|⌋ and ρe is the measure associated to the lazy random
walk (see paragraph 2.1.3).

To prove the proposition, we are going to make the point x in the integral depend on

the point g chosen with the measure ρ
∗n(β,t)
e to take x = V +

g since this in this way we
will have that gx = x and σ(g, x) = λ1(g).

To do so, we will first get a control for any point x and any g except on a set of
exponentially small measure, choose the point x we want and then integrate the result.
The cost of this operation is passing from α to α1.

We note n = n(β, t) and for t2, t3 ∈ R
∗
+ whose value will be fixed later, we note

Gn =

{
g ∈ G

g is proximal, V +
g is ∆− ν-regular at scale |t|−α2 and

ρ∗n(B(g, e−t2n)) > e−t3n

}

Then, for any g ∈ Gn and any x that is ∆− ν-regular at scale |t|−α2 ,
∫

G

1h∈B(g,e−t2n)

∣∣∣e−itσ(h,x)f(hx)− f(x)
∣∣∣
2
dρ∗n(h) 6

1

|t|α1

Using the triangular inequality, we get that

Ib(x) : =
√
ρ∗n(B(g, e−t2n))

∣∣∣e−itσ(g,x)f(gx)− f(x)
∣∣∣

6

(∫

B(g,e−t2n)

∣∣∣e−itσ(h,x)f(hx)− f(x)
∣∣∣
2
dρ∗n(h)

)1/2

+

(∫

B(g,e−t2n)

∣∣∣e−itσ(g,x)f(gx)− e−itσ(h,x)f(hx)
∣∣∣
2
dρ∗n(h)

)1/2

6
1

|t|α1/2
+
√
C ′|t|e−t2γnρ∗n(B(g, e−t2n))
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where we use that for any h ∈ B(g, e−t2n), we have that
∣∣∣e−itσ(g,x)f(gx)− e−itσ(h,x)f(hx)

∣∣∣ 6
∣∣∣e−itσ(h,x) − e−itσ(g,x)

∣∣∣ |f(gx)| + |f(hx)− f(gx)|
6 2|t|γC |σ(g, x) − σ(h, x)|γ +mγ(f)d(hx, gx)

γ

6 C ′|t|e−t2γn

For some constant C ′ depending on σ (for more details, we refer to the computations in
the proof of proposition 2.18).

Thus, we get that for any g ∈ Gn and any x that is ∆− ν-regular at scale |t|−α2 ,

∣∣∣e−itσ(g,x)f(gx)− f(x)
∣∣∣ 6 et3n/2

|t|α1/2
+
√
C ′|t|e−t2γn

Note now, for any x = (u, a) ∈ S
d−1 ×A,

ϕ(x) =
∏

a∈A
f(u, a)f(−u, a)

This function is H−invariant and moreover, we have that for any x whose projection on
the projective space is ∆− ν-regular at scale |t|−α2 ,

∣∣∣e−2it|A|σ(g,x)ϕ(gx) − ϕ(x)
∣∣∣ 6

∑

a∈A

∑

h∈H

∣∣∣e−itσ(g,x)ϕ(ghx) − ϕ(hx)
∣∣∣

6 2|A|
(
et3n/2

|t|α1/2
+
√
C ′|t|e−t2γn

)

But, we can now use that, by definition of Gn, V
+
g is ∆ − ν-regular at scale |t|−α2 and

so, we get that for any g ∈ Gn,
∣∣∣e−2it|A|λ1(g) − 1

∣∣∣ |ϕ(V +
g )| =

∣∣∣e−2it|A|λ1(g)ϕ1(V
+
g )− ϕ1(V

+
g )
∣∣∣

6 2|A|
(
et3n/2

|t|α1/2
+
√
C ′|t|e−t2γn

)

where we identified ϕ with a function on the projective space.
This proves, using that |ϕ(V +

g )| > 2−2|A|, that for any g ∈ Gn,

∣∣∣e−2it|A|λ1(g) − 1
∣∣∣ 6 21+2|A||A|

(
et3n/2

|t|α1/2
+
√
C ′|t|e−t2γn

)

Thus, we get that

∫

G

1Gn(g)
∣∣∣e−2i|A|tλ1(g) − 1

∣∣∣
2
dρ

∗n(β,t)
e (g) 6 21+2|A||A|

(
et3n/2

|t|α1/2
+
√
C ′|t|e−t2γn

)

Moreover, we note CA = 21+2|A||A| and

G1
n :=

{
g ∈ G

∣∣g is proximal, V +
g is ∆− ν-regular at scale |t|−α2

}
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We now have that∫

G1
n

∣∣∣e−2i|A|tλ1(g) − 1
∣∣∣
2
dρ

∗n(β,t)
e (g) 6

∫

Gn

∣∣∣e−2i|A|tλ1(g) − 1
∣∣∣
2
dρ

∗n(β,t)
e (g) + 2ρ∗n(G1

n \Gn)

And so, using lemma 3.8, we get that for any t1, t2, there is t3 such that for any n large
enough,

∫

G1
n

∣∣∣e−2i|A|tλ1(g) − 1
∣∣∣
2
dρ

∗n(β,t)
e (g) 6 CA

(
et3n/2

|t|α1/2
+
√
C ′|t|e−t2γn

)
+ 2e−t1n

So taking t1 and t2 large enough (this imposes a value for t3), then taking α1 large
enough and using the fact that |t| > 2, we get that

∫

G1
n

∣∣∣e−2i|A|tλ1(g) − 1
∣∣∣
2
dρ

∗n(β,t)
e (g) 6

1

|t|α

and this is what we intended to prove. �

3.3. Diophantine properties of the lengths of translations.

In this paragraph, we prove that for strongly irreducible and proximal
measures on SLd(R), the logarithms of the spectral radii of generic
elements satisfy a diophantine condition of the same kind of the one
used by Carlsson in [Car83] in the study of the walk on R.

Let ρ be a borelian probability measure on G = SLd(R). For g ∈ G, we note λ1(g)
the logarithm of the spectral radius of g. As in the study of the renewal theorem on R,
the study of the renewal theorem on R

d requires a diophantine assumption. However,
we are going to prove that it is always satisfied for measures whose support generate a
strongly irreducible and proximal subgroup.

First of all, we are going to get an estimation of the difference between λ1(gh) and
λ1(g) + λ1(h) when g and h are proximal elements in generic position.

Lemma 3.13. There are c1, c2 ∈ R
∗
+ such that for any ε ∈ ]0, c1] and any g, h ∈ G

with κ1,2(g), κ1,2(h) 6 ε4, δ(XM
g , Y m

g ) > 2ε, δ(XM
h , Y m

h ) > 2ε, δ(XM
g , Y m

h ) > 2ε and

δ(XM
h , Y m

g ) > 2ε, we have that
∣∣∣∣∣λ1(g) + λ1(h) − λ1(gh) − ln

δ(V +
h , V

<
h )δ(V +

g , V
<
g )

δ(V +
g , V

<
h )δ(V +

h , V
<
g )

∣∣∣∣∣ 6 c2

(
κ1,2(g)

ε3
+
κ1,2(h)

ε3

)

Remark 3.14. According to lemma 3.6, there are many pairs of elements g and h that
satisfy the assumption of the lemma in the support of ρ∗n.

Proof. We take at first c1 = 1/4 and c2 = 1.
First, according to lemma 3.3, we have that

κ1,2(gh) 6
κ1,2(g)κ1,2(h)

ε2
, d(XM

gh ,X
M
g ) 6

κ1,2(g)

ε
and d(Y m

gh , Y
m
h ) 6

κ1,2(h)

ε
and so,

κ1,2(gh) 6 ε4 and δ(XM
gh , Y

m
gh) > 2ε(1 − ε) >

3

2
ε

We note ε′ = 3
4ε and so we have that d(XM

gh , Y
m
gh) > 2ε′ and κ1,2(gh) 6

1
4

(
4
3

)3
ε′3 6 ε′3.
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Thus, using lemma 3.4, gh is proximal and

d(V +
gh, V

+
g ) 6 d(V +

gh,X
M
gh) + d(XM

gh ,X
M
g ) + d(XM

g , V +
g ) 6

κ1,2(gh)

ε′
+

2κ1,2(g)

ε

In the same way we get

d(V <
gh, V

<
h ) 6 d(V <

gh, Y
m
gh) + d(Y m

gh , Y
m
h ) + d(Y m

h , V <
h ) 6

κ1,2(gh)

ε′
+ 2

κ1,2(h)

ε

6
4

3
ε3 + 2ε2 6 3ε2

and so,

δ(V +
h , V

<
gh) > 2ε− 3ε2 = 2ε(1 − 3ε/2) >

ε

2

So we note ε′′ = ε
4 and then, δ(V +

h , V
<
gh) > 2ε′′ and κ1,2(gh) 6 64c1ε

′′3 so, assuming that

c1 6
1
64 , according to lemma 3.5, we have that

∣∣∣∣∣σ(gh, V
+
h )− λ1(gh) − ln

δ(V +
h , V

<
gh)

δ(V +
gh, V

<
gh)

∣∣∣∣∣ 6 2
κ1,2(gh)

ε′′3
6 2

κ1,2(h)ε

ε′′3

Moreover, using the cocycle relation and the fact that, by definition of V +
h , σ(h, V +

h ) =
λ1(h), we get that

σ(gh, V +
h ) = σ(g, hV +

h ) + σ(h, V +
h ) = σ(g, V +

h ) + λ1(h)

and finally, we also have, still with lemma 3.5, that
∣∣∣∣∣σ(g, V

+
h )− λ1(g) − ln

δ(V +
h , V

<
g )

δ(V +
g , V <

g )

∣∣∣∣∣ 6 2
κ1,2(g)

ε3

This leads to
∣∣∣∣∣λ1(g) + λ1(h)− λ1(gh) − ln

δ(V +
h , V

<
gh)δ(V

+
g , V

<
g )

δ(V +
gh, V

<
gh)δ(V

+
h , V

<
g )

∣∣∣∣∣ 6 2
κ1,2(g)

ε3
+ 27

κ1,2(h)

ε2

To conclude, remark that
∣∣∣δ(V +

h , V
<
gh)− δ(V +

h , V
<
h )
∣∣∣ 6 d(V <

h , V
<
gh) 6 3ε2 and δ(V +

h , V
<
gh) >

ε

2

so for ε small enough, we have that for some constant c3,
∣∣∣∣∣ln

δ(V +
h , V

<
gh)

δ(V +
h , V

<
h )

∣∣∣∣∣ 6
c3
ε
d(V <

h , V
<
gh) 6

c3
ε

(
κ1,2(gh)

ε′
+ 2

κ1,2(h)

ε

)

We can control | ln δ(V +
gh, V

<
gh) − ln δ(V +

g , V
<
h )| with the same kind of ideas and get the

expected result. �

In the sequel, we will need a result about the continuity of the Cartan decomposition.
This will be the following
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Lemma 3.15. Let g ∈ G.
Then, for any h ∈ G,

d
(
XM

h ,XM
g

)
6 (2‖g − h‖+ κ1,2(g)) , and d

(
Y m
h , Y m

g

)
6 (2‖g − h‖+ κ1,2(g))

Moreover, there are constants c1, c2 ∈ R
∗
+ such that for any p ∈ N

∗, any ε ∈ ]0, c1], any

g in G with κ1,2(g) 6 ε3 and δ(XM
g , Y m

g ) > 2ε, any r ∈ R
∗
+ with r 6 ε2

(
κ1,2(g)

ε2

)p
and

any element f ∈ B(gp, r),

δ(XM
f , Y m

f ) > ε, d(XM
f ,XM

g ) 6 2
κ1,2(g)

ε
, d(Y m

f , Y m
g ) 6 2

κ1,2(g)

ε

κ1(f) >
1

2
εp−1κ1(g)

p, κ1,2(f) 6
16

ε2(p−1)
κ1,2(g)

p

d(V +
f , V

+
g ) 6 c2

κ1,2(g)
p

ε2p−1
et d(V <

f , V
<
g ) 6 c2

κ1,2(g)
p

ε2p−1

Proof. We are going to evaluate gtlhe1 in two ways.
First,

κ1(h)x
M
h = htlhe1 = gtlhe1 + (h− g)tlhe1

= κ1(g)〈tlhe1,t lge1〉xMg + u+ (h− g)tlhe1

for some u such that ‖u‖ 6 κ2(g).
So,

κ1(h)‖xMh − 〈tlhe1,t lge1〉xMg ‖ 6 |κ1(g)− κ1(h)| + ‖u‖+ ‖g − h‖
6 κ2(g) + 2‖g − h‖

and as ‖xMh ‖ = 1 = ‖xMg ‖, we can deduce that

d(XM
g ,XM

h ) = ‖xMg ∧ xMh ‖ =
∥∥(xMh − 〈tlhe1,t lge1〉xMg

)
∧ xMg

∥∥ 6 κ1,2(g) + 2
‖g − h‖
‖g‖

This proves the first part of the lemma since for any g ∈ G, ‖g‖ = κ1(g) > 1.
To get the control of d(Y m

g , Y m
h ), we do the same computations in the dual space.

To prove the end of the lemma, we note that according to lemma 3.3, we have that

κ1(g
p) > εp−1κ1(g)

p, κ1,2(g
p) 6

1

ε2(p−1)
κ1,2(g)

p

and

d(XM
gp ,X

M
g ) 6

κ1,2(g)

ε
, d(Y m

gp , Y
m
g ) 6

κ1,2(g)

ε
Thus, for f ∈ B(gp, r),

δ(XM
f , Y m

f ) > 2ε− d(XM
gp ,X

M
g )− d(Y m

gp , Y
m
g )− d(XM

f ,XM
gp )− d(Y m

f , Y m
gp )

> 2ε− 2
κ1,2(g)

ε
− 2 (2r + κ1,2(g

p))

> ε(2− 6ε)

and so, for maybe some smaller c1, we have that

δ(XM
f , Y m

f ) > ε
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Moreover,

κ1(f) > κ1(g
p)− r > εp−1κ1(g)

p − εp+2 > εp−1κ1(g)
p

(
1− ε3

κ1(g)p

)

And using that κ1(g) > 1 and ε 6 c1, we get that if c1 is small enough,

κ1(f) > εp−1κ1(g)
p

Moreover, using the equality κ1(g)κ2(g) = κ1(∧2g), we have that

κ1(f)κ2(f) 6 κ1(g
p)κ2(g

p) + ‖ ∧2 gp − ∧2f‖ 6 κ1(g
p)κ2(g

p) + (κ1(g
p) + κ1(f))‖f − gp‖

so,

κ1,2(f) 6
κ1(g

p)κ2(g
p)

κ1(f)2
+
κ1(g

p) + κ1(f)

κ1(f)2
‖gp − f‖ 6

16

ε2(p−1)
κ1,2(g)

p 6 16εp+2

Therefore, is c1 is small enough, we get that κ1,2(f) 6 (ε/2)3, and so, using to lemma 3.4
we find that for any f ∈ B(gp, r), f is proximal and

d(V +
f ,X

M
f ) 6 2

κ1,2(f)

ε
et d(V <

f , Y
m
f ) 6 2

κ1,2(f)

ε

Thus, using that V +
gp = V +

g , we find that

d(V +
f , V

+
g ) 6 d(V +

f ,X
M
f ) + d(XM

f ,XM
gp ) + d(XM

gp , V
+
g ) 6 c2

κ1,2(g)
p

ε2p−1

for some universal constant c2.
Working in the same way in the dual space, we obtain the inequalities for d(V <

f , V
<
g )

and finish the proof of the lemma. �

We are now ready to evaluate the difference between the logarithms of the spectral
radii of well chosen elements of G. We would like to take two proximal elements g and
h and study the elements gpgh on side and gp and gh on the other side (as in [Qui05]).
However, as we don’t want to study only purely atomic measures on SLd(R), we have to
take, not gp but an element f in a small neighbourhood. This is what we do in next

Lemma 3.16. There are constants c1, c2, c3 such that for any p ∈ N
∗, any ε ∈ ]0, c1],

any g ∈ G with κ1,2(g) 6 ε5 and δ(XM
g , Y m

g ) > 2ε we have that for any h ∈ G with

κ1,2(h) 6 ε3, δ(XM
h , Y m

h ) > 2ε, δ(XM
h , Y m

g ) > 2ε, δ(XM
g , Y m

h ) > 2ε and any f ∈ G such

that ‖gp − f‖ 6 ε2
(
κ1,2(g)

ε

)p
, we have that

∣∣∣∣∣λ1(fgh) − λ1(f)− λ1(gh) − ln
δ(V +

g , V
<
g )δ(gV +

h , V
<
h )

δ(V +
g , V

<
h )δ(gV +

h , V
<
g )

∣∣∣∣∣ 6 c2

(
κ1,2(g)

p

ε2p
+
κ1,2(h)

ε

)

Moreover, we note πg the projection onto V <
g parallel to V +

g and we have that if XM
h 6=

V +
g , d(gπgX

M
h , Y m

h ) > 2ε, d(XM
g ,XM

h ) > 2ε and κ1,2(h)κ1(g) 6
1
2ε

3, then

ε3

c3κ1(g)d
6

∣∣∣∣∣ln
δ(V +

g , V
<
g )δ(gV +

h , V
<
h )

δ(V +
g , V

<
h )δ(gV +

h , V
<
g )

∣∣∣∣∣ 6 c3
κ1,2(g)

ε5
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Proof. We want to apply lemma 3.13 tof and gh. To do so, we are going to prove at
first that gh is proximal.

According to lemma 3.3, we have that

κ1,2(gh) 6
κ1,2(g)κ1,2(h)

ε2
6 ε4

and

d(XM
gh ,X

M
g ) 6

κ1,2(g)

ε
and d(Y m

gh , Y
m
h ) 6

κ1,2(h)

ε
This proves that

δ(XM
gh , Y

m
gh) > δ(XM

g , Y m
h )− d(XM

gh ,X
M
g )− d(Y m

h , Y m
gh) > 2ε(1− ε) >

3

2
ε

So, for c1 small enough, gh satisfy the assumptions of lemma 3.4 and 3.5 with ε′ = ε/2.
So, gh is proximal and

d(V +
gh, gV

+
h ) = d(ghV +

gh, ghV
+
h ) 6

κ1,2(gh)

4ε′4
6 c2

κ1,2(h)

ε

and

d(V <
gh, V

<
h ) 6 d(V <

gh, Y
m
gh) + d(Y m

gh , Y
m
h ) + d(V <

h , Y
m
h ) 6 2

κ1,2(h)

ε
+
κ1,2(gh)

ε

Moreover, according to lemma 3.15, for f ∈ G such that ‖gp − f‖ 6 ε2
(
κ1,2(g)

ε

)p
, we

have that

δ(XM
f , Y m

f ) > ε, d(XM
f ,XM

g ) 6 2
κ1,2(g)

ε
, d(Y m

f , Y m
g ) 6 2

κ1,2(g)

ε

Moreover,

κ1(f) >
1

2
εp−1κ1(g)

p, κ1,2(f) 6
16

ε2(p−1)
κ1,2(g)

p

and

d(V +
f , V

+
g ) 6 c2

κ1,2(g)
p

ε2p−1
et d(V <

f , V
<
g ) 6 c2

κ1,2(g)
p

ε2p−1

Finally,

δ(XM
f , Y m

gh) > δ(XM
g , Y m

h )− d(XM
f ,XM

g )− d(Y m
h , Y m

gh)

> ε

(
2− 2

κ1,2(g)

ε
− κ1,2(h)

ε

)

> ε
(
2− 3ε2

)

So, is c1 is small enough, we have that δ(XM
f , Y m

gh) > ε and also, δ(Xm
gh, Y

m
g ) > ε. Thus,

according to lemma 3.13,
∣∣∣∣∣λ1(f) + λ1(gh) − λ1(fgh)− ln

δ(V +
gh, V

<
gh)δ(V

+
f , V

<
f )

δ(V +
f , V

<
gh)δ(V

+
gh, V

<
f )

∣∣∣∣∣ 6 c2

(
κ1,2(f)

ε2
+
κ1,2(gh)

ε2

)

This finishes the proof of the first part of the lemma since we also have seen controls on
d(V +

gh, gV
+
h ), d(V +

f , V
+
g ), d(V <

f , V
<
g ) and d(V <

gh, V
<
h ).
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To prove the second part, we use the equality

δ(V +
g , V

<
g )δ(gV +

h , V
<
h )

δ(V +
g , V

<
h )δ(gV +

h , V
<
g )

=

∣∣∣∣∣
ϕ<
g (v

+
g )ϕ

<
h (gv

+
h )

ϕ<
h (v

+
g )ϕ<

g (gv
+
h )

∣∣∣∣∣

=

∣∣∣∣∣1 +
ϕ<
g (v

+
g )ϕ

<
h (gv

+
h )− ϕ<

h (v
+
g )ϕ

<
g (gv

+
h )

ϕ<
h (v

+
g )ϕ<

g (gv
+
h )

∣∣∣∣∣(3.3)

And, as

v+h =
ϕ<
g (v

+
h )

ϕ<
g (v

+
g )
v+g + v+h −

ϕ<
g (v

+
h )

ϕ<
g (v

+
g )
v+g =

ϕ<
g (v

+
h )

ϕ<
g (v

+
g )
v+g + πg(v

+
h )

where we noted πg the projection on V <
g parallel to V +

g , we have that

ϕ<
g (gv

+
h ) = ε1(g)e

λ1(g)ϕ<
g (v

+
h )

and

ϕ<
h (gv

+
h ) = ε1(g)e

λ1(g)
ϕ<
g (v

+
h )

ϕ<
g (v

+
g )
ϕ<
h (v

+
g ) + ϕ<

h

(
gπg(v

+
h )
)

This proves that

ϕ<
g (v

+
g )ϕ

<
h (gv

+
h )− ϕ<

h (v
+
g )ϕ

<
g (gv

+
h ) = ϕ<

g (v
+
g )ϕ

<
h (gπgv

+
h )

And so, replacing in equation (3.3), we get that

δ(V +
g , V

<
g )δ(gV +

h , V
<
h )

δ(V +
g , V

<
h )δ(gV +

h , V
<
g )

=

∣∣∣∣∣1 + ε1(g)e
−λ1(g)

ϕ<
g (v

+
g )ϕ

<
h (gπgv

+
h )

ϕ<
h (v

+
g )ϕ<

g (v
+
h )

∣∣∣∣∣

Moreover, we use that πgv
+
h ∈ V <

g , to get, with lemma 3.4 that

‖gπgv+h ‖ 6
κ2(g)

ε
‖πg‖‖v+h ‖ 6

κ2(g)

ε

2

δ(V +
g , V <

g )
‖v+h ‖ 6

2κ2(g)

ε2
‖v+h ‖

and so, using that eλ1(g) > 2κ1(g)ε, we find
∣∣∣∣∣e

−λ1(g)
ϕ<
g (v

+
g )ϕ

<
h (gπgv

+
h )

ϕ<
h (v

+
g )ϕ<

g (v
+
h )

∣∣∣∣∣ 6
κ1,2(g)

ε3
‖ϕ<

g ‖‖v+g ‖‖ϕ<
h ‖‖v+h ‖

|ϕ<
h (v

+
g )ϕ<

g (v
+
h )|

6
κ1,2(g)

5ε4

We can also compute∣∣∣∣∣
ϕ<
g (v

+
g )ϕ

<
h (gπgv

+
h )

ϕ<
h (v

+
g )ϕ<

g (v
+
h )

∣∣∣∣∣ = δ(V +
g , V

<
g )δ(gπgV

+
h , V

<
h )

‖ϕ<
g ‖‖v+g ‖‖ϕ<

h ‖‖gπgv+h ‖
|ϕ<

h (v
+
g )ϕ<

g (v
+
h )|

> δ(V +
g , V

<
g )δ(gπgV

+
h , V

<
h )

‖gπgv+h ‖
‖v+h ‖

> δ(V +
g , V

<
g )δ(gπgV

+
h , V

<
h )

1

‖g−1‖
‖πgv+h ‖
‖v+h ‖

(3.4)

And finally, as v+g ∧ v+h = v+g ∧ πgv+h , we get that

d(V +
g , V

+
h ) =

‖v+g ∧ v+h ‖
‖v+g ‖‖v+h ‖

=
‖v+g ∧ πgv+h ‖
‖v+g ‖‖v+h ‖

6
‖πgv+h ‖
‖v+h ‖
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and so, using inequality (3.4), this proves that
∣∣∣∣∣
ϕ<
g (v

+
g )ϕ

<
h (gπgv

+
h )

ϕ<
h (v

+
g )ϕ<

g (v
+
h )

∣∣∣∣∣ >
1

‖g−1‖δ(V
+
g , V

<
g )δ(gπgV

+
h , V

<
h )d(V +

g , V
+
h )

To conclude, note that κd(g) . . . κ1(g) = det(g) = 1 and κd(g) = ‖g−1‖−1 and so
‖g−1‖−1 > κ1(g)

1−d.
Moreover,

δ(gπgV
+
h , V

<
h ) > δ(gπgx

M
h , y

m
h )− d(gπgV

+
h , gπgx

M
h )− d(V <

h , y
m
h )

> 2ε− ‖g‖‖πg‖d(V +
h , x

M
h )− d(V <

h , y
m
h )

> 2ε− 2
κ1(g)

ε

κ1,2(h)

ε
> 2ε

(
1− κ1(g)κ1,2(h)

ε3

)
> ε

And

d(V +
g , V

+
h ) > d(XM

g ,XM
h )− d(V +

g ,X
M
g )− d(V +

h ,X
M
h ) > 2ε− κ1,2(g)

ε
− κ1,2(h)

ε
> ε

and so, using the fact that e−λ1(g) > κ1(g)
−1, we find that

∣∣∣∣∣e
−λ1(g)

ϕ<
g (v

+
g )ϕ

<
h (gπgv

+
h )

ϕ<
h (v

+
g )ϕ<

g (v
+
h )

∣∣∣∣∣ >
ε3

κ1(g)d

And this is what we intended to prove. �

Lemma 3.16 proved that if we make good assumptions of proximality and transversal-
ity on the elements g and h inG, then we have a good control on λ1(fgh)−λ1(f)−λ1(gh)
for f in a small neighbourhood of gp. Using lemma 3.6 we will get that those elements
g and h are generic and this leads to the following

Lemma 3.17. Let ρ be a borelian probability measure on SLd(R) having an exponential
moment and whose support generates a strongly irreducible and proximal subgroup.

Let ν be the unique borelian stationary measure on P(Rd).
Then, there are n0, p ∈ N et c1, c2 ∈ R

∗
+ such that for any α2 ∈ R

∗
+, there are

∆, c3 ∈ R
∗
+ such that for any n ∈ N with n > n0,

ρ∗pn ⊗ ρ∗pn





 g, h

g, h and gh are proximal, V +
g , V

+
h and V +

gh are

∆− ν-regular at scale e−α2pn and
e−c1n 6 |λ1(gh)− λ1(g)− λ1(h)| 6 e−c2n






 > e−c3n

Proof. We note, for n ∈ N and η, t2 ∈ R∗
+,

Gn =

{
g ∈ G

ρ∗n(B(g, e−t2n)) > e−t3n, δ(XM
g , Y m

g ) > 2e−ηn

∀i ∈ {1, 2}
∣∣ 1
nκi(g)− λi

∣∣ 6 η

}

Then, for any g ∈ Gn,

κ1,2(g) =
κ2(g)

κ1(g)
6 e−(λ1−λ2−2η)n
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And so, noting ε = e−ηn, we have that if 7η < λ1 − λ2, for n large enough, g satisfy the
assumptions of lemma 3.16. Moreover, for g ∈ Gn and p ∈ N

∗, we note

Hp
n(g) =

{
h ∈ Gpn

δ(XM
h , Y m

g ) > 2e−ηn, δ(XM
g , Y m

h ) > 2e−ηn

d(gπgX
M
h , Y m

h ) > 2e−ηn, d(XM
g ,XM

h ) > 2e−ηn

}

where πg is the projection to V <
g parallel to V +

g .
If p is such that (p − 1)(λ1 − λ2 + η) > λ1 + η, then for any g ∈ Gn and any

h ∈ Hp
n(g), the pair (g, h) satisfy the assumptions of lemma 3.16 and so we have that

for any f ∈ B(gp, e−p(λ1−λ2−η)n),

∣∣∣∣∣λ1(fgh) − λ1(f)− λ1(gh) − ln
d(V +

g , V
<
g )d(gV +

h , V
<
h )

d(V +
g , V

<
h )d(gV +

h , V
<
g )

∣∣∣∣∣ 6 2c2e
−p(λ1−λ2−4η)n

and

e−(d(λ1+η)+5η)n

c3
6

∣∣∣∣∣ln
d(V +

g , V
<
g )d(gV +

h , V
<
h )

d(V +
g , V

<
h )d(gV +

h , V
<
g )

∣∣∣∣∣ 6 c3e
−(λ1−λ2−7η)n

Moreover, according to lemma 3.3, we also have that

κ1,2(gh) 6
κ1,2(g)κ1,2(h)

ε2
6 e−(p+1)(λ1−λ2−4η)n

and

δ(XM
gh , Y

m
gh) > δ(XM

g , Y m
h )− d(XM

gh ,X
M
g )− d(YM

gh , Y
M
h )

> 2e−ηn − 2e−(λ1−λ2−3η)n

So, according to proposition 3.10, choosing m such that m(λ1 − λ2 − 4η) > α2, we get
that

ν(B(V +
gh, e

−pα2n) > ν(B(V +
gh, (κ1,2(gh)/ε

4)m) >
1

2
(ρ∗pn(B(gh, r)))m

With r = e−(λ1+η)(d+1)pn.
Moreover, if g1 ∈ B(g, r1) and h1 ∈ B(h, r2), then

‖gh− g1h1‖ 6 r1‖h‖+ r2‖g1‖

and so,

ρ∗pn(B(gh, r)) > ρ∗n(B(g, e−2(λ1+η)(d+1)n))ρ∗(p−1)n(B(h, e−2(λ1+η)(d+1)n))

Thus, taking t2 = 2(λ1 + η)(d+1), this proves that V +
gh is ∆− ν-regular at scale e−α2pn

for some ∆ ∈ R+.
Doing the same for V +

f and V +
fgh (using lemma 3.13 and lemma 3.3), we get that V +

f

and V +
fgh are also ∆ − ν-regular at scale e−α2pn (maybe for some different ∆ but there

is one that works for V +
gh, V

+
f and V +

fgh).
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We just proved that for p such that p(λ1 − λ2 − 4η) > dλ1 + 5η,

ρ∗pn ⊗ ρ∗pn





 g, h

g, h and gh are proximal, V +
g , V

+
h and V +

gh are

∆− ν-regular at scale e−α2pn and
e−c1n 6 |λ1(gh) − λ1(g)− λ1(h)| 6 e−c2n








>

∫

G

1Gn(g)ρ
∗(p−1)n(Hp−1

n )(g)ρ∗pn(B(gp, e−p(λ1−λ2+η)n))dρ∗n(g)

But, according to lemma 3.6, we have that any h ∈ Hp−1
n (g) except a set of exponentially

small measure (to get the lower bound on δ(gπgX
M
h , Y m

h ), we do as in the proof of

inequality 13.38 in lemma 13.13 in [BQ15] to get that XM
h and YM

h are essentially

independent and then guarantee that XM
h 6∈ V +

g and d(V <
g , Y

m
h ) > 2e−ηn). So, we only

need to find a lower bound on
∫

G

1Gn(g)ρ
∗pn(B(gp, e−p(λ1−λ2+η)n))dρ∗n(g)

But, doing the same as previously, we find that, maybe for some other constant t2, there
is a constant c3 such that for any g ∈ Gn,

ρ∗pn(B(gp, e−p(λ1−λ2+η)n)) > e−c3n

And finally, using lemma 3.8 and lemma 3.6, we have that every g belong to Gn except
a set of exponentially small measure and this finishes the proof of the lemma. �

We can now state an “integrated version” of lemma 3.17.

Lemma 3.18. Let ρ be a strongly irreducible and proximal borelian probability measure
on SLd(R) having an exponential moment.

There are α, β ∈ R
∗
+ and p ∈ N

∗ such that for any α2 ∈ R
∗
+, there is ∆ ∈ R

∗
+ such

that

lim inf
b→±∞

|b|α
∫

G∆,2(b−α2 )

∣∣∣eib(λ1(gh)−λ1(g)−λ1(h)) − 1
∣∣∣
2
dρ∗pn(β,b)(g)dρ∗pn(β,b)(h) > 0

Where we noted, n(β, b) = ⌊β ln |b|⌋ and, for r ∈ R
∗
+,

G∆,2(r) :=

{
(g, h) ∈ G2 g, h and gh are proximal and

V +
g , V

+
h , V

+
gh are ∆− ν-regular at scale r

}

Proof. We note, with the same notations as in the proof of the previous lemma, for any
n ∈ N,

G2
n :=



 g, h

g, h and gh are proximal, V +
g , V

+
h and V +

gh are

∆− ν-regular at scale e−α2pn and
e−c1n 6 |λ1(gh) − λ1(g)− λ1(h)| 6 e−c2n





We choose α, β ∈ R
∗
+ and we will fix their value later. We note p the parameter given

by the previous lemma. For b ∈ R, we note n = ⌊β ln |b|⌋.
Then, for b large enough and any (g, h) ∈ G2

n,

|b|1−c1β 6 |b||λ1(gh) − λ1(g)− λ1(g)| 6 |b|1−c2β
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So, if β > 1/c2, we use the inequalities

0 < inf
x∈[−1,1]

∣∣eix − 1
∣∣

|x| 6 sup
x∈[−1,1]

∣∣eix − 1
∣∣

|x| < +∞

to get that for large enough b and any (g, h) ∈ Gn,
∣∣∣eib(λ1(gh)−λ1(g)−λ1(g)) − 1

∣∣∣ ≍ |b||λ1(gh) − λ1(g)− λ1(g)| > |b|1−c1β

So, for b large enough and uniformly for any (g, h) ∈ G2
n,

∣∣∣eib(λ1(gh)−λ1(g)−λ1(g)) − 1
∣∣∣ > |b|1−c1β

Moreover, according to lemma 3.17,

ρ∗pn(β,b) ⊗ ρ∗pn(β,b)(G2
n) > e−c3n(β,b) > |b|−c3β

So, if α is such that α− c3β + 2(1 − c1β) > 0, then

lim inf
b→±∞

|b|α
∫

G∆,2(b−α2 )

∣∣∣eib(λ1(gh)−λ1(g)−λ1(h)) − 1
∣∣∣
2
dρ∗pn(β,b)(g)dρ∗pn(β,b)(h) > 0

and this is what we intended to prove. �

We can finally prove the control on the logarithm of the spectral radii of proximal
elements of SLd(R).

Proposition 3.19. Let ρ be a strongly irreducible and proximal borelian probability
measure on SLd(R) having an exponential moment.

Then, there are α, β ∈ R
∗
+ and p ∈ N

∗ such that for any α2 ∈ R
∗
+, there is ∆ ∈ R+

such that

lim inf
b→±∞

|b|α
∫

G

1{ g is proximal and

V +
g is ∆−ν-regular at scale b−α2

}
∣∣∣eibλ1(g) − 1

∣∣∣
2
dρ∗pn(β,b)(g) > 0

where we noted λ1(g) the spectral radius of g and n(β, b) = ⌊β ln |b|⌋.

Proof. Note, for r ∈ R
∗
+,

G∆(r) :=
{
g ∈ G

∣∣g is proximal and V +
g is ∆− ν-regular at scale r

}

Suppose that there are no such α, β, p. Then, for any α, β, p,

lim inf
b→±∞

|b|α
∫

G

1G∆(b−α2 )(g)
∣∣∣eibλ1(g) − 1

∣∣∣
2
dρ∗pn(β,b)(g) = 0

In particular, for any α, β ∈ R
∗
+ and any p ∈ N,

lim inf
b→±∞

|b|α
∫

G2

1G∆(b−α2 )(gh)
∣∣∣eibλ1(gh) − 1

∣∣∣
2
dρ∗pn(β,b)(g)dρ∗pn(β,b)(h)

= lim inf
b→±∞

|b|α
∫

G

∣∣∣eibλ1(g) − 1
∣∣∣
2
dρ∗2pn(β,b)(g) = 0
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But, using the triangular inequality and keeping the notation G∆
2 of the previous lemma,

we obtain that

Ib(β) : =

(∫

G∆,2(b−α2 )

∣∣∣eib(λ1(gh)−λ1(g)−λ1(h)) − 1
∣∣∣
2
dρ∗pn(β,b)(g)dρ∗pn(β,b)(h)

)1/2

6

(∫

G

1G∆(b−α2 )(g)
∣∣∣eibλ1(g) − 1

∣∣∣
2
dρ∗2pn(β,b)(g)

)1/2

+ 2

(∫

G

1G∆(b−α2 )(g)
∣∣∣eibλ1(g) − 1

∣∣∣
2
dρ∗pn(β,b)(g)

)1/2

So, for any α, β,

lim inf
b→±∞

|b|αIb(β) = 0

and this contradicts lemma 3.18. �

4. The renewal theorem

In this section, we link, as we said in the introduction, the rate of
convergence for the renewal theorem to the control of (Id − P (it))−1

in some Banach space.
The aim is to prove theorem 4.1 that we need to establish theorem 1.3.

4.1. Preliminaries. Given a second countable locally compact group G acting contin-
uously on a metric space X and a cocycle σ : G ×X → R (see definition 2.16), we can
define an action of G on X× R by setting

g.(x, t) = (gx, t + σ(g, x))

If ρ is a borelian probability measure on G, this defines a Markov chain on X × R

whose associated operator is the one defined for any continuous function f on X × R

and any (x, t) ∈ X× R by

Pf(x, t) =

∫

G

f(g.(x, t))dρ(g) =

∫

G

f(gx, t+ σ(g, x))dρ(g)

This operator commutes to translations on R and this implies that for any f ∈ L∞(X×R)
and any g ∈ L1(R),

(Pf) ∗ g = P (f ∗ g)
where we noted, for f ∈ L∞(X× R), g ∈ L1(R) and (x, t) ∈ X× R,

f ∗ g(x, t) =
∫

R

f(x, u)g(t − u)du

We call renewal kernel the operator G =
∑+∞

n=0 P
n when it is defined.

Kesten studied in [Kes74] the properties of G in a very general setting and Guivarc’h
and Le Page used his result in [GL12] to get the renewal theorem in R

d associated to
a borelian probability measure on SLd(R) : this is theorem 1.1 that we stated in the
introduction.
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In this chapter, we would like to study the rate of convergence in Kesten’s theorem
but we will not do it in his general setting but directly in the case of a group contracting
some compact metric space.

So, in the sequel, we fix a second countable locally compact group G and a borelian
probability measure ρ on G.

Let (X, d) be a compact metric G−space endowed with an action of a finite group H

that commutes to the G−action and such that X/H is (ρ, γ,M,N)−contracted over a
finite G−set A on which the random walk defined by ρ is irreducible and aperiodic (see
section 2). To simplify notations, we simply note πA the two projections of X to A and
of X/H to A.

We recall that for us, G = SLd(R), ρ is a probability measure on SLd(Z), X =
S
d−1 ×A, X/H = P(Rd)×A and A is finite Γρ−set.

For technical reasons that we will justify in section 4.4, we introduce the function
ω : (X× R)2 → R+ defined by

ω((x, t), (x′, t′)) =

{
e−

|t|+|t′|
2

√
d(x, x′)2 +

(
e(t−t′)/2 − e(t′−t)/2

)2
if πA(x) = πA(x

′)
1 if not

and we set, for γ ∈ ]0, 1],

C0,γ
ω =




f ∈ C0(X× R)

∣∣∣∣∣∣∣
‖f‖γ,ω := sup

(x,t),(x′,t′)∈X×R

(x,t)6=(x′,t′)

|f(x, t)− f(x′, t′)|
ω((x, t), (x′, t′))γ

is finite





In the same way, we note,

ω0((x, t), (x
′, t′)) =

{ √
|t−t′|2+d(x,x′)2

(1+|t′|)(1+|t|) si πA(x) = πA(x
′)

1 si non

and we define C0,γ
ω0 (X×R) like C0,γ

ω (X×R).

We will see in section 4.4 that for any f in C0,γ
ω , there are functions p+(f), p−(f) on

A such that for any x ∈ X,

p−(f)(πA(x)) = lim
t→−∞

f(x, t) and p+(f)(πA(x)) = lim
t→+∞

f(x, t)

We recall that for a cocycle σ on X and t ∈ R, we note P (it) the operator defined for
any continuous function f on X and any x ∈ X by

P (it)f(x) =

∫

G

e−itσ(g,x)f(gx)dρ(g)

We refer to section 2 and more specifically to paragraph 2.1.4 for more details.
The main result of this section is the following

Theorem 4.1. Let G be a second countable locally compact group, N : G → [1,+∞[ a
submultiplicative function on G and ρ a borelian probability measure on G.

Let X be a compact metric G−space endowed with an action of a finite group H that
commutes to the G action and such that X/H is (ρ, γ0,M,N)−contracted over a finite
G−set A on which the random walk defined by ρ is irreducible and aperiodic.
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Let σ ∈ ZM (X/H) and σρ =
∫
G

∫
X/H σ(g, x)dν(x)dρ(g) where ν is the unique

P−invariant probability measure on X/H given by proposition 2.5. We assume that
σρ > 0.

We also assume that there is γ0 ∈ ]0, 1] such that for any γ ∈ ]0, γ0] and t0 ∈ R
∗
+,

there are C0, L such that for any t ∈ R with |t| > t0,

‖(Id − P (it))−1‖C0,γ(X) 6 C0|t|L

We note Π0 the operator define for any f ∈ Cγ
ω(X× R) such that p+(f) = 0 par

Π0f(x, t) =

∫ +∞

t
N0f(x, u)du

where N0 is the projector on the space of P−invariant function in C0(X) and we make
the abuse of notations N0f(x, u) = N0fu(x) with fu = f(., u).

Then, for any γ > 0 small enough, there are α,C ∈ R
∗
+ such that for any f ∈

Cγ
ω(X× R) with p+(f) = 0 =

∑
a∈A p

−(f)(a) and for any x ∈ X,

lim
t→−∞

(
G− 1

σρ
Π0

)
f(x, t) =

∑

n∈N
Pnp−(f)(πA(x))

Moreover, (G− 1
σρ
Π0)f ∈ Cα

ω0
(X× R) and

∥∥∥∥
(
G− 1

σρ
Π0

)
f

∥∥∥∥
α,ω0

6 C‖f‖γ,ω

Remark 4.2. The function Gf is well defined under the assumptions of the theorem since
the convergence in the series is uniform on any compact subset of X× R.

Proof. To prove the theorem, we use the decomposition given in lemma 4.19, the corol-
lary 4.21 and lemma 4.22 �

4.2. Non-unitary perturbations by cocycles.

In this paragraph, we study the inverse of the operator Id − P (z) and
we prove proposition 4.3 that shows that a control of the growth of the
norm on the imaginary axis gives a control of the norm of the operator
and it’s derivatives on a neighbourhood with a nice shape.

Let G be a second countable locally compact group acting on a compact metric space
(X, d) and ρ a borelian probability measure on G.

For a cocycle σ : G×X → R and g ∈ G, we recall that we noted

σsup(g) = sup
x∈X

|σ(g, x)| and σLip(g) = sup
x,y∈X

πA(x)=πA(y)
x 6=y

|σ(g, x) − σ(g, y)|
d(x, y)

And, for M ∈ R+ and N : G → [1,+∞[ a submultiplicative function on G,

ZM
N (X) =

{
σ is a cocycle on X

∣∣∣∣∣supg∈G

σLip(g)

N(g)M
and sup

g∈G

eσsup(g)

N(g)M
are finite

}
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Finally, for σ ∈ ZM
N (X), we set

[σ]
M

= sup
g∈G

σLip(g)

N(g)M
and [σ]∞ = sup

g∈G

eσsup(g)

N(g)M

We note Cγ := {z ∈ C||ℜ(z)| < γ}. For z ∈ Cγ and σ ∈ ZM
N (X/H), we define the

operator P (z) on C0(X) by

P (z)f(x) =

∫

G

e−zσ(g,x)f(gx)dρ(g)

This is a continuous operator since for any continuous function f on X, any z ∈ Cγ and
any x ∈ X,

|P (z)f(x)| 6 ‖f‖∞
∫

G

e−ℜ(z)σ(g,x)dρ(g) 6 ‖f‖∞
∫

G

[σ]γ∞N(g)γMdρ(g)

and
∫
G
N(g)γMdρ(g) is finite since the action is contracting.

In the sequel, we will note, for η ∈ R
∗
+, Cη := {z ∈ C||ℜ(z)| < η}.

We group the main results of this paragraph in the next

Proposition 4.3. Under the assumptions and notations of theorem 4.1.
For any γ > 0 small enough, there are η,C,L, t ∈ R

∗
+ such that (z 7→ P (z)) is an

analytic function from Cη to the space of continuous operators on C0,γ(X). Moreover,
for any z ∈ [0, η[⊕iR and any n ∈ N,

‖P (z)n‖γ 6 C(1 + |z|)e−tℜ(z)n

Finally, noting

U(z) = (Id − P (z))−1 − 1

σρz
N0,

we have that (z 7→ U(z)) (which is definite a priori on iR \ {0}) can be extended to an
analytic function onto the space of continuous operators on C0,γ(X) and defined on

Dη,C,L :=

{
z ∈ C

∣∣∣∣
−1

C(1 + |ℑz|)L+1
< ℜ(z) < η

}

and for any n ∈ N and any z ∈ Dη,C,L

‖U (n)(z)‖γ 6 n!Cn+1(1 + |ℑz|)(L+1)(n+1)

Remark 4.4. This proposition generalises the situation in R when P (z) is the Fourier-
Laplace transform of the measure ρ. In this case, the same estimations can be obtained
under the “non-lattice of type p” assumption used by Carlsson in [Car83].

Before we prove each of the assertions of the proposition, we draw the zone Dη,C,L.
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O

η−1/C {
z ∈ C

∣∣∣ −1
C(1+|ℑz|)L+1 < ℜ(z) < η

}

Figure 1. Shape of the zone Dη,C,L

Lemma 4.5. Under the assumptions of proposition 4.3, if σρ > 0 then there are η, t, C ∈
R
∗
+ such that for any s ∈ [0, η] and any n ∈ N,

sup
x∈X

∫

G

e−sσ(g,x)dρ∗n(g) 6 Ce−tsn

Proof. First of all, according to Jensen’s inequality, for any 0 6 s 6 η,

∫

G

e−sσ(g,x)dρ∗n(g) 6

(∫

G

e−ησ(g,x)dρ∗n(g)

)s/η

= (P (η)n1(x))s/η

Moreover, as σρ > 0, lemma 10.17 in [BQ15] and the fact that (with their notations but
reminding that their operator Pϑ is what we called P (−iϑ)) and their equality 10.32,

λ′(0) =
∫

X

P ′(0)1dν(x) = −σρ < 0

prove that there are η, t, C ∈ R
∗
+ such that

sup
x
P (η)n1(x) 6 Ce−tn

and this is what we intended to prove. �

Lemma 4.6. Under the assumptions of proposition 4.3, for any γ > 0 small enough
there is η ∈ R

∗
+ such that the function (z 7→ P (z)) is analytic from Cη to the space of

continuous operators on C0,γ(X) and there are t ∈ R
∗
+ and C ∈ R such that for any

z ∈ Cη with ℜ(z) > 0, any function f ∈ C0,γ(X) and any n ∈ N,

‖P (z)nf‖γ 6 C
(
e−tnmγ(f) + (1 + |z|)‖f‖∞

)

Remark 4.7. This proof is very close to the one of proposition 2.18. The difficulty here
is that the perturbation no longer have modulus 1.

Proof. To see that (P (z)) is an analytic family of operators, we refer to lemma 10.16
de [BQ15].

Let γ > 0 small enough and η ∈ R
∗
+.
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Compute, for z ∈ Cη, f ∈ C0,γ(X), x, y ∈ X with πA ◦πH(x) = πA ◦πH(y) and n ∈ N,

|P (z)nf(x)− P (z)nf(y)|

6

∫

G

∣∣∣e−zσ(g,x)f(gx)− e−zσ(g,y)f(gy)
∣∣∣ dρ∗n(g)

6

∫

G

e−ℜ(z)σ(g,x)|f(gx)− f(gy)|+ ‖f‖∞
∣∣∣e−zσ(g,x) − e−zσ(g,y)

∣∣∣dρ∗n(g)(4.1)

But, using the definition of [σ]
M

and [σ]∞ (cf. equation (2.4)), we have that for any
ε ∈ R

∗
+

∣∣∣e−zσ(g,x) − e−zσ(g,y)
∣∣∣ 6 21−γ |z|eℜ(z)σsup(g)(σsup(g))

1−γ |σ(g, x) − σ(g, y)|γ

6 21−γ |z|[σ]η∞N(g)M(γ+|ℜ(z)|) (ln([σ]∞N(g)M )
)1−γ

[σ]γ
M
d(x, y)γ

6 Cε|z|N(g)M(γ+η+ε)[σ]∞[σ]
M
d(x, y)γ

where we noted Cε such that for any x ∈ [1,+∞[, x 6 Cεe
εx/21−γ .

And so,
(4.2)∫

G

∣∣∣e−zσ(g,x) − e−zσ(g,y)
∣∣∣dρ∗n(g) 6 Cε|z|[σ]∞[σ]

M
d(x, y)γ

∫

G

N(g)M(γ+η+ε)dρ∗n(g)

Moreover,

(4.3)

∫

G

e−ℜ(z)σ(g,x)|f(gx)− f(gy)|dρ∗n(g) 6 mγ(f)[σ]
η
∞

∫

G

N(g)Mηd(gx, gy)γdρ∗n(g)

Let d0 ∈ R
∗
+ be such that if d(x, y) 6 d0 then d(x, y) = d(πHx, πHy). Then, for any

ε′ ∈]0, 1] and any x, y with 0 < d(x, y) 6 ε′d0, we have that

In(x, y) : =

∫

G

N(g)Mηd(gx, gy)γdρ∗n(g)

6

∫

G

N(g)Mη1d(gx,gy)6d0d(gx, gy)
γdρ∗n(g)

+

∫

G

N(g)Mη1d(gx,gy)>d0d(gx, gy)
γdρ∗n(g)

6

∫

G

N(g)Mηd(gπHx, gπHy)
γdρ∗n(g)

+

∫

G

N(g)Mη1MN(g)M>1/εMN(g)Mγd(x, y)γdρ∗n(g)

6 d(x, y)γ
(∫

G

N(g)Mη d(gπHx, gπHy)
γ

d(πHx, πHy)γ
dρ∗n(g)

+M

∫

G

N(g)M(η+γ)1MN(g)M>1/εdρ
∗n(g)

)
(4.4)
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But, using Cauchy-Schwartz’s inequality and the contraction of X/H, we have that

Jn(x, y) : =

∫

G

N(g)Mη d(gπHx, gπHy)
γ

d(πHx, πHy)γ
dρ∗n(g)

6

(∫

G

N(g)2Mηdρ∗n(g)
∫

G

d(gπHx, gπHy)
2γ

d(x, y)2γ
dρ∗n(g)

)1/2

6
√
C2γe

−δ2γn/2

(∫

G

N(g)2ηMdρ(g)

)n/2

(4.5)

We can now choose n such that
√
C2γe

−δ2γn/4 6 1/4[σ]∞ and then, for η such that

e−δ2γn/4

∫

G

N(g)Mηdρ(g) 6 1,

we find, with equation (4.5), that

Jn(x, y) =

∫

G

N(g)Mη d(gπHx, gπHy)
γ

d(πHx, πHy)γ
dρ∗n(g) 6

1

4[σ]∞

Moreover, for this fixed n we can choose ε′ ∈ R
∗
+ such that

M

∫

G

N(g)M(η+γ)1MN(g)M>1/ε′dρ
∗n(g) 6 1/4[σ]∞

and this proves, with equations (4.1), (4.2), (4.3) and (4.4), that for any f ∈ C0,γ(X),
any x, y ∈ X with πA ◦ πH(x) = πA ◦ πH(y) and d(x, y) 6 ε′d0,

|P (z)nf(x)− P (z)nf(y)|
d(x, y)γ

6
1

2
mγ(f) + 2‖f‖∞|z|[σ]∞[σ]

M

∫

G

N(g)M(γ+η+ε)dρ∗n(g)

Moreover, if d(x, y) > ε′d0, then

|Pn(z)f(x) − Pn(z)f(y)| 6 2
d(x, y)γ

(ε′d0)γ
‖f‖∞[σ]∞

∫

G

N(g)Mηdρ∗n(g)

So, what we proved is that for any γ, η > 0 small enough there are n ∈ N
∗ and a constant

C (depending on n, σ and ρ) such that for any z ∈ Cη and any f ∈ C0,γ(X),

mγ(P (z)
nf) 6

1

2
mγ(f) + CeCn(1 + |z|)‖f‖∞

But, we also have, according to lemma 4.5, that for ℜ(z) > 0,

‖P (z)nf‖∞ 6 ‖f‖∞ sup
x∈X

∫

G

e−ℜ(z)σ(g,x)dρ∗n(g) 6 C‖f‖∞e−ℜ(z)tn

So, we obtain the expected inequalities by iterating this relations and we refer to [ITM50]
for a proof that we can choose a constant C that doesn’t depend on n nor on z. �

An analytic family of operators (P (z)) is said to be meromorphic at z0 if there is
N ∈ N such that the family ((z − z0)

NP (z)) is analytic on a neighbourhood of z0.
We are now going to use a version of the analytic Fredholm theorem that holds for

quasi-compacts operators and that we state in next
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Theorem 4.8. Let (B, ‖ . ‖B) be a Banach space.
Let ‖ . ‖ be a norm on B such that the unit ball in B for ‖ . ‖B is relatively compact for

‖ . ‖.
Let U be a connected open subset of C.
Let (P (z))z∈U be an analytic family of operators defined on U such that there are

r ∈ [0, 1[ and a real valued function (z 7→ R(z)) such that for any f ∈ B and any z ∈ U ,
‖P (z)f‖B 6 r‖f‖B +R(z)‖f‖

Then, we have the following alternative :

• The operator Id − P (z) is invertible for no z ∈ U .
• The function (z 7→ (Id − P (z))−1) is meromorphic on U .

Proof. The proof is the same as in the classic case when we remark that, according to
Ionescu-Tulcea and Marinescu’s theorem (that we recalled in theorem 2.10) we have a
control on the essential spectral radius of P (z) that is uniform in z. �

Lemma 4.9. Under the assumptions of proposition 4.3, the family ((Id −P (z))−1)z∈Cη

is a meromorphic family of operators that is analytic on ]0, η[⊕iR.
Moreover, we can choose η such that there are C, t ∈ R

∗
+ such that for any z ∈

]0, η[⊕ iR and any n ∈ N,

‖P (z)n‖γ 6 C(1 + |z|)e−tℜ(z)n

Finally, if σρ 6= 0 and if η′ is small enough, we can write, for z ∈ B(0, η′) \ {0},

(Id − P (z))−1 =
1

σρz
N0 + U(z)

where N0 is the operator of projection on to the space of P−invariant functions and
(U(z)) is an analytic family of continuous operators on C0,γ(X) and defined on B(0, η′).

Proof. For any z ∈ [0, η] ⊕ iR, any n ∈ N and any f ∈ C0(X), we have, according to
lemma 4.5, that

‖P (z)nf‖∞ 6 ‖f‖∞ sup
x∈X

∫

G

e−ℜ(z)σ(g,x)dρ∗n(g) 6 C‖f‖∞e−tℜ(z)n

And so, for any f ∈ C0,γ(X) and any n ∈ N, (we can assume without any loss of
generality that the constants t given in lemma 4.6 and lemma 4.5 are equal and the
same thing for the constants C), according to lemma 4.6 applied to Pn(z)(Pn(z)f) and
then to Pn(z)f , we have that

‖P (z)2nf‖γ 6 C
(
e−tn‖Pn(z)f‖γ + (1 + |z|)‖Pn(z)f‖∞

)

6 C
(
e−tnC(mγ(f) + (1 + |z|)e−tn‖f‖∞) + Ce−tℜ(z)n(1 + |z|)‖f‖∞

)

6 C2(1 + |z|)‖f‖γ
(
e−tn + e−tℜ(z)n

)

And this is what we intended to prove.
Moreover, lemma 4.6 shows that the essential spectral radius of P (z) is uniformly

bounded by e−t on Cη and so we can apply theorem 4.8 to show that the family (Id −
P (z))−1 is meromorphic on Cη since we just proved that (Id − P (z))−1 is well defined
on ]0, η] ⊕ iR.



60 THE RATE OF CONVERGENCE FOR THE RENEWAL THEOREM IN Rd

Moreover, this proves that (Id − P (z))−1 has no pole in ]0, η[⊕iR.
Finally, we refer to lemma 3.2 de [BL85] or to lemma 10.17 in [BQ15] for the expansion

of (Id − P (z))−1 on the neighbourhood of 0. Indeed, adapting their argument, we find
that there are two analytic families of continuous operators (N(z)), (U1(z)) defined on
the neighbourhood of 0 and an analytic function λ such that for any non zero z in the
considered neighbourhood of 0,

(Id − P (z))−1 =
1

1− λ(z)
N(z) + U1(z)

This finishes the proof of the lemma since λ and N are analytic, λ(0) = 1, λ′(0) = −σρ 6=
0 and N(0) is the projector on ker(Id − P ). �

Lemma 4.10. Under the assumptions and notations of proposition 4.3
We note

U(z) = (Id − P (z))−1 − 1

σρz
N0

Then, for any γ, η > 0 small enough, there are C,L such that for any z ∈ C with

−1

C(1 + |ℑz|)L < ℜ(z) < η

and any n ∈ N, we have that

‖U (n)(z)‖γ 6 Cn+1n!(1 + |z|)(L+1)(n+1)

Proof. First of all, we note that, according to the previous lemma, U(z) is well defined
on a neighbourhood B(0, η′) of 0.

Moreover, for any hölder-continuous function f , any z ∈ Cη and any x ∈ X, we have
that

P ′(z)f(x) =
∫

G

σ(g, x)e−zσ(g,x)f(gx)dρ(g)

And so, doing the same kind of computations than in the proof of lemma 4.6, we find
that for some constant C1 ∈ R+ and any z ∈ Cη,

‖P ′(z)‖γ 6 C1(1 + |z|)
So, for any f ∈ C0,γ(X),

‖(Id − P (z))f‖γ > ‖(Id − P (ℑz))f‖γ − |ℜ(z)| sup
z′

‖P ′(z)‖γ‖f‖γ

> ‖(Id − P (ℑz))f‖γ − C1|ℜ(z)|(1 + |z|)‖f‖γ
Thus,

inf
f∈C0,γ(X)\{0}

‖(Id − P (z))f‖γ
‖f‖γ

> inf
f∈C0,γ(X)\{0}

‖(Id − P (ℑz))f‖γ
‖f‖γ

− C1|ℜ(z)|(1 + |z|)

But, by assumption, for z ∈ C with |z| > η′,

inf
f∈C0,γ(X)\{0}

‖(Id − P (ℑz))f‖γ
‖f‖γ

=
1

‖(Id − P (ℑz))−1‖γ
>

1

C0(1 + |z|)L
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So, for any z ∈ Cη with |z| > η′ and

|ℜ(z)| 6 C0

C1(1 + |z|)L+1
,

we have that

inf
f∈C0,γ(X)\{0}

‖(Id − P (z))f‖γ
‖f‖γ

>
1

2C0(1 + |z|)L
This proves, using that P (z) has an essential spectral radius strictly smaller than 1, that
Id − P (z) is invertible and that

‖(Id − P (z))−1‖γ 6 2C0(1 + |z|)L

We just proved that there is a constant C such that for any z ∈ Cη with

|ℜ(z)| 6 1

C(1 + |z|)L+1

we have that U is analytic at z and

‖U(z)‖γ 6 C(1 + |z|)L

Moreover, according to lemma 4.9, if z ∈ Cη with ℜ(z) > 1/C(1+ |z|)L+1, then, we have
that for any n ∈ N,

‖P (z)n‖γ 6 C(1 + |z|)e−tℜ(z)n

So,

‖(Id − P (z))−1‖γ 6
C(1 + |z|)
1− e−t0ℜ(z)

6
C(1 + |z|)
tℜ(z) 6

C2(1 + |z|)L+2

t

And this proves that the function U is analytic on ]0, η[⊕iR.
We just proved that for η small enough and any z ∈ C with

−1

C(1 + |z|)L+1
< ℜ(z) < η

we have that

‖U(z)‖γ 6 C ′(1 + |z|)L+2

for some constant C ′.
To conclude, we do the same kind of computations than Gelfand and Shilov in the

proof of theorem 15 in [GC64] to get the control of the derivatives of U on the domain
Dη,C′′,L+1. �

4.3. The renewal theorem for regular functions.

In this paragraph, we prove a result of representation of the renewal
kernel and we deduce the rate of convergence in the renewal theorem
for regular functions.

Let γ ∈ R
∗
+. For f ∈ C0(X× R), we note

mγ,E(f) = sup
t∈R

sup
x,x′∈X
x 6=x′

πA(x)=πA(x′)

eγ|t|
|f(x, t)− f(x′, t)|

d(x, x′)γ
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and
‖f‖γ,∞ = sup

x∈X
sup
t∈R

eγ|t||f(x, t)|

Moreover, we note
‖f‖γ,E = ‖f‖γ,∞ +mγ,E(f)

And finally, we set

(4.6) Eγ,k(X×R) =
{
f ∈ Ck(R, C0(X))

∣∣∣∀m ∈ [0, k]‖f (m)‖γ,E is finite
}

where we noted

f (k)(x, t) =
∂kf

∂tk
(x, t)

And, for f ∈ Eγ,k(X× R),

‖f‖γ,k = max
m∈[0,k]

‖f (m)‖γ,E

If f ∈ Eγ,0(X× R), then, we note for x ∈ X and ξ ∈ R,

f̂(x, ξ) =

∫

R

e−iξtf(x, t)dt

It is clear that, for fixed ξ the function f̂(., ξ) is hölder-continuous on X.
Moreover,

∂lf̂

∂ξl
(x, ξ) =

∫

R

(−it)le−iξtf(x, t)dt

And integrating by parts, we find that for any ξ ∈ R and any m ∈ N,

ξmf̂(x, ξ) = (−i)m
∫

R

e−iξtf (m)(x, t)dt

So, if f ∈ Eγ,k(X× R), then

(1 + |ξ|k)|f̂(x, ξ)| 6
∫

R

|f(x, t)|dt+
∫

R

|f (k)(x, t)|dt 6 2‖f‖γ,k
∫

R

e−γ|t|dt

In the same way, if πA ◦ πH(x) = πA ◦ πH(x′), then

(1 + |ξ|k)|f̂(x, ξ)− f̂(x′, ξ)| 6 2‖f‖γ,kd(x, x′)γ
∫

R

e−γ|t|dt

So, as we can do the same with the functions ∂lf̂
∂ξl

, we just prove the following

Lemma 4.11. Let k, l ∈ N. There is a constant C such that for any f ∈ Eγ,k(X × R)
and any ξ ∈ R, we have that ∥∥∥∥∥

∂lf̂

∂ξl
( . , ξ)

∥∥∥∥∥
γ

6 C
‖f‖γ,k
1 + |ξ|k

Remark 4.12. This lemma shows that we recover the classical properties of the Fourier
transform that exchanges regularity of functions and decay at infinity.

We shall now prove that convolution with functions of Eγ,k regularises functions of
Eγ,0. As we will not need this result in full generality, we just prove it for some particular
function in Eγ,k.
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Lemma 4.13. Let, for k ∈ N, ϕk be the function defined for t ∈ R by

ϕk(t) = tke−t1R+(t)

Then for any γ ∈ ]0, 1[ and any k ∈ N, there is a constant Ck such that for any f ∈
Eγ,0(X× R),

ϕk+1 ∗ f ∈ Eγ,k(X× R)

and

‖ϕk+1 ∗ f‖γ,k 6 Ck‖f‖γ,0
Proof. Thus usual properties of the convolution product prove that, as ϕk+1 ∈ Ck(R),
the function f ∗ϕk+1 is k−times differentiable and it k−th derivative is continuous (since
f is continuous) and for any x ∈ X, any t ∈ R and any m ∈ [0, k]

(ϕk+1 ∗ f)(m) (x, t) = ϕ
(m)
k+1 ∗ f(x, t)

But,

ϕ
(m)
k+1(t) =

m∑

l=0

(
m

l

)
(−1)m−l (k + 1)!

(k + 1− l)!
tk+1−le−t1R+(t)

So,

(ϕk+1 ∗ f)(m) (x, t) =

m∑

l=0

(
m

l

)
(−1)m−l (k + 1)!

(k + 1− l)!

∫

R+

uk+1−lf(x, t− u)e−udu

and so, if x, x′ ∈ X are such that πA ◦ πH(x) = πA ◦ πH(x′),

Ik,m,x,x′,t :=
∣∣∣(ϕk+1 ∗ f)(m) (x, t)− (ϕk+1 ∗ f)(m) (x′, t)

∣∣∣

6

m∑

l=0

(
m

l

)
(k + 1)!

(k + 1− l)!

∫

R+

uk+1−le−γ|t−u|d(x, x′)γ‖f‖γ,0e−udu

6 e−γ|t|d(x, x′)γ‖f‖γ,0
m∑

l=0

(
m

l

)
(k + 1)!

(k + 1− l)!

∫

R+

eγ|u|uk+1−me−udu

where we used that for any v,w ∈ R,

e|v|−|v+w| 6 e|w|

In the same way, we get that

Jk,m,x,t =
∣∣∣(ϕk+1 ∗ f)(m) (x, t)

∣∣∣ 6 Ck,m‖f‖γ,0e−γ|t|

for some constant Ck,m and this finishes the proof of the lemma. �

We can now state our proposition about representation of the renewal kernel in next

Proposition 4.14. Under the assumption of theorem 4.1, for any γ > 0 small enough,
there is K ∈ N such that for any f ∈ Eγ,K(X× R), any x ∈ X and any t ∈ R,

+∞∑

n=0

Pnf(x, t) =
1

σρ
Π0f(x, t) +

1

2π

∫

R

eiξtU(−iξ)f̂(x, ξ)dξ
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Where U is the operator defined in proposition 4.3 and we made the abuse of notations

U(−iξ)f̂(x, ξ) = U(−iξ)f̂ξ(x) with f̂ξ = f̂(., ξ).

Proof. For s ∈ R
∗
+, we note Ps the operator defined by

Psf(x, t) =

∫

G

e−sσ(g,x)f(gx, t+ σ(g, x))dρ(g)

We are first going to prove that if f is non negative,

+∞∑

n=0

Pnf(x, t) = lim
s→0+

+∞∑

n=0

Pn
s f(x, t)

And then that
+∞∑

n=0

Pn
s f(x, t) =

1

2π

∫

R

eiξt(Id − P (s− iξ))−1f̂(x, ξ)dξ

To prove the first equality, note that
∫

G

e−sσ(g,x)f(g.(x, t))dρ∗n(g) =
∫

G

e−sσ(g,x)(1σ(g,x)60 + 1σ(g,x)>0)f(g.(x, t))dρ
∗n(g)

And the monotone convergence theorem proves that

lim
s→0+

+∞∑

n=0

∫

G

e−sσ(g,x)1σ(g,x)>0f(g.(x, t))dρ
∗n(g) =

+∞∑

n=0

∫

G

1σ(g,x)>0f(g.(x, t))dρ
∗n(g)

Moreover, lemma 4.5 and Bienaymé-Tchebytchev’s inequality prove that for any x ∈ X,

ρ∗n(g ∈ G|σ(g, x) 6 0) 6

∫

G

e−ησ(g,x)dρ∗n(g) 6 Ce−tηn

so the dominated convergence theorem proves that

lim
s→0+

+∞∑

n=0

∫

G

e−sσ(g,x)1σ(g,x)60f(g.(x, t))dρ
∗n(g) =

+∞∑

n=0

∫

G

1σ(g,x)60f(g.(x, t))dρ
∗n(g)

And this finishes the proof of the first equality.
Moreover,

Is(t, x) : =

+∞∑

n=0

Pn
s f(t, x) =

+∞∑

n=0

∫

G

e−sσ(g,x)f(gx, t+ σ(g, x))dρ∗n(g)

=
1

2π

+∞∑

n=0

∫

G

e−sσ(g,x)

∫

R

eiξ(t+σ(g,x)f̂(gx, ξ)dξdρ∗n(g)

=
1

2π

∫

R

eiξt
+∞∑

n=0

∫

G

e−(s−iξ)σ(g,x)f̂(gx, ξ)dρ∗n(g)dξ

=
1

2π

∫

R

eiξt
+∞∑

n=0

P (s− iξ)nf̂(x, ξ)dξ =
1

2π

∫

R

eiξt(Id − P (s− iξ))−1f̂(x, ξ)dξ

and this computation proves the second equality.
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Finally, we noted U(z) the family of operators defined by

(Id − P (z))−1 =
1

σρz
N0 + U(z)

and we saw in proposition 4.3 that (U(z)) is an analytic family of continuous operators
on C0,γ(X).

And so,
∫

R

eiξt(Id − P (s− iξ))−1f̂(x, ξ)dξ =

∫

R

eiξt

s− iξ
N0f̂(x, ξ)

dξ

σρ
+

∫

R

eiξtU(s− iξ)f̂(x, ξ)dξ

But, for any continuous function f on X, using lemma 2.13, we can write

N0f(x) =

r∑

i=1

pi(x)

∫
fdνi

where the pi are P−invariant functions and the νi are stationary probability measures
on X. And so,

1

2π

∫

R

eiξt

s− iξ
N0f̂(x, ξ)dξ =

1

2π

r∑

i=1

pi(x)

∫

X

∫

R

eiξt

s− iξ
f̂(y, ξ)dξdνi(y)

=
r∑

i=1

pi(x)

∫

X

∫ +∞

0
f(y, t+ u)e−sududνi(y)

=

∫ +∞

0
N0f(x, t+ u)e−sudu

where we used that
1

s− iξ
=

∫ +∞

0
e−(s−iξ)udu

So, for any f ∈ L1(R) such that f̂ ∈ L1(R),
∫

R

eiξt

s− iξ
f̂(ξ)dξ =

∫ +∞

0
e−su

∫

R

eiξ(t+u)f̂(ξ)dξdu = 2π

∫ +∞

0
e−suf(t+ u)du

This proves, using the definition of Π0, that

lim
s→0+

1

2π

∫

R

eiξt

s− iξ
N0f̂(x, ξ)dξ =

∫ +∞

t
N0f(x, u)du = Π0f(x, t)

Thus

Gf(x, t) =
+∞∑

n=0

Pnf(x, t) =
1

σρ
Π0f(x, t) + lim

s→0+

1

2π

∫

R

eiξtU(s− iξ)f̂(x, ξ)dξ

and, as, for fixed ξ we have, according to proposition 4.3, that

‖U(s − iξ)f̂(x, ξ)‖∞ 6 ‖U(s − iξ)‖γ‖f̂(x, ξ)‖γ 6 C(1 + |ξ|)L+1‖f̂(x, ξ)‖γ
and as f ∈ Eγ,K(X×R), we can conclude with the dominated convergence theorem 4.11
taking K = L+ 3. �
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Corollary 4.15. Under the assumption and notations of proposition 4.3, for any γ > 0
small enough there are constants C,K such that for any f ∈ Eγ,K , any x, x′ ∈ X and
any t, t′ ∈ R we have that

∣∣∣∣
(
G− 1

σρ
Π0

)
f(x, t)−

(
G− 1

σρ
Π0

)
f(x′, t′)

∣∣∣∣ 6 C‖f‖γ,Kω0((x, t), (x
′, t′))γ

where,

ω0((x, t), (x
′, t′)) =

{ √
|t−t′|2+d(x,x′)2

(1+|t′|)(1+|t|) if πA(x) = πA(x
′)

1 otherwise

Remark 4.16. Letting t′ go to +∞ and using Riemann-Lebesgue’s lemma and proposi-
tion 4.14 to get that under the assumption of the corollary,

lim
t′→±∞

(G− 1

σρ
Π0)f(x, t

′) = 0

we find that for any f ∈ Eγ,K(X× R), tout x ∈ X and any t ∈ R,
∣∣∣∣Gf(x, t)−

1

σρ
Π0f(x, t)

∣∣∣∣ 6
C

(1 + |t|)γ ‖f‖γ,K

Proof. According to proposition 4.14,
(
G− 1

σρ
Π0

)
f(x, t) =

1

2π

∫

R

eiξtU(−iξ)f̂(x, ξ)dξ

So, integrating by parts and noting ψ(x, ξ) = U(−iξ)f̂(x, ξ), we find that for any t ∈ R
∗,

(G− 1

σρ
Π0)f(x, t) =

1

2π

∫

R

eiξt

−t2ψ
′′(x, ξ)dξ

So, for any x, x′ ∈ X such that πA ◦ πH(x) = πA ◦ πH(x′) and any t, t′ ∈ R
∗,

I(x, t, x′, t′) := (G− 1

σρ
Π0)f(x, t)− (G− 1

σρ
Π0)f(x

′, t′)

=
1

2π

∫

R

eiξt

−t2ψ
′′(x, ξ)dξ − 1

2π

∫

R

eiξt
′

−t′2ψ
′′(x′, ξ)dξ

=

∫

R

(
eiξt

−t2 − eiξt
′

−t′2

)
ψ′′(x, ξ)−

∫

R

eiξt
′

t′2
(
ψ′′(x, ξ)− ψ′′(x′, ξ)

) dξ
2π

So,

∣∣I(x, t, x′, t′)
∣∣ 6

∫

R

∣∣∣∣∣
eiξt

t2
− eiξt

′

t′2

∣∣∣∣∣ |ψ
′′(x, ξ)|dξ + 1

|t′|2
∫

R

∣∣ψ′′(x, ξ)− ψ′′(x′, ξ)
∣∣ dξ

But, assuming that |t′| > |t| > 1, we find that
∣∣∣∣∣
eiξt

t2
− eiξt

′

t′2

∣∣∣∣∣ 6
|t2 − t′2|
t2t′2

+ |ξ| |t− t′|
t′2

6
|t− t′|
|t||t′| (2 + |ξ|)



THE RATE OF CONVERGENCE FOR THE RENEWAL THEOREM IN Rd 67

And, as we also have for t ∈ R with |t| > 1, that

1

|t| 6
2

1 + |t| ,

what we get is that

∫

R

∣∣∣∣∣
eiξt

t2
− eiξt

′

t′2

∣∣∣∣∣ |ψ
′′(x, ξ)|dξ 6 4|t− t′|

(1 + |t|)(1 + |t′|)

∫

R

(2 + |ξ|)|ψ′′(x, ξ)|dξ

Moreover,

1

|t′|2
∫

R

∣∣ψ′′(x, ξ) − ψ′′(x′, ξ)
∣∣ dξ 6 4d(x, y)γ

(1 + |t|)(1 + |t′|)

∫

R

mγ(ψ
′′(., ξ))dξ

So we only need to check the integrability of ‖ψ′′( . , ξ)‖γ . But,

ψ′′(x, ξ) = −U ′′(−iξ)f̂(x, ξ)− 2iU ′(−iξ)f̂ ′(x, ξ) + U(−iξ)f̂ ′′(x, ξ)

and according to proposition 4.3 there is a constant C such that for any m ∈ {0, 1, 2},

‖U (m)(−iξ)‖γ 6 Cm+1m!(1 + |ξ|)(L+1)(m+1)

And, as we also have, according to lemma 4.11 that for any k ∈ N, there is a constant
C such that for any l ∈ {0, 1, 2},

∥∥∥∥∥
∂lf̂

∂ξl
(x, ξ)

∥∥∥∥∥
γ

6 C
‖f‖γ,k
1 + |ξ|k

we get that for some constants C,K and any function f ∈ Eγ,K
0 (X× R), any x, x′ ∈ X

with πA ◦ πH(x) = πA ◦ πH(x′) and any t, t′ ∈ R
∗ with |t|, |t′| > 1,

(4.7)
∣∣I(x, t, x′, t′)

∣∣ 6 C‖f‖γ,K
|t− t′|+ d(x, x′)γ

(1 + |t|)(1 + |t′|)
We can now use the fact that for some constants Cγ , C, we have that for any t, t′ ∈ R

and any x, x′ ∈ X,

|t− t′|+ d(x, x′)γ

(1 + |t|)(1 + |t′|) 6 Cγ

( |t− t′|+ d(x, x′)
(1 + |t|)(1 + |t′|)

)γ

6 CCγ

(√
|t− t′|2 + d(x, x′)2

(1 + |t|)(1 + |t′|)

)γ

To prove that inequality (4.7) still holds for |t| 6 1, we are going to use the fact that
the objects we consider behave well with the translations on R.

Indeed, if f ∈ Eγ,k(X × R) and if we note, for s ∈ R, fs(t) = f(t − s) then for any
x ∈ X and any t ∈ R,

(G− 1

σρ
Π0)f(x, t) = (G− 1

σρ
Π0)fs(x, t+ s)

and

‖fs‖γ,k 6 eγ|s|‖f‖γ,k
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So, if |t| 6 1, we take s ∈ [−10, 10] such that 1 6 |t + s| 6 |t′ + s| and we get that for
some other constant C,

|I(x, t, x′, t′)| 6 4Ce10γ‖f‖γ,k

(√
|t− t′|2 + d(x, x′)2

(1 + |t|)(1 + |t′|)

)γ

and this is finally what we intended to prove. �

4.4. Renewal theorem for hölder-continuous functions. Until now, we proved the
renewal theorem only for regular functions when we are interested in functions that will
just be hölder-continuous on R

d.
To do so, we are going to regularize our functions by convolving them to regular ones

and then use tauberian theorems to get the result.
This method is the one used for instance in [BDP15] and we will use, as they do, a

tauberian theorem by Frennemo (see [Fre65] and appendix A).

We are going to define a new class of functions on X×R for which it is easy to work
for the rate of convergence in the renewal theorem.

Example 4.17. On R
d, we study functions having (a power of)

ω′(x, y) =
‖x− y‖

(1 + ‖x‖)(1 + ‖y‖)
as continuity modulus. Using the application Φ : Sd × R → R

d \ {0} that maps (x, t)
onto etx and identifies Rd \ {0} and S

d × R, our function ω becomes

ω′((x, t), (x′, t′)) =
‖etx− et

′
x′‖

(1 + et)(1 + et
′
)

But,

‖etx− et
′
x′‖2 = e2t + e2t

′ − 2et+t′〈x, x′〉 =
(
et − et

′
)2

+ et+t′‖x− x′‖2

= et+t′
((

e(t−t′)/2 − e(t
′−t)/2

)2
+ ‖x− x′‖2

)

So

ω′((x, t), (x′, t′)) =
et/2

1 + et
et

′/2

1 + et′

√
d(x, x′)2 +

(
e(t−t′)/2 − e(t′−t)/2

)2

This leads to the following definition when (X, d) is some compact metric space and
(x, t), (x′, t′) ∈ X× R,

ω((x, t), (x′, t′)) =

{
e−

|t|+|t′|
2

√
d(x, x′)2 +

(
e(t−t′)/2 − e(t′−t)/2

)2
si πA(x) = πA(x

′)
1 si non

And we note

Cγ
ω(X× R) :=




f ∈ C0(X× R)

∣∣∣∣∣∣∣
sup

(x,t),(x′,t′)∈X×R

(x,t)6=(x′,t′)

|f(x, t)− f(x′, t′)|
ω((x, t), (x′, t′))γ

is finite




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The following lemma proves that functions in Cγ
ω can be extended to continuous functions

on X× R.

Lemma 4.18. Let f ∈ Cγ
ω(X × R). Then, there are p+, p− ∈ L∞(A) such that for any

x ∈ X and any t ∈ R,

|f(x, t)− p+(f)(πA(x))| 6 2eγt‖f‖γ,ω et |f(x, t)− p−(f)(πA(x))| 6 2e−γt‖f‖γ,ω
(we recall our abuse of notations : we keep the function πA for the function πA ◦ πH)

Proof. We only do the proof for p− because it is the same idea for p+.
For any x ∈ X ans any t, t′ ∈ R, we have that

|f(x, t)− f(x, t′)| 6 e−
|t|+|t′|

2

∣∣∣e(t−t′)/2 − e(t
′−t)/2

∣∣∣ ‖f‖γ,ω
So, according Cauchy’s criterion for functions, for any x ∈ X, (t 7→ f(x, t)) has a finite
limit at −∞.

So we can note p−(f)(x) = limt→−∞ f(x, t). And then, we have, by definition of Cγ
ω,

that for any (x, t), (x′, t′) ∈ X× R,

|f(x, t)− p−(f)(x′)| 6 |f(x, t)− f(x′, t′)|+ |f(x′, t′)− p−(f)(x′)|
6 ‖f‖γ,ωω((x, t), (x′, t′))γ + |f(x′, t′)− p−(f)(x′)|

So, letting t′ go to −∞, we find that for any t ∈ R and any x, x′ ∈ X with πA ◦πH(x) =
πA ◦ πH(x′),

|f(x, t)− p−(f)(x′)| 6 eγ(t−|t|)/2‖f‖γ,ω
And this proves that p−(f)(x) = p−(f)(x′) and that, for any t ∈ R−,

|f(x, t)− p−(f)(x)| 6 eγt‖f‖γ,ω
For t ∈ R+, we have that

|f(x, t)− p−(f)(x)| 6 2‖f‖∞ 6 2eγt‖f‖γ,ω
and this ends the proof of the lemma. �

In the sequel, we will use a regular function ψ on R such that

lim
t→−∞

ψ(t) = 1 and lim
t→+∞

ψ(t) = 0

The space of functions in Cγ
ω(X×R) such that p−(f) = 0 = p+(f) has a finite codimen-

sion and this function ψ will allow us to make the projections onto this space and it’s
supplementary explicit.

So, from now on, we note

(4.8) ψ(t) =
1√
2π

∫ +∞

t
e−u2/2du

The choice of this particular function is arbitrary but will simplify the computations to
come.

In next lemma, we prove that the projection of a function in Cγ
ω(X×R) to the space

of functions such that p+(f) = 0 = p−(f) has image in the space Eγ,0(X × R) that we
defined in equation (4.6).
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Lemma 4.19. For any function f ∈ C0,γ
ω (X× R), let

ϕ(x, t) = f(x, t)− p−(f)(x)ψ(t) − p+(f)(x)(1− ψ(t))

where ψ is the function defined in equation (4.8).
Then, for any γ ∈ ]0, 1] there is a constant C depending only on γ such that for all

f ∈ C0,γ
ω (X× R), we have that ϕ ∈ Eγ,0(X× R) and

‖ϕ‖γ,0 6 C‖f‖γ,ω
Proof. It is clear that ϕ is continuous on X× R.

Moreover, using that
1√
2π

∫

R

e−u2/2du = 1,

we find that for any t ∈ R and any x ∈ X,

|ϕ(x, t)| 6 |f(x, t)− p−(f)(x)|ψ(t) + |f(x, t)− p+(f)(x)|(1 − ψ(t))

6 ‖f‖γ,ω
(
eγtψ(t) + e−γt(1− ψ(t))

)

So,

eγ|t||ϕ(x, t)| 6 ‖f‖γ,ω
(
eγ(|t|+t)ψ(t) + eγ(|t|−t)(1− ψ(t))

)

This proves that there exists some C depending only on γ such that

sup
t
eγ|t||ϕ(x, t)| 6 C‖f‖γ,ω

Moreover, for any x, x′ such that πA ◦ πH(x) = πA ◦ πH(x′),

|ϕ(x, t)− ϕ(x′, t)| = |f(x, t)− f(x′, t)| 6 e−γ|t|d(x, x′)γ‖f‖γ,ω
And this finishes the proof of the lemma. �

Lemma 4.20. Under the assumptions of theorem 4.1, for any f ∈ C0,γ
ω (X × R), any

x ∈ X and any t, t′ ∈ R,
∣∣∣∣∣

+∞∑

n=0

Pnf(x, t)−
+∞∑

n=0

Pnf(x, t′)

∣∣∣∣∣ 6 C‖f‖ω,γ
(
e|t

′−t| − 1
)γ

Proof. Let f ∈ C0,γ
ω (X× R), x ∈ X and t, t′ ∈ R.

Then,

I(t, t′, x) : =

∣∣∣∣∣

+∞∑

n=0

Pnf(x, t)−
+∞∑

n=0

Pnf(x, t′)

∣∣∣∣∣

6

+∞∑

n=0

∫

G

|f(gx, t+ σ(g, x)) − f(gx, t′ + σ(g, x))|dρ∗n(g)

6 ‖f‖ω,γ
+∞∑

n=0

∫

G

ω(gx, t+ σ(g, x), gx, t′ + σ(g, x))γdρ∗n(g)

6 ‖f‖ω,γ
∣∣∣e(t−t′)/2 − e(t

′−t)/2
∣∣∣
γ
+∞∑

n=0

∫

G

e−γ|t+σ(g,x)|/2−γ|t′+σ(g,x)|/2dρ∗n(g)
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Moreover,

|e(t−t′)/2 − e(t
′−t)/2| = |e|t−t′|/2 − e−|t−t′|/2| = e−|t−t′|/2

∣∣∣e|t−t′| − 1
∣∣∣ 6 e|t−t′| − 1

So,

I(t, t′, x) 6 ‖f‖ω,γ
∣∣∣e|t−t′| − 1

∣∣∣
γ
+∞∑

n=0

∫

G

e−γ|t+σ(g,x)|/2dρ∗n(g)

6 ‖f‖ω,γ
∣∣∣e|t−t′| − 1

∣∣∣
γ
+∞∑

n=0

Pnϕ(x, t)

with ϕ(x, t) = e−γ|t|/2.
To prove the lemma, we only need to check that the series is bounded uniformly in

(x, t). We would like to apply the renewal theorem (that would prove that the considered
sum has finite limits at ±∞ and so is bounded) to the function ϕ but we can’t do it so
early because this function is not regular. This is why we use two regular functions that
dominate ϕ :

+∞∑

n=0

∫

G

e−γ|t+σ(g,x)|dρ∗n(g) 6
+∞∑

n=0

Pnϕ1(x, t) +
+∞∑

n=0

Pnϕ2(x, t)

where we noted

ϕ1(t) =
2√
2π
eγt
∫ +∞

t
e−u2/2du et ϕ2(t) =

2√
2π
e−γt

∫ t

−∞
e−u2/2du

to get that

ϕ1(t) > 1R−e
γt et ϕ2(t) > e−γt1R+(t)

Then, the renewal theorem that we proved for regular functions (corollary 4.15) and
Riemann Lebesgue’s lemma, prove that

lim
t→+∞

+∞∑

n=0

Pnϕ1(x, t) = 0 and lim
t→−∞

+∞∑

n=0

Pnϕ1(x, t) = N01

∫

R

ϕ1(t)dt

So,
∑+∞

n=0 P
nϕ1 is bounded on X × R. We treat

∑+∞
n=0 P

nϕ2 in the same way and this
finises the proof of the lemma. �

For x, x′ ∈ X such that πA ◦ πH(x) = πA ◦ πH(x′) and t, t′ ∈ R, we note

ω0((x, t), (x
′, t′)) =

√
|t− t′|2 + d(x, x′)2

(1 + |t|)(1 + |t′|)
Corollary 4.21. Under the assumptions of theorem 4.1, there are constants C,K,α ∈
R
∗
+ such that for any f ∈ C0,γ

ω (X × R) with p+(f) = 0 = p−(f) any x, x′ ∈ X and any
t, t′ ∈ R,

∣∣∣∣(G− 1

σρ
Π0)f(x, t)− (G− 1

σρ
Π0)f(x

′, t′)

∣∣∣∣ 6 C‖f‖γ,ωω0((x, t), (x
′, t′))α
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Moreover, for any x ∈ X,

lim
t→±∞

(G− 1

σρ
Π0)f(x, t) = 0

Proof. Let, for k ∈ N and t ∈ R, ϕk(t) = tke−t1R+(t).
We already saw in lemma 4.13 that there is a constant Ck such that for any f ∈

Eγ,0(X× R), f ∗ ϕk+1 ∈ Eγ,k(X× R) and

‖f ∗ ϕk+1‖γ,k 6 Ck‖f‖γ,0
In particular, for any f ∈ C0,γ

ω , according to lemma 4.19,

‖f ∗ ϕk+1‖γ,k 6 Ck‖f‖γ,ω
Moreover,

ϕk+1 ∗ (G− 1

σρ
Π0)f(x, t) = (G− 1

σρ
Π0)(f ∗ ϕk+1)(x, t)

and so, taking k large enough, corollary 4.15 proves that

I(k, x, t, x′, t′, f) : =

∣∣∣∣ϕk+1 ∗ (G− 1

σρ
Π0)f(x, t)− ϕk+1 ∗ (G− 1

σρ
Π0)f(x

′, t′)

∣∣∣∣
6 CCkω0((x, t), (x

′, t′))γ‖f‖γ,ω
And, as we also have that

|(G− 1

σρ
Π0)f(x, t)− (G− 1

σρ
Π0)f(x, t

′)| 6 C‖f‖γ,ω
(
e|t−t′| − 1

)γ

we can conclude with the result by Frennemo stated in the appendix A. �

We can now treat functions in Cγ
ω(X×R) that vanish at infinity. However, we would like

to study functions on R
d×A that doesn’t vanish on {0}×A but such that

∑
a∈A f(a, 0) =

0. This is why we prove the

Lemma 4.22. Under the assumptions of 4.1, there is a constant C such that for any
p ∈ L∞(A) with

∑
a∈A p(a) = 0, for any x, x′ ∈ X and any t, t′ ∈ R,

∣∣∣∣(G− 1

σρ
Π0)f(x, t)− (G− 1

σρ
Π0)f(x

′, t′)

∣∣∣∣ 6 C‖p‖∞ω0((x, t), (x
′, t′))

where we noted
f(x, t) = p(πA ◦ πH(x))ψ(t)

and ψ the function we defined in equation (4.8).
Moreover, if

∑
a∈A p(a) = 0, then for any x ∈ X,

lim
t→−∞

(
G− 1

σρ
Π0

)
f(x, t) =

+∞∑

n=0

Pnp(πA(x))

Proof. As P commutes to the derivation,

+∞∑

n=0

Pnf(x, t) = −
∫ +∞

t

+∞∑

n=0

Pnf ′(x, u)du



THE RATE OF CONVERGENCE FOR THE RENEWAL THEOREM IN Rd 73

But, according to proposition 4.14,

+∞∑

n=0

Pnf ′(x, u) =
1

σρ

∫ +∞

u
N0f

′(x, s)ds+
1

2π

∫

R

eiξuU(−iξ)p(x)f̂ ′(ξ)dξ

But

f̂ ′(ξ) = −e−ξ2/2 and

∫ +∞

u
N0f

′(x, s)ds = −N0f(x, u)

So,
+∞∑

n=0

Pnf ′(x, u) =
−1

σρ
N0f(x, u) +

1

2π

∫

R

eiξuU(−iξ)p(x)e−ξ2/2dξ

This proves that

+∞∑

n=0

Pnf(x, t) =
1

σρ

∫ +∞

t
N0f(x, u)du− 1

2π

∫ +∞

t

∫

R

eiξuU(−iξ)p(x)e−ξ2/2dξdu

Moreover, noting N1 = U(0) and V (z) such that U(z) = N1 + zV (z), we have that the
second term (that only depend on πA ◦ πH(x)) is the sum of

1

2π
N1p(x)

∫ +∞

t

∫

R

eiξue−ξ2/2dξdu = −N1p(x)ϕ(t)

and of

1

2π

∫ +∞

t

∫

R

eiξu(−iξ)V (−iξ)p(x)e−ξ2/2dξdu =
1

2π

∫

R

eiξtV (−iξ)p(x)e−ξ2/2dξ

(to get this equality, we derive two times). And so, finally, we get that

+∞∑

n=0

Pnf(x, t) =
1

σρ

∫ +∞

t
N0f(x, u)du+N1f(x, t)−

1

2π

∫

R

eiξtV (−iξ)p(x)e−ξ2/2dξ

So, according to Riemann-Lebesgue’s lemma and using the definition of Π0,

lim
t→−∞

(G− 1

σρ
Π0)f(x, t) = lim

t→−∞
N1f(x, t) = N1f(x,−∞)

Now, we need to prove that

N1f(x,−∞) =
+∞∑

n=0

Pnf(πA ◦ πH(x))

To do so, note that these two functions are solutions of the equation g − Pg = f and,
as the random walk on A is irreducible and aperiodic, there is a constant C ∈ R such
that for any a ∈ A,

N1p(a) =

+∞∑

n=0

Pnp(a) + C

But,
∑

a∈A
N1p(a) =

∑

a∈A

+∞∑

n=0

Pnp(a) + |A|C = |A|C
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And so, C = 0 since
∑

a∈AN1p(a) = 0 =
∑

a∈A
∑+∞

n=0 P
np(a).

Finally, according to proposition 4.3,∣∣∣∣
∫

R

eiξtV (−iξ)p(x)e−ξ2/2dξ

∣∣∣∣ 6 ‖p‖∞
∫

R

C(1 + |ξ|)Le−ξ2/2dξ

and

|t|2
∣∣∣∣
∫

R

eiξtV (−iξ)p(x)e−ξ2/2dξ

∣∣∣∣ 6 ‖p‖∞C
∫

R

(1 + |ξ|)3Le−ξ2/2dξ

This finishes the proof of the lemma (because p(x) only depend on the projection of x
onto A). �

Appendix A. Remainder terms in Wiener’s tauberian theorem

In this appendix, we state Frennemo’s result about remainder terms in
Wiener’s tauberian theorem.

The aim of this section is the study of the following problem : given two functions f, ϕ
on R for whoch we now the rate of convergence to 0 of |f ∗ϕ| at infinity, can we get the
one of |f | ?

The first answer to this question is a corollary of a tauberian theorem of Wiener that
says that if f is bounded, ϕ is integrable, the Fourier-Laplace transform of ϕ doesn’t
vanish on iR and if f ∗ ϕ converges to 0 at ±∞, then, for any integrable function g on
R, f ∗ g also converge to 0 at ±∞.

This kind of result is interesting for us in the study of the renewal theorem because to
make our method work, we have to assume that our test functions are regular so we will
have to regularize them by convoling them with regular functions and these remainder
terms estimates will allow us to keep the rate of convergence to 0.

Définition A.1. Let f be a uniformly continuous function on R.
We say that a non decreasing function ω : R+ → R+, that is continuous at 0 and such

that ω(0) = 0 is a modulus of uniform continuity for f if for any x, y ∈ R,

|f(x)− f(y)| 6 ω(|x− y|)

The following theorem is an adaptation of the second theorem of Frennemo in [Fre65].

Théorème A.2. Let k ∈ N
∗.

Let ϕk be the function defined on R by ϕk(x) = xke−x1R+(x)
Then, there is a constant C depending only on k such that for any uniformly contin-

uous and bounded function f on R and any x ∈ R,

|f(t)| 6 C inf
V ∈R∗

+

(
ωf

(
1

V

)
+

‖f‖∞
V

+ (1 + V )k sup
t′∈R

e−|t′||ϕk ∗ f(t− t′)|
)

where ωf is a modulus of uniform continuity for f .

Lemme A.3. There is a constant C such that for any integrable any uniformly contin-
uous function f on R,

sup
x∈R

|f(x)| 6 C inf
V ∈R∗

+

ωf

(
1

V

)
+ sup

τ

∣∣∣∣
∫ V

−V
eiξτ

(
1− |ξ|

V

)
f̂(ξ)dξ

∣∣∣∣
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where ωf is a modulus of uniform continuity for f .

Proof. This lemma is a corollary of lemma 1 in [Fre65] when we remark that if f is
uniformly continuous then

− inf
x6t6x+1/V

f(t)− f(x) 6 sup
x6t6x+1/V

ωf (|x− t|) 6 ωf (1/V ) �

Proof of theorem A.2. For any s ∈ R, let us be the function defined for t ∈ R by us(t) =

f(t)e−
1
2
(t−s)2 .

Then, for any t, t′ ∈ R,

|us(t)− us(t
′)| =

∣∣∣e−
1
2
(t−s)2(f(t)− f(t′)) + f(t′)(e−

1
2
(t−s)2 − e−

1
2
(t′−s)2)

∣∣∣

6 ωf (|t− t′|) + ‖f‖∞|t− t′| sup
u∈R

|u|e−u2/2

So, the function us is uniformly continuous. As it is integrable, we have, according to
the lemma, that for any V ∈ R

∗
+ and any t, s ∈ R,

|f(t)| = |us(t)|

6 C

(
ωf

(
1

V

)
+

‖f‖∞
V

sup
u∈R

|u|e−u2/2 + sup
τ

∣∣∣∣
∫ V

−V
eiξτ

(
1− |ξ|

V

)
ûs(ξ)dξ

∣∣∣∣
)

Moreover, Frennemo proves that

sup
τ

∣∣∣∣
∫ V

−V
eiξτ

(
1− |ξ|

V

)
ûs(ξ)dξ

∣∣∣∣ 6 C(1 + V )k sup
t′∈R

e−|t′||ϕk ∗ f(t− t′)|

This is what we intended to prove. �

Let (X, d) be a compact metric space and γ ∈ ]0, 1]. For any (x, t), (x′, t′) ∈ X × R,
we note

ω0((x, t), (x
′, t′)) =

√
|t− t′|2 + d(x, x′)2

(1 + |t′|)(1 + |t|)
Corollaire A.4. Let (X, d) be a compact metric space and γ ∈ ]0, 1].

For any k ∈ N, there is a constant Ck ∈ R+ and α ∈ R
∗
+ such that for any continuous

bounded function f on X× R such that

|f(x, t)− f(x, t′)| 6
(
e|t−t′| − 1

)γ
C(f), ‖f‖∞ 6 C(f)

and

|ϕk ∗ f(x, t)− ϕk ∗ f(x′, t′)| 6 C(f)ω((x, t), (x′, t′))

We have that

|f(x, t)− f(x′, t′)| 6 CkC(f)ω((x, t), (x′, t′))α

Proof. For any x, x′ ∈ X and s ∈ R, we note fx,x′,s the function defined for any t ∈ R by

fx,x′,s(t) = f(x, t)− f(x′, t+ s)
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Then, for any t, t′ ∈ R,

|fx,x′,s(t)− fx,x′,s(t
′)| = |f(x, t)− f(x′, t+ s)− f(x, t′) + f(x′, t′ + s)|

6 2C0

(
e|t−t′| − 1

)γ

and

|ϕk ∗ fx,x′,s(t)| = |ϕk ∗ f(x, t)− ϕk ∗ f(x′, t+ s)| 6 C(f)ω((x, t), (x′, t+ s))

And so, according to Frennemo’s theorem,

|fx,x′,s(t)| 6 CC(f)

(
inf

V ∈R∗
+

2(e1/V − 1)γ +
2

V

+(1 + V )k sup
t′∈R

e−|t′|ω((x, t− t′), (x′, t− t′ + s))

)

But, for any t, t′ ∈ R,
1

1 + |t− t′| 6
1 + |t′|
1 + |t|

This proves that

sup
t′∈R

e−|t′|ω((x, t− t′), (x′, t− t′ + s)) 6 ω((x, t), (x′, t+ s)) sup
t′∈R

e−|t′|(1 + |t′|)

Thus, for an other constant C that doesn’t depend on f ,

|fx,x′,s(t)| 6 CC(f) inf
V ∈[1,+∞[

1

V γ
+ (1 + V )kω((x, t), (x′, t+ s))

Noting now, for some δ ∈ R
∗
+ that we will choose later,

V = ω((x, t), (x′, t+ s))−δ

we find that for some constant C that doesn’t depend on f ,

|f(x, x′, s)(t)| 6 CC(f)
(
ωγδ + (1 + ω−γδ)kω

)
6 CC(f)ωα

for δ small enough and some α (where we used that ω is bounded on X× R).
This ends the proof of the corollary. �
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