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C. Aaron and A. Cholaquidis

July 5, 2017

Abstract

Given a sample of a random variable supported by a smooth compact manifold M ⊂ R
d,

we propose a test to decide whether the boundary of M is empty or not with no preliminary
support estimation. The test statistic is based on the maximal distance between a sample
point and the average of its kn−nearest neighbors. We prove that the level of the test can
be estimated, that, with probability one, the power is one for n large enough and that there
exists consistent decision rule. Heuristics for choosing a convenient value for the kn param-
eter and identify observations close to the boundary are also given. Finally we provide a
simulation study of the test.

Keyword: Geometric Inference, Boundary, Test, Nearest-Neighbors.

MSclass: 62G10,62H15.

1 Introduction

Given an i.i.d. sample X1, . . . , Xn of X drawn according to an unknown distribution PX on R
d,

geometric inference deals with the problem of estimating the support, M , of PX , its boundary,
∂M , or any possible functional of the support such as the measure of its boundary for instance.
These problems have been widely studied when PX is uniformly continuous with respect to the
Lebesgue measure, i.e. when the support is full dimensional. We refer to Chevalier (1976) and
Devroye and Wise (1980) for precursor works on support estimation, Cuevas and Fraiman (2010)
for a review on support estimation, Cuevas and Rodriguez-Casal (2004) for boundary estimation,
Cuevas et al. (2007) for boundary measure estimation, Berrendero et al. (2014) for integrated
mean curvature estimation or Aaron and Bodart (2016) for recognition of topological properties
having a support estimator homeomorphic to the support. The lower dimensional case (that
is, when the support of the distribution is a d′-dimensional manifold with d′ < d) has recently
gained relevance due to its connection with non-linear dimensionality reduction techniques (also
known as manifold learning), as well as persistent homology. See for instance Fefferman, et al
(2016), Niyogi et al. (2008), Niyogi et al. (2011). Considering support estimation it would be
natural to think that some of the proposed estimators (in the full dimensional framework) are
still suitable. For instance in Niyogi et al. (2008), assuming that M is smooth enough, it is
proved that, for ε small enough, the Devroye-Wise estimator M̂ε =

⋃n
i=1 B(Xi, ε) deformation

retracts to M and therefore the homology of M̂ε equals the homology of M (see Proposition 3.1
in Niyogi et al. (2008)). Considering boundary estimation, it is not possible to directly adapt
the “full dimensional” methods since in this case the boundary is estimated by the boundary of
the estimator. Unfortunately, when the support estimator is full dimensional (which is typically
the case, as for example in the Devroye-Wise estimator) this idea is hopeless (See Figure 1).
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Figure 1: A one dimensional set M with boundary (the two extremities of the line), sample
drawn on M and the associated Devroye-Wise M̂r estimator of M , note that ∂M̂r is far from
∂M

To our knowledge only one d′-dimensional support estimator exists and have only been stud-
ied recently, in the case of support with no boundary (see Aamari and Levrard (2016)). Thus
the classical plug-in idea of estimating the boundary of the support using the boundary of an
estimator can not be used.

Before trying to estimate the boundary of the support, in the lower dimensional case, one
has to be able to decide whether it has a boundary or not. The answer provides topological
information on the manifold that may be useful. For instance, if there is no boundary, the
support estimator proposed in Aamari and Levrard (2016) can be used. Moreover, a compact
, simply connected manifolds without boundary is homomorphic to a sphere, as it follows from
the well known (and now proved) Poincaré’s conjecture. When the test decides the presence
of boundary one can naturally want to estimate it, or at least estimate the number of its con-
nected components, which is an important topological invariant (for instance the surfaces, i.e.
the 2−dimensional manifolds, are topologically determined by there orientability, there Euler
characteristic and the number of the components of the boundary).

The aim of this paper is to provide a statistical test to decide whether the boundary of the
support is empty or not and, when the answer is affirmative, to provide an heuristic method to
identify observations close to the boundary and estimate the number of connected components
of the boundary.

This work is organized as follows. In Section 2 we introduce the notation used throughout
the paper. In Section 3 we present the test statistic, the associated theoretical results and a way
to select suitable values for the parameter kn and perform a small simulation study. In Section
4 we present an heuristic algorithm that identifies points located close to the boundary and
estimates the number of connected components of the boundary. Finally, Section 5 is devoted to
the proofs.

2 Notations and geometric framework

If B ⊂ R
d is a Borel set, we will denote by |B| its Lebesgue measure and by B its closure. The

k-dimensional closed ball of radius ε centered at x will be denoted by Bk(x, ε) ⊂ R
d (when k = d

the index will be removed) and its Lebesgue measure will be denoted as σk = |Bk(x, 1)|. When
A = (aij), (i = 1, . . . ,m , j = 1, . . . , n) is a matrix, we will write ‖A‖∞ = maxi,j |aij |. The
transpose of A will be denoted A′. For the case n = m, we will denote by det(A) and tr(A) the

determinant and trace of A respectively. Given a C2 function f , ~∇f denotes its gradient and Hf

its Hessian matrix. We will denote by Ψd′(t) the cumulative distribution function of a χ2(d′)
distribution and Fd′(t) = 1−Ψd′(t).

In what follows M ⊂ R
d is a d′-dimensional compact manifold of class C2 (also called d′-

regular surface of class C2). We will consider the Riemannian metric on M inherited from R
d.
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When M has a boundary, as a manifold, it will be denoted by ∂M . For x ∈ M , TxM denotes
the tangent space at x and ϕx the orthogonal projection on the affine tangent space x + TxM .
When M is orientable it has a unique associated volume form ω such that ω(e1, . . . , ed′) = 1 for
all oriented orthonormal basis e1, . . . , ed′ of TxM . Then if g : M → R is a density function, we
can define a new measure µ(B) =

∫

B
gω, where B ⊂ M is a Borel set. Since we will only be

interested in measures, which can be defined even if the manifold is not orientable although in a
slightly less intuitive way, the orientability hypothesis will be dropped in the following.

3 The test

3.1 Hypotheses, test statistics and main results

Throughout this work X1, . . . , Xn is an i.i.d. sample of a random variable X , whose probability
distribution, PX , fulfills the condition P and that the sequence (kn) fulfills the condition K:

P. A probability distribution PX fulfills condition P if there existsM a compact d′-dimensional
manifold of class C2 and f a function such that:

1. ∂M is either empty or of class C2,

2. for all x ∈ M , f(x) ≥ f0 > 0, f is Kf−Lipschitz continuous and, for all A ⊂ M ,
PX(A) =

∫

A
fω. In the following f1 = maxx∈M f(x).

K. A sequence {kn}n ⊂ R fulfills condition K if: kn/(ln(n))
4 → ∞ and (ln(n))k1+d′

n /n→ 0.

Definition 1. Given an i.i.d. sample X1, . . . , Xn of a random variable X with support M ⊂ R
d,

where M is d′-dimensional manifold with d′ ≤ d, we will denote by Xj(i) the j-nearest neighbor
of Xi. For a given sequence of positive integers kn, let us define, for i = 1, . . . , n,

ri,kn = ‖Xi −Xkn(i)‖ ; rn = max
1≤i≤n

ri,kn ; Xi,kn =







X1(i) −Xi

...
Xkn(i) −Xi






; Ŝi,kn =

1

kn
(Xi,kn)

′(Xi,kn).

Consider now Qi,kn the d′-dimensional plane spanned by the d′ eigenvectors of Ŝi,kn associated

to the d′ largest eigenvalues of Ŝi,kn . Let X∗
k(i) be the normal projection of Xk(i) −Xi on Qi,kn

and Xkn,i =
1
kn

∑kn

j=1X
∗
j(i).

Let us define, δi,kn = (d′+2)kn

r2i,kn
‖Xkn,i‖2, for i = 1, . . . , n. Then the proposed test statistic is:

∆n,kn = max
i
δi,kn .

Let us explain the heuristic behind the test we will propose. It will be proved that, un-
der conditions P. and K. we have rn

a.s.−→ 0. Let us consider an observation Xi0 such that
d(Xi0 , ∂M) ≥ ri0,kn . Regularity of the manifold and continuity of the density given by condition
P will entail that the sample {r−1

i0,kn
X∗

1(i0)
, . . . , r−1

i0,kn
X∗

kn(i0)
} “converges” toward a uniform sam-

ple on Bd′(0, 1) and then ‖Xkn,i0‖r−1
i0,kn

a.s.−→ 0. It will also be proved that δi0,kn −→ χ2(d
′) in

distribution. If ∂M = ∅ all the observations satisfies d(Xi, ∂M) ≥ ri,kn . Even though the {δi,kn}i
are not independent we will obtain an asymptotic result on the ∆n,kn that involves the χ2(d

′) dis-
tribution. If ∂M 6= ∅ and we consider a point Xi0 such that d(Xi0 , ∂M) ≪ ri0,kn (conditions P.
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and K. will ensure the a.s. existence of such a point) the sample {r−1
i0,kn

X∗
1(i0)

, . . . , r−1
i0,kn

X∗
kn(i0)

}
“converges” to a uniform sample on Bd′(0, 1) ∩ {x : 〈u, x〉 ≥ 0} and ‖Xkn,i0‖r−1

i0,kn

a.s.−→ ad′ > 0.
Asymptotic behavior of the test statistic is given in the following four theorems. The first theo-
rem provides a bound for the p-value when testing H0 : ∂M = ∅ versus H1 : ∂M 6= ∅ using the
test statistic ∆n,kn and rejection region {∆n,kn ≥ tn} for some suitable tn. The second theorem
states that, under H0, the empirical distribution of δi,kn converges in mean square towards a
χ2(d′) distribution. We will use this result to choose the parameter kn (see Section 3.2). The
third theorem states that, with probability one, the power of the test is one for n large enough.
The last one provides a consistent decision rule.

Theorem 1. Let kn be a sequence fulfilling condition K. Let us assume that X1, . . . , Xn is an
i.i.d. sample drawn according to an unknown distribution PX which fulfills condition P. The test

{

H0 : ∂M = ∅
H1 : ∂M 6= ∅ (1)

with the rejection zone
Wn =

{

∆n,kn ≥ F−1
d′ (9α/(2e3n))

}

, (2)

fulfills: PH0
(Wn) ≤ α+ o(1).

Theorem 2. Let kn be a sequence fulfilling condition K. Let us assume that X1, . . . , Xn is
an i.i.d. sample drawn according to an unknown distribution PX which fulfills condition P with
∂M = ∅. If we define

Ψ̂n,kn(x) =
1

n

n
∑

i=1

I{δi,kn≤x},

then, for all x ∈M ,

E
(

Ψ̂n,kn(x) −Ψd′(x)
)2 → 0 as n→ ∞.

Theorem 3. Let kn be a sequence fulfilling condition K. Let us assume that X1, . . . , Xn is an
i.i.d. sample drawn according to an unknown distribution PX which fulfills condition P. The test
(1) with rejection zone (2) has power 1 for n large enough.

Theorem 4. Let kn be a sequence fulfilling condition K. Let us assume that X1, . . . , Xn is an
i.i.d. sample drawn according to an unknown distribution PX which fulfills condition P. Then,
with probability one, the decision rule: ∂M = ∅ if and only if ∆n,kn ≤ βn with λ lnn ≤ βn ≤ µkn

with λ > 4 and µ ≤ (d′ + 2)

(

Γ
(

d′+2

2

)

√
πΓ

(

d′+3

2

)

)2

is consistent.

3.2 Automatic choice for k
n

Theorem 2 ensures that when ∂M = ∅, the empirical distribution of δi,kn converges to a χ2(d′)
distribution. One can easily conjecture that when ∂M 6= ∅ the distribution of δi,kn conditioned
to the points Xi “far enough” from the boundary also converges to a χ2(d′) distribution. We
define dχ2(k) as follows:

i. If the estimated p-value (using k-nearest neighbors) is greater than α (H0 is decided)
compute:

dχ2(k) =
1

n

n
∑

i=1

∣

∣Ψ̂n,k(δi,k)−Ψd′(δi,k)
∣

∣.
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ii. If the estimated p-value is less than α, first identify the points “far from the boundary” as
the observations i ∈ Ik = {Fd′(δi,k) ≥ α}. Then, if we define

ψ̂α,n,k(x) =
1

#Ik

∑

i∈Ik

I{δi,k≤x},

compute

dχ2(k) =
1

#Ik

∑

i∈Ik

∣

∣Ψ̂α,n,k(δi,k)−Ψα,d′(δi,k)
∣

∣,

where Ψα,d′(x) = (1− α)−1Ψd′(x)I{Ψd′ (x)≤1−α}.

Finally choose k = argminkdχ2 (k). In practice we choose α = 0.05.

3.3 Discussion on the hypotheses

We assume that the dimension, d′, is known. In practice it can be estimated using a dimen-
sion estimation method. Estimation of the intrinsic dimension has been widely studied, (see
Camastra and Staiano (2016) for a review).

The noiseless assumption, i.e., the support is a lower dimensional manifold, can not be
changed by a noisy model, that is the support is “around” a lower dimensional manifold, with
our approach. To see this, let us consider that the support is M ⊕ εB = {x, d(x,M) ≤ ε} (with
M a lower dimensional manifold) our test will asymptotically decide that M ⊕ εB is a manifold
with boundary. However this case is not hopeless. Indeed, if were able to find a functional
sequence ϕn such that ϕn(B(M, ε)) ⊂ B(M, εn) with εn → 0 “quickly enough” (i.e. such that

εn/(mini ri,kn)
a.s.−→ 0) and such that the distribution of ϕn(X) converges toward a distribution

that satisfies the condition P, one could probably apply our test on the sample {Y1, . . . , Yn} where
Yi = ϕn(Xi). Note that such a “de-noising” process is a current research topic, see for instance
Aaron et al. (2017) where a de-noising process is proposed (unfortunately with no guarantee on
the existence and regularity of the limit distribution).

Smoothness of the support is necessary for the proposed test. One can imagine that, when
the support has no boundary but is not smooth enough, the proposed test will reject the null
hypothesis. Indeed, let us consider the case d = 2 and a uniform sample on the boundary of
the unit square [0, 1]× [0, 1], see Figure 2 left. For observations near a corner, the normalization
parameter should be ri,kn/

√
2 instead of ri,kn . In a polyhedron, when a corner becomes acute,

the local PCA fails to estimate a “tangent” plane at the corner, see Figure 2 right.

Figure 2: Behavior for polyhedron. When the angle does not allow to estimate the “tangent”
plane the normalization is not suitable. When the angle is too acute the projection is not
accurate. The manifold, and sample points are in blue, the estimated tangent plane and projected
observations are in black.

The continuity of the density is also necessary: if this is not the case, we may reject H0

for any supports with or without boundary. In order to see this, let us consider the circular
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support M = {(x, y) ∈ R
2 : x2 + y2 = 1} with a “density” 1/(4π) when x ≤ 0 and 3/(4π)

when x > 0. In this case it can be proved that ∆n,kn/kn → 1/2 (considering points located
near the discontinuity points) which also correspond to a “boundary-type” behavior. Although
we will assume in general that f is bounded away from zero, this can weakened by asking that
f(x) ≥ d(x, ∂M)α for some α > 0, for the sake of simplicity in the notation, and length of
the calculus we kept the hypothesis f > 0. By contrast, the C2 smoothness of the boundary
(if it exists), can be weakened. The proofs of Theorems 3 and 4 are similar (just a bit more
complicated to write) when only a part of the boundary is C2 (namely if there exists x ∈ ∂M
and r > 0 such that ∂M ∩B(x, r) is a C2 manifold).

3.4 Numerical simulations

We now present some results for different manifolds. First, we study the behavior of our test
for a sample with uniform distribution on Sd′ , the d′−dimensional sphere in R

d′+1 and on S+
d′

the d′−dimensional half-sphere in R
d′+1. We also present some results for manifolds with non

constant curvature, such as the trefoil knot (d′ = 1 and d = 3), a spiral, a Möebius ring, and a
torus (for these two last examples the samples are not uniform).

First we observe that the proposed rule to find a suitable value for k is practically efficient.
Here we choose the sample size n = 3000. In Figure 3 we present results for supports without
boundary. Two curves are plotted, the estimated p−value (red) and dχ2 (blue). In order to have
comparable curves dχ2 has been artificially normalized to be in [0, 1]. Notice that each time, at
the selected value for k, i.e. k = argmin(dχ2 ), the estimated p−value is large enough to accept
H0 (the support has no boundary). In Figure 4 we present the result of the same experiment but
for support with boundary. On the first line of the figure the curves of the estimated p−value
and dχ2 are presented. Here also the choice of k = argmin(dχ2 ) allows us to decide well (i.e.
here to reject H0). On the second line of the figure we draw the sample point and underline the

points Xi such that 2e3

9 Fd′(δi,k) ≤ 0.05 that is the one that are expected be located “near to”
the boundary.

S1 S2 trefoil knot torus
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Figure 3: Some examples for support without boundary support. Abscissa: k, blue: dχ2 (k), red:
p̂v(k).

In Table 3.4 we present estimated level and power of the proposed test. For each example
and each sample size we drew 2000 samples. It can be observed that, when the support has no
boundary the percentage of rejection (i.e. the level) is less than 5% if n ≥ 500 for every example.
When the support has boundary, the percent of rejection (i.e. here the power) converges quickly
to 100%. To shorten the computational time we chose kn by averaging the one obtained with
the dχ2 criteria with 50 samples (for each example and each sample size). The selected kn are
given in the Table.
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Figure 4: Some examples for support with boundary. First line: Abscissa: k, blue: dχ2(k),
red: p̂v(k). Second line: the associated sample and points that are identified as “close to the
boundary”

n = 100 500 103 2.103 n = 100 500 103 2.103

S1 k = 15 k = 20 k = 35 k = 40 S+
1 k = 15 k = 20 k = 35 k = 40

1, 45% 1, 05% 1% 0, 9% 89, 25% 60, 7% 97, 1% 99, 3%

S2 k = 15 k = 20 k = 25 k = 30 S+
2 k = 17 k = 30 k = 50 k = 50

3% 1, 6% 1, 4% 1, 35% 84, 8% 100% 100% 100%

S3 k = 6 k = 15 k = 17 k = 25 S+
3 k = 6 k = 10 k = 15 k = 25

1, 2% 1, 9% 1, 35% 1, 85% 2, 35% 5, 55% 34, 45% 99, 95%

S4 k = 5 k = 10 k = 17 k = 17 S+
4 k = 5 k = 10 k = 80 k = 80

0, 75% 2, 3% 1, 15% 3, 15% 1% 10, 8% 100% 100%

Trefoil k = 8 k = 15 k = 25 k = 30 Spire k = 15 k = 25 k = 25 k = 40
Knot 4, 7% 2, 4% 2, 15% 1, 45% 55, 5% 92, 4% 83, 9% 100%

Torus k = 8 k = 15 k = 17 k = 20 Möebius k = 8 k = 15 k = 20 k = 40
5, 6% 5% 2, 65% 1, 75% ring 12, 2% 68, 75% 98, 65% 100%

Table 1: For different samples, the chosen kn value and the % of times where H0 is rejected (on
2000 replications).

4 Empirical detection of points close to the boundary and

estimation of the number its the connected components

A natural second step after deciding that the support has a boundary is to estimate it or at least
identify observations “close” to it. A third step, to get an insight of the topological properties
of the boundary could be to estimate the number of its connected components. In this section
we will empirically tackle both problems.

4.1 Detection of “boundary observations”

From Theorem 1, the natural idea is to select {Xi : δi,kn ≥ F−1
d′ (9α/(2ne3))} as “boundary

observation”. However, as it is illustrated in Figure 4, sometimes it gives “too many” boundary
observations (as in the half sphere) and sometimes “too few”(as in the Möebius ring). To
overcome this, we will adapt, using tangent spaces, the method given in Aaron et al. (2017), to

7



detect “boundary balls”.
Introduce φx is the orthogonal projection on the tangent plane and choose rx > 0 small

enough to ensure that ϕx is one to one on B(x, rx) ∩M . As ∂ϕx(M ∩ B(x, rx)) = ϕx(∂M ∩
B(x, rx)) ∪ ϕx(M ∩ ∂B(x, rx)) we have:

x ∈ ∂M ⇔ 0 ∈ ∂ϕx(M ∩B(x, rx)). (3)

This suggest the following extension of the definition of boundary ball introduced in Aaron et al.
(2017) using the notations introduced in Definition 1.

Definition 2. Xi is the centre of a (kn, εn)-tangential boundary ball if

ri = max{‖x‖ : ‖x‖ ≤ ‖x−X∗
j(i)‖, ∀ 1 ≤ j ≤ kn} ≥ εn.

Indeed, recall first that X∗
j(i) is a PCA estimator of ϕXi (Xj(i)) and that X∗

1(i) = 0 so that,

by a plug-in of (3) we decide that Xi is a boundary point of M if 0 is a boundary point of an
estimator of ϕXi (Xj(i)) that is if 0 = X∗

1(i) is the centre of a boundary ball of {X∗
1(i), . . . , X

∗
kn(i)

}.
The choice of kn in section 3.2 is still suitable since it allows the local PCA procedure to converge.
We can also propose to chose the εn = 2maxi minj ‖Xi−Xj‖ as proposed in Aaron et al. (2017),
then to identify boundary points as the center of (kn, εn)-tangential boundary balls.

4.2 Building a “boundary graph”

Let us introduce Ym = {Y1, . . . , Ym} the set of the centers of the (kn, εn)-tangential boundary
balls. We aim to construct a graph with vertices Ym, building edges between the vertexes such
that the obtained graph capture the shape of the boundary. To do that we are going to “connect”
each Yi to the Yj such that ‖Yi − Yj‖ ≤ ri, as usual the choice of ri depends on a balance, ri
should be small enough to connect a point only with its neighbors but also large enough to allows
to capture the global structure. In our case we are going to use the fact that that, under our
hypotheses, if ∂M 6= ∅ then it is a C2, (d′ − 1)-dimensional manifold without boundary. In other
terms for any point Yi, {Yj , ‖Yi − Yj‖ ≤ ri} should look like an uniform drawn on the d′ − 1
dimensional ball Bd′−1(Yi, ri) and as a consequence Yi should be “surrounded” by the points of
{Yj , 0 < ‖Yi − Yj‖ ≤ ri}.

We propose to say that Yi is “surrounded” by {Yj , 0 < ‖Yi − Yj‖ ≤ ri} if πi,ri(Yi) belong
to the interior of the convex hull of {πi,ri(Yj), 0 < ‖Yi − Yj‖ ≤ ri}, where πi,ri is the normal
projection on the (d′−1) first axis of a PCA computed on {Yj, ‖Yi−Yj‖ ≤ ri}. Then we propose
to chose ri as the smallest value such that all Yi is “surrounded” by {Yj, 0 < ‖Yi − Yj‖ ≤ ri}.

4.3 Some experiments

To illustrate the procedures introduced before we considered the Möebius ring and the truncated
cylinder with a hole in a cap, (see Figure 4.3). Both are 2-dimensional sub-manifolds of R3. The
boundary of the first one has 1 connected component while the boundary of the second one has 3.
The parameter k is chosen using the method proposed in Section 3.1 and as proposed in previous
section we choose ε = 2maximinj ‖Xi − Xj‖ for the tangential boundary ball detection.. As
expected, in the cylinder the sample size required to have a “coherent” graph is higher.

Second we consider uniform draws of sizes n ∈ {500, 1000, 2000, 4000, 8000, 16000}, on the
(d − 1)-dimensional half sphere {x21 + . . . + x2d = 1, xd ≥ 0} ⊂ R

d for d = {3, 4, 5}. Let us
define d1 = maxx∈∂M mini ‖x − Yi‖ and d2 = maxi minx∈∂M ‖x − Yi‖. They are estimated via
Monte-Carlo method drawing 50000 points on ∂M . For each value of n and d, the box-plot over
50 repetitions of the p-values of the test and the estimations of d1 and d2 are shown in Figures
6, 7 and 8, for d = 3, 4 and 5 respectively.
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Figure 5: Boundary ball detection and associated graph for different sample sizes. In the first row
the Möebius Ring and in the second the truncated cylinder with a hole in a cap. Observations
are represented as blue dots while boundary centers are large black dots, the graph is represented
as black lines
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Figure 6: d = 3, in abscissa 1 : (n = 500, k = 25), 2 : (n = 1000, k = 25), 3 : (n = 2000, k =
30),4 : (n = 4000, k = 40), 5 : (n = 8000, k = 50), 6 : (n = 16000, k = 50)

5 Proofs

5.1 Preliminary results

In this section we settle some geometric definitions, notation and properties of compact and
smooth enough manifolds that will be used in the rest of the paper. Even though some of them
are well known we will give the proofs in the appendix, for the sake of completeness.

5.1.1 Geometric Background

Let M ⊂ R
d be a compact C2 d′-manifold with either ∂M = ∅ or ∂M is a C2 (d′ − 1)-manifold.

For x ∈ M we denote NxM the normal plane of M at x. For x ∈ ∂M we denote ux the unit
normal outer vector to ∂M . Let us denote ϕx : M → x + TxM the orthogonal projection onto
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Figure 7: d = 4, in abscissa 1 : (n = 500, k = 30), 2 : (n = 1000, k = 50), 3 : (n = 2000, k =
50),4 : (n = 4000, k = 60), 5 : (n = 8000, k = 70), 6 : (n = 16000, k = 70)
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Figure 8: d = 5, in abs ice 1 : (n = 500, k = 50), 2 : (n = 1000, k = 70), 3 : (n = 2000, k = 80),4 :
(n = 4000, k = 90), 5 : (n = 8000, k = 100), 6 : (n = 16000, k = 100)

the tangent affine plane.

Proposition 1. Let M ⊂ R
d be a compact C2, d′-dimensional manifold with either ∂M = ∅ or

∂M a C2 is a (d′ − 1)-dimensional manifold. Then, there exists rM > 0 and cM > 0 such that,

1. For all x ∈M , ϕx is a C2 bijection from M ∩B(x, r) to ϕx

(

M ∩B(x, r)
)

for all r ≤ rM .

2. For all ‖x− y‖ ≤ rM (x ∈M and y ∈ x+ TxM), let Jx(y) be the Jacobian matrix of ϕ−1
x

and Gx(y) =
√

det(J ′
x(y)Jx(y)), then |Gx(y)− 1| ≤ cM‖x− y‖

3. For all x, y ∈M , ‖x− y‖ ≤ rM then ‖ϕx(y)− y‖ ≤ cM‖x− ϕx(y)‖2 ≤ cM‖x− y‖2

4. For all x ∈M , if d(x, ∂M) ≥ r:

B(x, r − cMr
2) ∩ (x + TxM) ⊂ ϕx(B(x, r) ∩M) ⊂ B(x, r) ∩ (x+ TxM). (4)

5. For all x ∈ ∂M , if d(x, ∂M) < r, let us define H−
x = {y : 〈y − x, ux〉 ≤ −cMr2} and

H+
x = {y : 〈y − x, ux〉 ≤ cMr

2} then,

H−
x ∩B(x, r − cMr

2) ∩ (x+ TxM) ⊂ ϕx(B(x, r) ∩M) ⊂ H+
x ∩B(x, r) ∩ (x+ TxM). (5)
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Let us recall the change of variable formula :

V ⊂ B(x, r0,M ) ⇒ µ(V ) =

∫

V

fdw =

∫

ϕx(V )

f(ϕ−1
x (y))

√

detGx(y)dy. (6)

From (6) and Proposition 1 we will prove (see Section 6.2):

Corollary 1. Let X1, . . . , Xn be an i.i.d. sample of X, a random variable whose distribution PX

fulfills condition P. Then, there exist positive constants rM , A, B and C such that: if r ≤ rM ,
then

1. For all x ∈M , Ard
′ ≤ PX(B(x, r)) ≤ Brd

′

.

2. For all x ∈M such that d(x, ∂M) ≥ r,
∣

∣PX(B(x, r)) − f(x)σd′rd
′
∣

∣ ≤ Crd
′+1.

That in turns entails the following Lemma

Lemma 1. Let X1, . . . , Xn be an i.i.d. sample of X, a random variable whose distribution
PX fulfills condition P. Let kn be a sequence of positive integers such that kn → +∞ and
(ln(n))k1+d

n /n→ 0. Then, knrn
a.s.→ 0, where rn was introduced in Definition 1.

5.1.2 Local PCA process

The following result, whose proof is given in Section 6.3, useful to obtain the uniform conver-
gence rate of the local PCA process to the tangent planes. Let us denote Md(R) the d × d

matrices with coefficients in R. Let Id′,d ∈ Md(R) be the block matrix Id′,d =

(

Id′ 0
0 0

)

.

For a symmetric matrix S ∈ Md(R) let us denote S = QS∆SQ
′
S, ∆S being diagonal with

(∆S)1,1 ≥ (∆S)2,2 ≥ . . . ≥ (∆S)d,d and QS is the matrix containing (in column) an orthonor-
malized basis of eigenvectors of S. Introduce now PS,d′ = QSId′,dQ

′
S that is the matrix of the

the orthogonal projection on the plane spanned by the d′ eigenvectors associated to the d′ largest
eigenvalues of S. Notice that PId′,d,d

′ = Id′,d

Proposition 2. Let ∆ ∈ Md′(R) be a diagonal matrix whose eigenvalues, λ, fulfills that there

exists λ0 > 0, such that λ ≥ λ0. Let D =

(

∆ 0
0 0

)

∈ Md(R
d). Let us define c0 = 3d3/2/(2λ0).

There exists ε0 (depending only on λ0 and d) such that for all ε ≤ ε0, and all symmetric matrix
S fulfilling ‖S −D‖∞ ≤ ε we have: ‖(PS,d′ − Id′,d)X‖2 ≤ c0ε‖X‖2, for all X ∈ R

d.

5.2 Proof of Theorems 1 and 2

In order to state now two probabilistic results we will introduce the following functions, for ε > 0
and k, d ∈ N,

Hk(ε) = exp






− kε

2
3 (d+ 2)−

4
3

d2
(

k
1
3 + (d+ 2)

1
3 ε

1
3

)2






, Rk(ε) = exp

(

− k
1
3 ε

2
3

d2(d+ 2)
4
3

)

,

Gk(t) = min
ε∈[0,t]

(

2e3

9
Fd(t− ε) + (d2 + d)Hk(ε) + 2dRk(ε)

)

.

Proposition 3. Let kn be a sequence such that kn ≫ (lnn)4. Then

i. For all λ > 2, nGkn(λ ln(n)) → 0.
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ii. If we define tn(α) = F−1(9α/(2e3n)), then nGkn(tn(α) + o(1)) ≤ α+ o(1).

iii. For all λ > 4,
∑

n nGkn(λ lnn) < +∞.

Proof. If we use a standard expansion of the incomplete Gamma function we get Fd(x) ∼
e−x/2(1 + x/2)d/2−1/Γ(d/2). By definition, for any sequence εn ∈ [0, tn(α)];

Gkn(tn(α)) ≤
(

2e3

9
Fd(tn(α) − εn) + (d2 + d)Hkn(εn) + 2dRkn(εn)

)

.

Finally i. and ii. follow by taking the sequence εn = ε for all n, and iii. follows from εn =
λ−4
2 ln(n).

Lemma 2. Let X1, . . . , Xn be an i.i.d. sample uniformly drawn on B(x, r) ⊂ R
d and let us

denote Xn = 1
n

∑n
i=1Xi. We have:

(d+ 2)n‖Xn − x‖2
r2

L−→ χ2(d), (7)

and, for all n > d

P

(

(d+ 2)n‖Xn − x‖2
r2

≥ t

)

≤ Gn(t). (8)

Proof. Taking X−x
r we can assume that X has uniform distribution on B(0, 1).

If we write X = (X.,1, . . . , X.,d) then the density of X.,i is

f(x) =
1

σd
σd−1(1− x2)(d−1)/2

I[−1,1](x), (9)

and then

Var(X.,i) =

∫ 1

−1

x2
1

σd
σd−1(1− x2)(d−1)/2dx =

σd−1

σd
B
(

3/2, (d+ 1)/2
)

,

where B(x, y) is the Beta function. If we use that σd = πd/2

Γ( d
2
+1)

and B(x, y) = Γ(x)Γ(y)
Γ(x+y) , we get

σd−1

σd
B(3/2, (d+ 1)/2) =

Γ(d+2
2 )

√
πΓ(d+1

2 )
× Γ(32 )Γ(

d+1
2 )

Γ(d+4
2 )

=
Γ(d+2

2 )Γ(32 )√
πΓ(d+4

2 )
.

Since Γ(z + 1) = zΓ(z) and Γ(1/2) =
√
π we obtain that

σd−1

σd
B(3/2, (d+ 1)/2) =

√
π 1

2√
π d+2

2

=
1

d+ 2
.

Now, to prove (7) observe that

(d+ 2)n‖Xn‖2 =

(

√

n(d+ 2)
1

n

n
∑

i=1

Xi,1

)2

+ · · ·+
(

√

n(d+ 2)
1

n

n
∑

i=1

Xi,d

)2

.

For all k = 1, . . . , d, by the Central Limit Theorem,
(

√

n(d+ 2) 1n
∑n

i=1Xi,k

)2
L−→ N(0, 1)2.

This, together with the independence of the Yk =
(

√

n(d+ 2) 1n
∑n

i=1Xi,k

)2

concludes the proof
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of (7).

In order to prove (8), let us denote by Ŝ2
n = 1

n

∑n
i=1XiX

′
i the empirical covariance matrix of

the observations and by Σ2 = 1
d+2Id the real covariance matrix. We can express our statistic as

: nX
′
nΣ

−2Xn. Now if we use equation (7) in Bertail et al. (2008), for all n > d

P

(

nX
′
nŜ

−2
n Xn > t

)

≤ 2e3

9
Fd(t). (10)

Let us denote Γn = Σ−2 − Ŝ−2
n . We have

P
(

nX
′
nΣ

−2Xn > t
)

= P
(

nX
′
nŜ

−2
n Xn + nX

′
nΓnXn > t

)

,

then,

P
(

nX
′
nŜ

−2
n Xn > t

)

≤ min
ε∈[0,t]

(

P
(

nX
′
nŜ

−2
n Xn ≥ t− ε

)

+ P
(

nX
′
nΓnXn > ε

)

)

and applying (10),

P
(

nX
′
nΣ

−2Xn > t
)

≤ min
ε∈[0,t]

(

2e3

9
Fd(t− ε) + P

(

nX
′
nΓnXn > ε

)

)

. (11)

In order to prove (8), it remains to bound P(nX
′
nΓnXn > ε). First with a rough bound we

get nX
′
nΓnXn ≤ d2n‖Γn‖∞‖Xn‖2∞. Thus

P
(

nX
′
nΓnXn > ε

)

≤ P(d2n‖Γn‖∞‖Xn‖2∞ > ε),

and then,

P
(

nX
′
nΓnXn > ε

)

≤ min
a>0

(

P (‖Γn‖∞ > a) + P

(

‖Xn‖2∞ >
ε

nd2a

))

. (12)

Now, let us bound P(‖Γn‖∞ > a). If we denote En = Σ2 − Ŝ2
n, then, applying Hoeffding’s

inequality for all i, j we get that, for all a′ > 0, P(|Ei,j | > a′) ≤ 2 exp(−na′2) and so:

P(‖En‖∞ > a) ≤ d(d+ 1) exp(−na2), (13)

where we have used that En is symmetric and the maximum value of the d(d + 1)/2 terms is
considered in the norm. Notice now that, if ‖En‖∞ < (d(d+ 2))−1, then:

Ŝ2
n =

1

d+ 2

(

Id − (d+ 2)En

)

=⇒ Ŝ−2
n = (d+ 2)

+∞
∑

k=0

(d+ 2)kEk
n.

Finally, using that ‖Ek
n‖∞ ≤ dk‖En‖k∞, we get

‖Γn‖∞ ≤ d(d+ 2)2‖En‖∞
1− d(d+ 2)‖En‖∞

. (14)

Therefore, for all a > 0,

‖Γn‖ > a if and only if ‖En‖∞ >
a

d(d + 2)(a+ d+ 2)
. (15)

Since a > 0 we have a
d(d+2)(a+d+2) ≤ 1

d(d+2) . Combining (13) and (14) we obtain:

P(‖Γn‖∞ > a) ≤ d(d+ 1) exp

(

− na2(d+ 2)−2

d2(a+ d+ 2)2

)

. (16)
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To finish, we perform the same kind of calculus on P(‖Xn‖2∞ > ε/(nd2a)). By Hoeffding’s

inequality, for all i: P(X .,i > b) ≤ 2 exp(−nb2). Now taking b =
√

ε/(nd2a) we obtain P(X
2

.,i >

ε/(nd2a)) ≤ 2 exp(−ε/(d2a)). Finally, we get P(‖Xn‖2∞ > ε/(nda) ≤ 2d exp(−ε/(d2a)). This
and (16) changes (12) into:

P(nX
′
nΓnXn > ε) ≤ min

a>0

(

d(d+ 1) exp

(

− na2(d+ 2)−2

d2(a+ d+ 2)2

)

+ 2d exp
( −ε
d2a

)

)

.

Taking a = ((d+2)4ε/n)1/3, we get P(nX
′
nΓnXn > ε) ≤ d(d+1)Hn(ε)+2dRn(ε). Combining

this and (11), this concludes the proof.

Lemma 3. Let X1, . . . , Xn be an i.i.d. sample drawn according to a distribution PX which fulfills
condition P, with ∂M = ∅. Then there exists a constant Ad such that

X∗
kn(i)

= (Id + Ei,n)ϕXi (Xkn(i))−Xi and max
i

‖Ei,n‖∞ ≤ Ad

√

ln(n)

kn
e.a.s.

Proof. By Hoeffding’s inequality we have that, for all i:

P
(

‖r−2
i,kn

Ŝi,kn − r−2
i,kn

Si‖∞ ≥ a
)

≤ 2d2 exp(−2a2kn),

where Si = E(Y ′Y | ‖Y ‖ ≤ ri,kn) with Y = X −Xi and Ŝi,kn as in Definition 1. Then

P
(

∃i : ‖r−2
i,kn

Ŝi,kn − r−2
i,kn

Si‖∞ ≥ a
)

≤ n2d2 exp(−2a2kn).

Now if we apply the Borel-Cantelli Lemma with a =
√

3 ln(n)
2kn

we get that, with probability one,

for n large enough,

‖r−2
i,kn

Ŝi,kn − r−2
i,kn

Si‖∞ ≤
√

3 ln(n)

2kn
for all i = 1, . . . , n. (17)

Let us denote by Pi the matrix whose first d′ columns form an orthonormal base of TXiM ,
completed to obtain an orthonormal base of Rd. By Lemma 1 rn → 0. For n large enough,
combining Proposition 1 points 3. and 4. and (6), there exists c such that with probability one,
for n large enough,

for all i :
∥

∥

∥r−2
i,kn

Si −
1

d′ + 2
P ′
iJd′Pi

∥

∥

∥

∞
≤ crn , where Jd′ =

(

Id′ 0
0 0

)

. (18)

Now, (17) and (18) give that, with probability one, for n large enough and for all i = 1, . . . , n.

∥

∥

∥

∥

r−2
i,kn

Ŝi,kn − 1

d′ + 2
P ′Jd′P

∥

∥

∥

∥

∞
≤
√

3 ln(n)

2kn
+ crn =

√

3 ln(n)

2kn
(1 + o(1)). (19)

In what follows we consider n large enough to ensure (19), and εn =
√

3 ln(n)
2kn

+ crn ≤
1

4
√
2d(d′+2)

. Since (19) holds for all i, we can remove the index i in the matrices and vectors and

assume that i is fixed. For ease of writing (up to a change of base) we can assume that P = Id,
then

∥

∥

∥

∥

r−2
kn
Ŝkn − 1

d′ + 2
Jd′

∥

∥

∥

∥

∞
≤ εn.

It only remains to apply Proposition 2.
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5.3 Proof of Theorems 1 and 2

Theorems 1 and 2 follows from the following Lemma.

Lemma 4. Let (kn) be a sequence which fulfills condition K and X1, . . . , Xn an i.i.d. sample
drawn according to a distribution PX which fulfills condition P, with ∂M = ∅. If rn is as in
Definition 1, then for i = 1, . . . , n, we can built δ∗i,kn

such that:

i. δi,kn = δ∗i,kn
+ εi,n,

ii. P(δ∗i,kn
≤ t|rn < 1/kn) = Ψn(t) → 1− Fd′(t),

iii. P(δ∗i,kn
> t|rn < 1/kn) ≤ Gkn(t),

iv.
√

ln(n)maxi |εi,kn |
a.s.−→ 0.

Proof. In what follows we consider n large enough to have 1/kn < rM .
For a given i consider the sample X i

1, . . . , X
i
kn

with X i
j = Xj(i). Introduce Y

i
j = ϕXi(X

i
j) and

δYi,kn
=
kn(d

′ + 2)‖Y i −Xi‖2
r2i,kn

.

First we are going to prove that δYi,kn
= δ∗i,kn

+ ei,kn , with δ
∗
i,kn

satisfying points ii., iii., and iv,

and with
√

ln(n)maxi ei,kn

a.s.−→ 0.
Conditionally to Xi and ri,kn the sample X i

1, . . .X
i
kn

is drawn with the density f i(x) =
f(x)

PX(B(Xi,ri,kn )) IM∩B(Xi,ri,kn ). So that the sample Y i
1 , . . . Y

i
kn

is drawn with the density gi(x) =

f i(ϕ−1
Xi

(x))
√

det(GXi(x))IBi
n
(where Bi

n = ϕXi

(

M ∩B(Xi, ri,kn)
)

).
By Proposition 1, for n large enough,

f i(x) ≥ f(x)

f(x)σd′rd
′

i,kn

(

cMri,kn
f0σd′

+ 1
) .

Again by Proposition 1,
√

det(GXi(x)) > 1− cMri,kn . Observe that by Lemma 1 we can take n
large enough such that, for all x ∈ Bi

n:

gi(x) ≥
1− cMr

2
i,kn

σd′rd
′

i,kn

(

cMri,kn
f0σd′

+ 1
) ≥ 0 ; (20)

Notice that, by Proposition 1 we have:

B

(

Xi, ri,kn

(

1− cMri,kn

)

)

∩ (Xi + TXiM) ⊂ Bi
n ⊂ B

(

Xi, ri,kn

)

∩ (Xi + TXiM). (21)

Let us denote B−(Xi, ri,kn) = B
(

Xi, ri,kn(1 − cMri,kn)
)

∩ (Xi + TXiM), and define pn = (1 −
cM/kn)

d′+1( cM
f0σd′kn

+1)−1. Observe that qn = 1−pn fulfills the conditions of Lemma 7. Equations

(20), (21) and the assumptions on rn and n allows us to claim that Yi = {Y i
1 , . . . Y

i
kn
} has the same

law as Zi = {Z1, . . . Zkn}, where Zi is drawn as the mixture of a uniform law on B−(Xi, ri,kn)
with probability pn and a residual law of density hin with a probability 1− pn.
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Let us denote by Ki
n the number of points drawn with the uniform part of the mixture. Up

to a re-indexing let us suppose that Z1, . . . , ZKi
n
is the part of the sample drawn according to

the uniform part of the mixture and that ZKi
n+1, . . . , Zkn is the “residual” part of the sample.

Let us now draw a new artificial sample Z ′
Ki

n+1, . . . Z
′
kn
, i.i.d. and uniformly drawn in

B−(Xi, ri,kn). Let us define Z∗
j = Zi

j when j ≤ Ki
n and Z∗

j = Z ′
j when j > Ki

n. Let us

also define ej = Zj − Z ′
j for j ∈ {Ki

n + 1, . . . kn}. We have:

Zi d
=

1

kn

kn
∑

j=1

Z∗
j +

1

kn

kn
∑

j=Ki
n+1

ej.

Thus

δYi,kn

d
=

(d′ + 2)kn
r2i,kn

∥

∥

∥

∥

∥

∥

1

kn

kn
∑

j=1

Z∗
j −Xi +

1

kn

kn
∑

j=Ki
n+1

ej

∥

∥

∥

∥

∥

∥

2

.

Let us introduce:

δ∗i,kn
= (1− cMri,kn)

2 (d′ + 2)kn
(ri,kn − cMri,kn)

2

∥

∥

∥

∥

∥

∥

1

kn

kn
∑

j=1

Z∗
j −Xi

∥

∥

∥

∥

∥

∥

2

and:
ei,kn = (δYi,kn

− δ∗i,kn
).

First, the condition rn ≤ 1/kn gives that:

(

1− cM
kn

)2
(d′ + 2)kn

(ri,kn − cMri,kn)
2

∥

∥

∥

∥

∥

∥

1

kn

kn
∑

j=1

Z∗
j −Xi

∥

∥

∥

∥

∥

∥

2

≤ δ∗i,kn

≤ (d′ + 2)kn
(ri,kn − cMri,kn)

2

∥

∥

∥

∥

∥

∥

1

kn

kn
∑

j=1

Z∗
j −Xi

∥

∥

∥

∥

∥

∥

2

.

Therefore, applying Lemma 2 to (d′+2)kn

(ri,kn−cMri,kn )2

∥

∥

∥

1
kn

∑kn

j=1 Z
∗
j −Xi

∥

∥

∥

2

it directly comes that δ∗i,kn

fulfills conditions ii. and iii.
Let us now prove that maxi |ei,kn | fulfills iv. Denoting Ei,kn = 1

kn

∑kn

Ki
n+1 ej , we have that

‖Ei,kn‖ ≤ kn−Ki
n

kn
ri,kn . Then, applying the Cauchy-Schwartz inequality, we get

|ei,kn | = 2
(d′ + 2)kn
r2i,kn

〈

1

kn

kn
∑

j=1

Z∗
j −Xi ,

1

kn

kn
∑

j=Ki
n+1

ej

〉

+
(d′ + 2)kn
r2i,kn

‖Ei,kn‖2

≤ 2
√
d′ + 2

√

δ∗i,kn

kn −Ki
n√

kn
+ 2(d′ + 2)

(kn −Ki
n)

2

kn
,

where Ki
n  Binom(kn, pn) and so kn −Ki

n  Binom(kn, 1− pn). By direct application of

Lemma 7 and Borel-Cantelli we obtain that ln(n)maxi

∣

∣

∣

kn−Ki
n√

kn

∣

∣

∣

a.s.→ 0. Now, by Lemma 2 and
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Proposition 3 point iii, maxi
√

δ∗i,kn
≤
√

5 ln(n) e.a.s. Thus

√

ln(n)max
i

|ei,kn |
a.s.−→ 0. (22)

Now, by Lemma 3 we have, for all i: δi,kn = δYi,kn
+e′i,kn

with |e′i,kn
| ≤ Ad

√

ln(n)
kn

(2
√
d+d)δYi,kn

e.a.s. Let us introduce Bd = Ad(2
√
d+ d). Then, with probability 1, for n large enough,

√

ln(n)max
i

|e′i,kn
| ≤ Bd

√

(ln(n))4

kn

1

ln(n)
max δ∗i,kn

+Bd

√

ln(n)

kn

√

ln(n)max |ei,kn |.

As (22) holds and ln(n)/kn → 0 it only remains to prove that

Bd

√

(ln(n))4

kn

1

ln(n)
max δ∗i,kn

a.s.−→ 0

to conclude the proof. This last point follows directly from Proposition 3 point iii and the
condition (ln(n))4/kn → 0

We can now prove Theorem 1, which basically says that, under the assumptions of Lemma
4, P

(

∆n,kn ≥ tn(α)
)

≤ α+ o(1).

Proof of Theorem 1. Theorem 1 It is a direct consequence of Lemma 1 and 4. Indeed:

PH0

(

∆n,kn ≥ tn(α)
)

≤ PH0

(

∆n,kn ≥ tn(α)|rn < 1/kn
)

+ PH0
(rn > 1/kn).

By Lemma 1 PH0
(rn > 1/kn) → 0. On the other hand,

PH0

(

∆n,kn ≥ tn(α)|rn < 1/kn
)

≤ PH0

(

max
i
δ∗i,kn

+max |εi,n| ≥ tn(α)
∣

∣

∣rn < 1/kn

)

= PH0

(

max
i
δ∗i,kn

≥ tn(α) − 1/
√
n
∣

∣

∣
rn < 1/kn

)

+

PH0

(

max |εi,n| ≥ 1/
√
n
∣

∣

∣rn < 1/kn

)

≤ α+ o(1).

Now, we prove Theorem 2 which says that, under the assumptions of Lemma 4 we have

Ψ̂n(x)
L2

→ Ψd′(x).

Proof of Theorem 2. A direct consequence of Lemma 4 is that E(Ψ̂n(x)) → Ψd′(x). Therefore,
we only have to prove V(Ψ̂n(x)) → 0.

Let us consider a sequence εn such that εn ∈ [0, 1] and εn → 0. Let us denote px,n =
PX

(

B(x, (2 + εn)/kn)
)

. Since f is Lipschitz, if we denote Kf the constant, we get

px,n ≤ σd′

(

(2 + εn)/kn
)d′

f(x)
(

1 + (2 + εn)Kf/kn
)

≤ σd′(3/kn)
d′

f(x)
(

1 + 3Kf/kn
)

. (23)

In the same way, px,n ≥ σd′(2/kn)
d′

f(x)
(

1− 3Kf/kn
)

.
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Let Nx,n denote the number of observation belonging to B
(

x, (2 + εn)/kn
)

. Applying Ho-
effding’s inequality we get, for all λn > 1:

P
(

Nx,n ≥ λnpn,xn
)

= P

(

Nx,n

n
− pn,x ≥ (λn − 1)pn,x

)

≤ exp
(

− 2
(

(λn − 1)pn,x
)2
n
)

.

Taking, λn = µkdn

√

ln(n)
n with µ > 0,

P

(

Nx,n ≥ pn,xk
d
n

√

n ln(n)
)

≤ exp
(

−µ2σ2
d′22d

′

f(x)2 ln(n)(1 + o(1))
)

,

so that:

P

(

Nx,n ≥ pn,xk
d
n

√

n ln(n)
)

≤ exp
(

−µ2σ2
d′22d

′

f2
0 ln(n)(1 + o(1))

)

.

Now, by (23),

P

(

Nx,n ≥ µσd′f13
d′

(1 + 3Kf/kn)
√

n ln(n)
)

≤ P

(

Nx,n ≥ pn,xk
d
n

√

n ln(n)
)

≤ exp
(

− (µσd′2d
′

f0)
2 ln(n)(1 + o(1))

)

.

Let us cover M with x1, . . . , xνn (deterministic) balls of radius εn/kn. Observe that we can
take νn ≤ θM (kn/εn)

d. If we denote Xn = {X1, . . . , Xn}, then,

P

(

∪n
i=1

{

#
(

B(Xi, 2/kn) ∩ Xn

)

≥ µσd′f13
d′

(1 + 3Kf/kn)
√

n ln(n)
})

≤

P

(

∪νn
i=1

{

#
(

B(xi, (2− εn)/kn) ∩ Xn

)

≥ µσd′f13
d′

(1 + 3Kf/kn)
√

n ln(n)
})

≤

θMk
d
nε

−d
n n−(µσd′2

d′f0)
2(1+o(1)).

If we choose εn = min((ln(n))−1/d, 1) and µ > (σd′2d
′

f0)
−1, the condition (ln(n))k1+d

n /n→ 0
implies that

P

(

∪n
i=1

{

#
(

B(Xi, 2/kn) ∩ Xn

)

≥ µσd′f13
d′

(1 + 3Kf/kn)
√

n ln(n)
})

→ 0.

Now, let

An = ∩n
i=1

{

#
(

B(Xi, 2/kn) ∩Xn

)

< µσd′f13
d′

(1 + 3Kf/kn)
√

n ln(n)
}

∩ {rn < 1/kn}.

Observe that the random variables δi,kn are not independent in general. However, if ‖Xi−Xj‖ >
2rn, δi,kn and δj,kn are independent. Therefore

V

(

Ψ̂n(x)
)

=
1

n2

n
∑

i=1

∑

{j:‖Xi−Xj‖<2rn}
cov(I{δi≥x}, I{δj≥x})

=
1

n2

n
∑

i=1

∑

{j:‖Xi−Xj‖<2/kn}
cov(I{δi≥x}, I{δj≥x})

18



Thus, conditioned to An, since cov(I{δi≥x}, I{δj≥x}) ≤ 1 we get

∑

{j:‖Xi−Xj‖<2/kn}
cov(I{δi≥x}, I{δj≥x}) ≤ µσd′f13

d′

(1 + 3Kf/kn)
√

n ln(n).

Finally, conditioned to An, the variance of VAn

(

Ψ̂n(x)
)

fulfills

VAn

(

Ψ̂n(x)
)

≤ 1

n
µσd′f13

d′

(1 + 3Kf/kn)
√

n ln(n) → 0.

As P(An) → 1 and P(rn < 1/kn) → 1, we finally obtain V

(

Ψ̂n(x)
)

→ 0 which concludes the

proof.

5.4 Proof of Theorems 3 and 4

Theorems 3 and 4 are direct consequences of the following lemma.

Proposition 4. Let X be uniformly drawn on Bu(x, r) = B(x, r) ∩ {z ∈ R
d : 〈z − x, u〉 ≥ 0}

where u is a unit vector.

E

( 〈X − x, u〉
r

)

= αd, (24)

where αd =
(

Γ( d+2

2
)√

πΓ( d+3

2
)

)

.

Proof. Let us first assume that r = 1, x = 0 and u = e1 = (1, 0, . . . , 0). The marginal density of
X1 is

fX1
(t) =

2

σd
σd−1(1− t2)(d−1)/2

I[0,1](x),

so

E(X1) =

∫ 1

0

2
σd−1

σd
x(1 − x2)d−1dx =

σd−1

σd

∫ 1

0

(1 − u)(d−1)/2du =

σd−1

σd

Γ(1)Γ(d+1
2 )

Γ(d+3
2 )

=
Γ(d+2

2 )
√
πΓ(d+3

2 )
= αd.

For a general value of r, x and u let us define Y = Au(X−x)/r where Au is a rotation matrix
that sends u to (1, 0, . . . , 0) (with r > 0). Then Y has uniform distribution on Be1 (0, 1) and so
(24) holds.

Lemma 5. Let kn be a sequence fulfilling condition K. Let us assume that X1, . . . , Xn is an i.i.d.
sample drawn according to an unknown distribution PX which fulfills condition P with ∂M 6= ∅.
Then, there exists a sequence λn

a.s.−→ α2
d′ such that: ∆n,kn/kn ≥ (d′+2)λn, where αd′ was defined

in Proposition 4.

Proof. We will divide the proof into two steps. In the first one we are going to prove that there
exists a constant c∂M such that, with probability one, there exists Xi0 ∈ ∂M⊕B(0, c∂M ln(n)/n)
for n large enough. In the second step we are going to prove that, eventually almost surely, for
all Xi0 ∈ ∂M ⊕B(0, c∂M ln(n)/n) it holds that δi0,kn/kn ≥ (d′ + 2)α2

d′(1 + o(1)).
In order to prove the first step, observe that as ∂M is C2, its inner packing number ν(ε)

(the maximal number of balls, centered in ∂M , of radius ε that are all pairwise disjoint) satisfies
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ν(ε) ≥ Bε−d′+1 for some constant B > 0. Let us denote by xi, for i ∈ {1, . . . , v(ε)}, the centers
of these balls. Then |∂M ⊕ B(0, ε)|d′ ≥ ∑

i |B(xi, ε) ∩ M |d′. Now, as a direct consequence
of Proposition 1 point 5, there exists R and C such that, for all ε ≤ R: |∂M ⊕ B(0, ε)|d′ ≥
Bε−d′+1(σd′εd

′

/2− Cεd
′+1). That is:

∣

∣∂M ⊕B(0, ε)
∣

∣

d′
≥ Bσd′

ε

2
−BCε2. (25)

Thus, the probability that there is no sample point in ∂M ⊕ B(0, 3 ln(n)
f0Bσd′n

) can be bounded as

follows:

P

((

∂M ⊕ 3 ln(n)

f0Bσd′n
B(0, 1)

)

∩ Xn = ∅
)

≤
(

1− 3 ln(n)

2n

(

1− 6C ln(n)

f0Bσd′n

))n

= n−3/2+o(1).

Finally, the first step follows as a direct application of the Borel-Cantelli Lemma, with c∂M =
3/(Bσd′).

For an observation Xi0 such that d(Xi0 , ∂M) ≤ c∂M ln(n)/n, let us denote by x0 a point of
∂M such that ‖Xi0 − x0‖ ≤ c∂M ln(n)/n, and recall that ux0

denotes the unit vector tangent to
M and normal to ∂M pointing outward M . Let us introduce Yk(i0) = ϕx0

(Xk(i0)).

In what follows we will prove that for all Xi0 ∈ ∂M ⊕B
(

0, c∂M ln(n)/n
)

:

1
kn

∑kn

k=1〈Yk(i0) − x0,−ux0
〉

ri0,kn

a.s.−→ αd′ . (26)

Let us define ρn,− = ri0,kn − c∂M ln(n)/n and ρn,+ = ri0,kn + c∂M ln(n)/n.
Observe that, according to Proposition 1, 〈Yk(i0) − x0,−ux0

〉 ∈ [−cMρ2n,+, ρn+
], so that

applying Hoeffding’s inequality,

P

(∣

∣

∣

∣

∣

1

knρn,+(1 + cMρn,+)

kn
∑

k=1

〈Yk(i0) − x0,−ux0
〉 − E(〈Yk(i0) − x0,−ux0

〉)
ρn,+(1 + cMρn,+)

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp(−2t2kn). (27)

Then, to prove (26) it only remains to prove that, for all Xi0 ∈ ∂M ⊕B
(

0, c∂M ln(n)/n
)

:

(a)
ln(n)

nri0,kn

a.s.−→ 0, (b)
E〈Yk(i0) − x0,−ux0

〉
(ρn,+ + cMρ2n,+)

−→ αd′ .

Indeed:

i. From (b) and (27) we obtain

1

kn(ρn,+ + cMρ2n,+)

kn
∑

k=1

〈Yk(i0) − x0,−ux0
〉 a.s.−→ αd′ , (28)

from a direct application of the Borel-Cantelli Lemma, by noticing that kn/(lnn)
4 → ∞

implies that
∑

n exp(−2t2 ln(kn)) < +∞.

ii. From (28) and (a) we get (26).

First assume that ri0,kn

a.s.−→ 0 (the proof is is similar to the proof of Lemma 1, using a
covering of ∂M instead of M , and bounding the probability according to Proposition 1 point 5.

20



instead instead of point 4.. Then, from now to the end of the proof, we suppose that n is large
enough to have ri0,kn ≤ rM .

Let us now prove (a). First we cover ∂M with νn ≤ B′(n/ ln(n))d
′−1 balls, centered at

xi ∈ ∂M with a radius c∂M ln(n)/n. Let us denote R−
n = (ln(n) − 2c∂M ) ln(n)/n and R+

n =
(ln(n) + 2c∂M ) ln(n)/n. We have:

P

(

∃Xi0 ∈ ∂M ⊕B(0, c∂M ln(n)/n), ri0,kn ≤ R−
n

)

≤
νn
∑

i=1

P

(

#
{

B
(

xi, R
−
n + 2c∂M ln(n)/n

)

∩ Xn

}

≥ kn

)

. (29)

Since R−
n = (ln(n) − 2c∂M ) ln(n)/n, if we apply Proposition 1 point 5. and f ≤ f1 we can

bound the right hand side of (29) by:

P

(

#
{

B
(

xi, R
−
n + 2c∂M ln(n)/n

)

∩ Xn

}

≥ kn

)

≤
n
∑

j=kn

(

n

j

)

(

f1σd′(ln(n))2d
′

2nd′
(1 + o(1))

)j

.

Now from the bound n!/(n− j)! ≤ nj , we get

P

(

#
{

B
(

xi, R
−
n + 2c∂M ln(n)/n

)

∩ Xn

}

≥ kn

)

≤
n
∑

j=kn

1

j!

(

f1σd′(ln(n))2d
′

2nd′−1
(1 + o(1))

)j

. (30)

Finally, using
∑n

j=k x
j/j! ≤ xkex/k! for x ≥ 0 to bound the right hand side of (30) we obtain:

P

(

∃Xi0 ∈ ∂M ⊕B(0, c∂M ln(n)/n), ri0,kn ≤ R−
n

)

≤

B′
( n

lnn

)d′−1

(

f1σd′(ln(n))
2d′

2nd′−1
(1 + o(1))

)kn

kn!
exp

(

f1σd′(ln(n))2d
′

2nd′−1
(1 + o(1))

)

. (31)

Now we will consider two cases: d′ = 1 and d′ > 1. For the first one (d′ = 1), using Stirling’s
formula we can bound the right hand side of (31) from above by

B′

√
2πkn

exp

(

−kn ln

(

kn

e

)

+ kn ln

(

f1σd′(ln(n))
2(1 + o(1))

2

)

+ (ln(n))2
f1σd′(1 + o(1))

2

)

(1 + o(1))

Then, the condition kn ≫ (ln(n))4 ensures that

P

(

∃Xi0 ∈ ∂M ⊕B
(

0, c∂M ln(n)/n
)

, ri0,kn ≤ R−
n

)

≤ 1√
2πkn

exp

(

−kn ln
(

kn
e

)

(1 + o(1))

)

.

Second, if d′ > 1 then from (31) we directly obtain

P

(

∃Xi0 ∈ ∂M ⊕B
(

0, c∂M ln(n)/n
)

, ri0,kn ≤ R−
n

)

= o((kn!)
−1).

In both cases kn ≫ (ln(n))4 ensures that :

∑

n

P

(

∃Xi0 ∈ ∂M ⊕B
(

0, c∂M ln(n)/n
)

, ri0,kn ≤ R−
n

)

< +∞.
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The proof of (a) follows by a direct application of the Borel-Cantelli Lemma.

Let us now prove (b).
Let us denote by gri0,kn

the density of Y = ϕx0
(X) conditioned by ri0,kn and ‖X −Xi0‖ ≤

ri0,kn . Let us introduce the set B0 = ϕx0

(

B(Xi,0, ri0,kn) ∩ M
)

. Reasoning as we did at the
beginning of Lemma 4, the Lipschitz continuity of f , Proposition 1 part 3. and Lemma 5 ensure
that there exists a sequence εn = O(ri0 ,kn) such that, for all x ∈ B0:

∣

∣

∣

∣

∣

gri0 ,kn(x)
σd′rd

′

i0,kn

2
− 1

∣

∣

∣

∣

∣

≤ εn.

Thus,

∣

∣

∣

∣

∣

σd′rd
′

i0,kn

2
E
(

〈Y − x0, ux0
〉|ri0,kn

)

−
∫

B0

〈x − x0, ux0
〉dx
∣

∣

∣

∣

∣

≤

εn

∫

B0

‖x‖dx ≤ εn

∫

B(x0,ρn,+)

‖x‖dx ≤ εn
σd′−1

d′ + 1
ρd

′+1
n,+ . (32)

Observe that (B(Xi,0, ρn,−) ∩M) ⊂ (B(Xi,0, ri0,kn) ∩M) ⊂ (B(Xi,0, ρn,+) ∩M). Therefore,
by Lemma 5, we get,

B(x0, ρn−) ∩
{

y : 〈y − x0, ux0
〉 ≥ cMρ

2
n,+

}

⊂ B0

⊂ B(x0, ρn,+) ∩
{

y, 〈y − x0, ux0
〉 ≥ −cMρ2n,+

}

(33)

From (33) we obtain (using a very rough upper bound) that:

∣

∣B0∆Bux0
(x0, ri0)

∣

∣ ≤ σd′(ρd
′

n,+ − ρd
′

n,−) + 2cMσd′−1ρ
d′+1
n,+ .

Thus:
∣

∣

∣

∣

∣

∫

B0

〈x− x0, ux0
〉dx −

∫

Bux0
(x0,ri0)

〈x− x0, ux0
〉dx
∣

∣

∣

∣

∣

≤ σd′(ρd
′+1

n,+ −ρd′+1
n,− )+2c∂Mσd′−1ρ

d′+2
n,+ . (34)

Proposition 4 shows that
∫

Bux0
(x0,ri0 )

〈x− x0, ux0
〉dx = αd′ri0 . Thus (32) and (34) provides the

existence of C and C′ such that
∣

∣

∣

∣

E

( 〈Y − x0, ux0
〉

ri0,kn

∣

∣

∣ri0,kn

)

− αd′

∣

∣

∣

∣

≤ 2
ρd

′+1
n,+ − ρd

′+1
n,−

rd
′+1

i0,kn

+ (Cρn,+ + C′εn)
ρd

′+1
n,+

rd
′+1

i0,kn

.

Therefore (a) gives:
∥

∥

∥

∥

E

( 〈Y − x0, ux0
〉

ri0,kn

)∥

∥

∥

∥

→ αd′ .

Applying (a) again
E〈Y−x0,ux0

〉
(ρn,++c′M,4ρ

2
n,+)

→ αd′ , we get (b). As a consequence (26) is now proved.

Now, in order to finish the proof of the Lemma, notice that, reasoning similarly to what has
been done in Lemma 3 and using (a) and (b) it can be proved that X∗

k(i) = (Id + Fn,i0)(Yk(i) −
x0 + x0 −Xi0) with ‖Fn,i0‖∞

a.s.−→ 0. Then

‖∑kn

k=1X
∗
k(i0)

‖
knri0,kn

≥ (1− ‖Fn,i0‖∞)
1
kn

∑kn

k=1〈Yk(i0) − x0, ux0
〉

ri0,kn

− (1 + ‖Fn,i0‖∞)
c∂M ln(n)

nri0,kn

. (35)
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Thus, there exists a sequence λn
a.s.−→ α2

d′ such that
δi0,kn

(d′+2)kn
≥ λn, which concludes the proof.

Proof. Proof of Theorems 3 and 4
To prove Theorem 3 observe that kn ≫ (ln(n))4 ensure the existence of n1 such that for all

n ≥ n1,
kn

2 (d′ + 2)α2
d′ ≥ tn(α). The proof follows from equation (35).

Regarding Theorem 4, if tn ≤ µkn with µ < (d′+2)α2
d′ then, reasoning exactly as previously,

PH1
(∆n,kn ≥ tn) = 1 for n large enough. On the other hand if tn ≥ λ ln(n) for some λ > 4

then Lemma 4, Proposition 3 and Borel-Cantelli’s Lemma ensure that PH0
(∆n,kn < tn) = 1 for

n large enough.

6 Appendix

Proofs of preliminary results

6.1 Proof of Proposition 1

Proof. 1. Proceeding by contradiction, let rn → 0, xn, yn and zn such that: {yn, zn} ⊂
B(xn, rn) and ϕxn(yn) = ϕxn(zn). Since M is compact we can assume that (by taking
a subsequence if necessary) xn → x ∈ M . Let us denote wn

.
= yn−zn

‖yn−zn‖ → w. Since

ϕxn(yn) = ϕxn(zn) we have wn ∈ (TxnM)⊥. As M is of class C2, we have w ∈ (TxM)⊥.
Let γn be a geodesic curve on M that joins yn to zn (there exists at least one since M is
compact). As M is compact and C2 it has an injectivity radius rinj > 0. Therefore (see
Proposition 88 in Berger (2003)), if we take n large enough that rn ≤ rinj/2, we may take
γn to be the (unique) geodesic which is the image, by the exponential map, of a vector
vn ∈ TynM . The Taylor expansion of the exponential map shows that wn = vn

‖yn−zn‖+o(1).

Then, taking the limit as n → ∞ we get w ∈ TxM which contradicts the fact that w ∈
(TxM)⊥.

As a conclusion there exists r0 such that, for all x ∈M ϕx is one to one from M ∩B(x, r)
to ϕx

(

M ∩B(x, r)
)

(then the existence of r1 such that for all x ∈M and r ≤ r1 ϕx is one
to one and C2 is easily to obtained)

2. and 3. For all x ∈M there exists k functions Φx,k : ϕx

(

M ∩B(x, r1)
)

− x→ R such that:

ϕ−1
x : ϕx

(

M ∩B(x, r1)
)

→M ∩B(x, r1) (36)

x+











y1
...
yd′

0d−d′











7→ x+











y
Φx,d′+1(y)

...
Φx,d(y)











The C2 regularity and compactness of M allow us to find a (uniform) radius r2 such that
all the Φx,k are C2 on ϕx(M ∩ B(x, r2)). Note that, as ϕx is the orthogonal projection
we have, for all x and k: ∇Φk(0). Once again smoothness and compactness assumptions
guarantee that the Hessian matrices H(Φx,k)(0) has there eigen values uniformly bounded
by a λM .

Thus, first

‖ϕx(y)− y‖2 =

d−d′

∑

k=1

(Φx,d′+k(y − x))2 ≤ (d− d′)λM‖x− y‖4 + o(||x − y||4),
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and then, there exists c3 and r3 such that, for all (x, y) ∈M such that ‖x− y‖ ≤ r3,

‖ϕx(y)− y‖ ≤ c3‖x− y‖2. (37)

Second :

Jx(y) =











Id′

~∇Φx,d′+1(y)
...

~∇Φx,d(y)











=











Id′

O(‖y‖)
...

O(‖y‖)











and Gx(y) =Wx(y)
′Wx(y) = Id′ +O(||y||).

This, together with the differentiability of the determinant entails that there exists c4 and
r4 such that for all (x, y) ∈M such that ‖x− y‖ ≤ r4,

|Gx(y)− 1| ≤ c4‖x− y‖. (38)

4. First notice that only the first inclusion has to be proved, the second one is obvious.
Let us introduce r̃ = min{r1, r2, r3, 1/c3}. Proceeding by contradiction, suppose that
there exists r, x and y such that: 0 < r ≤ r̃, x ∈ M , d(x, ∂M) > r, y ∈ B

(

x, r(1 −
c3r)

)

∩ TxM and y /∈ ϕx

(

B(x, r) ∩M
)

. As x ∈ ϕx(B(x, r) ∩M) the line segment [x, y]

intersects ∂(ϕx

(

B(x, r) ∩M
)

). Let z ∈ [x, y] ∩ ∂ϕx

(

B(x, r) ∩M
)

. On one hand we clearly
have ‖x − z‖ < ‖x − y‖ ≤ r(1 − c3r). On the other hand, since ϕ−1

x is a continuous
function, ∂ϕx

(

B(x, r) ∩M
)

= ϕx

(

∂(B(x, r) ∩M
)

), and, because d(x, ∂M) > r it comes

that ∂ϕx

(

B(x, r)∩M
)

= ϕx(M ∩∂B(x, r))) then, there exists z0, ||x−z0|| = r, ϕx(z0) = z.
Then by (37)

r2 = ‖x− z‖2 + ‖z − z0‖2 < r2(1 − c3r)
2 + c23r

4 = r2 − 2c3r
3(1− c3r) ≤ r2,

which is a contradiction. Then there exists c5 and r5 such that for all r ≤ r5, and for all
x ∈M with d(x, ∂M) > r,

B(x, r − c5r
2) ∩ (x+ TxM) ⊂ ϕx(B(x, r) ∩M) ⊂ B(x, r) ∩ (x + TxM). (39)

5. Sketch of proof. Suppose that ∂M 6= ∅, for all x ∈ ∂M introduce ϕ∗
x the affine projection

on x + Tx∂M . First notice that, for all y ∈ ∂M we have ϕ∗
x(y) = ϕx(y) − 〈y − x, ux〉ux

thus |〈y − x, ux〉| ≤ ‖ϕ∗
x(y)− y‖+ ‖ϕx(y)− y‖.

Recall that ∂M is of class C2 so that, by application of (39) (on M and ∂M) we have
there exists r6 and c6 such that, for all x ∈ ∂M and for all y ∈ ∂M with ‖x − y‖ ≤ r6:
|〈y − x, ux〉| ≤ c6‖x− y‖2 thus:

∂M ∩B(x, r) ⊂ B(x, r) ∩
{

y : |〈y − x, ux〉| ≤ c6‖x− y‖2
}

and

ϕx(∂M ∩B(x, r)) ⊂ B(x, r) ∩ (x + TxM) ∩
{

y : |〈y − x, ux〉| ≤ c6‖x− y‖2
}

(40)

Let us introduce A− = B(x, r) ∩ TxM ∩ {y : 〈y − x, ux〉 ≤ −2c6‖x − y‖2}. Notice that
A− is convex. By definition of ux there exists a path γ in M that links x to x ∈ M̊
with γ′(0) = −ux and γ ∩ ∂M = {x} that quickly implies that, for all ε > 0 exists
xε ∈ A− ∩ ϕx(B(x, r) ∩M) and ‖x− xε‖ ≤ ε.
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Suppose now that, as previously there exists 0 < r < min(r3, 1/c3), x ∈ ∂M and y ∈
B
(

x, r(1 − 2c3r)
)

∩ A− such that y /∈ ϕx

(

B(x, r) ∩M
)

. Fix now ε = c3r
2. As previously

the line segment [xε, y] intersects ∂ϕx

(

B(x, r) ∩M
)

at a point z ∈ A−. Clearly we have

‖x − z‖ ≤ ε + ‖x − y‖ < r(1 − cMr). Again z = ϕx(z0) with z0 ∈ ∂
(

M ∩ B(x, r)
)

=
(

M ∩ ∂B(x, r)
)

∪
(

∂M ∩B(x, r)
)

. As ∂
(

M ∩B(x, r)
)

=
(

M ∩ ∂B(x, r)
)

∪
(

∂M ∩B(x, r)
)

,
ϕx(z0) ∈ A− and (40) we necessary have z0 ∈ ∂B(x, r), so ‖x − z0‖ = r. Finally we have
r ≤ rM , ‖x− z0‖ = r and ‖x− ϕx(z0)‖ < r(1 − cMr). By point 3.

r2 = ‖x− z‖2 + ‖z − z0‖2 < (r(1 − c3r))
2 + c23r

4 ≤ r2,

that is a contradiction. Then we proved that there exists c7 and r7 such that, for all
x ∈ ∂M , for all r ≤ r7 we have

B(x, r(1 − c7)) ∩ (x+ TxM) ∩ {y : 〈y − x, ux〉 ≤ −c7r2} ⊂ ϕx(B(x, r)).

The proof of,

ϕx(B(x, r)) ⊂ B(x, r) ∩ (x + TxM) ∩ {y : 〈y − x, ux〉 ≤ c7r
2},

is easier and it is left to the reader.

6.2 Proof of Corollary 1

Proof. For any r ≤ rM and any x

PX(B(x, r)) ≥ f1

∫

ϕx(B(x,r)∩M)

√

detGx(y)dy

Thus by Proposition 1 point 2 we have:

PX(B(x, r)) ≤ f1σd′rd
′

(1 + cMr) (41)

For any r consider first the points x such that d(x, ∂M) ≥ r/2, we have:

PX(B(x, r)) ≥ PX(B(x, r/2)) ≥ f0

∫

ϕx(B(x,r/2)∩M)

√

detGx(y)dy

Now, since r ≤ 2rM applying Property 1 point 2 and 4 we obtain:

PX(B(x, r)) ≥ f0σd′(r − cMr
2)d

′

(1 − cMr) (42)

Now if we consider points x such that d(x, ∂M) ≤ r/2, let x∗ be the projection of x on ∂M we
have

PX(B(x, r)) ≥ PX(B(x∗, r/2)) ≥ f0

∫

ϕx∗(B(x∗,r/2)∩M)

√

detGx∗(y)dy

since r ≤ 2rM applying Property 1 point 2 and 5 we obtain:

PX(B(x, r)) ≥ f0

(σd′

2
(r)d

′ − cMσd′−1r
d′+1

)

(1− cMr) (43)

Point 1 is a direct consequence of (41),(42) and (43).
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To prove point 2 consider r ≤ rM .

PX(B(x, r)) =

∫

B(x,r)∩M

f(y)ω(y).

Applying first the Lipschitz hypothesis on f we get,

∣

∣

∣

∣

∣

PX(B(x, r)) − f(x)

∫

B(x,r)∩M

ω(y)

∣

∣

∣

∣

∣

≤ rKf

∫

B(x,r)∩M

ω(y).

Now by formula (6):

∫

B(x,r)∩M

ω(y) =

∫

ϕx(B(x,r)∩M)

√

detGx(y)dy.

Applying Proposition 1 point 2:

∣

∣

∣

∣

∣

∫

B(x,r)∩M

ω(y)−
∫

ϕx(B(x,r)∩M)

dy

∣

∣

∣

∣

∣

≤ cM,1r

∫

ϕx(B(x,r)∩M)

dy

Finally applying Proposition 1 point 4:

∣

∣

∣

∣

∣

∫

B(x,r)∩M

ω(y)−
∫

B(x,r)∩TxM

1dy

∣

∣

∣

∣

∣

≤
∫

(B(x,r)\B(x,r−cM,2r2))∩TxM

dy + cM,1r

∫

B(x,r)∩TxM

dy.

This implies:

∣

∣

∣PX(B(x, r)) − f(x)σd′rd
′

∣

∣

∣ ≤ rKf

(

σd′rd
′

(1− (1− cM,2r)
d′

)
)

+

f(x)
(

σd′rd
′

(1− (1− cM,2r)
d′

) + cM,1σd′rd
′+1
)

.

Thus, the choice of any constant C1 > σd′(Kf + f1dcM,2 + cM,1) allows us to find a suitable
R1.

Lemma 6. Let X1, . . . , Xn be an i.i.d. sample of X, a random variable whose distribution PX

fulfills condition P, where M is a manifold without boundary. Let kn be a sequence of positive
integers such that kn → +∞ and (ln(n))k1+d

n /n→ 0. Then, knrn
a.s.→ 0, where rn was introduced

in Definition 1.

Proof. Let εn → 0 be a sequence of positive real numbers. Let us first cover M with νn ≤
AMε

−d
n kdn balls of radius εn/kn centered in some xi ∈ M . If we denote Xn = X1, . . . , Xn, we

have that

P(rn ≥ a/kn) ≤ P

(

∃i = 1, . . . , νn : #
{

B(xi, (a− εn)/kn) ∩ Xn

}

< kn

)

.

If we use Corollary 1 and
(

j
n

)

pj(1 − p)n−j ≤
(

j
n

)

(1− p)n−j , we get

P

(

rn ≥ a

kn

)

≤ AMε
−d
n kdn

kn
∑

j=0

(

j

n

)(

1− f0σd(a− εn)
d

kdn
(1 + o(1))

)n−j

.
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Now, if we take take n large enough so that kn/n < 0.5 we get
(

j
n

)

≤
(

kn

n

)

, and then

P

(

rn ≥ a

kn

)

≤ AMε
−d
n k1+d

n

(

kn
n

)(

1− f0σd(a− εn)
d

kdn
(1 + o(1))

)n−kn

. (44)

Applying Stirling’s formula to the right hand side of (44), we get

AMε
−d
n√

2π
k1+d
n

(

1− kn
n

)−n+kn
(

n

kn

)kn
(

1− f0σd′(a− εn)
d

kdn
(1 + o(1))

)n−kn

.

With the usual Taylor expansions,

P

(

rn ≥ a

kn

)

≤ AMε
−d
n√

2π

(

n

kn

)kn

k1+d
n exp

(

kn − nf0σda
d(1 + o(1))

kdn

)

(1 + o(1)).

Since k1+d
n /n→ 0, for n large enough,

kn − nf0σda
d(1 + o(1))

kdn
= − n

kdn

(

f0σd(1 + o(1))− kd+1
n

n

)

≤ − n

2kdn
f0σda

d,

So, for n large enough

P

(

rn ≥ a

kn

)

≤
√
2
AMε

−d
n√
π

(

n

kn

)kn

k1+d
n exp

(

− n

2kdn
f0σda

d
)

.

Therefore

P

(

rn ≥ a

kn

)

≤
√
2
AMε

−d
n√
π

exp

(

−nf0σda
d

2kdn
+ kn ln(n)− kn ln(kn) + (1 + d) ln(kn)

)

,

and then

P

(

rn ≥ a

kn

)

≤
√
2
AMε

−d
n√
π

exp

(

−nf0σda
d

2kdn
+ kn ln(n)(1 + o(1))

)

.

As ln(n)k1+d
n /n→ 0 we have:

P

(

rn ≥ a

kn

)

≤
√
2
AMε

−d
n√
π

exp

(

−nf0σda
d

2kdn
(1 + o(1))

)

.

Applying again that (ln(n))k1+d
n /n→ 0 we get

P

(

rn ≥ a

kn

)

≪
√
2
AMε

−d
n√
π

exp
(

− f0σd′ad

2
kdn ln(n)

)

If we choose εn = 1/n then since kn → +∞, the Lemma follows as a direct consequence of
the Borel-Cantelli Lemma.

Lemma 7. Let Tn  Binom(k′n, qn) with qn
√

k′n ln(n) → 0 and k′n/(ln(n))
4 → +∞.

Then, for all λ > 0,
∑

n

nP
(

ln(n)Tn/
√

k′n > λ
)

< +∞.
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Proof. Let us bound P(Tn ≥ ⌊λ
√

k′n/ ln(n)⌋). If we denote j(λ, n) = ⌊λ
√

k′n/ lnn⌋ then,

P(Tn ≥ j(λ, n)) =

k′

n
∑

j=j(λ,n)

(

k′n
j

)

qjn(1− qn)
n−j .

Notice that when j ≥ qn(k
′
n + 1)− 1 and j′ > j we have:

(

k′n
j

)

qjn(1− qn)
n−j >

(

k′n
j′

)

qj
′

n (1 − qn)
n−j′ .

Since qn
√

k′n ln(n) → 0, for n large enough,

P(Tn ≥ j(λ, n)) ≤ (k′n − j(λ, n))

(

k′n
j(λ, n)

)

qj(λ,n)n (1− qn)
k′

n−j(λ,n).

Applying Stirling’s formula,

(

k′n
j(λ, n)

)

∼ 1
√

2πj(λ, n)

k′n
k′

n+1/2

(k′n − j)k
′

n−j(λ,n)+1/2j(λ, n)j(λ,n)

∼ 1
√

2πj(λ, n)

k′n
k′

n

(k′n − j(λ, n))k
′

n−j(λ,n)j(λ, n)j(λ,n)
.

Now if we bound (1−qn)k
′

n−j(λ,n) ≤ 1 we get that, for n large enough, P(Tn ≥ j(λ, n)) is bounded
from above by,

k′

n − j(λ, n)
√

2πj(λ, n)

(

qnk
′

n

j(λ, n)

)j(λ,n) (

1− j(λ, n)

k′
n

)

−(k′

n−j(λ,n))

=
k′

n − j(λ, n)
√

2πj(λ, n)

(

qnk
′

n

j(λ, n)

)j(λ,n)

exp

(

−
(

k
′

n − j(λ, n)
)

ln
(

1− j(λ, n)

k′
n

)

)

(

1 + o(1)
)

.

Since j(λ, n)/k′n → 0 and j(λ, n)2/k′n → 0, we get,

P(Tn ≥ j(λ, n)) ≤ k′n − j(λ, n)
√

2πj(λ, n)

(

qnk
′
n

j(λ, n)

)j(λ,n)

exp(j + o(j))(1 + o(1)).

With j(λ, n) = ⌊λ
√

k′n/ ln(n)⌋, nP(Tn ≥ j(λ, n)) is bounded from above by,

n(ln(n))1/2(k′n)
3/4

√
2λπ

(

qn
√

k′n ln(n)

λ

)λ
√

k′

n/ ln(n)

exp

(

λ
√

k′n
ln(n)

(1 + o(1))

)

(1 + o(1))

=
n(ln(n))1/2(k′n)

3/4

√
2λπ

exp

(

λ
√

k′n
ln(n)

(

1 + ln

(

qn
√

k′n ln(n)

λ

)

+ o(1)

))

(1 + o(1)).

Since qn
√

k′n ln(n) → 0, we can take n large enough such that

1 + ln

(

qn
√

k′n ln(n)

λ

)

+ o(1) ≤ −1.
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Then, if we bound 1 + o(1) ≤ 2,

nP(Tn ≥ j(λ, n)) ≤
√
2n(ln(n))1/2(k′n)

3/4

√
λπ

exp

(

−λ
√

k′n
ln(n)

)

=

√

2

λπ
exp

(

−λ
√

k′n
ln(n)

+
3

4
ln(k′n) + ln(n) +

1

2
ln(ln(n))

)

.

Since k′n/ ln(n)
4 → +∞

−λ
√

k′n
ln(n)

+
3

4
ln(k′n) + ln(n) +

1

2
ln(ln(n)) = −An ln(n), with An → +∞,

and then
∑

n nP(Tn ≥ j(λ, n)) < +∞.

6.3 Proof of Proposition 2

Proof. Let us define,

ε0 = min

{

λ0

3
√
2d3

,
λ0

2
√
2d2

,
λ0
√√

16d4 + 1− 1

8d7/2

}

.

Let u be an eigenvector of S with ‖u‖2 = 1, associated to an eigenvalue µ. As Su = µu =
Du+ (S −D)u we have : ‖µu−Du‖∞ ≤ dε‖u‖∞, denoting u = (v, w) ∈ R

d′ × R
d−d′

we have:

max
{

min
i
(|µ− λi|)‖v‖∞, |µ|‖w‖∞

}

≤ dεmax {‖v‖∞, ‖w‖∞} .

Since ‖ · ‖∞ ≤ ‖ · ‖2 ≤
√
d‖ · ‖∞ and ‖u‖2 = 1 we get,

max
{

min
i
(|µ− λi|)‖v‖2, |µ|‖w‖2

}

≤ d3/2ε. (45)

Suppose that ‖v‖2 ≥ ‖w‖2 then ‖v‖2 ≥ 1/
√
2. Then (45) implies, mini(|µ − λi|) ≤

√
2d3ε and

‖w‖2 ≤ d3/2ε

λ0−
√
2d3ε

≤ 3d3/2ε
2λ0

(the last inequality is a consequence of ε ≤ ε0 ≤ λ0

3
√
2d3

). Let us

introduce ε′ = 9d3

4λ2
0

ε2n. Proceeding as before it can be proved,

‖v‖2 ≥ ‖w‖2 ⇒ min
i

|µ− λi| ≤
√
2d3ε⇒ ‖w‖2 ≤

√
ε′, (46)

‖w‖2 ≥ ‖v‖2 ⇒ |µ| ≤
√
2d3ε⇒ ‖v‖2 ≤

√
ε′. (47)

Suppose that the eigenvalues of S are sorted so that µ1 ≥ µ2 ≥ . . . ≥ µd. Let us denote
uk = (vk, wk) an associated orthonormal basis of eigenvector. Notice that, with the condition

ε ≤ ε0 ≤ λ0

3
√
2d3

, the l eigenvalues µ such that mini |µ−λi| ≤
√
2d3ε are the l largest eigenvalues.

We are going to prove that l = d′.

Proceeding by contradiction, let us suppose that l ≥ d′ + 1.
First notice that for all 1 ≤ i < j ≤ l: |〈vi, vj〉| ≤ ε′ (because 〈ui, uj〉 = 0, (45) and Cauchy

Schwartz). We also have |‖vi‖2 − 1| ≤ ε′ (similarly using ‖u‖2 = 1 and (46)).
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Now, as l ≥ d′ + 1 the vectors vi i = 1, . . . , l are linearly dependent, and then there exists
i ∈ {1, . . . , l} such that vi =

∑

j 6=i αjvj . Now, for all k 6= i, on one hand: |〈vi, vk〉| ≤ ε′ while on
the other hand: |〈vi, vk〉| ≥ |αk|−ε′

∑

j /∈{i,k} |αj | so that ε′ ≥ |αk|−ε′
∑

j /∈{i,k} |αj | and, summing

this inequalities gives (l − 1)ε′ ≥ (1− (l− 2)ε′)
∑

k 6=i |αk| so that
∑

k 6=i |αk| ≤ (l−1)ε′

1−(l−2)ε′ ≤ dε′

1−dε′

and, for all j 6= i |αj | ≤ dε′

1−dε′ . Thus, with very rough bounds: ‖ui‖2 ≤ d4ε′2

(1−dε′)2 ≤ 4d4ε′2 (the

last inequality comes from ε ≤ ε0 ≤ λ0

2
√
2d2

) that contradicts ‖ui‖2 ≥ 1 − ε′ because ε ≤ ε0 ≤
λ0

√√
16d4+1−1

8d7/2

One can obtain that d − l ≤ d − d′ by a similar proof (reasoning on the component wi for
i ∈ {l + 1, . . . d}), so that we can conclude that l = d′. Thus for all i ≤ d′ ‖wi‖ ≤

√
ε′ and for

all i > d′ ‖vi‖ ≤
√
ε′. For all X ∈ R

d, let us write X =
∑

i αiui then PS,d′X =
∑d′

i=1 αiui =
∑

i αi(v
′
i, w

′
i)

′ and Id′,dX =
∑d

i=1(v
′
i, 0)

′ so that:

(PS,d′ − Id′,d)X =

d′

∑

i=1

αi

(

0
wi

)

−
d
∑

i=d′+1

αi

(

vi
0

)

.

from where it follows that,

‖(PS − Id′,d)X‖2 ≤
d
∑

1

|αi|
√
ε′ ≤ 3d3/2

2λ0
ε||X ||2.

That concludes the proof.
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