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Abstract

Given a sample of a random variable supported by a smooth compact manifold
M ⊂ R

d, we propose a test to decide whether the boundary of M is empty or not
with no preliminary support estimation. The test statistic is based on the maximal
distance between a sample point and the average of its kn−nearest neighbors. We
prove that the level of the test can be estimated, that, with probability one, the
power is one for n large enough and that there exists consistent decision rule. A
heuristic for choosing a convenient value for the kn parameter is also given. Finally
we provide a simulation study of the test.

1 Introduction

Set estimation deals with the problem of estimating the support of an unknown dis-
tribution PX on R

d, from an i.i.d. sample X1, . . . ,Xn of X. It has been extensively
studied when PX is uniformly continuous with respect to the Lebesgue measure, that is,
the full dimensional problem. A very intuitive estimator (the union of balls of radii rn,
centered at the sample points), was proposed initially by Chevalier (1976). Universal
consistency was proved in Devroye and Wise (1980), whenever rn → 0 and nrn → ∞.
To obtain rates of convergence for the estimators it is necessary to impose shape restric-
tions on the support. On one hand it is possible to find estimators that converge with
an explicit (but slow) convergence rate with few shape restriction; on the other hand
when shape conditions are more restrictive support estimators with faster convergence
rates can be found. Some results in this respect are summarized in Cuevas and Fraiman
(2010). Set estimation also tackles some related problems, such as the estimation of the
boundary (see Cuevas and Rodriguez-Casal (2004)), the estimation of functional of the
sets (as the length of the boundary (Cuevas et al. (2007)), the integrated mean curvature
(Berrendero et al. (2014)), among others), or the recognition of topological properties
having support estimator homeomorphic to the support (Aaron and Bodart (2016)).

The lower dimensional case (that is, when the support of the distribution is a
d′-dimensional manifold with d′ < d) has recently gained relevance due to it con-
nection with nonlinear dimensionality reduction techniques (also known as manifold
learning), as well as persistent homology. See for instance Fefferman, et al (2013),
Niyogi, Smale and Weinberger (2008), Niyogi, Smale and Weinberger (2011). It would
be natural to think that some of the proposed estimators (in the full dimensional frame-
work) are still suitable, but, when considering the problem of estimation of the the
boundary of the support it is not possible to directly adapt the methods. Indeed, the
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proposed way to estimate the boundary of the support in the full dimensional case is to
consider the boundary of the support estimator. Unfortunately, when the support esti-
mator is full dimensional (which is typically the case) this idea is hopeless. To illustrate
this, let us study the Devroye-Wise support estimator. It is defined as follows:

Ŝrn =
n
⋃

i=1

B(Xi, rn),

where B(x, r) denotes the closed ball (in R
d) of radius r centered at x andX1, . . . ,Xn

is the sample. In the “full dimensinal case”, under some reasonable shape restriction on S
as well as the condition rn = O((log(n)/n)1/d), it can be proved (see Cuevas and Rodriguez-Casal
(2004)) that the boundary of Ŝn is a consistent estimator of the boundary of S. However,
when the support is a d′-dimensional manifold with d′ < d, is is easy to see that the
boundary of Ŝrn is never a consistent estimator. This is illustrated in Figure 1, in the
case d′ = 1, where the boundary of S has only two points (the extremes of the curve)
while the boundary of the Devroye-Wise estimator is a one dimensional manifold.

Figure 1: The solid line shows the manifold as well as the boundary of the Devroye-Wise
estimator, in the one dimensional case.

Assuming d′ is known there exist some support estimators which are d′−dimensional
based on some restriction on the Delaunay complex but, to our knowledge they had only
been studied recently in the case of support without boundary (see Aamari and Levrard
(2016))

Before trying to estimate the boundary of the support in the lower dimensional case
one has to be able to decide whether it has a boundary or not. The main goal of this paper
is to propose a test to address that problem. In order to explain the idea of the test, let
us assume that the supportM , is a d′-dimensional C2 manifold, that, the distribution PX

has a density which is Lipschitz-continuous. Given a point x ∈M , let us denote by Xi(x)

the ith observation the closest to x. We put rx,n = ‖x−Xkn(x)‖ and X̄x,kn = 1
kn

∑kn
i=2Xi.

Assume that kn → +∞ slowly enough to also have maxx∈S rx,n
a.s.→ 0.

Heuristically, first suppose that ∂M = ∅. Then, for all x, the smoothness of the
manifold, the continuity of the density and the kn conditions ensures that the “rescaled
local sample points”:

{

(X1(x) − x)/rx,n . . . (Xkn(x) − x)/rx,n
}

is “close” to a sample
uniformly drawn on a d′ dimensional unit ball. Then, as kn → ∞ we expect to have
‖Xx,kn − x‖rx,n a.s.→ 0. Thus we can naturally expect that maxi ‖XXi,kn − x‖rx,n a.s.→ 0.
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Second suppose that ∂M is a C2 manifold then, if x ∈ ∂M , with the same kind
of argument, the “rescaled local sample points” are close to observations uniformly
drawn on a half unit ball and ‖Xx,kn − x‖/rx,n → αd′ with αd′ a positive constant.

Thus one can naturally expect that we expect to have ‖Xx,kn − x‖rx,n a.s.→ αd′ and that

maxi ‖XXi,kn − x‖rx,n a.s.→ αd′

The proposed test statistic is based on this idea with a slightly different test statistic,
built by introducing local PCA, to estimate the tangent planes in order to improve
practical results.

This manuscript is organized as follows. In Section 2 we introduce the notation used
throughout the paper and detail the different shape and density hypotheses. In Section
3 we present the test statistic, the associated theoretical results and a way to select
suitable values for the parameter kn. Section 4 is devoted to the proofs. Finally, in
section 5 a simulation study is performed.

2 Notations, geometric framework and hypotheses

2.1 Notations

If B ⊂ R
d is a Borel set, we will denote by |B| its Lebesgue measure and by B its

closure. The closed ball of radius ε centred at x will be denoted by Bk(x, ε) ⊂ R
d

(when k = d the index will be removed) and its Lebesgue measure will be denoted as
σk = |Bk(x, 1)|. When A = (aij), (i = 1, . . . ,m , j = 1, . . . , n) is a matrix, we will write
‖A‖∞ = maxi,j |aij |. The transpose of A will be denoted A′. For the case n = m, we
will denote by det(A) and tr(A) the determinant and trace of A respectively. Given a C2

function f , ~∇f denotes its gradient and Hf its Hessian matrix. We will denote by Ψd′(t)
the cumulative distribution function of a χ2(d′) distribution and Fd′(t) = 1−Ψd′(t).

2.2 Geometric framework and hypotheses

In what followsM ⊂ R
d is a d′-dimensional compact manifold of class C2 (in general with

d′ < d). We will consider the Riemannian metric on M inherited from R
d. When M has

boundary, as a manifold, it will be denoted by ∂M . For x ∈M , TxM denotes the tangent
space at x and ϕx the orthogonal projection on the affine tangent space x+TxM . When
M is orientable it has a unique associated volume form ω such that ω(e1, . . . , ed′) = 1
for all oriented orthonormal basis e1, . . . , ed′ of TxM . Then if g : M → R is a density
function, we can define a new measure µ(B) =

∫

B gω, where B ⊂M is a Borel set.
Since we will only be interested in measures µ, which can be defined even if the

manifold is not orientable although in a slightly less intuitive way, the orientability
hypothesis will be dropped in the following.

In what follows we will suppose that X1, . . . ,Xn is an i.i.d. sample of a random
variable X, drawn according to a density f supported on M . We will assume that for
all x ∈ M , f(x) ≥ f0 > 0 and that f is Lipschitz continuous, i.e. there exists Kf such
that for all (x, y) ∈M2, ‖f(x)− f(y)‖ ≤ Kf‖x− y‖.
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3 The test

3.1 The test statistics

Definition 1. Given an i.i.d. sample X1, . . . ,Xn of a random variable X with support
M ⊂ R

d, where M is d′-dimensional manifold with d′ ≤ d, we will denote by Xj(i) the
j−nearest neighbor of Xi. For a given sequence of positive integers kn, let us define:

ri,kn = ‖Xi−Xkn(i)‖ ; rn = max
i≤n

ri,kn ; Xi,kn =







X1(i) −Xi
...

Xkn(i) −Xi






; Ŝi,kn =

1

kn
(Xi,kn)

′(Xi,kn).

Consider now Qi,kn the d′−dimensional plane spanned by the d′ eigenvectors of Ŝi,kn
associated to the d′ largest eigenvalues of Ŝi,kn. Let X∗

k(i) be the normal projection of

Xk(i) −Xi on Qi,kn and Xkn,i =
1
kn

∑kn
j=1X

∗
j(i).

Let us define, δi,kn = (d′+2)kn
r2i,kn

‖Xkn,i‖2, for i = 1, . . . , n. Then the proposed test

statistic is:
∆n,kn = max

i
δi,kn .

Even if the definition of the test statistic involves many steps, the underlying idea
is quite simple: when M is smooth the projected sample X∗

k(i) can be seen as a sample
on an estimation of the tangent plane. Then, on one hand, when Xi is far enough from
the boundary, since we will suppose that the density is continuous, the X∗

k(i) samples

“look like” a uniform sample drawn on a d′−dimensional ball of radius ri,kn centered
at the origin. Then (δi,kn) should converge a random variable with distribution χ2(d′)
(see Lemma 4 below). On the other hand when Xi is close to the boundary, the X∗

k(i)

samples “look like” a uniform sample drawn on a d′−dimensional half-ball of radius
ri,kn centered at the origin, so that we should have δi,kn/kn ≥ αd > 0 (see Proposi-
tion 4 below). Observe that if ∂M = ∅ all the observations are far from the bound-
ary, which allows us to control the asymptotic behavior of ∆n,kn using Equation (7) in
Bertail, Gautherat and Harari-Kermadec (2008) and adding extra assumptions on kn.
If ∂M 6= ∅, we are going to prove that there is at least one of the observations which is
“close enough” to the boundary (this also requires extra assumptions on kn). The extra
assumptions on kn and the general assumptions on the distribution and manifold are
summarized in the following.
Hypotheses

Thoughout this work we will assume that the underling manifold M is compact, of
class C2, and that its boundary is either empty or of class C2.

K. kn/(ln(n))
4 → ∞ and (ln(n))k1+d′

n /n→ 0.
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P. A probability distribution PX onM fulfills condition P if the density f of X (w.r.t.
the volume form) is Lipschitz and for all x ∈ M , f(x) ≥ f0 > 0. In the following
f1 = maxx∈M f(x).

3.2 Theoretical Results

The first theorem presented here provides a bound for the p-value when testing H0 :
∂M = ∅ versus H1 : ∂M 6= ∅ using the test statistic ∆n,kn introduced in Definition 1
and rejection region {∆n,kn ≥ t}.

Theorem 1. Let kn be a sequence fulfilling condition K. Let us assume that X1, . . . ,Xn

is an i.i.d. sample drawn according to an unknown distribution PX which fulfills condition
P. The test

{

H0 : ∂M = ∅
H1 : ∂M 6= ∅ (1)

with the rejection zone

Wn =
{

∆n,kn ≥ F−1(9α/(2e3n))
}

, (2)

fulfills: PH0
(Wn) ≤ α+ o(1).

The second theorem states that, under H0 and the same assumptions on kn, the
empirical distribution of δi,kn converges in mean square towards a χ2(d′) distribution.
In practice we will use this result to choose the parameter kn by selecting the value that
provides the empirical cumulative distribution closest to the χ2(d′) distribution.

Theorem 2. Let kn be a sequence fulfilling condition K. Let us assume that X1, . . . ,Xn

is an i.i.d. sample drawn according to an unknown distribution PX which fulfills condition
P with ∂M = ∅. If we define

Ψ̂n,kn(x) =
1

n

n
∑

i=1

I{δi,kn≤x},

then, for all x ∈M ,

E
(

Ψ̂n,kn(x)−Ψd′(x)
)2 → 0 as n→ ∞.

Now concerning the power we have:

Theorem 3. Let kn be a sequence fulfilling condition K. Let us assume that X1, . . . ,Xn

is an i.i.d. sample drawn according to an unknown distribution PX which fulfills condition
P. The test (1) with rejection zone (2) has power 1 for n large enough.

Finally we also have a consistent decision rule :
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Theorem 4. Let kn be a sequence fulfilling condition K. Let us assume that X1, . . . ,Xn

is an i.i.d. sample drawn according to an unknown distribution PX which fulfills condition
P. Then, with probability one, the decision rule: ∂M = ∅ if and only if ∆n,kn ≤ βn with

λ lnn ≤ βn ≤ µkn with λ > 4 and µ ≤ (d′ + 2)





Γ
(

d′+2
2

)

√
πΓ
(

d′+3
2

)





2

is consistent.

3.3 Automatic choice for kn

Theorem 2 ensures that when ∂M = ∅, the empirical distribution of δi,kn converges to
a χ2(d′) distribution. One can easily conjecture that when ∂M 6= ∅ the distribution of
δi,kn conditioned to the points Xi “far enough” from the boundary also converges to a
χ2(d′) distribution. Namely, We define dχ2(k) as follows:

i. If the estimated p−value (using k−nearest neigbors) is greater than 5% (H0 is
decided) compute:

dχ2(k) =
1

n

n
∑

i=1

∣

∣Ψ̂n,k(δi,k)−Ψd′(δi,k)
∣

∣.

ii. If the estimated p−value is less than 5%, first identify the points “far from the
boundary” as the observations i ∈ Ik = {Fd′(δi,k) ≥ 0.05}. Then, if we define

ψ̂0.05,n,k(x) =
1

#Ik

∑

i∈Ik
I{δi,k≤x},

compute

dχ2(k) =
1

#Ik

∑

i∈Ik

∣

∣Ψ̂0.05,n,k(δi,k)−Ψ0.05,d′(δi,k)
∣

∣,

where Ψ0.05,d′(x) = (0.95)−1Ψd′(x)I{Ψd′ (x)≤0.95}.

Finally choose k = argminkdχ2(k).

3.4 Discussion on the hypotheses

Smoothness of the support is necessary for the proposed test. One can imagine that,
when the support has no boundary but is not smooth enough, the proposed test will
reject the null hypothesis. Indeed, let us consider the case d = 2 and a uniform sample
on the boundary of the unit square [0, 1]× [0, 1], see Figure 2 left. For observations near
a corner, the normalization parameter should be ri,kn/

√
2 instead of ri,kn . Thinking of

a polyhedron, when a corner becomes acute the local PCA fails to estimate a “tangent”
plane at the corner, see Figure 2 right.
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Figure 2: Behavior for polyhedron. When the angle allows us to estimate the “tangent”
plane the normalization is not suitable. When the angle is too acute the projection is
not accurate. The manifold, and sample points ar in blue, the estimated tangent plane
and projected observations are in black.

On the other hand, the continuity of the density is also necessary: if this is not
the case, we may reject H0 for any supports with or without boundary. In order to
see this, let us consider the circular support M = {(x, y) ∈ R

2 : x2 + y2 = 1} with a
“density” 1/(4π) when x ≤ 0 and 3/(4π) when x > 0. In this case it can be proved that
∆n,kn/kn → 1/2 (considering points located near the discontinuity points) which also
correspond to a “boundary-type” behavior.

By contrast, the C2 smoothness of the boundary (if it exists), can be weakened. The
proofs of Theorems 3 and 4 are similar (just a bit more complicated to write) when
only a part of the boundary is C2 (namely if there exists x ∈ ∂M and r > 0 such that
∂M ∩B(x, r) is a C2 manifold). In order to illustrate the issues discussed in this section
numerically, we will present in Section 5 results for some samples that do not fulfill the
hypothesis,

4 Proofs

4.1 Preliminary results

As explained above, the idea is to project the kn-nearest neighbor of a sample points Xi

orthogonally onto the d′-dimensional space spanned by the eigenvectors corresponding
to the highest d′ eigenvalues, and prove that by taking kn large enough (which will entail
that ri,kn goes to zero, where ri,kn is as in Definition 1), the projected sample behaves like
a uniform sample on a ball. In order to do that, we will prove some technical lemmas.

4.1.1 Preliminary geometric lemmas on compact uniform C2 d′− manifold

with bounded curvature

The aim of this section is to present some geometric lemmas that quantify the local
aspect of the support. They are all direct consequences of the C2 smoothness of M (and
smoothness of ∂M when ∂M 6= ∅) and compactness.
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Lemma 1. Let M ⊂ R
d be a compact, d′-dimensional C2 manifold (with d′ < d). Let

ϕx : M → x + TxM be the orthogonal projection onto the tangent affine plane. Then,
there exists ρM,0 > 0, such that: for all x ∈ M , ϕx is a bijection from M ∩ B(x, ρM,0)
to ϕx

(

M ∩B(x, ρM,0)
)

.

Proof. Proceeding by contradiction, we take a sequence rn → 0 and three sequences of
points, xn, yn and zn such that: {yn, zn} ⊂ B(xn, rn) and ϕxn(yn) = ϕxn(zn). Since M
is compact we can assume that (by taking a subsequence if necessary) xn → x ∈ M ,
(which implies yn → x and zn → x) and wn

.
= yn−zn

‖yn−zn‖ → w. Since ϕxn(yn) = ϕxn(zn)

we have wn ∈ (TxnM)⊥. AsM is of class C2, we have w ∈ (TxM)⊥. Let γn be a geodesic
curve on M that joins yn to zn (there exists at least one since M is compact). As M is
compact and C2 it has an injectivity radius r0 > 0. Therefor (see Proposition 88 in Berger
(2003)), if we take n large enough that rn ≤ r0/2, we may take γn to be the (unique)
geodesic which is the image, by the exponential map, of a vector vn ∈ TynM . The Taylor
expansion of the exponential map shows that wn = vn

‖yn−zn‖ + o(1). Then, taking the

limit as n→ ∞ we get w ∈ TxM which contradicts the fact that w ∈ (TxM)⊥.

Corollary 1. If M is a d′-dimensional compact manifold of class C2 then there exists
r0,M > 0 such that: for all x ∈ M ϕx : M ∩ B(x, rM,0) → ϕx(M ∩ B(x, rM,0)) is a
bijective function of class C2. Moreover, let ex,1, . . . , ex,d be an orthonormal basis of Rd

such that ex,1, . . . , ex,d′ is an orthonormal basis of TxM . Then there exist C2 functions:

Φx,k : ϕx

(

M ∩B(x, rM,0)
)

− x ⊂ TxM → R, k = d′ + 1, . . . , d,

such that:

ϕ−1
x : ϕx

(

M ∩B(x, rM,0)
)

→M ∩B(x, rM,0)

x+











y1
...
yd′

0d−d′











7→ x+











y
Φx,d′+1(y)

...
Φx,d(y)











with y =







y1
...
yd′






and 0d−d′ =







0
...
0






∈ R

d−d′ ,

where the vectors are written in the above-mentioned bases. These functions satisfy:
~∇Φx,k(0) = 0 and there exists λM such that for every eigenvalue λx,k of HΦ(x,k)(0) we
have |λx,k| ≤ λM .

Sketch of proof.
In view of Lemma 1 there exist functions:

Φx,k : ϕx

(

M ∩B(x, ρM,0)
)

− x→ R
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such that:

ϕ−1
x : ϕx

(

M ∩B(x, ρM,0)
)

→M ∩B(x, ρM,0) (3)

x+











y1
...
yd′

0d−d′











7→ x+











y
Φx,d′+1(y)

...
Φx,d(y)











The C2 regularity of M implies that ϕ−1
x restricted to some ϕx

(

M ∩ B(x, rx,0)
)

is of
class C2 and compactness allows us to find a uniform r0,M . The gradient condition just
reflects the fact that ϕx is the projection on the tangent space. The Hessian condition,
which is a direct consequence of the smoothness and compactness of M , gives a bound
for the maximal curvature.

With the notation introduced in Corollary 1 one can compute µ(V ) by integrating
the density function f with respect to the volume form, by integration on the tangent
space when V ⊂ M is a set of diameter inferior to r0,M/2, so that there exists x ∈ M
with V ⊂ B(x, r0,M ).

Let us denote:

Wx(y) =











Id′
~∇Φx,d′+1(y)

...
~∇Φx,d(y)











and Gx(y) =Wx(y)
′Wx(y).

We have

V ⊂ B(x, r0,M ) ⇒ µ(V ) =

∫

V
fdw =

∫

ϕx(V )
f(ϕ−1

x (y))
√

detGx(y)dy. (4)

Corollary 2. Let M ⊂ R
d be a compact, d′-dimensional C2 manifold (with d′ < d) .

Let ϕx :M → x+ TxM be the orthogonal projection onto the tangent affine plane.

a) There exists rM,1 > 0 and c1, such that, for any x ∈ M and y ∈ TxM , with
‖y‖ ≤ rM,1 we have |

√

detGx(y)− 1| ≤ cM,1‖y‖.

b) There exists c2 > 0 and rM,2, such that, if ‖x − x′‖ ≤ rM,2 then ‖ϕx(x
′) − x′‖ ≤

cM,2‖x− ϕx(x
′)‖2.

Sketch of proof.

a) First let us introduce the matrix

Ex(y) =







~∇Φx,d′+1(y)
...

~∇Φx,d(y)






.
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Observe that Gx(y) = Id′ +Ex(y)
′Ex(y). Then, the Taylor expansion of the determi-

nant gives det(Gx(y)) = 1+tr(Ex(y)
′Ex(y))+o(‖Ex(y)

′Ex(y)‖∞). So that |
√

detGx(y)−
1| ≤ 1

2 |tr(Ex(y)
′Ex(y))|+o(‖Ex(y)

′Ex(y)‖∞). Then using Taylor expansions of { ∂
∂ei

Φx,k}i=1,...,d′

around 0, we get ‖Ex(y)‖∞ ≤ λM‖y‖ + o(‖y‖). Finally, compactness allows us to find
rM,1 associated to any c1 > d(d− d′)λ2M .

b) By Pythagoras ‖ϕx(x
′)−x′‖2 = ‖x−x′‖2−‖ϕx(x

′)−x‖2. Introducing y = ϕx(x
′)−x

we obtain ‖ϕx(x
′) − x′‖2 ≤ (d − d′)λ2M‖y‖4 + o(‖y‖4) and, as ‖x − x′‖ > ‖y‖ we have:

‖ϕx(x
′)− x′‖ ≤

√
d− d′λM‖x− x′‖2 + o(‖x − x′‖2). Once again we use a compactness

argument to conclude the proof with any c2 >
√
d− d′λM .

Lemma 2. Let M ⊂ R
d be a compact, d′-dimensional (with d′ < d) C2 manifold without

boundary. For all x ∈M and for all r ≤ min(rM,0, rM,2),

B
(

x, r(1− cM,2r)
)

∩ (x+ TxM) ⊂ ϕx(B(x, r) ∩M).

Proof. Proceeding by contradiction, suppose that there exists 0 < r ≤ min(rM,0, rM,2),
x ∈M , y ∈ B

(

x, r(1−cM,2r)
)

∩TxM such that y /∈ ϕx

(

B(x, r)∩M
)

. As x ∈ ϕx(B(x, r)∩
M) and ϕx is continuous, the line segment [x, y] intersects ∂ϕx

(

B(x, r) ∩ M
)

. Let
z ∈ [x, y] ∩ ∂ϕx

(

B(x, r) ∩M
)

. Clearly we have ‖x − z‖ < ‖x − y‖ < r(1 − c2r). Since
r ≤ rM,0, there exists z0 such that z = ϕx(z0). Again using that ϕx is a continuous
function, z0 ∈ ∂

(

M ∩ B(x, r)
)

. Since ∂M = ∅, ∂
(

M ∩ B(x, r)
)

=
(

M ∩ ∂B(x, r)
)

∪
(

∂M ∩B(x, r)
)

=M ∩∂B(x, r), we have z0 ∈ ∂B(x, r), so ‖x− z0‖ = r. Finally we have
r ≤ rM,2, ‖x− z0‖ = r and ‖x− ϕx(z0)‖ < r(1− cM,2r), so by Corollary 2 part b),

r2 = ‖x− z‖2 + ‖z − z0‖2 < r2(1− cM,2r)
2 +

(

cM,2r
2(1− cM,2r)

2
)2 ≤ r2

which is impossible.

Lemma 3. Let M ⊂ R
d be a compact, d′-dimensional C2 manifold with a C2 boundary

(with d′ < d). Then for all x ∈ ∂M there exists a unit vector ux such that, for all
r ≤ min(rM,0, rM,1, rM,2, r∂M,0, r∂M,1, r∂M,2), :

(x+ TxM)∩B(x, r − cM,2r
2) ∩

{

y : 〈y − x, ux〉 ≥ (cM,2 + c∂M,2)r
2
}

⊂ ϕx

(

B(x, r) ∩M
)

,
(5)

and

ϕx

(

B(x, r) ∩M
)

⊂ (x+ TxM) ∩B(x, r) ∩
{

y, 〈y − x, ux〉 ≥ −(cM,2 + c∂M,2)r
2
}

. (6)

Sketch of proof.
Let us take a unit vector vx ∈ TxM ∩ (Tx∂M)⊥ so that an application of Corollary 2
part b) on ∂M ensures that, for all y ∈ B(x, r) ∩ ∂M , |〈y − x, vx〉| ≤ c∂M,2r

2. Applying
now Corollary 2 part b) on M we see that: for all y ∈ B(x, r) ∩ ∂M , |〈ϕx(y)− x, vx〉| ≤
(cM,2 + c∂M,2)r

2. This, in addition to ϕx

(

B(x, r) ∩M
)

⊂ B(x, r) ∩ (x + TxM), implies
that:

i. ϕx

(

B(x, r) ∩M
)

⊂ TxM ∩B(x, r) ∩
{

y ∈ R
d : 〈y − x, vx〉 ≥ −(cM,2 + c∂M,2)r

2
}

in
which case take ux = vx;
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ii or : ϕx

(

B(x, r) ∩M
)

⊂ TxM ∩B(x, r) ∩
{

y ∈ R
d : 〈y − x, vx〉 ≤ (cM,2 + c∂M,2)r

2
}

in which case take ux = −vx;

this is (6). The inclusion (5) is obtained by combining this kind of argument and those
of Lemma 2.

Proposition 1. Let M ⊂ R
d be a compact, d′-dimensional (with d′ < d) C2 manifold

without boundary. Let X be a random variable whose distribution, PX , is supported by
M , and whose density f is Lipschitz continuous. Then, there exist positive constants R1

and C1 such that: if r ≤ R1, then
∣

∣PX(B(x, r))− f(x)σd′r
d′
∣

∣ ≤ C1r
d′+1.

Proof. Let us take r < min(rM,0, rM,1, rM2
),

PX(B(x, r)) =

∫

B(x,r)∩M
f(y)ω(y).

Applying first the Lipschitz hypothesis on f we get,
∣

∣

∣

∣

∣

PX(B(x, r)) − f(x)

∫

B(x,r)∩M
ω(y)

∣

∣

∣

∣

∣

≤ rKf

∫

B(x,r)∩M
ω(y).

Now by formula (4):
∫

B(x,r)∩M
ω(y) =

∫

ϕx(B(x,r)∩M)

√

detGx(y)dy.

By Corollary 2 a):
∣

∣

∣

∣

∣

∫

B(x,r)∩M
ω(y)−

∫

ϕx(B(x,r)∩M)
dy

∣

∣

∣

∣

∣

≤ cM,1r

∫

ϕx(B(x,r)∩M)
dy

Finally applying Lemma 2:
∣

∣

∣

∣

∣

∫

B(x,r)∩M
ω(y)−

∫

B(x,r)∩TxM
1dy

∣

∣

∣

∣

∣

≤
∫

(B(x,r)\B(x,r−cM,2r2))∩TxM
dy+cM,1r

∫

B(x,r)∩TxM
dy.

This implies:

∣

∣

∣
PX(B(x, r))− f(x)σd′r

d′
∣

∣

∣
≤ rKf

(

σd′r
d′(1− (1− cM,2r)

d′)
)

+

f(x)
(

σd′r
d′(1− (1− cM,2r)

d′) + cM,1σd′r
d′+1

)

.

Thus, the choice of any constant C1 > σd′(Kf + f1dcM,2 + cM,1) allows us to find a
suitable R1.

Proofs of the following proposition is similar to the previous one and are left to the
reader.
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Proposition 2. Let M ⊂ R
d be a compact, d′-dimensional (with d′ < d) C2 manifold

with a C2 boundary. Let X be a random variable whose distribution, PX, fulfills condition
P. Then, there exists constants C2 and R2 such that for all r ≤ R2 and all x ∈ ∂M , we
have,

f0σd′

2 rd
′ − C2r

d′+1 ≤ PX(B(x, r)) ≤ f1
2 σd′r

d′ + C2r
d′+1, where f1 = maxx∈Mf(x).

In the sequel the radius rM and the constant cM are defined as follows:

Definition 2. If M is a C2 manifold without boundary, and f is a Lipschitz continuous
function on M bounded bellow by f0 > 0, we define rM = min(rM,0, rM,1, rM,2, R1) and
cM = max(cM,1, cM,2, C1).

If M is a C2 manifold with a C2 boundary and 0 < f0 ≤ f ≤ f1 < +∞ on M , we
define rM = min(rM,0, rM,1, rM,2, r∂M,0, r∂M,1, r∂M,2, R2). and cM = max(cM,1, cM,2 +
c∂M,2, C2)

4.1.2 Preliminary probabilistic results

In order to state two probabilistic results we will introduce the following functions, for
ε > 0 and k, d ∈ N,

Hk(ε) = exp






− kε

2

3 (d+ 2)−
4

3

d2
(

k
1

3 + (d+ 2)
1

3 ε
1

3

)2






, Rk(ε) = exp

(

− k
1

3 ε
2

3

d2(d+ 2)
4

3

)

,

Gk(t) = min
ε∈[0,t]

(

2e3

9
Fd(t− ε) + (d2 + d)Hk(ε) + 2dRk(ε)

)

.

Proposition 3. Let kn be a sequence such that kn ≫ (lnn)4. Then

i. For all λ > 2, nGkn(λ ln(n)) → 0.

ii. If we define tn(α) = F−1(9α/(2e3n)), then nGkn(tn(α) + o(1)) ≤ α+ o(1).

iii. For all λ > 4,
∑

n nGkn(λ lnn) < +∞.

Proof. If we use a standard expansion of the incomplete Gamma function we get Fd(x) ∼
e−x/2(1 + x/2)d/2−1/Γ(d/2). By definition, for any sequence εn ∈ [0, tn(α)];

Gkn(tn(α)) ≤
(

2e3

9
Fd(tn(α)− εn) + (d2 + d)Hkn(εn) + 2dRkn(εn)

)

.

Finally i. and ii. follow by taking the sequence εn = ε for all n, and iii. follows from
εn = λ−4

2 ln(n).

Lemma 4. Let X1, . . . ,Xn be an i.i.d. sample uniformly drawn on B(x, r) ⊂ R
d and

let us denote Xn = 1
n

∑n
i=1Xi. We have:

(d+ 2)n‖Xn − x‖2
r2

L−→ χ2(d), (7)
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and, for all n > d

P

(

(d+ 2)n‖Xn − x‖2
r2

≥ t

)

≤ Gn(t). (8)

Proof. Taking X−x
r we can assume that X has uniform distribution on B(0, 1).

If we write X = (X.,1, . . . ,X.,d) then the density of X.,i is

f(x) =
1

σd
σd−1(1− x2)(d−1)/2

I[−1,1](x), (9)

and then

Var(X.,i) =

∫ 1

−1
x2

1

σd
σd−1(1− x2)(d−1)/2dx

=
σd−1

σd

∫ 1

0
u1/2(1− u)(d−1)/2du

=
σd−1

σd
B
(

3/2, (d + 1)/2
)

,

where B(x, y) is the Beta function. If we use that σd = πd/2

Γ(d
2
+1)

and B(x, y) = Γ(x)Γ(y)
Γ(x+y) ,

we get

σd−1

σd
B(3/2, (d + 1)/2) =

Γ(d+2
2 )

√
πΓ(d+1

2 )
× Γ(32 )Γ(

d+1
2 )

Γ(d+4
2 )

=
Γ(d+2

2 )Γ(32 )√
πΓ(d+4

2 )
.

Since Γ(z + 1) = zΓ(z) and Γ(1/2) =
√
π we obtain that

σd−1

σd
B(3/2, (d + 1)/2) =

√
π 1
2√

π d+2
2

=
1

d+ 2
.

Now, to prove (7) observe that

(d+ 2)n‖Xn‖2 =

(

√

n(d+ 2)
1

n

n
∑

i=1

Xi,1

)2

+ · · ·+
(

√

n(d+ 2)
1

n

n
∑

i=1

Xi,d

)2

.

For all k = 1, . . . , d, by the Central Limit Theorem,
(

√

n(d+ 2) 1n
∑n

i=1Xi,k

)2 L−→

N(0, 1)2. This, together with the independence of the Yk =
(

√

n(d+ 2) 1n
∑n

i=1Xi,k

)2

concludes the proof of (7).

In order to prove (8), let us denote by Ŝ2
n = 1

n

∑n
i=1XiX

′
i the empirical covariance

matrix of the observations and by Σ2 = 1
d+2Id the real covariance matrix. We can express

our statistic as : nX
′
nΣ

−2Xn. Now if we use equation (7) in Bertail, Gautherat and Harari-Kermadec
(2008), for all n > d

P

(

nX
′
nŜ

−2
n Xn > t

)

≤ 2e3

9
Fd(t). (10)
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Let us denote Γn = Σ−2 − Ŝ−2
n . We have

P
(

nX
′
nΣ

−2Xn > t
)

= P
(

nX
′
nŜ

−2
n Xn + nX

′
nΓnXn > t

)

,

then,

P
(

nX
′
nŜ

−2
n Xn > t

)

≤ min
ε∈[0,t]

(

P
(

nX
′
nŜ

−2
n Xn ≥ t− ε

)

+ P
(

nX
′
nΓnXn > ε

)

)

and applying (10),

P
(

nX
′
nΣ

−2Xn > t
)

≤ min
ε∈[0,t]

(

2e3

9
Fd(t− ε) + P

(

nX
′
nΓnXn > ε

)

)

. (11)

In order to prove (8), it remains to bound P(nX
′
nΓnXn > ε). First with a rough

bound we get nX
′
nΓnXn ≤ d2n‖Γn‖∞‖Xn‖2∞. Thus

P
(

nX
′
nΓnXn > ε

)

≤ P(d2n‖Γn‖∞‖Xn‖2∞ > ε),

and then,

P
(

nX
′
nΓnXn > ε

)

≤ min
a>0

(

P (‖Γn‖∞ > a) + P

(

‖Xn‖2∞ >
ε

nd2a

))

. (12)

Now, let us bound P(‖Γn‖∞ > a). If we denote En = Σ2−Ŝ2
n, then, applying Hoeffding’s

inequality for all i, j we get that, for all a′ > 0, P(|Ei,j | > a′) ≤ 2 exp(−na′2) and so:

P(‖En‖∞ > a) ≤ d(d+ 1) exp(−na2), (13)

where we have used that En is symmetric and the maximum value of the d(d + 1)/2
terms is considered in the norm. Notice now that, if ‖En‖∞ < (d(d+ 2))−1, then:

Ŝ2
n =

1

d+ 2

(

Id − (d+ 2)En

)

=⇒ Ŝ−2
n = (d+ 2)

+∞
∑

k=0

(d+ 2)kEk
n.

Finally, using that ‖Ek
n‖∞ ≤ dk‖En‖k∞, we get

‖Γn‖∞ ≤ d(d + 2)2‖En‖∞
1− d(d + 2)‖En‖∞

. (14)

Therefore, for all a > 0,

‖Γn‖ > a if and only if ‖En‖∞ >
a

d(d+ 2)(a+ d+ 2)
. (15)

Since a > 0 we have a
d(d+2)(a+d+2) ≤ 1

d(d+2) . Combining (13) and (14) we obtain:

P(‖Γn‖∞ > a) ≤ d(d + 1) exp

(

− na2(d+ 2)−2

d2(a+ d+ 2)2

)

. (16)
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To finish, we perform the same kind of calculus on P(‖Xn‖2∞ > ε/(nd2a)). By
Hoeffding’s inequality, for all i: P(X .,i > b) ≤ 2 exp(−nb2). Now taking b =

√

ε/(nd2a)

we obtain P(X
2
.,i > ε/(nd2a)) ≤ 2 exp(−ε/(d2a)). Finally, we get P(‖Xn‖2∞ > ε/(nda) ≤

2d exp(−ε/(d2a)). This and (16) changes (12) into:

P(nX
′
nΓnXn > ε) ≤ min

a>0

(

d(d+ 1) exp

(

− na2(d+ 2)−2

d2(a+ d+ 2)2

)

+ 2d exp
(−ε
d2a

)

)

.

Taking a = ((d + 2)4ε/n)1/3, we get P(nX
′
nΓnXn > ε) ≤ d(d + 1)Hn(ε) + 2dRn(ε).

Combining this and (11), this concludes the proof.

Proposition 4. Let X be uniformly drawn on Bu(x, r) = B(x, r)∩{z ∈ R
d : 〈z−x, u〉 ≥

0} where u is a unit vector.

E

(〈X − x, u〉
r

)

= αd, (17)

where αd =

(

Γ(d+2

2
)

√
πΓ(d+3

2
)

)

.

Proof. Let us first assume that r = 1, x = 0 and u = e1 = (1, 0, . . . , 0). The marginal
density of X1 is

fX1
(t) =

2

σd
σd−1(1− t2)(d−1)/2

I[0,1](x),

so

E(X1) =

∫ 1

0
2
σd−1

σd
x(1− x2)d−1dx =

σd−1

σd

∫ 1

0
(1− u)(d−1)/2du =

σd−1

σd

Γ(1)Γ(d+1
2 )

Γ(d+3
2 )

=
Γ(d+2

2 )
√
πΓ(d+3

2 )
= αd.

For a general value of r, x and u let us define Y = Au(X−x)/r where Au is a rotation
matrix that sends u to (1, 0, . . . , 0) (with r > 0). Then Y has uniform distribution on
Be1(0, 1) and so (17) holds.

Lemma 5. Let X1, . . . ,Xn be an i.i.d. sample of X, a random variable whose dis-
tribution PX fulfills condition P, where M is a manifold without boundary. Let kn be
a sequence of positive integers such that kn → +∞ and (ln(n))k1+d

n /n → 0. Then,
knrn

a.s.→ 0, where rn was introduced in Definition 1.

Proof. Let εn → 0 be a sequence of positive real numbers. Let us first cover M with
νn ≤ AMε

−d
n kdn balls of radius εn/kn centered in some xi ∈ M . If we denote Xn =

X1, . . . ,Xn, we have that

P(rn ≥ a/kn) ≤ P

(

∃i = 1, . . . , νn : #
{

B(xi, (a− εn)/kn) ∩ Xn

}

< kn

)

.
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If we use Proposition 1 and
(j
n

)

pj(1− p)n−j ≤
(j
n

)

(1− p)n−j, we get

P

(

rn ≥ a

kn

)

≤ AMε
−d
n kdn

kn
∑

j=0

(

j

n

)(

1− f0σd(a− εn)
d

kdn
(1 + o(1))

)n−j

.

Now, if we take take n large enough so that kn/n < 0.5 we get
(j
n

)

≤
(kn
n

)

, and then

P

(

rn ≥ a

kn

)

≤ AMε
−d
n k1+d

n

(

kn
n

)(

1− f0σd(a− εn)
d

kdn
(1 + o(1))

)n−kn

. (18)

Applying Stirling’s formula to the right hand side of (18), we get

AMε
−d
n√

2π
k1+d
n

(

1− kn
n

)−n+kn ( n

kn

)kn (

1− f0σd′(a− εn)
d

kdn
(1 + o(1))

)n−kn

.

With the usual Taylor expansions,

P

(

rn ≥ a

kn

)

≤ AMε
−d
n√

2π

(

n

kn

)kn

k1+d
n exp

(

kn − nf0σda
d(1 + o(1))

kdn

)

(1 + o(1)).

Since k1+d
n /n → 0, for n large enough,

kn − nf0σda
d(1 + o(1))

kdn
= − n

kdn

(

f0σd(1 + o(1))− kd+1
n

n

)

≤ − n

2kdn
f0σda

d,

So, for n large enough

P

(

rn ≥ a

kn

)

≤
√
2
AMε

−d
n√
π

(

n

kn

)kn

k1+d
n exp

(

− n

2kdn
f0σda

d
)

.

Therefore

P

(

rn ≥ a

kn

)

≤
√
2
AMε

−d
n√
π

exp

(

−nf0σda
d

2kdn
+ kn ln(n)− kn ln(kn) + (1 + d) ln(kn)

)

,

and then

P

(

rn ≥ a

kn

)

≤
√
2
AMε

−d
n√
π

exp

(

−nf0σda
d

2kdn
+ kn ln(n)(1 + o(1))

)

.

As ln(n)k1+d
n /n → 0 we have:

P

(

rn ≥ a

kn

)

≤
√
2
AMε

−d
n√
π

exp

(

−nf0σda
d

2kdn
(1 + o(1))

)

.

Applying again that (ln(n))k1+d
n /n→ 0 we get

P

(

rn ≥ a

kn

)

≪
√
2
AMε

−d
n√
π

exp
(

− f0σd′a
d

2
kdn ln(n)

)

If we choose εn = 1/n then since kn → +∞, the Lemma follows as a direct conse-
quence of the Borel-Cantelli Lemma.
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Lemma 6. Let Tn  Binom(k′n, qn) with qn
√

k′n ln(n) → 0 and k′n/(ln(n))
4 → +∞.

Then, for all λ > 0,
∑

n

nP
(

ln(n)Tn/
√

k′n > λ
)

< +∞.

Proof. Let us bound P(Tn ≥ ⌊λ
√

k′n/ ln(n)⌋). If we denote j(λ, n) = ⌊λ
√

k′n/ lnn⌋ then,

P(Tn ≥ j(λ, n)) =

k′n
∑

j=j(λ,n)

(

k′n
j

)

qjn(1− qn)
n−j .

Notice that when j ≥ qn(k
′
n + 1)− 1 and j′ > j we have:

(

k′n
j

)

qjn(1− qn)
n−j >

(

k′n
j′

)

qj
′

n (1− qn)
n−j′ .

Since qn
√

k′n ln(n) → 0, for n large enough,

P(Tn ≥ j(λ, n)) ≤ (k′n − j(λ, n))

(

k′n
j(λ, n)

)

qj(λ,n)n (1− qn)
k′n−j(λ,n).

Applying Stirling’s formula,
(

k′n
j(λ, n)

)

∼ 1
√

2πj(λ, n)

k′n
k′n+1/2

(k′n − j)k′n−j(λ,n)+1/2j(λ, n)j(λ,n)

∼ 1
√

2πj(λ, n)

k′n
k′n

(k′n − j(λ, n))k′n−j(λ,n)j(λ, n)j(λ,n)
.

Now if we bound (1− qn)
k′n−j(λ,n) ≤ 1 we get that, for n large enough, P(Tn ≥ j(λ, n))

is bounded from above by,

k′n − j(λ, n)
√

2πj(λ, n)

(

qnk
′

n

j(λ, n)

)j(λ,n) (

1− j(λ, n)

k′n

)−(k′

n
−j(λ,n))

=
k′n − j(λ, n)
√

2πj(λ, n)

(

qnk
′

n

j(λ, n)

)j(λ,n)

exp

(

−
(

k′n − j(λ, n)
)

ln
(

1− j(λ, n)

k′n

)

)

(

1 + o(1)
)

.

Since j(λ, n)/k′n → 0 and j(λ, n)2/k′n → 0, we get,

P(Tn ≥ j(λ, n)) ≤ k′n − j(λ, n)
√

2πj(λ, n)

(

qnk
′
n

j(λ, n)

)j(λ,n)

exp(j + o(j))(1 + o(1)).

With j(λ, n) = ⌊λ
√

k′n/ ln(n)⌋, nP(Tn ≥ j(λ, n)) is bounded from above by,

n(ln(n))1/2(k′n)
3/4

√
2λπ

(

qn
√

k′n ln(n)

λ

)λ
√

k′n/ ln(n)

exp

(

λ
√

k′n
ln(n)

(1 + o(1))

)

(1 + o(1))

=
n(ln(n))1/2(k′n)

3/4

√
2λπ

exp

(

λ
√

k′n
ln(n)

(

1 + ln

(

qn
√

k′n ln(n)

λ

)

+ o(1)

))

(1 + o(1)).
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Since qn
√

k′n ln(n) → 0, we can take n large enough such that

1 + ln

(

qn
√

k′n ln(n)

λ

)

+ o(1) ≤ −1.

Then, if we bound 1 + o(1) ≤ 2,

nP(Tn ≥ j(λ, n)) ≤
√
2n(ln(n))1/2(k′n)

3/4

√
λπ

exp

(

−λ
√

k′n
ln(n)

)

=

√

2

λπ
exp

(

−λ
√

k′n
ln(n)

+
3

4
ln(k′n) + ln(n) +

1

2
ln(ln(n))

)

.

Since k′n/ ln(n)
4 → +∞

−λ
√

k′n
ln(n)

+
3

4
ln(k′n) + ln(n) +

1

2
ln(ln(n)) = −An ln(n), with An → +∞,

and then
∑

n nP(Tn ≥ j(λ, n)) < +∞.

Lemma 7. Let X1, . . . ,Xn be an i.i.d. sample drawn according to a distribution PX

which fulfills condition P, with ∂M = ∅. Then there exists a constant Ad such that

X∗
kn(i)

= (Id + Ei,n)ϕXi(Xkn(i))−Xi with: max
i

‖Ei,n‖∞ ≤ Ad

√

ln(n)

kn
e.a.s.

Proof. By Hoeffding’s inequality we have that, for all i:

P
(

‖r−2
i,kn

Ŝi,kn − r−2
i,kn

Si‖∞ ≥ a
)

≤ 2d2 exp(−2a2kn),

where Si = E(Y ′Y | ‖Y ‖ ≤ ri,kn) with Y = X −Xi and Ŝi,kn as in Definition 1. Then

P
(

∃i : ‖r−2
i,kn

Ŝi,kn − r−2
i,kn

Si‖∞ ≥ a
)

≤ n2d2 exp(−2a2kn).

Now if we apply the Borel-Cantelli Lemma with a =
√

3 ln(n)
2kn

we get that, with proba-

bility one, for n large enough,

‖r−2
i,kn

Ŝi,kn − r−2
i,kn

Si‖∞ ≤
√

3 ln(n)

2kn
for all i = 1, . . . , n. (19)

Let us denote by Pi the matrix whose first d′ columns form an orthonormal base of
TXiM , completed to obtain an orthonormal base of Rd. Corollary 2, Lemma 2 and the
Lipschitz continuity of the density ensures that r−2

i,kn
Si → Σd

Xi
where Σd

Xi
= P ′

iJd′Pi is
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the covariance matrix of a uniform variable drawn on B(0, 1) ∩ TXiM . More precisely it
can be proved that there exists r and c such that: when rn ≤ r,

for all i :
∥

∥

∥
r−2
i,kn

Si −
1

d′ + 2
P ′
iJd′Pi

∥

∥

∥

∞
≤ crn , where Jd′ =

(

Id′ 0
0 0

)

. (20)

Now, (19) and (20) give that, with probability one, for n large enough and for all
i = 1, . . . , n.

∥

∥

∥

∥

r−2
i,kn

Ŝi,kn − 1

d′ + 2
P ′Jd′P

∥

∥

∥

∥

∞
≤
√

3 ln(n)

2kn
+ crn =

√

3 ln(n)

2kn
(1 + o(1)). (21)

In what follows we consider n large enough to ensure (21), and εn =
√

3 ln(n)
2kn

+ crn ≤
1

4
√
2d(d′+2)

.

Since (21) holds for all i, from now on we will remove the index i in the matrices and
vectors and assume that i is fixed. For ease of writing (up to a change of base) we also
assume that P = Id (the tangent space is spanned by the d′ first vectors of the canonical
basis of Rd).

The simplified version of (21) is thus:

∥

∥

∥

∥

r−2
kn
Ŝkn − 1

d′ + 2
Jd′

∥

∥

∥

∥

∞
≤ εn. (22)

Let Ui be an eigenvector of r−2
kn
Ŝkn with ‖Ui‖2 = 1, associated to an eigenvalue λi.

If we denote Ui = (U ′
i,1, U

′
i,2) ∈ R

d′ × R
d−d′ then from (21) we have:

max

(∣

∣

∣

∣

1

d′ + 2
− λi

∣

∣

∣

∣

‖Ui,1‖∞, |λi|‖Ui,2‖∞
)

≤ εnmax(‖Ui,1‖∞, ‖Ui,2‖∞).

Since ‖ · ‖∞ ≤ ‖ · ‖2 ≤
√
d‖ · ‖∞ and ‖Ui‖2 = 1 we get,

max

(∣

∣

∣

∣

1

d′ + 2
− λi

∣

∣

∣

∣

‖Ui,1‖2, |λi|‖Ui,2‖2
)

≤
√
dεn. (23)

Suppose that ‖Ui,1‖2 ≥ ‖Ui,2‖2 then ‖Ui,1‖2 ≥ 1/
√
2. Then (23) successively implies

∣

∣

∣

1
d′+2 − λi

∣

∣

∣
≤

√
2dεn and |Ui,2‖2 ≤

√
dεn

(d′+2)−1−
√
2dεn

. Finally, the condition on n provides

‖Ui,2‖2 ≤ 4(d′+2)
√
d

3 εn. Let us introduce ε′n = 16(d′+2)2d
9 ε2n. We have (the proof of (25)

being similar to the proof of (24)):

‖Ui,1‖2 ≥ ‖Ui,2‖2 ⇒
∣

∣

∣

∣

1

d′ + 2
− λi

∣

∣

∣

∣

≤
√
2dεn ⇒ ‖Ui,2‖2 ≤ ε′n, (24)

‖Ui,2‖2 ≥ ‖Ui,1‖2 ⇒ |λi| ≤
√
2dεn ⇒ ‖Ui,1‖2 ≤ ε′n. (25)
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Suppose now that n is large enough to have: εn < (2
√
2d(d′ + 2))−1 (that is

∣

∣

∣

1
d′+2 − λi

∣

∣

∣ ≤
√
2dεn ⇒ |λi| >

√
2dεn and |λi| ≤

√
2d ⇒

∣

∣

∣

1
d′+2 − λi

∣

∣

∣ >
√
2dεn);

dε′n ≤ 10−1 and d2
(

10dε′n
9

)2
d < 1− ε′n.

Suppose that the eigenvalues are sorted so that λ1 ≥ λ2 ≥ . . . ,≥ λd and denote by

Uk the eigenvector associated to λk. Denote by l the last index such that
∣

∣

∣

1
d′+2 − λi

∣

∣

∣
≤

√
2dεn. We are going to prove that for n large enough, l = d′.
First notice that for all 1 ≤ j < k ≤ l: |〈Uj,1, Uk,1〉| ≤ ε′n (because 〈Uj , Uk〉 = 0, so, by

(24) and Cauchy Schwartz inequality |〈Uj,1, Uk,1〉| ≤ ε′n). We also have |‖Uj,1‖2−1| ≤ ε′n
(similarly using ||Uj ||2 = 1 and (24)).

Proceeding by contradiction, if l ≥ d′ + 1 then since for all j, Uj,1 ∈ R
d′ , the pro-

jections Uj,1 j = 1, . . . , l are linearly dependent, and then there exists k ∈ {1, . . . , l}
such that Uk,1 =

∑

k′∈K αk′Uk′,1, where K = {k′ ∈ N, k′ ≤ l, k′ 6= k}. Now, for all
l ∈ K, on one hand: |〈Uk,1, Uk′,1〉| ≤ ε′n while on the other hand: |〈Uk,1, Uk′,1〉| ≥ |αl| −
ε′n
∑

k′∈K |αk′ | so that ε′n ≥ |αl| − ε′n
∑

k′∈K |αk′ | and, summing this inequalities gives
∑

k′∈K |αk′ | ≤ d′ε′n
1−d′ε′n

. Finally, conditions on n gives
∑

k′∈K |αk′ | ≤ 10
9 dε

′
n so that, for all

k′ ∈ K, |αk′ | ≤ 10
9 dε

′
n. This implies that ||Uk,1||2 =

∑

(k1,k2)∈K2 αk1αk2〈Uk1,1, Uk2,2〉 ≤
d2
(

10dε′n
9

)2
which contradicts |‖Uj,1‖2 − 1| ≤ ε′n for the given conditions on n.

One can obtain that d − l ≤ d − d′ by a similar proof (reasoning on the second
component of the eigenvector), so that we can conclude that for n large enough, l = d′

which implies that the d′ largest eigenvalues of r−2
i,kn

Ŝi,kn are associated to d′ eigenvectors

Ui such that ‖Ui,2‖2 ≤
√

ε′n. For any V = (V ′
1 , V

′
2)

′, let us denote by V ∗ its projection
onto the plane spanned by U1, . . . , Ud′ . We have:

V ∗ − (V ′
1 , 0)

′ =
d′
∑

i=1

〈V2, Ui,2〉Ui −
d
∑

i=d′+1

〈V1, Ui,1〉Ui.

Thus:

‖V ∗ − (V ′
1 , 0)

′‖2 ≤ d‖V ‖2
√

ε′n =
4(d′ + 2)d3/2

3

√

3 ln(n)

2n
(1 + o(1))‖V ‖2.

This concludes the proof for any constant Ad >
2
√
2(d+2)d3/2√

3
.

4.2 Proof of Theorems 1 and 2

Theorems 1 and 2 are corollaries of the following Lemma.

Lemma 8. Let (kn) be a sequence which fulfills condition K and X1, . . . ,Xn an i.i.d.
sample drawn according to a distribution PX which fulfills condition P, with ∂M = ∅. If
rn is as in Definition 1, then for i = 1, . . . , n, we can built δ∗i,kn such that:

i. δi,kn = δ∗i,kn + εi,n,
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ii. P(δ∗i,kn ≤ t|rn < 1/kn) = Ψn(t) → 1− Fd′(t),

iii. P(δ∗i,kn > t|rn < 1/kn) ≤ Gkn(t),

iv.
√

ln(n)maxi |εi,kn |
a.s.−→ 0.

Proof. In what follows we consider n large enough to have 1/kn < rM .
For a given i consider the sample Xi

1, . . . ,X
i
kn

with Xi
j = Xj(i). Introduce Y i

j =

ϕXi(X
i
j) and

δYi,kn =
kn(d

′ + 2)‖Y i −Xi‖2
r2i,kn

.

First we are going to prove that δYi,kn = δ∗i,kn + ei,kn , with δ
∗
i,kn

satisfying points ii., iii.,

and iv, and with
√

ln(n)maxi ei,kn
a.s.−→ 0.

Conditionally toXi and ri,kn the sampleXi
1, . . . X

i
kn

is drawn with the density f i(x) =
f(x)

PX(B(Xi,ri,kn)
IM∩B(Xi,ri,kn)

. So that the sample Y i
1 , . . . Y

i
kn

is drawn with the density

gi(x) = f i(ϕ−1
Xi

(x))
√

det(GXi(x))IBi
n
(where Bi

n = ϕXi

(

M ∩B(Xi, ri,kn)
)

).
By Proposition 1, for n large enough, (using the constant introduced in Definition

2),

f i(x) ≥ f(x)

f(x)σd′r
d′
i,kn

(

cMri,kn
f0σd′

+ 1
) .

By Corollary 2 part a),
√

det(GXi(x)) > 1− cMri,kn . Observe that by Lemma 5 we can
take n large enough such that, for all x ∈ Bi

n:

gi(x) ≥
1− cMr

2
i,kn

σd′r
d′
i,kn

(

cMri,kn
f0σd′

+ 1
) ≥ 0 ; (26)

Notice that, by Lemma 2 we have:

B

(

Xi, ri,kn
(

1− cMri,kn
)

)

∩ (Xi + TXiM) ⊂ Bi
n ⊂ B

(

Xi, ri,kn
)

∩ (Xi + TXiM). (27)

Let us denote B−(Xi, ri,kn) = B
(

Xi, ri,kn(1− cMri,kn)
)

∩ (Xi + TXiM), and define pn =

(1 − cM/kn)
d′+1( cM

f0σd′kn
+ 1)−1. Observe that qn = 1 − pn fulfills the conditions of

Lemma 6. Equations (26), (27) and the assumptions on rn and n allows us to claim
that Yi = {Y i

1 , . . . Y
i
kn
} has the same law as Zi = {Z1, . . . Zkn}, where Zi is drawn as

the mixture of a uniform law on B−(Xi, ri,kn) with probability pn and a residual law of
density hin with a probability 1− pn.

Let us denote by Ki
n the number of points drawn with the uniform part of the

mixture. Up to a re-indexing let us suppose that Z1, . . . , ZKi
n
is the part of the sample

drawn according to the uniform part of the mixture and that ZKi
n+1, . . . , Zkn is the

“residual” part of the sample.
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Let us now draw a new artificial sample Z ′
Ki

n+1
, . . . Z ′

kn
, i.i.d. and uniformly drawn

in B−(Xi, ri,kn). Let us define Z∗
j = Zi

j when j ≤ Ki
n and Z∗

j = Z ′
j when j > Ki

n. Let

us also define ej = Zj − Z ′
j for j ∈ {Ki

n + 1, . . . kn}. We have:

Zi d
=

1

kn

kn
∑

j=1

Z∗
j +

1

kn

kn
∑

j=Ki
n+1

ej .

Thus

δYi,kn
d
=

(d′ + 2)kn
r2i,kn

∥

∥

∥

∥

∥

∥

1

kn

kn
∑

j=1

Z∗
j −Xi +

1

kn

kn
∑

j=Ki
n+1

ej

∥

∥

∥

∥

∥

∥

2

.

Let us introduce:

δ∗i,kn = (1− cMri,kn)
2 (d′ + 2)kn
(ri,kn − cMri,kn)

2

∥

∥

∥

∥

∥

∥

1

kn

kn
∑

j=1

Z∗
j −Xi

∥

∥

∥

∥

∥

∥

2

and:
ei,kn = (δYi,kn − δ∗i,kn).

First, the condition rn ≤ 1/kn gives that:

(

1− cM
kn

)2 (d′ + 2)kn
(ri,kn − cMri,kn)

2

∥

∥

∥

∥

∥

∥

1

kn

kn
∑

j=1

Z∗
j −Xi

∥

∥

∥

∥

∥

∥

2

≤ δ∗i,kn

≤ (d′ + 2)kn
(ri,kn − cMri,kn)

2

∥

∥

∥

∥

∥

∥

1

kn

kn
∑

j=1

Z∗
j −Xi

∥

∥

∥

∥

∥

∥

2

.

Therefore, applying Lemma 4 to (d′+2)kn
(ri,kn−cMri,kn )

2

∥

∥

∥

1
kn

∑kn
j=1 Z

∗
j −Xi

∥

∥

∥

2
it directly comes

that δ∗i,kn fulfills conditions ii. and iii.

Let us now prove that maxi |ei,kn | fulfills iv. Denoting Ei,kn = 1
kn

∑kn
Ki

n+1 ej , we have

that ‖Ei,kn‖ ≤ kn−Ki
n

kn
ri,kn . Then, applying the Cauchy-Schwartz inequality, we get

|ei,kn | = 2
(d′ + 2)kn
r2i,kn

〈

1

kn

kn
∑

j=1

Z∗
j −Xi ,

1

kn

kn
∑

j=Ki
n+1

ej

〉

+
(d′ + 2)kn
r2i,kn

‖Ei,kn‖2

≤ 2
√
d′ + 2

√

δ∗i,kn
kn −Ki

n√
kn

+ 2(d′ + 2)
(kn −Ki

n)
2

kn
,
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where Ki
n  Binom(kn, pn) and so kn − Ki

n  Binom(kn, 1 − pn). By direct

application of Lemma 6 and Borel-Cantelli we obtain that ln(n)maxi

∣

∣

∣

kn−Ki
n√

kn

∣

∣

∣

a.s.→ 0.

Now, by Lemma 4 and Proposition 3 point iii, maxi
√

δ∗i,kn ≤
√

5 ln(n) e.a.s. Thus

√

ln(n)max
i

|ei,kn |
a.s.−→ 0. (28)

Now, by Lemma 7 we have, for all i: δi,kn = δYi,kn+e
′
i,kn

with |e′i,kn | ≤ Ad

√

ln(n)
kn

(2
√
d+

d)δYi,kn e.a.s. Let us introduce Bd = Ad(2
√
d+ d). Then, with probability 1, for n large

enough,

√

ln(n)max
i

|e′i,kn | ≤ Bd

√

(ln(n))4

kn

1

ln(n)
max δ∗i,kn +Bd

√

ln(n)

kn

√

ln(n)max |ei,kn |.

As (28) holds and ln(n)/kn → 0 it only remains to prove that

Bd

√

(ln(n))4

kn

1

ln(n)
max δ∗i,kn

a.s.−→ 0

to conclude the proof. This last point follows directly from Proposition 3 point iii and
the condition (ln(n))4/kn → 0

We can now prove Theorem 1, which basically says that, under the assumptions of
Lemma 8, P

(

∆n,kn ≥ tn(α)
)

≤ α+ o(1).

Proof of Theorem 1. Theorem 1 It is a direct consequence of Lemma 5 and 8. Indeed:

PH0

(

∆n,kn ≥ tn(α)
)

≤ PH0

(

∆n,kn ≥ tn(α)|rn < 1/kn
)

+ PH0
(rn > 1/kn).

By Lemma 5 PH0
(rn > 1/kn) → 0. On the other hand,

PH0

(

∆n,kn ≥ tn(α)|rn < 1/kn
)

≤ PH0

(

max
i
δ∗i,kn +max |εi,n| ≥ tn(α)

∣

∣

∣
rn < 1/kn

)

= PH0

(

max
i
δ∗i,kn ≥ tn(α)− 1/

√
n
∣

∣

∣rn < 1/kn

)

+

PH0

(

max |εi,n| ≥ 1/
√
n
∣

∣

∣rn < 1/kn

)

≤ α+ o(1).

Now, we prove Theorem 2 which says that, under the assumptions of Lemma 8 we

have Ψ̂n(x)
L2

→ Ψd′(x).
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Proof of Theorem 2. A direct consequence of Lemma 8 is that E(Ψ̂n(x)) → Ψd′(x).
Therefore, we only have to prove V(Ψ̂n(x)) → 0.

Let us consider a sequence εn such that εn ∈ [0, 1] and εn → 0. Let us denote
px,n = PX

(

B(x, (2+ εn)/kn)
)

. Since f is Lipschitz, if we denote Kf the constant, we get

px,n ≤ σd′
(

(2 + εn)/kn
)d′
f(x)

(

1 + (2 + εn)Kf/kn
)

≤ σd′(3/kn)
d′f(x)

(

1 + 3Kf/kn
)

. (29)

In the same way,

px,n ≥ σd′
(

(2 + εn)/kn
)d′
f(x)

(

1− (2 + εn)Kf/kn
)

≥ σd′(2/kn)
d′f(x)

(

1− 3Kf/kn
)

.

Let Nx,n denote the number of observation belonging to B
(

x, (2 + εn)/kn
)

. Applying
Hoeffding’s inequality we get, for all λn > 1:

P
(

Nx,n ≥ λnpn,xn
)

=P

(

Nx,n

n
− pn,x ≥ (λn − 1)pn,x

)

exp
(

−
(

(λn − 1)pn,x
)2
n
)

.

Taking, λn = µkdn

√

ln(n)
n with µ > 0,

P

(

Nx,n ≥ pn,xk
d
n

√

n ln(n)
)

≤ exp
(

−µ2σ2d′22d
′

f(x)2 ln(n)(1 + o(1))
)

,

so that:

P

(

Nx,n ≥ pn,xk
d
n

√

n ln(n)
)

≤ exp
(

−µ2σ2d′22d
′

f20 ln(n)(1 + o(1))
)

.

Now, by (29),

P

(

Nx,n ≥ µσd′f13
d′(1 + 3Kf/kn)

√

n ln(n)
)

≤ P

(

Nx,n ≥ pn,xk
d
n

√

n ln(n)
)

≤ exp
(

− (µσd′2
d′f0)

2 ln(n)(1 + o(1))
)

.

Let us cover M with x1, . . . , xνn (deterministic) balls of radius εn/kn. Observe that
we can take νn ≤ θM(kn/εn)

d. If we denote Xn = {X1, . . . ,Xn}, then,

P

(

∪n
i=1

{

#
(

B(Xi, 2/kn) ∩ Xn

)

≥ µσd′f13
d′(1 + 3Kf/kn)

√

n ln(n)
})

≤

P

(

∪νn
i=1

{

#
(

B(xi, (2− εn)/kn) ∩ Xn

)

≥ µσd′f13
d′(1 + 3Kf/kn)

√

n ln(n)
})

≤

θMk
d
nε

−d
n n−(µσd′2

d′f0)2(1+o(1)).
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If we choose εn = min((ln(n))−1/d, 1) and µ > (σd′2
d′f0)

−1, the condition (ln(n))k1+d
n /n→

0 implies that

P

(

∪n
i=1

{

#
(

B(Xi, 2/kn) ∩ Xn

)

≥ µσd′f13
d′(1 + 3Kf/kn)

√

n ln(n)
})

→ 0.

Now, let

An = ∩n
i=1

{

#
(

B(Xi, 2/kn) ∩ Xn

)

< µσd′f13
d′(1 + 3Kf/kn)

√

n ln(n)
}

∩ {rn < 1/kn}.

Observe that the random variables δi,kn are not independent in general. However, if
‖Xi −Xj‖ > 2rn, δi,kn and δj,kn are independent. Therefore

V

(

Ψ̂n(x)
)

=
1

n2

n
∑

i=1

∑

{j:‖Xi−Xj‖<2rn}
cov(I{δi≥x}, I{δj≥x})

=
1

n2

n
∑

i=1

∑

{j:‖Xi−Xj‖<2/kn}
cov(I{δi≥x}, I{δj≥x})

Thus, conditioned to An, since cov(I{δi≥x}, I{δj≥x}) ≤ 1 we get

∑

{j:‖Xi−Xj‖<2/kn}
cov(I{δi≥x}, I{δj≥x}) ≤ µσd′f13

d′(1 + 3Kf/kn)
√

n ln(n).

Finally, conditioned to An, the variance of VAn

(

Ψ̂n(x)
)

fulfills

VAn

(

Ψ̂n(x)
)

≤ 1

n
µσd′f13

d′(1 + 3Kf/kn)
√

n ln(n) → 0.

As P(An) → 1 and P(rn < 1/kn) → 1, we finally obtain V

(

Ψ̂n(x)
)

→ 0 which

concludes the proof.

4.3 Proof of Theorems 3 and 4

Theorems 3 and 4 are direct consequences of the following lemma.

Lemma 9. Let (kn) be a sequence fulfilling condition K. Let us assume that X1, . . . ,Xn

is an i.i.d. sample drawn according to an unknown distribution PX which fulfills con-
dition P where M has boundary. Then, there exists a sequence λn

a.s.−→ α2
d′ such that:

∆n,kn/kn ≥ (d′ + 2)λn, where αd′ was defined in Proposition 4.

Proof. We will divide the proof into two steps. In the first one we are going to prove
that there exists a constant c∂M such that, with probability one, there exists Xi0 ∈
∂M⊕B(0, c∂M ln(n)/n) for n large enough. In the second step we are going to prove that,
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eventually almost surely, for all Xi0 ∈ ∂M ⊕B(0, c∂M ln(n)/n) it holds that δi0,kn/kn ≥
(d′ + 2)α2

d′(1 + o(1)).
In order to prove the first step, observe that as ∂M is C2, its inner packing number

ν(ε) (the maximal number of balls, centered in ∂M , of radius ε that are all pairwise
disjoint) satisfies ν(ε) ≥ Bε−d′+1 for some constant B > 0. Let us denote by xi, for
i ∈ {1, . . . , v(ε)}, the centers of these balls. Then |∂M ⊕B(0, ε)|d′ ≥

∑

i |B(xi, ε)∩M |d′ .
Now, as a direct consequence of Proposition 2 for the uniform density on M , there exist
R and C such that, for all ε ≤ R: |∂M ⊕B(0, ε)|d′ ≥ Bε−d′+1(σd′ε

d′/2−Cεd
′+1). That

is:
∣

∣∂M ⊕B(0, ε)
∣

∣

d′
≥ Bσd′

ε

2
−BCε2. (30)

Thus, the probability that there is no sample point in ∂M⊕B(0, 3 ln(n)
f0Bσd′n

) can be bounded

as follows:

P

((

∂M ⊕ 3 ln(n)

f0Bσd′n
B(0, 1)

)

∩ Xn = ∅
)

≤
(

1− 3 ln(n)

2n

(

1− 6C ln(n)

f0Bσd′n

))n

= n−3/2+o(1).

Finally, the first step follows as a direct application of the Borel-Cantelli Lemma, with
c∂M = 3/(Bσd′).

For an observation Xi0 such that d(Xi0 , ∂M) ≤ c∂M ln(n)/n, let us denote by x0 a
point of ∂M such that ‖Xi0 − x0‖ ≤ c∂M ln(n)/n, and by ux0

the unit vector defined in
Lemma 3. Let us introduce Yk(i0) = ϕx0

(Xk(i0)).
In what follows we will prove that for all Xi0 ∈ ∂M ⊕B

(

0, c∂M ln(n)/n
)

:

1
kn

∑kn
k=1〈Yk(i0) − x0, ux0

〉
ri0,kn

a.s.−→ αd′ . (31)

Let us define ρn,− = ri0,kn − c∂M ln(n)/n and ρn,+ = ri0,kn + c∂M ln(n)/n.
Observe that, according to Lemma 3, 〈Yk(i0) − x0, ux0

〉 ∈ [−cMρ2n,+, ρn+
], so that

applying Hoeffding’s inequality,

P

(∣

∣

∣

∣

∣

1

knρn,+(1 + cMρn,+)

kn
∑

k=1

〈Yk(i0) − x0, ux0
〉 − E(〈Yk(i0) − x0, ux0

〉)
ρn,+(1 + cMρn,+)

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp(−2t2kn).

(32)

Then, to prove (31) it only remains to prove that, for allXi0 ∈ ∂M⊕B
(

0, c∂M ln(n)/n
)

:

(a)
ln(n)

nri0,kn

a.s.−→ 0, (b)
E〈Yk(i0) − x0, ux0

〉
(ρn,+ + cMρ2n,+)

−→ αd′ .

Indeed:

i. From (b) and (32) we obtain

1

kn(ρn,+ + cMρ2n,+)

kn
∑

k=1

〈Yk(i0) − x0, ux0
〉 a.s.−→ αd′ , (33)
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from a direct application of the Borel-Cantelli Lemma, by noticing that kn/(lnn)
4 →

∞ implies that
∑

n exp(−2t2 ln(kn)) < +∞.

ii. From (33) and (a) we get (31).

First assume that ri0,kn
a.s.−→ 0 (the proof is is similar to the proof of Lemma 5, using

a covering of ∂M instead of M , and bounding the probability according to Proposition
2 instead of Corollary 1). Then, from now to the end of the proof, we suppose that n is
large enough to have ri0,kn ≤ rM .

Let us now prove (a). First we cover ∂M with νn ≤ B′(n/ ln(n))d
′−1 balls, centered

at xi ∈ ∂M with a radius c∂M ln(n)/n. Let us denote R−
n = (ln(n)− 2c∂M ) ln(n)/n and

R+
n = (ln(n) + 2c∂M ) ln(n)/n. We have:

P

(

∃Xi0 ∈ ∂M ⊕B(0, c∂M ln(n)/n), ri0,kn ≤ R−
n

)

≤
νn
∑

i=1

P

(

#
{

B
(

xi, R
−
n + 2c∂M ln(n)/n

)

∩ Xn

}

≥ kn

)

. (34)

Since R−
n = (ln(n) − 2c∂M ) ln(n)/n, if we apply Proposition ?? we can bound the

right hand side of (34) by

P

(

#
{

B
(

xi, R
−
n+2c∂M ln(n)/n

)

∩Xn

}

≥ kn

)

≤
n
∑

j=kn

(

n

j

)

(

f1σd′(ln(n))
2d′

2nd′
(1 + o(1))

)j

.

Now from the bound n!/(n− j)! ≤ nj, we get

P

(

#
{

B
(

xi, R
−
n+2c∂M ln(n)/n

)

∩Xn

}

≥ kn

)

≤
n
∑

j=kn

1

j!

(

f1σd′(ln(n))
2d′

2nd′−1
(1 + o(1))

)j

.

(35)

Finally, using
∑n

j=k x
j/j! ≤ xkex/k! for x ≥ 0 to bound the right hand side of (35) we

obtain:

P

(

∃Xi0 ∈ ∂M ⊕B(0, c∂M ln(n)/n), ri0,kn ≤ R−
n

)

≤

B′
( n

lnn

)d′−1

(

f1σd′ (ln(n))
2d′

2nd′−1
(1 + o(1))

)kn

kn!
exp

(

f1σd′(ln(n))
2d′

2nd′−1
(1 + o(1))

)

. (36)

Now we will consider two cases: d′ = 1 and d′ > 1. For the first one (d′ = 1), using
Stirling’s formula we can bound the right hand side of (36) from above by

B′

√
2πkn

exp

(

−kn ln
(

kn
e

)

+ kn ln

(

f1σd′(ln(n))2(1 + o(1))

2

)

+ (ln(n))2
f1σd′(1 + o(1))

2

)

(1+o(1))
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Then, the condition kn ≫ (ln(n))4 ensures that

P

(

∃Xi0 ∈ ∂M⊕B
(

0, c∂M ln(n)/n
)

, ri0,kn ≤ R−
n

)

≤ 1√
2πkn

exp

(

−kn ln
(

kn
e

)

(1 + o(1))

)

.

Second, if d′ > 1 then from (36) we directly obtain

P

(

∃Xi0 ∈ ∂M ⊕B
(

0, c∂M ln(n)/n
)

, ri0,kn ≤ R−
n

)

= o((kn!)
−1).

In both cases kn ≫ (ln(n))4 ensures that :
∑

n

P

(

∃Xi0 ∈ ∂M ⊕B
(

0, c∂M ln(n)/n
)

, ri0,kn ≤ R−
n

)

< +∞.

The proof of (a) follows by a direct application of the Borel-Cantelli Lemma.

Let us now prove (b).
Let us denote by gri0,kn the density of Y = ϕx0

(X) conditioned by ri0,kn and ‖X −
Xi0‖ ≤ ri0,kn . Let us introduce the set B0 = ϕx0

(

B(Xi,0, ri0,kn) ∩M
)

. Reasoning as we
did at the beginning of Lemma 8, the Lipschitz continuity of f , Corollary 2 part a) and
Lemma 3 ensure that there exists a sequence εn = O(ri0,kn) such that, for all x ∈ B0:

∣

∣

∣

∣

∣

gri0 ,kn(x)
σd′r

d′

i0,kn

2
− 1

∣

∣

∣

∣

∣

≤ εn.

Thus,

∣

∣

∣

∣

∣

σd′r
d′

i0,kn

2
E
(

〈Y − x0, ux0
〉|ri0,kn

)

−
∫

B0

〈x− x0, ux0
〉dx
∣

∣

∣

∣

∣

≤

εn

∫

B0

‖x‖dx ≤ εn

∫

B(x0,ρn,+)
‖x‖dx ≤ εn

σd′−1

d′ + 1
ρd

′+1
n,+ . (37)

Observe that (B(Xi,0, ρn,−) ∩ M) ⊂ (B(Xi,0, ri0,kn) ∩ M) ⊂ (B(Xi,0, ρn,+) ∩ M).
Therefore, by Lemma 3, we get,

B(x0, ρn−) ∩
{

y : 〈y − x0, ux0
〉 ≥ cMρ

2
n,+

}

⊂ B0

⊂ B(x0, ρn,+) ∩
{

y, 〈y − x0, ux0
〉 ≥ −cMρ2n,+

}

(38)

From (38) we obtain (using a very rough upper bound) that:

∣

∣B0∆Bux0
(x0, ri0)

∣

∣ ≤ σd′(ρ
d′
n,+ − ρd

′

n,−) + 2cMσd′−1ρ
d′+1
n,+ .

Thus:
∣

∣

∣

∣

∣

∫

B0

〈x− x0, ux0
〉dx−

∫

Bux0
(x0,ri0)

〈x− x0, ux0
〉dx
∣

∣

∣

∣

∣

≤ σd′(ρ
d′+1
n,+ −ρd′+1

n,− )+2c∂Mσd′−1ρ
d′+2
n,+ .

(39)
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Proposition 4 shows that
∫

Bux0
(x0,ri0)

〈x − x0, ux0
〉dx = αd′ri0 . Thus (37) and (39) pro-

vides the existence of C and C ′ such that

∣

∣

∣

∣

E

(〈Y − x0, ux0
〉

ri0,kn

∣

∣

∣ri0,kn

)

− αd′

∣

∣

∣

∣

≤ 2
ρd

′+1
n,+ − ρd

′+1
n,−

rd
′+1

i0,kn

+ (Cρn,+ +C ′εn)
ρd

′+1
n,+

rd
′+1

i0,kn

.

Therefore (a) gives:
∥

∥

∥

∥

E

(〈Y − x0, ux0
〉

ri0,kn

)∥

∥

∥

∥

→ αd′ .

Applying (a) again
E〈Y −x0,ux0〉

(ρn,++c′M,4ρ
2
n,+)

→ αd′ , we get (b). As a consequence (31) is now

proved.
Now, in order to finish the proof of the Lemma, notice that, reasoning similarly to

what has been done in Lemma 7 and using (a) and (b) it can be proved that X∗
k(i) =

(Id + Fn,i0)(Yk(i) − x0 + x0 −Xi0) with ‖Fn,i0‖∞
a.s.−→ 0. Then

‖∑kn
k=1X

∗
k(i0)

‖
knri0,kn

≥ (1− ‖Fn,i0‖∞)
1
kn

∑kn
k=1〈Yk(i0) − x0, ux0

〉
ri0,kn

− (1 + ‖Fn,i0‖∞)
c∂M ln(n)

nri0,kn
.

(40)

Thus, there exists a sequence λn
a.s.−→ α2

d′ such that
δi0,kn

(d′+2)kn
≥ λn, which concludes the

proof.

Proof. Proof of Theorems 3 and 4
To prove Theorem 3 observe that the conditions kn ≫ (ln(n))4 ensures the existence

of n1 such that for all n ≥ n1,
kn
2 (d′ + 2)α2

d′ ≥ tn(α). The proof follows from equation
(40).

Regarding Theorem 4, if tn ≤ µkn with µ < (d′ + 2)α2
d′ then, reasoning exactly as

previously, PH1
(∆n,kn ≥ tn) = 1 for n large enough. On the other hand if tn ≥ λ ln(n)

for some λ > 4 then Lemma 8, Proposition 3 and the Borel-Cantelli Lemma ensure that
PH0

(∆n,kn < tn) = 1 for n large enough.

5 Numerical simulations

We now present some results for different manifolds. First, we study the behavior of our
test for a sample with uniform distribution on Sd′ , the d

′−dimensional sphere in R
d′+1

and on Sd′,+ the d′−dimensional half-sphere in R
d′+1. We also present some results for

manifolds with non constant curvature, such as the trefoil knot (d′ = 1 and d = 3), a
spiral, a Moebius ring, and a torus (for these two last examples the samples are not
uniform). We also study the test for samples that do not fulfill the hypotheses as S2,+,+

the quarter of a 2 dimensional sphere (the boundary is not C2), a drawn according to a
not continuous density on a circle and a uniform drawn on a square (the manifold is not
C2).
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First we observe that the proposed rule to find a suitable value for k is practically
efficient. Here we choose the sample size n = 3000. In Figure 3 we present results for
supports without boundary. Two curves are plotted, the estimated p−value (red) and
dχ2 (blue). In order to have comparable curves dχ2 has been artificially rnormalized to
be in [0, 1]. Notice that each time, at the selected value for k, i.e. k = argmin(dχ2),
the estimated p−value is large enough to accept H0 (the support has no boundary). In
Figure 4 we present the result of the same experiment but for support with boundary.
On the first line of the figure the curves of the estimated p−value and dχ2 are presented.
Here also the choice of k = argmin(dχ2) allows us to decide well (i.e. here to reject H0).
On the second line of the figure we draw the sample point and underline the points Xi

such where 2e3

9 Fd′(δi,k) ≤ 5% that is the one that are expected be located “near to” the
boundary.
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Figure 3: Some examples for support without boundary support. Abscissa: k,
blue:dχ2(k), red:p̂v(k).
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Figure 4: Some examples for support with boundary. First line: Abscissa: k, blue:dχ2(k),
red:p̂v(k). Second line: the associated sample and points that are identified as “close to
the boundary”

In Figure 5 we present estimated level and power of the proposed test. For each
example and each sample size we drew 2000 samples. It can be observed that the percent
of rejection (i.e. here the level) is less than 5% since n ≥ 500 for every example associated
to a support without boundary which satisfy the hypotheses of our Theorems. When
the support has a boundary, the percent of rejection (i.e. here the power) converges
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quickly to 100%, even for S2 + + (for which ∂M is not of class C2). We also present
some results when the density is not continuous or whenM is not of class C2 to illustrate
the necessity of our hypotheses.

Notice that, to shorten the computational time, we had preliminary chosen the
kn−value by averaging the one obtained with the dχ2 criteria with 50 samples (for each
example and each sample size). The selected kn are presented in the figure.

example n = 100 n = 200 n = 500 n = 10000 = 2000 n = 3000

S1 kn 15 20 20 35 40 40
% reject 1, 45% 1, 15% 1, 05% 1% 0, 9% 0, 85%

S2 kn 15 17 20 25 30 40
% reject 3% 2, 55% 1, 6% 1, 4% 1, 35% 1, 05%

S3 kn 6 10 15 17 25 25
% reject 1, 2% 2, 5% 1, 9% 1, 35% 1, 85% 1, 15%

S4 kn 5 5 10 17 17 17
% reject 0, 75% 0, 05% 2, 3% 1, 15% 3, 15% 1, 5%

S1+ kn 15 20 20 35 40 40
% reject 89, 25% 79, 75% 60, 7% 97, 1% 99, 3% 99, 05%

S2+ kn 17 30 30 50 50 50
% reject 84, 8% 100% 100% 100% 100% 100%

S3+ kn 6 8 10 15 25 25
% reject 2, 35% 4, 4% 5, 55% 34, 45% 99, 95% 99, 95%

S4+ kn 5 5 10 80 80 80
% reject 1% 0, 3% 10, 8% 100% 100% 100%

Trefoil kn 8 13 15 25 30 40
Knot % reject 4, 7% 5, 95% 2, 4% 2, 15% 1, 45% 0, 8%

Spire kn 15 202 25 25 40 40
% reject 55, 5% 81, 25% 92, 4% 83, 9% 100% 99, 9%

Moebus kn 8 13 15 20 40 40
ring % reject 12, 2% 65, 75% 68, 75% 98, 65% 100% 100%

Torus kn 8 13 15 17 20 20
% reject 5, 6% 10, 45% 5% 2, 65% 1, 75% 2, 05%

S2 ++ kn 17 30 30 50 50 50
% reject 99, 95% 100% 100% 100% 100% 100%

not kn 15 17 20 25 30 30
continuous % reject 16, 8% 14, 75% 11, 9% 16, 25% 17, 3% 14, 95%

square kn 10 13 225 30 30 50
(not C2) % error 4, 75% 4, 5% 5, 1% 4, 4% 3, 25% 9, 55%

Figure 5: For different samples, the chosen kn value and the % of times where H0 is
rejected (on 2000 replications).
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