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LANDAU DAMPING FOR THE LINEARIZED VLASOV POISSON

EQUATION IN A WEAKLY COLLISIONAL REGIME

ISABELLE TRISTANI

Abstract. In this paper, we consider the linearized Vlasov-Poisson equation around an
homogeneous Maxwellian equilibrium in a weakly collisional regime: there is a parame-
ter ε in front of the collision operator which will tend to 0. Moreover, we study two cases
of collision operators, linear Boltzmann and Fokker-Planck. We prove a result of Landau
damping for those equations in Sobolev spaces uniformly with respect to the collision
parameter ε as it goes to 0.
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1. Introduction

In this paper, we are interested in the phenomenon of Landau damping for a linear
Vlasov Poisson equation in a weakly collisional regime. The physical motivation for this
problem comes from plasma theory. Indeed, in kinetic theory, the Landau equation, which
can be derived from the Boltzmann one, allows to describe collisions in plasmas. However,
this description is only valid for large times. The Vlasov model, on the contrary, completely
neglects collisions in plasmas. Between these two models, is an intermediate one which is
a more realistic physical model and which can be written as follows:

(1.1) ∂tf + v · ∇xf + F (t, x) · ∇vf = εQL(f, f)
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where f = f(t, x, v) is the distribution function in phase space, the position x lies in the
torus of size 2π denoted T

d := R
d/(2πZ)d, the velocity v in R

d. Note that one can reduce
to the case where the size of the box is 2π by a rescaling argument. The operator QL is
the Landau collision operator (that we do not describe precisely because we won’t deal
with this general model). The mean-field electrostatic force F (t, x) is given by

F (t, x) = −∇W ∗x

(
ρf (t, x)−

∫

Td

ρf (t, y) dy

)

with ρf (t, x) :=
∫
Rd f(t, x, v) dv. The potential W (x) describes the mean-field interaction

between particles, we consider here the case of Coulomb repulsive interactions (which
occur between electrons in plasmas) for which

(1.2) F = e0 ∇x∆
−1
x ρf and Ŵ (k) = e0 |k|

−2, k ∈ Z
d \ {0}

where e0 > 0 is the electron charge-to-mass ratio.
In classical plasma physics, the coefficient ε equals (log Λ)/(2πΛ) where Λ is the plasma

parameter which is very large. It is thus coherent to study this type of model in the limit
ε → 0. We expect the behaviour of solutions to (1.1) to be complex and depend on the
considered scales of time. When ε > 0 is fixed, one can expect the hypocoercive effect
of collisions to be dominant over large time O(1/ε), which should induce an exponential
convergence towards the Maxwellian equilibrium. In the Fokker-Planck case, it would
also be interesting to analyse the hypoellipticity of the equation, which would provide
a regularization effect. Those phenomena are relevant for fixed ε and their study is a
challenging issue and a very interesting perspective. In the sequel, we are interested only
in the phenomenon of Landau damping and in giving a result which is uniform with respect
to ε in the limit ε → 0 (we recall that when ε = 0, Landau damping occurs in time of
order O(1)).

As pointed out by Villani in [27], the study of this problem is of great interest for several
reasons: as we mentioned above, from a physical viewpoint, the model is more realistic
than the pure Landau or Vlasov ones; it also permits quantification with respect to ε of the
Landau damping; and finally, one could hope to bypass the obstacle of Gevrey regularity
that faces the non collision model thanks to regularizing effects induced by collisions in
the case of fixed ε. Let us underline the fact that the last aspect is only significant in the
nonlinear case that we won’t explore in this paper. Our study, which is restricted to the
linearized problem with some linear collision operators, can thus be seen as the starting
point of a long-range program.

1.1. The model. As mentioned above, we only deal with collision operators denoted C(f)
which are linear. To simplify the problem, we also suppose that

(1.3) Ker(C) = Span(M)

where M is the Maxwellian distribution

(1.4) M(v) := (2π)−d/2e−|v|2/2.

We consider the model

(1.5) ∂tf + v · ∇xf + F (t, x) · ∇vf = ε C(f).

We write the solutions of (1.5) as perturbations of the Maxwellian distribution M :

f(t, x, v) = M(v) + h(t, x, v)
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where h is a mean-zero perturbation if
∫
Td×Rd fin(x, v) dx dv =

∫
Td×Rd M(v) dx dv, an

assumption that we will suppose to hold throughout the paper. Let us emphasize here that
we consider a linearization around the Maxwellian distribution M and not around some
homogeneous distribution or other as it is usually done for the Vlasov-Poisson equation. It
is explained by the fact that, under the assumption (1.3), M is also the unique equilibrium
of the collision operator C satisfying

∫
Rd M(v) dv = 1. Then h satisfies the following

equation (where we denote ρ(t, x) :=
∫
Rd h(t, x, v) dv the perturbation density):

(1.6)





∂th+ v · ∇xh+ F (t, x) · ∇vh+ F (t, x) · ∇vM = ε C(h)

F (t, x) = −∇W ∗x ρ(t, x)

h(0, x, v) = hin(x, v).

where we have used that C(M) = 0.
In this paper, we only work on the linearized problem associated to (1.6) which reads:

(1.7)





∂th+ v · ∇xh+ F (t, x) · ∇vM = ε C(h)

F (t, x) = −∇W ∗x ρ(t, x)

h(0, x, v) = hin(x, v).

We end the description of the model we are concerned with by the definition of the collision
operators C that we shall consider. It can be a linear Boltzmann operator of type:

(1.8) C(h) := ρM − h

or a Fokker-Planck operator defined through:

(1.9) C(h) := ∆vh+ divv(vh).

These are classical operators of statistical physics that allow to describe the interaction
between particles and a fixed background. Note that in the case of the collisional Vlasov
equation (without the term coming from the mean-field interaction between particles):

∂th+ v · ∇xh = ε C(h)

for fixed ε > 0, it is clear that the hypocoercive effect is dominant for large times. We can
for example apply the results of Dolbeault, Mouhot and Schmeiser [9] to obtain a result
of decay at infinity with a rate of type e−ελt for some λ > 0 in some Hilbert space.

1.2. Main results and known results.

Main results and comments. In this paper, we focus on the limit ε → 0 and our first
objective is to obtain a result of Landau damping in the limit ε → 0 uniformly with
respect to ε ∈ [0, ε0] for some ε0 > 0 for the equation (1.7). Before stating our theorems,
we introduce the Sobolev spaces in which we are going to develop our analysis.

We fix for the rest of the paper ℓ > d/2 and introduce the space L2
xH

n
v , n ∈ N associated

to the following norm:

‖f‖2L2
xH

n
v

:=
∑

|α|≤n

∫

Td×Rd

〈v〉2ℓ |∂α
v f |

2 dx dv

where we have used the notation 〈v〉 := (1 + |v|2)1/2. The dependency of L2
xH

n
v with

respect to ℓ is not included in the notation since ℓ is definitely fixed.
Here is our main result:
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Theorem 1.1. Consider a mean-zero distribution hin ∈ L2
xH

n
v for n ∈ N, n ≥ 3. There

exist ε0 > 0, λ0 > 0 such that for all ε ∈ [0, ε0], the density ρ = ρ(t, x) of the solution
h = h(t, x, v) of (1.7) satisfies the following estimate:

∀ t ≥ 0, ‖ρ(t, ·)‖L2
x
≤

C

〈t〉n
,

the solution h = h(t, x, v) satisfies itself

∀ t ≥ 0, ∀ ξ ∈ R
d, |ĥ(t, 0, ξ)| ≤ C e−ελ0t

and

∀ t ≥ 0, ∀ k ∈ Z
d \ {0}, ∀ ξ ∈ R

d, |ĥ(t, k, ξ)| ≤
C(ξ)

〈t〉n−2

where C(ξ) := C 〈ξ〉n−2 and C is a positive constant depending on ‖hin‖L2
xH

n
v
.

Remark 1.2. In the Fokker-Planck case, we have a better estimate which provides us an
exponential dissipation (see Theorem 3.1) for ε fixed, which is coherent since it comes from
the Fokker-Planck structure, which disappears for ε = 0. One could also expect that for ε

fixed, enhanced dissipation occurs over large times with a rate of dissipation of type e−εt3

thanks to the diffusion part of the Fokker-Planck operator. However, we are not able to
prove such a result, due to the presence of the drift term and the reaction term, the study
is more intricate.

Remark 1.3. For ε = 0, it is well-known that

∀ ξ ∈ R
d, ∀ t ≥ 0, ĥ(t, 0, ξ) = ĥin(0, ξ),

it is not anymore the case for ε > 0 due to the presence of the collision operator.

Let us underline that our study fits into a Sobolev framework. We do not work with
analytic or Gevrey regularity as in [22] or [1] in which more regularity is needed to handle
the nonlinear problem. However, the study of the linearized problem could have been
done in Sobolev regularity, this is what we are doing since we only deal with the linearized
problem. To do that, we take advantage of the paper by Faou and Rousset [14] which
consists in the analysis of Landau damping for the (nonlinear) Vlasov-HMF equation in
a Sobolev setting. For this equation, the nonlinear study does not require analytic (or
Gevrey regularity), indeed, due to the fact that the interaction kernel has finite support in
Fourier space, the control of the nonlinear effect “plasma-echo” is made easier. Finally,
let us mention that our result can easily be adapted to an analytic framework. Also, for
the nonlinear equation (1.6), it would be particularly interesting to investigate if the gain
of regularity induced by collisions between particles could allow us to relax the hypothesis
on the initial datum.

Another aspect that we point out is that, to the best of our knowledge, it is the first
paper in which such a problematic is investigated for the Vlasov-Poisson equation in a
weakly collisional regime (in the limit ε → 0). It should be relevant to compare this
kind of question with the one studied by Bedrossian, Masmoudi and Vicol [2] about the
two-dimensional Euler equation where the equivalent of ε should be the inverse of the
Reynolds number. Concerning this kind of problematic of uniform analysis of large time
behaviour with respect to a small parameter, we can also mention the work of the author
with Mischler [21] in which an analysis of large-time behaviour is developed for several
homogeneous Fokker-Planck equations uniformly with respect to a small parameter which
allows to go from a model to another.
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Strategy of the proof. To deal with this problem, we use the classical strategy to analyse
Landau damping. We use method of characteristics and Fourier transform to obtain a
closed equation on ρ̂(t, k) for each k ∈ Z

d. The presence of the collisional operator raises
additional difficulties. Indeed, in this equation, there is a term of the form

∫ t

0
Kε(t− s) ρ̂(s, k) ds

which is typical. However, Kε splits into two parts, one coming from the Vlasov-Poisson
term and the other coming from the collision term. In order to obtain our final result
uniformly with respect to ε, we have to sharply estimate the Fourier transform in time of
Kε and this is the main technical issue of this paper. We are then able to check that a
Penrose type criterion is satisfied uniformly with respect to ε for ε small enough. Taking
advantage of the analysis developed in [14] in a Sobolev framework, we end up with an
estimate on ‖ρ(t, ·)‖L2

x
. We then go back to the kinetic distribution h and estimate each

mode of it separately thanks to the result obtained previously on ρ.

State of the art. The behaviour of solutions to the equation (1.7) has been largely studied
for some fixed ε.

If ε = 0, we are in the framework of Mouhot and Villani [22], they prove Landau
damping (linear and nonlinear) in analytic or Gevrey regularity. We also mention the
work of Bedrossian, Masmoudi and Mouhot [1] in which a new simplified proof is given
in Gevrey regularity. Let us also specify that some earlier results were obtained in [5]
by Caglioti and Maffei and in [19] by Hwang and Velázquez. We refer to the works of
Ryutov [25], Mouhot and Villani [22], Villani [28] for a detailed historical background on
Landau damping and references therein.

If ε > 0 is fixed, one can expect that the collisional term induces a hypocoercive ef-
fect. Some results have been obtained on linear and/or nonlinear frameworks for the
Vlasov-Poisson-Fokker-Planck equation. About existence results, we mention the papers
of Victory and O’Dwyer in two dimensions [26], Rein and Weckler [24] in three dimensions
for small data and Bouchut [3] in three dimensions. Concerning the long-time behaviour,
we point out the papers of Bouchut and Dolbeault [4], Carrillo, Soler and Vásquez [6], Dol-
beaut [8] and Hérau and Thomman [18], in the latter, both Cauchy problem and long-time
behaviour have been studied.

As far as the case of the linear Boltzmann is concerned, the literature is more scarce
and we were not able to find any reference on it. However, let us emphasize the fact that
a large literature is devoted to the study of the Vlasov-Poisson-Boltzmann equation with
a general Boltzmann collision operator. On this topic, we call attention on the paper of
Dolbeault and Desvillettes [7] which deals with the large time behaviour of solutions. On
this matter, we also have to refer to a series of papers of Guo in which a robust energy
method is developed to treat the global stability of global Maxwellians in a perturbative
framework. There are many variants based on Guo’s works and its energy method which
allow to analyse the Cauchy problem and the large time behaviour of solutions. Let us
mention two papers of Guo on the Vlasov-Poisson-Boltzmann equation [16, 17] the first
one falls in a near-vacuum regime, the second one in a near Maxwellian setting. Let us give
other references which are concerned with the Cauchy problem in a perturbative setting
and/or the large time behaviour of solutions and the rates of convergence, among others,
we mention the papers of Duan and Strain [12], Duan, Yang and Zhao [13], Duan and
Liu [10], Xia, Xiong and Zhao [29]. From another viewpoint, an analysis of the spectrum
has been carried out in [20] by Li, Yang and Zhong. There is another phenomenon which
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could occur when the initial datum of the equation approaches distinct global Maxwellians
at far fields, the solution to the Cauchy problem does not converge anymore to a constant
equilibrium state in large time but we do not enter into details in this regard and refer to
the recent paper of Duan and Liu [11] and the references given therein.

1.3. Notations and tools. We here define some notations and state an elementary
lemma on Fourier transform that we will make good use in what follows.

Fourier transform. For a function f = f(x), x ∈ T
d, we define its Fourier transform as

follows:

f̂(k) =
1

(2π)d/2

∫

Td

f(x) e−ix·k dx, k ∈ Z
d.

Similarly, for a function f = f(v), v ∈ R
d, we define its Fourier transform by:

f̂(ξ) =
1

(2π)d/2

∫

Rd

f(v) e−iv·ξ dv, ξ ∈ R
d.

Let us notice that the Maxwellian distribution M defined in (1.4) satisfies M̂ = M , an
equality that we will use all along the paper.
Finally, if f = f(x, v), (x, v) ∈ T

d × R
d, we define its Fourier transform through the

following formula:

f̂(k, ξ) =
1

(2π)d

∫

Rd

f(x, v) e−ik·x−iv·ξ dx dv, (k, ξ) ∈ Z
d × R

d.

We shall also use the Fourier transform in time, if f = f(t), t ∈ R, we denote

(1.10) f̃(τ) =

∫

R

f(t) e−itτ dt, τ ∈ C.

Elementary lemma. We here state a simple result which links Fourier transform and reg-
ularity of a function (one can check the proof in [14, Lemma 2.1] in dimension 1).

Lemma 1.4. For any n ∈ N, we have:

∀ k ∈ Z
d, ∀ ξ ∈ R

d, |f̂(k, ξ)| ≤ C(n, ℓ) 〈ξ〉−n ‖f‖L2
xH

n
v

where C(n, ℓ) is a positive constant depending only on ℓ and n.

Notation. Finally, let us specify that we shall use the same notation C for positive con-
stants that may change from line to line, when C is a positive constant depending only
on fixed number.

1.4. Outline of the paper. In Section 2, we deal with the behaviour of solutions of (1.7)
with the linear Boltzmann operator (1.8) as a collision operator. In Section 3, we handle
the problem with collisions given by a Fokker-Planck operator (1.9).

Acknowledgments. The author would like to thank Daniel Han-Kwan for enlightened
discussions, his help and his suggestions. The author has been supported by the Fondation
Mathématique Jacques Hadamard.
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2. Linear Boltzmann type collisions

In this section, we deal with the following model:

(2.1)





∂th+ v · ∇xh+ F (t, x) · ∇vM = ε (ρM − h)

F (t, x) = −∇W ∗x ρ(t, x)

h(0, x, v) = hin(x, v).

where we recall that ρ(t, x) =
∫
Rd h(t, x, v) dv. The main theorem reads:

Theorem 2.1. Consider a mean-zero distribution hin ∈ L2
xH

n
v for n ∈ N, n ≥ 3. There

exists ε0 > 0 such that the solution h = h(t, x, v) of (2.1) and its associated density
ρ = ρ(t, x) satisfy the following estimates:

(2.2) ∀ ε ∈ [0, ε0], ∀ t ≥ 0, ‖ρ(t, ·)‖L2
x
≤

C

〈t〉n
,

and

(2.3)





∀ ε ≥ 0, ∀ ξ ∈ R
d, ∀ t ≥ 0, |ĥ(t, 0, ξ)| ≤ C e−εt,

∀ ε ∈ [0, ε0], ∀ k ∈ Z
d \ {0}, ∀ ξ ∈ R

d, ∀ t ≥ 0, |ĥ(t, k, ξ)| ≤
C(ξ)

〈t〉n−2
,

where C(ξ) := C 〈ξ〉n−2 and C is a positive constant depending on ‖hin‖L2
xH

n
v
.

2.1. The Penrose criterion. Before going into the proof of Theorem 2.1, we start by
giving a lemma which allows us to apply a result from [14]. To do that, we introduce the
following notations: for (t, k) ∈ R× Z

d, we define for ε ≥ 0,

(2.4)





K0
ε (t, k) := ε e−εt M̂(kt)1t≥0

K1
ε (t, k) := −Ŵ (k) e−εt M̂(kt) |k|2 t1t≥0

Kε(t, k) := K0
ε (t, k) +K1

ε (t, k).

Lemma 2.2. There exists ε0 > 0 such that the kernel Kε defined in (2.4) satisfies the
following condition:

(H) ∃κ > 0, ∀ ε ∈ [0, ε0], inf
k∈Zd\{0}

inf
Im τ≤0

|1− K̃ε(τ, k)| ≥ κ

where we recall that K̃ε(τ, k) stands for the Fourier transform in time of Kε defined
in (1.10).

Proof of Lemma 2.2. We start by giving an estimate on |1−K̃1
0 (τ, k)|. We recall that since

all marginals of M are increasing/decreasing, one can check (see [28]) that the gaussian
distribution M satisfies the following form of Penrose stability criterion [23] (given in [22]
in this form):

∀ k ∈ Z
d \ {0}, ∀w ∈ R s.t. (Mk)

′(w) = 0, Ŵ (k)

(
p.v.

∫

R

(Mk)
′(r)

r − w
dr

)
< 1

where Mk denotes the marginals of M along k ∈ Z
d \ {0}:

Mk(r) :=

∫

kr/|k|+k⊥
M(w) dw.
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Consequently, we know (see [22] and [1] for a complete proof) that there exists λ† > 0 and
κ0 > 0 such that

(2.5) ∀ ξ ∈ C, ℜe ξ < λ†, inf
k∈Zd

|L(k, ξ) − 1| ≥ κ0

where L is defined through (ξ̄ is the complex conjugate of ξ)

L(k, ξ) = −

∫ ∞

0
eξ̄|k|tM̂(kt) Ŵ (k) |k|2 t dt, (k, ξ) ∈ Z

d × R
d,

note that this integral is well defined because it is absolutely convergent due to the decay

property of M̂ = M . Then, one can check that if we denote τ = λ+ iζ with (λ, ζ) ∈ R
2,

K̃1
0 (τ, k) = L

(
k,

ζ + iλ

|k|

)

and thus using (2.5), we deduce that for any k ∈ Z
d \ {0},

(2.6) ∀ τ ∈ C, Imτ ≤ 0, |K̃1
0 (τ, k)− 1| ≥ κ0.

Still using the notation τ = λ+ iζ, we also have

|K̃0
ε (τ, k)| = ε

∣∣∣∣
∫ ∞

0
e−itτ e−εt M̂ (kt) dt

∣∣∣∣ ≤ ε

∫ ∞

0
eζt e−εtM(kt) dt.

We deduce for any k ∈ Z
d \ {0},

(2.7) ∀ τ ∈ C, Imτ ≤ 0, |K̃0
ε (τ, k)| ≤ ε

∫ ∞

0
M(kt) dt ≤

ε

|k|

∫ ∞

0
M(t) dt ≤ C ε.

Then, it remains to estimate the difference coming from K1
ε −K1

0 . We have:

|K̃1
ε (τ, k) − K̃1

0 (τ, k)| =

∣∣∣∣
∫ ∞

0
e−itτ (K1

ε (t, k)−K1
0 (t, k)) dt

∣∣∣∣

= e0

∣∣∣∣
∫ ∞

0
e−itτ (1− e−εt) M̂ (kt) t dt

∣∣∣∣

≤ C ε

∫ ∞

0
eζt t2 e−

|k|2t2

2 dt

where we used that 1 − e−εt ≤ ε t for any t ≥ 0. Performing a change of variable in the
last integral, we get for any k ∈ Z

d \ {0},

(2.8) ∀ τ ∈ C, Imτ ≤ 0, |K̃1
ε (τ, k) − K̃1

0 (k, τ)| ≤
C

|k|3
ε ≤ C ε.

We now go back to our full problem which consists in estimating the difference

|1− K̃ε(τ, k)| with Kε = K0
ε +K1

0 +K1
ε −K1

0 .

Gathering (2.6), (2.7) and (2.8), we conclude that for any k ∈ Z
d \ {0}, for any τ ∈ C,

Imτ ≤ 0,

|K̃ε(τ, k) − 1| ≥ |K̃1
0 (τ, k) − 1| − |K̃1

ε (τ, k)− K̃1
0 (k, τ)| − |K̃0

ε (τ, k)|

≥ κ0 − c0ε,

for some positive constant c0 > 0 which only depends on a fixed number. We then choose
ε0 > 0 such that κ0 − c0ε0 > 0. Denoting κ := κ0 − c0ε0, we obtain

∀ ε ∈ [0, ε0], inf
k∈Zd\{0}

inf
Im τ≤0

|K̃ε(τ, k)− 1| ≥ κ,
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from which we conclude that (H) is fulfilled. �

2.2. Proof of Theorem 2.1. We can now handle the proof of Theorem 2.1, we divide it
into two parts, the first one being devoted to the proof of estimate (2.2) and the second
one to (2.3).

Proof of the estimate (2.2). The first thing that we have to notice is that, due to the
conservation properties of the operator −v · ∇xh− F (t, x) · ∇vM + ε (ρM − h), we know

that for all times, ρ̂(t, 0) = (2π)d/2 ĥin(0, 0) = 0 since hin is a mean-zero distribution.
We then focus on the study of ρ̂(t, k) for k ∈ Z

d \ {0}. In the rest of the proof, we
consider ε ∈ [0, ε0] where ε0 is given in Lemma 2.2. Using the method of characteristics,
we have

h(t, x, v) = hin(x− vt, v) e−εt + ε

∫ t

0
e−ε(t−s) ρ(s, x− v(t− s))M(v) ds

−

∫ t

0
e−ε(t−s) (∇vM · F )(s, x− v(t− s), v) ds

We then take the Fourier transform in both variables (x, v) of the previous equality:

ĥ(t, k, ξ) = e−εt

∫

Td×Rd

hin(x− vt, v) e−ik·x−iv·ξ dx dv

+
ε

(2π)d

∫ t

0

∫

Td×Rd

e−ε(t−s) ρ(s, x− v(t− s))M(v) e−ik·x−iv·ξ dx dv ds

−
1

(2π)d

∫ t

0

∫

Td×Rd

e−ε(t−s) (∇vM · F )(s, x− v(t− s), v) e−ik·x−iv·ξ dx dv ds.

Performing change of variables, we obtain

ĥ(t, k, ξ) = e−εt ĥin(k, ξ + kt)

+
ε

(2π)d

∫ t

0

∫

Td×Rd

e−ε(t−s) ρ(s, x)M(v) e−ik·x−iv·(ξ+k(t−s)) dx dv ds

−
1

(2π)d

∫ t

0

∫

Td×Rd

e−ε(t−s) (∇vM · F )(s, x, v) e−ik·x−iv·(ξ+k(t−s)) dx dv ds,

from which we deduce

(2.9)

ĥ(t, k, ξ) = e−εt ĥin(k, ξ + kt) + ε

∫ t

0
e−ε(t−s) ρ̂(s, k) M̂ (ξ + k(t− s)) ds

−

∫ t

0
e−ε(t−s)k · (ξ + k(t− s)) Ŵ (k) ρ̂(s, k) M̂ (ξ + k(t− s)) ds.

Taking ξ = 0 in (2.9), we obtain the closed equation on ρ̂(t, k):

ρ̂(t, k) = e−εt ĥin(k, kt) + ε

∫ t

0
e−ε(t−s) ρ̂(s, k) M̂ (k(t− s)) ds

−

∫ t

0
e−ε(t−s)k · (k(t− s)) Ŵ (k) ρ̂(s, k) M̂ (k(t− s)) ds.

that we can sum up in

ρ̂(t, k) = e−εt ĥin(k, kt) +

∫ t

0
Kε(t− s) ρ̂(s, k) ds
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where we recall that Kε is defined in (2.4). We can notice here that we are almost
in the same framework as the one of [14, Lemma 2.3] for ε ∈ [0, ε0]. Indeed, we have
〈·〉2M ∈ L2

xH
n
v for any n ∈ N and from Lemma 2.2, we know that Kε satisfies the following

condition:

(H) ∃κ > 0, ∀ ε ∈ [0, ε0], inf
k∈Zd\{0}

inf
Im τ≤0

|1− K̃ε(τ, k)| ≥ κ.

The only difference is that the proof in [14] is done only for the case k = ±1. But it is
uncomplicated to extend the result for |k| > 1. We then obtain that for any γ ≥ 0, for
any T ≥ 0:
(2.10)

∀ k ∈ Z
d \ {0}, sup

t∈[0,T ]
〈kt〉γ |ρ̂(t, k)| ≤ sup

t∈[0,T ]
〈kt〉γ e−εt |ĥin(k, kt)| ≤ sup

t∈[0,T ]
〈kt〉γ |ĥin(k, kt)|.

Using Lemma 1.4, there holds,

(2.11) |ĥin(k, kt)| ≤ C(n) 〈kt〉−n ‖hin‖L2
xH

n
v
.

Combining (2.10) and (2.11) with γ = n, we obtain for any T ≥ 0,

∀ k ∈ Z
d \ {0}, sup

t∈[0,T ]
〈kt〉n |ρ̂(t, k)| ≤ C(n) ‖hin‖L2

xH
n
v
.

from which we deduce

(2.12) ∀ k ∈ Z
d \ {0}, ∀ t ≥ 0, |ρ̂(t, k)| ≤

C(n)

〈kt〉n
‖hin‖L2

xH
n
v
,

this yields the final result (2.2). �

We now concentrate on the proof of estimate on the solution h = h(t, x, v).

Proof of the estimate (2.3). The first part concerns the moment of order 0 in x. Contrary
to the case of the linear Vlasov-Poisson equation, the latter is not preserved due to the
presence of the collision operator. Indeed, noticing that since h is mean-zero, we have:

∂tĥ(t, 0, ξ) = −ε ĥ(t, 0, ξ)

we then deduce that for any fixed ξ ∈ R
d,

∀ ε ≥ 0, |ĥ(t, 0, ξ)| = e−εt |ĥin(0, ξ)| ≤ C e−εt ‖hin‖L2
xH

n
v

where the last estimate comes from Lemma 1.4.
We now deal with the case k ∈ Z

d \ {0} and consider ε ∈ [0, ε0]. From (2.9), we have

ĥ(t, k, ξ − kt) = e−εt ĥin(k, ξ) + ε

∫ t

0
e−ε(t−s) ρ̂(s, k) M̂ (ξ − ks) ds

−

∫ t

0
e−ε(t−s)k · (ξ − ks) Ŵ (k) ρ̂(s, k) M̂ (ξ − ks) ds

=: T1 + T2 + T3.

Since hin ∈ L2
xH

n
v , we have from Lemma 1.4 that

(2.13) ∀ k ∈ Z
d \ {0}, ∀ ξ ∈ R

d, |T1| ≤ C 〈ξ〉−n.

To estimate T2 and T3, we use the estimate (2.12) on ρ that we obtained previously

combined with the decay property of M̂ = M which implies for example

M̂(ξ − ks) ≤ C 〈ξ − ks〉2−n
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Concerning T2, we thus have

|T2| ≤ C

∫ t

0
〈ks〉−n 〈ξ − ks〉2−n ds ≤ C

∫ t

0
〈ks〉−n 〈ξ〉2−n 〈ks〉n−2 ds

where we have used the estimate 〈ξ − ks〉2−n ≤ C 〈ξ〉2−n 〈ks〉n−2, we deduce

|T2| ≤ C 〈ξ〉2−n

∫ t

0

ds

〈|k|s〉2
.

Performing a change of variable, we obtain

(2.14) ∀ k ∈ Z
d \ {0}, ∀ ξ ∈ R

d, |T2| ≤ C
1

|k|
〈ξ〉2−n ≤ C 〈ξ〉2−n.

We treat T3 in a similar way, noticing that |k| Ŵ (k) = O(1), and that we have

|ξ − ks| M̂(ξ − ks) ≤ C 〈ξ − ks〉2−n.

We conclude this proof as for T2 and we obtain

(2.15) ∀ k ∈ Z
d \ {0}, ∀ ξ ∈ R

d, ∀ t ≥ 0, |T3| ≤ C 〈ξ〉2−n.

Combining (2.13), (2.14) and (2.15), we obtain

∀ k ∈ Z
d \ {0}, ∀ ξ ∈ R

d, ∀ t ≥ 0, |ĥ(t, k, ξ − kt)| ≤
C

〈ξ〉n−2
.

In particular, we have for any fixed ξ ∈ R
d,

∀ k ∈ Z
d \ {0}, ∀ t ≥ 0, |ĥ(t, k, ξ)| ≤

C

〈ξ + kt〉n−2
≤

C(ξ)

〈t〉n−2

where we have used that 〈ξ + kt〉2−n ≤ C 〈ξ〉n−2 〈kt〉2−n ≤ C 〈ξ〉n−2 〈t〉2−n and this con-
cludes the proof of (2.3). �

3. Fokker-Planck type collisions

In this section, we deal with the following model:

(3.1)





∂th+ v · ∇xh+ F (t, x) · ∇vM = ε (∆vh+ divv(vh))

F (t, x) = −∇W ∗x ρ(t, x)

h(0, x, v) = hin(x, v)

where we recall that ρ(t, x) =
∫
Rd h(t, x, v) dv.

Theorem 3.1 (Fokker-Planck operator). Consider a mean-zero distribution hin ∈ L2
xH

n
v

for n ∈ N, n ≥ 3. There exists ε0 > 0 such that the solution h = h(t, x, v) of (3.1) and its
associated density ρ = ρ(t, x) satisfy the following estimates:

(3.2) ∀ ε ∈ [0, ε0], ∀ t ≥ 0, ‖ρ(t, ·)‖L2
x
≤ C

e−εt

〈t〉n
≤

C

〈t〉n
,

and
(3.3)




∀ ε ≥ 0, ∀ ξ ∈ R
d, ∀ t ≥ 0, |ĥ(t, 0, ξ)| ≤ C e−ελ∗t,

∀ ε ∈ [0, ε0], ∀ k ∈ Z
d \ {0}, ∀ ξ ∈ R

d, ∀ t ≥ 0, |ĥ(t, k, ξ)| ≤ C(ξ)
e−εt

〈t〉n−2
≤

C(ξ)

〈t〉n−2
,



12 ISABELLE TRISTANI

where λ∗ > 0 is the rate of decay for the homogeneous Fokker-Planck equation in L2(〈v〉ℓ)
(see Lemma 3.3) and C(ξ) := C 〈ξ〉n−2 and C is a positive constant depending on ‖hin‖L2

xH
n
v
.

3.1. The Penrose criterion. As in Section 2, we introduce a kernel Kε which is going
to be useful in the proof of Theorem 3.1. For (t, k) ∈ R× Z

d and ε ∈ (0, 1/12], we define

(3.4) Kε(t, k) := −eεt exp

(
−ε

∫ t

0
|χε(σ) k|

2 dσ

)
k · (χε(t) k) Ŵ (k) M̂ (χε(t) k) 1t≥0,

where we denoted for ε > 0,

χε(t) :=
1− e−εt

ε
, t ∈ R.

We also introduce a kernel K0 to which we shall compare Kε:

(3.5) K0(t, k) := −Ŵ (k) |k|2 M(kt) t1t≥0.

The aim of the next part is to prove that Kε satisfies a Penrose type criterion such as we
did in Section 2, Lemma 2.2.

Lemma 3.2. There exists ε0 > 0 such that the kernel Kε defined in (3.4) satisfies the
following condition:

(H) ∃κ > 0, ∀ ε ∈ [0, ε0], inf
k∈Zd\{0}

inf
Im τ≤0

|1− K̃ε(τ, k)| ≥ κ

where we recall that K̃ε(τ, k) stands for the Fourier transform in time of Kε defined
in (1.10).

Proof of Lemma 3.2. First, we recall that we have shown in the proof of Lemma 2.2 (see
estimate (2.6)) that for any k ∈ Z

d \ {0},

(3.6) ∀ τ ∈ C, Imτ ≤ 0, |K̃0(τ, k) − 1| ≥ κ0

for some κ0 > 0.
We then estimate the difference K̃ε(/tau, k)− K̃0(τ, k) for k ∈ Z

d \ {0} splitting it into
several parts. For any τ = λ+ iζ, Imτ = ζ ≤ 0, we have:

|K̃ε(τ, k)− K̃0(τ, k)|

≤ e0

∫ ∞

0
|χε(t)M(kχε(t))− tM(kt)| 10≤t≤3/ε e

εt exp

(
−ε

∫ t

0
χ2
ε(σ) |k|

2 dσ

)
|e−itτ | dt

+ e0

∫ ∞

0

∣∣∣∣eεt exp
(
−ε

∫ t

0
χ2
ε(σ) |k|

2 dσ

)
− 1

∣∣∣∣ tM(kt)10≤t≤3/ε |e
−itτ | dt

+ e0

∫ ∞

0
eεt exp

(
−ε

∫ t

0
χ2
ε(σ) |k|

2 dσ

)
|χε(t)M(kχε(t))− tM(kt)| 1t≥3/ε |e

−itτ | dt

+ e0

∫ ∞

0

∣∣∣∣eεt exp
(
−ε

∫ t

0
χ2
ε(σ) |k|

2 dσ

)
− 1

∣∣∣∣ tM(kt)1t≥3/ε |e
−itτ | dt

=: I1 + I2 + I3 + I4.
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Concerning the term I1, we have since ζ = Im τ ≤ 0 and eεt ≤ e3 for t ≤ 3/ε,

I1 ≤ C

∫ 3/ε

0
|χε(t)M(kχε(t)) − tM(kt)| eζt dt

≤ C

∫ 3/ε

0
|χε(t)− t| M(kt) dt+ C

∫ 3/ε

0
|M(kχε(t)) −M(kt)| χε(t) dt

=: I11 + I12.

First, we perform a straightforward analysis of the function t 7→ t−χε(t)− εt2/2 to prove
that

(3.7) ∀ t ∈ R
+, |χε(t)− t| = t− χε(t) ≤ ε

t2

2
.

We deduce that

(3.8)

I11 ≤ C ε

∫ 3/ε

0
t2 M(kt) dt ≤

C ε

|k|2

∫ 3/ε

0
|k|2 t2M(kt) dt

≤
C ε

|k|3

∫ 3|k|/ε

0
t2 e−t2/2 dt ≤ C ε

∫ ∞

0
t2 e−t2/2 dt ≤ C ε

where we performed a change of variable. Concerning I12, we notice that

|M(kχε(t))−M(kt)| =
∣∣∣M1/2(kχε(t))−M1/2(kt)

∣∣∣
(
M1/2(kχε(t)) +M1/2(kt)

)
.

But, one can easily prove that χε(t) ≥ e−3t for any t ∈ [0, 3/ε]. We thus have, denoting

µ := e−
|·|2

4e6 ,

M1/2(kχε(t)) +M1/2(kt) ≤ C µ(kt).

Also, the gradient of M1/2 is bounded in R
d, we deduce that for any t ∈ [0, 3/ε],

|M(kχε(t))−M(kt)| ≤ C
∣∣∣M1/2(kχε(t))−M1/2(kt)

∣∣∣ µ(kt)
≤ C |k|(t− χε(t))µ(kt) ≤ C ε |k| t2 µ(kt)

where the last inequality comes from (3.7). This implies, since χε(t) ≤ t for any t ≥ 0:

(3.9)

I12 ≤ C ε

∫ 3/ε

0
|k| t3 µ(kt) dt ≤

C ε

|k|3

∫ 6|k|/ε

0
t3 e

−
(

t

2e6

)

2

dt

≤
C ε

|k|3

∫ ∞

0
t3 e

−
(

t

2e6

)2

dt ≤ C ε.

Concerning I2, we also split its study into two parts:

I2 ≤ C

∫ ∞

0

∣∣∣∣exp
(
−ε

∫ t

0
χ2
ε(σ) |k|

2 dσ

)
− 1

∣∣∣∣ tM(kt)10≤t≤3/ε e
ζt dt

+ C

∫ ∞

0
eεt (1− e−εt) exp

(
−ε

∫ t

0
χ2
ε(σ) |k|

2 dσ

)
tM(kt)10≤t≤3/ε e

ζt dt

=: I21 + I22.
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To deal with I21, we study the function t 7→ 1 − exp
(
−ε

∫ t
0 χ

2
ε(σ) |k|

2 dσ
)
− ε |k|2 t3/3 to

obtain

∀ t ≥ 0,

∣∣∣∣exp
(
−ε

∫ t

0
χ2
ε(σ) |k|

2 dσ

)
− 1

∣∣∣∣

= 1− exp

(
−ε

∫ t

0
χ2
ε(σ) |k|

2 dσ

)
≤ ε |k|2

t3

3
.

We deduce that for any k ∈ Z
d \ {0},

(3.10) I21 ≤ C ε |k|2
∫ ∞

0
t4 M(kt) eζt dt ≤

C ε

|k|3

∫ ∞

0
t4 e−t2/2 dt ≤ C ε,

where we have performed a change of variable to get the last inequality but one. For I22,
we use the simple inequality

∀ t ≥ 0, 1− e−εt ≤ ε t

so that

(3.11) I22 ≤ C ε

∫ ∞

0
e3 t2 M(kt) eζt dt ≤

C ε

|k|3

∫ ∞

0
t2 e−t2/2 dt ≤ C ε.

We then control I3 exploiting the term exp
(
−ε

∫ t
0 χ

2
ε(σ) |k|

2 dσ
)
which provides us some

decay for large times since k ∈ Z
d \ {0}. We compute explicitly the integral inside it:

∫ t

0
χ2
ε(σ) dσ =

t

ε2
+

1

2ε3
(
−e−2εt + 4e−εt − 3

)
.

Since e−εt ∈ (0, 1] for any t ≥ 0, −y2 + 4y − 3 ∈ [−3, 0] for any y ∈ [0, 1] and |k| ≥ 1, we
then write the following bound:

∀ t ≥ 3/(2ε),

∫ t

0
χ2
ε(σ) |k|

2 dσ ≥
1

ε2

(
t−

3

2ε

)
|k|2 ≥

1

ε2

(
t−

3

2ε

)
|k|.

As a consequence, we get

∀ t ≥ 3/ε, exp

(
−ε

∫ t

0
χ2
ε(σ) |k|

2 dσ

)
≤ e−

|k|
ε
(t− 3

2ε
) ≤ e−|k|t/(2ε).

from which we have:

(3.12) ∀ t ≥ 3/ε, eεt exp

(
−ε

∫ t

0
χ2
ε(σ) |k|

2 dσ

)
≤ e−|k|t/2 ≤ e−t/2

where we used that ε ∈ (0, 1/2]. Then,

I3 ≤
C

|k|

∫ ∞

3/ε
e−t/2 |k χε(t)M(kχε(t))− k tM(kt)| eζt dt

≤
C

|k|

∫ ∞

3/ε
e−t/2 |k| |χε(t)− t| dt

≤ Cε

∫ ∞

3/ε
t2 e−t/2 dt

where we used that the derivative of y 7→ yM(y) (where we still denote the function

M : y ∈ R 7→ (2π)−3/2e−y2/2) is bounded on R and the inequality (3.7). It implies

(3.13) I3 ≤
Cε

|k|3

∫ ∞

0
t2 e−t/2 dt ≤ C ε.
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To deal with I4, we use (3.12) and the fact that 1t≥3/ε ≤ ε t/3, we thus deduce that

(3.14) I4 ≤ C

∫ ∞

0
tM(kt) eζt 1t≥3/ε dt ≤

C ε

|k|3

∫ ∞

0
t2 e−t2/2 dt ≤ C ε.

Gathering (3.8), (3.9), (3.10), (3.11), (3.13) and (3.14) yields

(3.15) |K̃ε(τ, k) − K̃0(τ, k)| ≤ c0 ε,

for some constant c0 > 0. We then combine (3.6) with (3.15) to conclude that

∀ τ ∈ C, Imτ ≤ 0, |K̃ε(τ, k)− 1| ≥ κ0 − c0 ε.

We choose ε0 ∈ (0, 1/12] small enough such that κ0 − c0 ε0 > 0, set κ := κ0 − c0 ε0 and it
follows that (H) is satisfied. �

3.2. The homogeneous Fokker-Planck equation. In this part, we recall some features
of solutions to the homogeneous Fokker-Planck equation

(3.16)

{
∂tf = ε (∆vf + divv(vf))

f(0, ·) = f0

that will be useful for the study of the evolution of ĥ(t, 0, ξ), t ≥ 0 and ξ ∈ R
d in the proof

of estimate (3.3).
We introduce L2

v(m) the weighted Lebesgue space associated to the norm

(3.17) ‖f‖2L2
v(m) :=

∫

Rd

f2(v)m2(v) dv, m(v) = 〈v〉ℓ

where we recall that ℓ has been fixed in Subsection 1.3 and satisfies ℓ > d/2.
The behaviour of solutions to the homogeneous Fokker-Planck equation has been largely

studied in several types of functional spaces thanks to Poincaré inequality or Log-Sobolev
inequality for example. In our case, we will make use of a result from Gualdani, Mischler
and Mouhot [15, Theorem 3.1] which is stated in the following lemma, the main idea is
that they have enlarged the space in which the solutions to the equation decay as time
goes to infinity to various kind of weighted Lebesgue spaces and in particular to the space
L2
v(m) defined above.

Lemma 3.3. Consider f0 = f0(v) ∈ L2
v(m) such that

∫
Rd f0(v) dv = 0. Then, there exist

C ≥ 1 and λ∗ > 0 such that the solution f = f(t, v) to the homogeneous Fokker-Planck
equation (3.16) satisfies

‖f(t, ·)‖L2
v(m) ≤ C e−ελ∗t ‖f0‖L2

v(m).

3.3. Proof of Theorem 3.1. We now handle the proof of Theorem 3.1 and we split it
into two parts, we first look at the behaviour of the density ρ = ρ(t, x) before going back to
the solution h = h(t, x, v) itself. Let us underline the fact that in the proof of Theorem 2.1,
we are able to deal with the cases ε = 0 and ε > 0 in the same time, which is not the case
here. However, we do not write the proof for ε = 0 since it is just a (simpler) adaptation
of the case ε > 0.

Proof of the estimate (3.2). As in the proof of the estimate (2.2), we start by noticing that,
due to the conservation properties of the operator −v · ∇xh − F (t, x) · ∇vM + ε (∆vh +

divv(vh)), we know that for all times, ρ̂(t, 0) = (2π)d/2 ĥin(0, 0) = 0 since h is mean-zero.
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We then concentrate on the study of ρ̂(t, k) for k ∈ Z
d \ {0}. In this part, we consider

ε ∈ (0, ε0] where ε0 is given in Lemma 3.2 and t ∈ R
+. We first take the Fourier transform

of the equation (3.1). It provides us the following equality:

∂tĥ− k · ∇ξĥ+ k · ξ Ŵ (k) ρ̂(t, k) M̂ (ξ) + ε ξ · ∇ξĥ = −ε |ξ|2ĥ

where we have denoted ĥ = ĥ(t, k, ξ). We rewrite the latter equality as:

∂tĥ+ (ε ξ − k) · ∇ξĥ = −ε |ξ|2ĥ− k · ξ Ŵ (k) ρ̂(t, k) M̂ (ξ)

in order to consider (ε ξ − k) · ∇ξ as our “new” transport operator, the term −ε |ξ|2ĥ is

seen as an absorption term and −k · ξ Ŵ (k) ρ̂(t, k) M̂ (ξ) as a source one. Then using the
method of characteristics, we end up with the following formula:

(3.18)

ĥ(t, k, ξ) = exp

(
−ε

∫ t

0

∣∣∣e−ε(t−s)ξ + χε(t− s) k
∣∣∣
2
ds

)
ĥin

(
k, e−εtξ + χε(t) k

)

−

∫ t

0
exp

(
−ε

∫ t

s

∣∣∣e−ε(t−σ)ξ + χε(t− σ) k
∣∣∣
2
dσ

)
k ·

(
e−ε(t−s)ξ + χε(t− s) k

)

Ŵ (k) ρ̂(s, k) M̂
(
e−ε(t−s)ξ + χε(t− s) k

)
ds.

Taking ξ = 0 in the previous formula gives

ρ̂(t, k) = exp

(
−ε

∫ t

0
|χε(t− s) k|2 ds

)
ĥin (k, χε(t) k)

−

∫ t

0
exp

(
−ε

∫ t

s
|χε(t− σ) k|2 dσ

)
k · (χε(t− s) k) Ŵ (k) ρ̂(s, k) M̂ (χε(t− s) k) ds.

and thus

eεt ρ̂(t, k) = eεt exp

(
−ε

∫ t

0
|χε(t− s) k|2 ds

)
ĥin (k, χε(t) k) +

∫ t

0
Kε(t− s) eεs ρ̂(s, k) ds

where we recall that Kε is defined in (3.4). Then, using Lemma 3.2 and proceeding as in
the proof of estimate (2.2), we obtain for any k ∈ Z

d \ {0} and any T > 0:

sup
t∈[0,T ]

〈kt〉n eεt |ρ̂(t, k)| ≤ sup
t∈[0,T ]

〈kt〉n |ĥin (k, χε(t) k) | e
εt exp

(
−ε

∫ t

0
|χε(t− s) k|2 ds

)

≤ sup
t∈[0,T ]

(
〈kt〉n

〈χε(t)k〉n
10≤t≤3/ε e

3 + 〈kt〉ne−|k|t/2
1t≥3/ε

)
‖hin‖L2

xH
n
v

where we used the estimate (3.12). But, we recall that χε(t) ≥ e−3t for any t ∈ [0, 3/ε].
Consequently

(3.19) ∀ k ∈ Z
d \ {0}, sup

t∈[0,T ]
〈kt〉n eεt |ρ̂(t, k)| ≤ C(n)‖hin‖L2

xH
n
v
,

this provides us the result (3.2). �

We are now able to go back to the analysis of the behaviour of the solution h = h(t, x, v)
thanks to the previous study on the density ρ = ρ(t, x).

Proof of the estimate (3.3). We first deal with the case k = 0 and consider ε ≥ 0. One
can notice that the moment of order 0 in x is not preserved due to the presence of the
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collision operator as in the Proof of estimate (2.3). Indeed, 〈h〉 :=
∫
Td h(t, x, ·) dx satisfies

the following homogeneous Fokker-Planck equation:

∂t〈h〉 = ε (∆v〈h〉+ divv(v〈h〉)) .

Note that since hin ∈ L2
xH

n
v , we have 〈hin〉 ∈ L2

v(m) where L2
v(m) is defined through its

norm (3.17). Indeed, using Jensen inequality,

∫

Rd

〈hin〉
2 m2(v) dv =

∫

Rd

(∫

Td

hin(x, v) dx

)2

m2(v) dv

≤ C

∫

Rd×Td

h2in(x, v) 〈v〉
2ℓ dx dv ≤ C ‖hin‖

2
L2
xH

n
v

.

Using Lemma 3.3, we have

∀ t ≥ 0, ‖〈h〉(t, ·)‖L2
v (m) ≤ C e−ελ∗t‖〈hin〉‖L2

v(m)

where we used that hin is mean-zero. Consequently, using Cauchy-Schwarz inequality
combined with the fact that m−2 = 〈·〉−2ℓ ∈ L1

v(R
d), we have

∀ ξ ∈ R
d, ∀ t ≥ 0,

|ĥ(t, 0, ξ)| = |〈̂h〉(t, ξ)| =

∣∣∣∣
∫

Rd

〈h〉(t, v)m(v)m−1(v) e−iv·ξ dv

∣∣∣∣

≤ ‖〈h〉(t, ·)‖L2
v (m)

∫

Rd

m−2(v) dv

≤ C e−ελ∗t‖〈hin〉‖L2
v(m) ≤ C e−ελ∗t‖hin‖L2

xH
n
v

from which we readily conclude.

We now deal with k ∈ Z
d \ {0} and consider ε ∈ (0, ε0] where ε0 is given in Lemma 3.2.

Going back to the equality (3.18), we have:

(3.20)

eεt ĥ(t, k, ξ) = eεt exp

(
−ε

∫ t

0

∣∣e−εsξ + χε(s)k
∣∣2 ds

)
ĥin

(
k, e−εtξ + χε(t)k

)

−

∫ t

0
eεs exp

(
−ε

∫ s

0

∣∣e−εσξ + χε(σ)k
∣∣2 dσ

)
k ·

(
e−εsξ + χε(s)k

)

Ŵ (k) eε(t−s) ρ̂(t− s, k) M̂
(
e−εsξ + χε(s)k

)
ds =: T1 + T2.

We start by studying the terms of type exp
(
−ε

∫ t
0 |e

−εsξ + χε(s)k|
2
ds
)
. As previously,

we compute explicitly the integral inside it:

ε

∫ t

0

∣∣e−εsξ + χε(s)k
∣∣2 ds =

1− e−2εt

2
|ξ|2 +

(1− e−εt)2

ε
ξ · k

+

(
t

ε
+

1

2ε2
[
−e−2εt + 4e−εt − 3

])
|k|2.

Then using the following bound:

(1− e−εt)2

ε
|ξ · k| ≤

|ξ · k|

ε
≤

|k|2

ε2
+

|ξ|2

4
,
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we deduce:

ε

∫ t

0

∣∣e−εsξ + χε(s)k
∣∣2 ds ≥

1− 2e−2εt

4
|ξ|2 +

(
t

ε
+

1

2ε2
[
−e−2εt + 4e−εt − 5

])
|k|2

≥
1

ε

(
t−

5

ε

)
|k|2

where the last inequality holds for t ≥ ln(2)/(2ε) and in particular for t ≥ 6/ε and where
we used that −y2 + 4y − 5 ≥ −5 for any y ∈ [0, 1]. From this, we have:

∀ t ≥ 6/ε, exp

(
−ε

∫ t

0

∣∣e−εsξ + χε(s)k
∣∣2 ds

)
≤ e−t/(6ε)

and thus

(3.21) ∀ t ≥ 6/ε, eεt exp

(
−ε

∫ t

0

∣∣e−εsξ + χε(s)k
∣∣2 ds

)
≤ eεt e−t/(6ε) ≤ e−t/6

where we used that ε ∈ (0, 1/3]. Let us now estimate each term of (3.20). If t ≥ 6/ε, the
first term is easily treated using (3.21):

(3.22) |T1| ≤ C e−t/6 ≤ C 〈t〉2−n.

If 0 ≤ t ≤ 6/ε, we have

(3.23)

|T1| ≤ C 〈e−εtξ + χε(t)k〉
−n

≤ C 〈ξ〉2−n〈χε(t)k〉
2−n

≤ C 〈ξ〉2−n〈t〉2−n

where we used that χε(t) ≥ e−6t for 0 ≤ t ≤ 6/ε. Concerning the second one, we
decompose it into two parts:

T2 =

∫ t

0
1s≤6/ε e

εs exp

(
−ε

∫ s

0

∣∣e−εσξ + χε(σ)k
∣∣2 dσ

)
k ·

(
e−εsξ + χε(s)k

)

Ŵ (k) eε(t−s) ρ̂(t− s, k)M
(
e−εsξ + χε(s)k

)
ds

+

∫ t

0
1s≥6/ε e

εs exp

(
−ε

∫ s

0

∣∣e−εσξ + χε(σ)k
∣∣2 dσ

)
k ·

(
e−εsξ + χε(s)k

)

Ŵ (k) eε(t−s) ρ̂(t− s, k)M
(
e−εsξ + χε(s)k

)
ds

=: T21 + T22.

To handle the first term T21, we use the decay property of M̂ = M which in particularly
implies: ∣∣e−εsξ − χε(s)k

∣∣ M̂
(
e−εsξ − χε(s)k

)
≤ C 〈e−εsξ − χε(s)k〉

2−n.

and the estimate (3.2) so that for any 0 ≤ s ≤ 6/ε:

eε(t−s) |ρ̂(t− s, k)|
∣∣e−εsξ − χε(s)k

∣∣ M̂
(
e−εsξ − χε(s)k

)

≤ C 〈t− s〉2−n 〈t− s〉−2 〈e−εsξ − χε(s)k〉
2−n

≤ C 〈t〉2−n 〈s〉n−2 〈t− s〉−2 〈ξ〉n−2〈χε(s)k〉
2−n

≤ C 〈t〉2−n 〈ξ〉n−2 〈t− s〉−2
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where we used that χε(t) ≥ e−6s for 0 ≤ s ≤ 6/ε to get the last inequality. As a
consequence, we obtain:

(3.24)

T21 ≤ C 〈t〉2−n 〈ξ〉n−2

∫ 6/ε

0
〈t− s〉−2 ds

≤ C 〈t〉2−n 〈ξ〉n−2

∫ ∞

0
〈s〉−2 ds

≤ C 〈t〉2−n 〈ξ〉n−2.

The second term is treated thanks to (3.21), (3.2) and the fact that y 7→ |y|M(y) is
bounded on R

d:

(3.25)

T22 ≤ C

∫ t

0
e−s/6 〈t− s〉−n ds

≤ C 〈t〉−n

∫ ∞

0
e−s/6 〈s〉n ds

≤ C 〈t〉−n.

Gathering (3.22), (3.23), (3.24), (3.25), we conclude that (3.3) holds. �
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