Cyrille Comar
email: comar@adacore.com

Jérome Guitton
email: guitton@adacore.com

Olivier Hainque
email: hainque@adacore.com

Thomas Quinot
email: quinot@adacore.com

J Ér Ôme Guitton

Structural Coverage Criteria for Executable Assertions

Keywords: Structural coverage, Functional coverage, Coverage criteria, DO-178, Certification, Formal verification, Assertions, Contract Based Programming

published or not. The documents may come

L'archive ouverte

Introduction

A few programming languages promote the notion of contract based programming and offer specialized constructs to support this paradigm. A seminal representative of such languages is Eiffel with its Design by Contract principle [START_REF]ECMA-367: Eiffel analysis, design and programming language[END_REF], [START_REF] Meyer | Applying "design by contract[END_REF]. Ada, and more specifically the Ada 2012 revision of the language, is another example, featuring pre and postcondition aspects, type invariants, as well as new syntactic constructs allowing conditional control within expressions [START_REF]Information Technology -Programming Languages -Ada[END_REF]. Programming with contracts is essentially based on assertions, Boolean expressions expected to always yield True, embedded in dedicated constructs at various spots of the program. Subprogram pre and postconditions, for instance, embed assertions on properties expected to hold when entering or exiting the subprogram, respectively. Type invariants are assertions that should hold for each object of the type at any time, except potentially while it is being updated. Such assertions can be viewed in different ways: They can first be considered as a debugging aid, since they help reduce the distance between the place in the code where an error initially occurs, and the point where it causes an externally noticeable effect and can be detected. They can also be viewed as a way of clarifying responsibilities: a subprogram precondition expresses the constraints on the kind of situations the routine is able to deal with: it is the responsibility of the caller to ensure that the constraints are respected. Conversely, a postcondition expresses the properties that the routine is guaranteeing, and on which the caller can rely after the call. Finally, an emerging way of viewing assertions, and in particular pre-and postconditions, is to consider them as a formalization of the requirements of the associated subprogram. For instance, we can express informally the requirements for a square root routine to be: the routine behavior is only defined for positive or null floating point inputs, the square root is the inverse of the square (square(sqrt(x)) = x), and we expect a maximum error of 10 -2 on the result. This can be expressed formally with pre-and postcondition assertions on the subprogram, as in the Ada 2012 example declaration below: function SQRT (X : F l o a t) r e t u r n F l o a t with Pre => X >= 0 , Post => abs (SQRT' R e s u l t * SQRT' R e s u l t -X) <= 0 . 0 1 ;

As can be expected, standards for developing critical software such as DO-178C for civil avionics, or EN-50128 for railway, require a fair amount of verification and testing during development cycles. They also require activities showing the coverage and completeness of those verifications. DO-178C defines two families of such coverage objectives:

• Functional coverage, which consists in checking that the system behaves as it should, or in other words that all the functional requirements have been verified, and that each of them has been sufficiently exercise to take all aspects of the requirement into consideration;

• Structural coverage, which consists in verifying that the program code has been exercised with sufficient exhaustiveness during the testing campaign. Specific structural criteria such as DECISION COVERAGE or MCDC provide an exhaustiveness metrci based on a close observation of the Boolean expressions that have an influence on program control flow.

This paper explores the implications of conducting coverage analysis on code that uses assertions, starting from the following questions:

• Are the standard structural coverage criteria adapted to code containing assertions?

• Can the structural coverage of assertions help assess functional coverage?

Before discussing these questions, we first need to understand why it can be useful or necessary to keep assertions in the final executable. As a matter of fact, tools usually let the user choose whether assertions will be part of the executable code or not, and it is common practice to enable assertions and other checks of various kinds for testing purposes only, and then to disable them for the final executable to be put in production, in which case pure structural coverage analysis of assertions is less of an issue. Enabling assertions during testing is a good idea because it makes the testing campaign more efficient: potentially elusive problems such as uninitialized variables or improper aliasing have better chance to get detected. On the other hand, keeping assertions enabled in the final executable is not always the best choice, especially when no recovery mechanism is in place: innocuous errors might cause the program to stop, whereas they would have remained unnoticed in the absence of assertions. Nevertheless, assertions can be used to provide the guarantee that the program is doing what it is supposed to do, and in some situations it is preferable to stop execution rather than continuing executing a program turned wild. In other words, keeping assertions live in the final system is a legitimate option, and is even necessary in some circumstances, when error recovery is taken care of and it is essential for the program to do only what it was designed for and nothing else.

Coverage criteria that make sense for assertions are therefore needed in situations where assertions remain in the executable code, or if they are used to help functional coverage assessment. As a result, in the majority of cases, DECISION COVER-AGE, and MCDC even more so, are not adequate criteria for assertions. This is actually unsurprising since, in essence, assertions aren't decisions by our definition, as they are expected never to evaluate False, whereas decisions are assumed to be legitimately allowed to take both values True and False.

Ignoring assertions for coverage purposes is not a viable option either: even a single assertion might check a wide spectrum of possible cases, and having a means of measuring how extensively this spectrum was exercised by a testing campaign is a necessity.

In addition, we believe that some structural coverage on assertions can help functional coverage analysis, when assertions are used to capture subprogram requirements.

We therefore observe that specific coverage criteria to be applied for the coverage analysis of assertions need to be defined. The remainder of this paper identifies possible tracks and illustrates how functional coverage can be helped in the process. The discussion is organized as follows:

In section 2, we propose definitions for three increasingly exhaustive criteria for the coverage of assertions, which could correspond to the three certification level of DO-178C that require coverage analysis. In section 3, we present examples of assertions, and introduce tri-state truth tables that we will use in the following sections for illustration purposes. Sections 4, 5 and 6 provide insights on the way to interpret the definitions on an example assertion, and comment on the sets of tests that can be used to achieve the respective criteria. Section 7 then shows how the definitions allow the nesting of decisions within assertions.

We then examine a few notesworthy aspects of the proposed criteria: section 8 provides a quantitative complexity analysis, giving a notion of the cost associated with achieving each criterion in terms of amount of testing it requires. Section 9 discusses situations where it may be impossible to satisfy some of the criteria, in particular for assertions which contain coupled operands. Finally, section 10 relates our tracks of thought to existing work, before moving to a conclusion where we summarize the most important points and discuss possible perspectives of further investigations.

Proposal of specific coverage criteria for assertions

We propose three levels of coverage criteria for assertions. These three levels are intended as companions to the three criteria defined for regular application code in the DO-178C standard (namely Statement, Decision, and MCDC coverage, depending on the certification level).

DO-178C defines the notion of condition to designate operands within decisions. We will reuse this term to designate operands within assertions as well.

For reasons exposed later on, when we need to distinguish conditions within a Boolean expression, the only operators we consider are those with short-circuit semantics such as the && and || in C, or and then and or else in Ada, as well as Boolean-valued IF-expressions (equivalent to the C ternary operator ?:). Logical negations have no influence on expression decompositions for our purposes.

A Boolean expression built from elementary Boolean conditions combined with these operators can be modeled as a Binary Decision Diagram (BDD), and an evaluation of such an expression can then be understood as a traversal of this BDD.

Note that Boolean subexpressions may appear within the considered elementary conditions, for example as formal parameters in subprogram calls, or as the expression that conditions a non-Boolean-valued IFexpressions. Such nested Boolean subexpressions do not directly determine the traversal of the BDD, and are therefore out the the scope of the coverage analysis for the outer assertion (of course they are subject to a separate coverage discussion in terms of the usual structural coverage criteria, as detailed in section 7).

On this ground, here are the three levels of criteria we propose:

Assertion True Coverage (ATC)

The expression as a whole has been evaluated True at least once.

Assertion True Condition Coverage (ATCC)

All the expression conditions have been evaluated at least once as part of a complete expression evaluation to True. Different conditions may have been evaluated as part of different outer expression evaluation instances.

Assertion True Path Coverage (ATPC)

All the paths leading to a True outcome within the expression's BDD were taken.

The following sections provide more detailed insights on what satisfying the criteria mean, then explore a few properties of interest regarding the criteria. We will be relying on a simple use-case example to illustrate most of the points.

Example assertions and tri-state truth tables

To help illustrate various points in the following sections, we will use the following example use-case for assertions: the doors of an elevator are controlled by a simple Ada program, and we focus on the subprograms responsible for locking/unlocking the doors.

An elevator door can be in three possible states:

• Locked: the door cannot be opened;

• Closed: the door is closed but not locked, i.e. it can be opened by a user;

• Opened: the door is opened. It cannot be locked; only a closed door can be locked.

Only two transitions between these states are invalid: going directly from Locked to Opened, and the other way around.

To enforce this constraint, the operations to lock the door is effective only if the door is Closed; in the other cases, it does nothing. A natural Nb Errors indicates the number of errors that have been generated in the operation ; a failure to lock a closed door is one of the possible errors, so at least one error is returned if the final state is not Locked when the original state was Closed. In Ada 2012, this could be expressed by a postcondition: For the sake of the example, the unlock operation is not quite symmetrical: trying to unlock a door that is not locked also results in an error, which allows a simpler postcondition:

procedure In both cases, postconditions express the invariants that the corresponding procedure bodies enforce. Forcing them to False during the test campaign would mean deliberately introduce bugs in the procedure code, which would be purely artificial. Keeping them in the deployed application would still be useful: the violation of any of these assertions means that the program cannot guarantee the safe use of the elevator anymore and the system would stop it and switch to a safe recovery mode: e.g. stop the elevator where it is and call for manual maintenance.

To help illustrate our criteria on this example, we will resort to tri-state truth tables to synthesize the way expressions get valued. The True and False possible values of the conditions or of the expression outcome will respectively be denoted with "T" and "F", and condition columns have an extra "x" possible state for situations where the condition evaluation is short-circuited. Each line of the table is called an evaluation vector and is assigned a unique number that can be used to designate it later on.

For the Unlock Door postcondition, using abbreviations like Pre Locked to denote "the door state on entry was Locked", Closed to denote "the door state on exit is Closed", and Error to denote "At least one error has been returned", we have an expression with three conditions of the following form and its associated tri-state truth table : (Pre Locked and then Closed)

or else E r r o r # Pre Locked Closed Error Outcome 1 F x T T 2 T F T T 3 T T x T 4 F x F F 5 T F F F

ATC user level characterization

From the truth table of our example assertion, any of the vectors #1, #2 or #3 is enough to satisfy ATC on its own, as they all yield a True outcome for the expression as a whole. This is pretty weak on the functional coverage front.

The other two criteria are stronger and deserve each a more elaborate discussion:

ATCC user level characterization

ATCC is explicitly referring to complete expression evaluations as those contributing to the criterion fulfillment. This denotes evaluations that terminate without unexpected interruptions, typically by possible exception occurrences during the tests. Indeed, evaluations that don't terminate yield no value for the expression as a whole, so we can't tell whether the assertion was satisfied. These are implicitly excluded by ATC already. The important extra point about ATCC that deserves being explicit is that we consider the incomplete set of valued conditions as not contributing to the criterion.

To illustrate what sets of test may be used to achieve ATCC, let's consider the Unlock Door postcondition and the associated truth table again. We can see that evaluation #2 yields True and evaluates all the conditions, so is sufficient to achieve the criterion on its own. #1 alone is not enough since the evaluation of Closed is short-circuited, and #3 alone is not enough either since the evaluation of Error is short-circuited. The definition allows the combination of #1 and #3 to fulfill the criterion, still, as they both yield True and evaluate all the conditions overall. This is immediately stronger than ATC from the functional standpoint: Indeed, a single test vector allows satisfying the criterion alone: vector #2 which corresponds to Pre Locked True, Closed False and Error True. This is a very interesting case, which checks that Error is correctly set on a failed legitimate attempt to unlock a door. If testing doesn't check this specific case, it has to check two cases as a counterpart; one verifying that Error is correctly set on invalid attempts to unlock a door that was not locked on entry (vector #1), and one verifying a situation where the door state transitions from Locked to Closed as expected in nominal conditions (vector #3).

ATPC user level characterization

The use of the expression BDD for ATPC makes it potentially hard to understand from a user point of view. This is where focusing on operands combined by short-circuit operators helps. Indeed, in this case the set of BDD paths leading to a True outcome correspond to the set of lines with a True outcome in the tri-state truth table, so figuring out which tests need to be exercised to fulfill the criteria is straightforward from the table.

For our example postcondition on Unlock Door, we can immediately see from the associated truth table that achieving ATPC requires 3 tests, going through all of the first three vectors, which are the ones for which the expression evaluates True. The gain in strength of functional coverage compared to ATCC is significant, as the criterion requires exercising all the cases of relevance.

Incidentally, however, we notice that Error is not evaluated as part of vector #3. It might seem surprising not to evaluate a possible error condition in a vector that contributes to a structural coverage criteria, and here could be an indication that the postcondition might be imprecise in conveying all the functional requirements and might need to be improved.

This last observation, together with the previous comments, illustrates that thinking in functional terms as part of a structural analysis process can be meaningful and of real interest. It so appears that structural coverage analysis on contracts can be of significant potential value for functional coverage discussions.

Decisions within assertions and the influence of coding styles

While assertions aren't decisions by definition (an assertion is assumed to only ever evaluate to True throughout testing, whereas a decision can be expected to evaluate True and False over successive tests), assertions can embed nested decisions that might need to be analyzed on their own. This influences the amount and kind of testing required, so is useful to keep in mind when reasoning about the meaning and characteristics of criteria. Here, we present an example to illustrate the point and show how differences in coding style can influence the testing requirements as well.

Consider the postcondition of the Lock Door subprogram in our example. The assertion is of the form: On the other hand, the inner IF-expression is not Boolean-valued, and so the corresponding two cases do not directly appear as nodes in that BDD.

Complexity assessment

An interesting question is how many evaluations (tests) are needed to satisfy our criteria. The regular MCDC criterion, for example, is known to require no more than N+1 tests for a decision with N conditions. What would be an upper bound for assertions? For ATCC, the complexity is also linear: no more than N tests are required for an assertion with N conditions. Indeed, for any well-formed assertion, each condition is reachable and from this condition there exists a path to outcome True in the BDD. So for each condition we can provide a test that evaluates the considered assertion and exits on outcome True. Taking one such test per condition gives N tests. However, for ATPC, the complexity can be exponential, depending on the topology of the BDD. In the study of equivalence between object branch coverage and MCDC that [START_REF] Comar | Formalization and Comparison of MCDC and Object Branch Coverage Criteria[END_REF] provides, a pathological case was presented where three evaluations were enough to cover an arbitrarily complex decision for object branch coverage; the same case also shows an exponential complexity for ATPC. Consider the following set {E n } n∈N of Boolean expressions:

• let E 0 be a simple condition expression, with its condition denoted C 0 ; then define:

• ∀ n > 0, E n = (E n-
C 0 C 1 C 1 T T F T F T F T F (a) C 0 C 1 C 1 C 2 C 2 T T F T F T F T F T F T F (b)
Figure 2: Exponential complexity for ATPC This example illustrates that exponential complexity comes from multi-path nodes (nodes with more than on predecessor in the BDD). On the contrary, when the BDD is a tree, the complexity is linear: the number of tests needed to cover it for ATPC is at most equal to the number of conditions. This is also the exact amount of tests needed in the case of an assertion that contains only or else operators.

[7] provides a case study on two industrial projects showing that multi-path nodes in BDDs are quite rare (less than 1% of decisions). A similar case study would be needed for assertions, but this suggests that assertions where the complexity of ATPC would explode are likely quite rare. In other words, we expect BDDs to be trees in the vast majority of cases, and ATPC is comparable to MCDC in this configuration as covering an expression for ATPC is exactly the same as taking only the True valuations of a MCDC coverage.

Achievability considerations

A known issue with coverage criteria on Boolean expressions is the potential inability to achieve coverage in the presence of coupled conditions. This is in particular what lead to the refinement of Unique Cause MCDC into Masking MCDC. The same question holds for coverage criteria on assertions. Amongst the criteria that we defined in this paper, only ATPC can be impacted by coupled conditions. In the general case, it is possible to build assertions with coupled conditions on which ATPC would not be achievable. The question is whether these cases could be found in a real industrial system. First, it must be noticed that such cases do not make sense in the absence of multi-path nodes. Indeed, with a tree BDD, not being able to cover a particular path to True means that one of the conditions cannot be changed, which would mean that it is useless and that the assertion is ill-formed.

On the other hand, as seen in the previous section, multi-path nodes in decisions seem to be quite rare in industrial application. To have an impact on achievability, these rare expressions also have to contain coupled conditions, and these coupled conditions have to forbid a path to outcome True. This makes this problematic cases even less likely to appear in real-life applications. It would therefore be manageable to handle these with justified exemptions without increasing too much the workload of the tester.

In that context, we have identified one recurring pattern that requires specific attention. It consists in the elaboration of an assertion that distinguishes different subsets or states, for each of which a separate expression must evaluate True, such as:

Case 1 : expression B must be True;

Case 2 : expression C must be True.

An example of this pattern is the postcondition of operation Lock Door in the elevator example. In this postcondition, Case 1 is when the door is closed before hand and Case 2 is the other cases. Depending on the way the assertion is expressed, some of the paths may be impossible to exercise in which case ATPC would be unachievable. The problem lies in an implicit coupling between the predicates denoting each case. Indeed, in general the cases distinguished in such a requirement are mutually exclusive.

If the above requirement is formally expressed in disjunctive normal form (DNF):

(Case 1 and then B) or else (Case 2 and then C) then ATPC cannot be achieved, because the implicit coupling makes it impossible to exercise some paths in the expression (which involve Case 1 and Case 2 both being True). In this example, the expression's truth table contains:

Case 1 B Case 2 C Outcome T F T T T and ATPC cannot be achieved because there's no way to get both Case 1 and Case 2 true as part of the same evaluation. In BDD terms, the path outlined in figure 3 can never be taken. For MCDC, the issue of coupled condition has been handled by refining the coverage criterion into the Masking MCDC variant; in the case of assertions, something like a masking ATPC could be defined formally but this criterion would be harder to understand by testers. Here, we would consider an alternative solution: rewrite the assertion to eliminate multi-path nodes. Indeed, note that in the context of formalizing the discussion of two mutually exclusive states, the unreachable path does not make any sense, as it first takes a branch denoting the first case, and then falls through to examining the second case. This is a consequence of the DNF formalization failing to capture the notion that Case 1 and Case 2 form a partition of the state space. Conversely, using a notation that does capture this fact yields a BDD where this nonsense path does not exist. For example, using Ada 2012 conditional expressions, the discussion of two cases can be denoted as: This notation retains the semantics that the two cases discussed are mutually exclusive: if Case 1 is examined, there is no point in examining Case 2. With this additional semantic information retained, ATCC and ATPC become equivalent in this case, and are reached using two tests:

Case 1 B Case 2 C Outcome T T x x T F x T T T
In addition, when the discussion of cases is thus expressed as a chain of conditional expressions, ATPC can be simply understood as exercising each of the distinct cases, or states. In other words, when a requirement consists in a partition of input space, and the requirement is expressed with a notation such as the above that preserves the notion of that partitioning, then ATPC essentially consists in separately covering each subset in the partition.

Note that this is precisely the form that has been presented for the postcondition of Lock Door. The SPARK 2014 language also introduces a specific notation for this pattern in the form of the Contract Cases aspect, that could have been used as follows: In addition to expressing a postcondition equivalent to the above chained conditional expressions, this also states that the set of cases are both disjoint or complete.

Related work

As the coverage level required on Boolean expressions is a typical key differentiator between assurance levels in various certification standards, there are lots of publications treating of Boolean expressions in coverage analysis contexts.

The certification standards themselves, such as [START_REF] Rtca | Software considerations in airborne systems and equipment certification[END_REF], [START_REF] Rtca | Software considerations in airborne systems and equipment certification[END_REF] for civil avionics, or [START_REF]Railway applications -Communication, signalling and processing systems -Software for railway control and protection systems[END_REF] for railway, are of course a primary reference. A very large number of related papers and documents were written over the years as the experience of using the criteria in real projects built up. Here are just a few examples: [START_REF]What is a Decision in Application of Modified Condition/Decision Coverage (MC/DC) and Decision Coverage (DC)? Position Paper 10[END_REF] clarifies some aspects regarding possible interpretations of the DO-178CB standard, specifically on the notion of "decision". [START_REF] Chilenski | An Investigation of Three Forms of the Modified Condition/Decision Coverage (MCDC) Criterion[END_REF] defines possible variants of the MCDC criterion, amongst which masking MCDC was eventually accepted as valid alternative in avionics projects to handle issues with coupled conditions [START_REF]Rationale for accepting Masking MCDC in certification projects[END_REF]. [START_REF] Hayhurst | A Practical Tutorial on Modified Condition/Decision Coverage[END_REF], [START_REF]Software Verification Tools Assessment Study[END_REF] illustrate what the various criteria can mean in practice from a user or tool qualification perspective. [START_REF] Chilenski | Applicability of modified condition/decision coverage to software testing[END_REF] performs a thorough study of MCDC's main characteristics and relationships with other criteria. [START_REF] Sergiy | Formalization of software testing criteria using the z notation[END_REF] proposes a formalization of coverage criteria in Z, and other authors proposed improvements to the traditional decision related criteria, improving their problem detection strength while remaining linear with the complexity of decisions [START_REF] Sergiy | Reinforced Condition/Decision Coverage (RC/DC): A New Criterion for Software Testing[END_REF], [START_REF] Sergiy | From MC/DC to RC/DC: Formalization and Analysis of Control-Flow Testing Criteria[END_REF].

All these revolve around the notion of decision in DO-178C parlance, however. To our knowledge there is no prior publication on the specific set of issues that this paper proposes to explore, with a focus on assertions and their possible connection with functional coverage. Parallels of interest are nevertheless possible with some connected topics.

In particular, if we consider coverage analysis as a mean to determine if a testing campaign exercised enough of a program logic, a parallel is possible between the concerns we address here and research on the testing complements to formal methods. Indeed, there is an strong duality between aiming at the definition of a useful subset of tests needed to exercise a component correctly, based on formal representations, and verifying that enough testing was achieved thanks to assertion coverage analysis on the implementation code.

[1] and [START_REF] Stocks | A framework for specification-based testing[END_REF], for example, introduce a framework where a formal representation of a component in Z is used to derive partitions of its Valid Input Space (VIS) so a single test within a given partition is representative of the entire partition. If one translates the VIS partitioning rules as preconditions, then a set of tests derived from the partitioning process should in principle match or at least encompass the set of tests required to achieve ATPC. As another example [START_REF] Dick | Proceedings of the First International Symposium of Formal Methods Europe on Industrial-Strength Formal Methods[END_REF] presents techniques based on expression DNF to automate the partitioning and test sequencing processes.

Conclusion and perspectives

In this paper, we discussed the structural coverage analysis of assertions (Boolean expressions expected to always yield True at various points of a program), and the necessity for specific coverage criteria. We explained why we believe such an analysis is of use in an application certification context, and proposed the definition of three coverage criteria as a basis for further discussion.

One aspect of interest is the idea that some categories of assertions can be understood as a formalization of a program's functional requirements. We have provided examples that show how structural analysis on contracts can be interpreted in a meaningful way in functional terms, and thus provide a valuable basis for a functional coverage analysis.

We believe there is a lot of room for further work on this topic, in particular to refine the definition of relevant coverage criteria. Gathering more data from real use cases on industrial projects would help assessing their actual usefulness, and would certainly foster improvements. It is also quite possible that defining several families of criteria could be relevant to address different categories of assertions, within the context of contract based programming. For instance, we can perceive that preconditions are very different from postconditions, and might thus warrant distinct criteria.

Finally, assertion coverage turns out to be a common notion in the hardware design verification area, in association with so-called Assertion Based Verification (ABV) systems [START_REF] Dahan | Combining system level modeling with assertion based verification[END_REF]. It might be interesting to investigate if some of the ideas that led to the definition of an entire methodology in the hardware domain could apply to the software area. This would be kind of a symmetrical idea of the one used in [START_REF] Sreekumar | A Probabilistic Analysis For Fault Detectability of Code Coverage Metrics[END_REF], where the authors note that a categorization of software faults works pretty well in the microprocessor validation domain as well, and leverage this similitude.

procedure

 Lock Door (E : i n out E l e v a t o r T y p e ; N b E r r o r s : out N a t u r a l) with Post => (i f D o o r S t a t e (E ' Old) = Closed then N b E r r o r s >= (i f D o o r S t a t e (E) = Locked then 0 else 1) else (D o o r S t a t e (E) = D o o r S t a t e (E ' Old)) and then N b E r r o r s = 0) ;

 Unlock Door (E : i n out E l e v a t o r T y p e ; N b E r r o r s : out N a t u r a l) with Post => ((D o o r S t a t e (E ' Old) = Locked and then D o o r S t a t e (E) = Closed) or else N b E r r o r s > 0) ;

(Figure 1 :

 1 Figure 1: BDD for Lock Door postcondition

Figure 3 :

 3 Figure 3: BDD for (Case 1 and then B) or else (Case 2 and then C)

ifFigure 4 :

 4 Figure 4: BDD for if Case 1 then B elsif Case 2 then C

 Note that short-circuit Boolean operators and then and or else are really but a specific cases of the more general Boolean-valued IF-expression construct: A and then B is equivalent to (if A then B else False), and A or else B is equivalent to (if A then True else B). This construct exactly captures the elementary building block in BDDs, which model the way decisions actually are evaluated in generated code: the condition at each step selects a path ultimately leading to a True or False outcome. In assertion contexts, paths leading to False are irrelevant, and do not play a role in the coverage analysis. Conversely, a non-Boolean-valued IF-expression just selects a value that will intervene in some other outer expression such as a relational operator or function call: either direction of the condition might yield a True or False outcome; neither direction can be eliminated in an assertion context on the basis that only True outcomes are relevant. Consequently, the relevant coverage criteria for an expression that controls a non-Boolean IF-expression are the usual DECISION COV-ERAGE and MCDC.

 [START_REF] Carrington | A tale of two paradigms: Formal methods and software testing[END_REF] and then C n) or else C n , with C n , C n independent from each other and from any condition in E n-1 .

	Figures 2(a) and 2(b) show the BDD of E

1 and E 2 . For n > 1 it can be seen there that the two True outcomes of E n-1 both reach C n in E n and have then two different paths to True; so the number of paths to True in E n is more than twice the number of paths to True in E n-1 . This means that one would need at least 2 n tests to cover E n for ATPC.