
HAL Id: hal-01291885
https://hal.science/hal-01291885

Submitted on 22 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RTE Generation and BSW Configuration
Tool-Extension for Embedded Automotive Systems

Georg Macher, Rene Obendrauf, Eric Armengaud, Eugen Brenner, Christian
Kreiner

To cite this version:
Georg Macher, Rene Obendrauf, Eric Armengaud, Eugen Brenner, Christian Kreiner. RTE Generation
and BSW Configuration Tool-Extension for Embedded Automotive Systems. 8th European Congress
on Embedded Real Time Software and Systems (ERTS 2016), Jan 2016, TOULOUSE, France. �hal-
01291885�

https://hal.science/hal-01291885
https://hal.archives-ouvertes.fr


RTE Generation and BSW Configuration
Tool-Extension for Embedded Automotive Systems

Georg Macher∗‖,Rene Obendrauf‖, Eric Armengaud‖, Eugen Brenner∗ and Christian Kreiner∗

∗Institute for Technical Informatics, Graz University of Technology, AUSTRIA
Email: {georg.macher, brenner, christian.kreiner}@tugraz.at

‖AVL List GmbH, Graz, AUSTRIA
Email: {georg.macher, rene.obendrauf, eric.armengaud}@avl.com

Abstract—Automotive embedded systems have become very
complex, are strongly integrated and the safety-criticality and
real-time constraints of these systems are raising new challenges.
Distributed system development, short time-to-market intervals,
and automotive safety standards (such as ISO 26262 [8]) re-
quire efficient and consistent product development along the
entire development lifecycle. The challenge, however, is to ensure
consistency of the concept constraints and configurations along
the entire product life cycle. So far, existing solutions are still
frequently insufficient when transforming system models with a
higher level of abstraction to more concrete engineering models
(such as software engineering models).

The aim of this work is to present a model-driven system-
engineering framework addon, which enables the configurations
of basic software components and the generation of a runtime
environment layer (RTE; interface between application and
basic software) for embedded automotive system, consistent with
preexisting constraints and system descriptions. With this aim in
mind a tool bridge to seamlessly transfer artifacts from system
development level to software development level is described. This
enables the seamless description of automotive software and soft-
ware module configurations, from system level requirements to
software implementation and therefore ensures both consistency
and correctness for the configuration.

Keywords—automotive, embedded systems, Model-based devel-
opment, basic software configuration, traceability, model-based
software engineering.

I. INTRODUCTION

Embedded systems are already integrated into our everyday
lives and play a central role in all domains including automo-
tive, aerospace, healthcare, manufacturing industry, energy, or
consumer electronics. Current premium cars implement more
than 90 electronic control units (ECU) per car with close to 1
Gigabyte software code [4], these are responsible for 25% of
vehicle costs and bring an added value between 40% to 75%
[18]. This trend of making use of modern embedded systems,
which implement increasingly complex software functions
instead of traditional mechanical systems is unbroken in the
automotive domain. Similarly, the need is growing for more
sophisticated software tools, which support these system and
software development processes in a holistic manner. As a con-
sequence, the handling of upcoming issues with modern real-
time systems, also in relation to ISO 26262 [8], model-based
development (MBD) would appear to be the best approach

for supporting the description of the system under develop-
ment in a more structured manner. Model-based development
approaches enable different views for different stakeholders,
different levels of abstraction, and provide a central storage of
information. This improves the consistency, correctness, and
completeness of the system specification. Nevertheless, such
seamless integrations of model-based development are still the
exception rather than the rule and frequently MBD approaches
fall short due to the lack of integration of conceptual and
tooling levels [3].

The aim of this paper is to present a tool approach which
enables a seamless description of safety-critical software, from
requirements at the system level down to software component
implementation in a bidirectional way. With the presented
tool available hardware- software interfacing (HSI) information
can be used to generate basic software (BSW) component
configurations, as well as, automatic generation of the run-
time environment layer (RTE; interface between application
software (ASW) and basic software).

The tool consists of a basic software configuration
generator and a software interface generator producing .c
and .h files for linking ASW and BSW. To ensure more
versatility of the tool the required HSI information can either
be imported from a HSI spreadsheet template or the system
model representation. The goal is, on one hand, to support
a consistent and traceable refinement from the early concept
phase to software implementation, and on the other hand,
to combine the versatility and intuitiveness of spreadsheet
tools (such as Excel) and the properties of MDB tools
(e.g., different views, levels of abstraction, central source of
information, and information reuse) bidirectionally to support
semi-automatic generation of BSW configuration and the
SW-SW interface layer (in AUTOSAR notation known as
runtime environment - RTE).

The document is organized as follows:
Section II presents an overview of related works as well as the
fundamental model-based development tool chain on which
the approach is based. In Section III a description of the
proposed tool and a detailed depiction of the contribution parts
is provided. An application and evaluation of the approach is
presented in Section IV. Finally, this work is concluded in
Section V with an overview of the presented approach.



SPREADSHEET INFORMATION IMPORTER

System Requirements

Safety Requirements

System Architecture

HW ArchitectureSW Architecture

SYSTEM MODELING TOOLS

HSI

Interface.
c

Interface
.h

AVLIL_
Adc.c

AVLIL_
Adc.h

AVLIL_
Port.c

AVLIL_
Adc_cfg.

c

BSW – Low 
Level Driver

Adc.h

Can.h

Dio.h

AVLIL_
PWM.c

AVLIL_
Dio.h

AVLIL_
Dio_cfg.

h

ASW/BSW INTERFACE GENERATOR 
& 

BSW CONFIGURATOR

HW AND SW MODELING FRAMEWORK

AVLIL_
PWM.h

AVLIL_
PWMcfg

.h

Fig. 2. Portrayal of the Approach for Generation of BSW Configuration and SW Interfaceing Files for the SW Development Phase

Software Development Tool

InputA.c

manual 
rework

FunctionA.c

OutputA.c

manual 
rework

Fig. 1. ICC1 AUTOSAR Approach Methodology with Required Manual
Intervention

II. RELATED WORK

Development of automotive embedded software as well as
the configuration of the underlying basic software and em-
bedded systems are engineering domains and research topics
aimed at moving the development process to an automated
work-flow for improving the consistency and tackling the com-
plexity of the software development process across expertise
and domain boundaries. Recent publications are mainly based
on AUTOSAR [1] methodology.

Due to the ever increasing software complexity of the
last few years more and more efforts are becoming necessary
to manage the development process of automotive embedded
software. To handle this complexity the AUTOSAR consor-
tium was founded and the AUTOSAR methodology provides
standardized and clearly defined interfaces between different
software components. The AUTOSAR approach features three
different classes of implementation (ICC - implementation
conformance class). The main benefit of the AUTOSAR ICC1
approach clearly relies on the time-saving in terms of no

additional familiarization with usually very complex and time-
consuming AUTOSAR tools compared to the full AUTOSAR
approach (ICC3). The ICC1 approach does not take advantage
of the AUTOSAR benefits from the full AUTOSAR tool-chain
supporting tools for RTE configuration and communication
interfaces, but standardized component interfaces for exchange
of data between the ASW and BSW and therefore features the
separation of application specific and hardware specific soft-
ware parts (like native non-AUTOSAR development). ICC1
mainly focuses on SW engineering and more specifically on
the integration of ASW into a given SW architecture. However,
the aspects related to control systems engineering (including
HW/SW co-design) are not integrated and aspects such as
HW/SW interface definition must be performed manually, as
indicated in Figure 1. The tool approach introduced in this
work enhances this aspect by providing a framework for the
visualization of both ASW and BSW interface configuration
and automated generation of these interfacing .c and .h files
(see Figure 2). Furthermore, the available hardware- software
interfacing (HSI) information can be used to generate basic
software (BSW) components configurations and the HSI infor-
mation import functionality can also handle HSI spreadsheet
templates to ensure more versatility of the tool.

An approach for an AUTOSAR migration of existing
automotive software is described in the work of Kum et.
al [10]. The authors highlight the benefits of separating the
application software and the basic software and present an
approach to configuration of basic software modules instead of
time consuming and error-prone manual coding of embedded
software. The automatic generation of automotive embedded
software and the resultant configuration of the embedded
systems thus improves quality as well as re-usability.

In [11], the authors describe a framework for a seamless
configuration process for the development of automotive em-



bedded software. The framework is also based on AUTOSAR
which defines the architecture, methodology, and application
interfaces. The configuration process is established via system
configuration and ECU configuration. All the configurations
and descriptions used are stored in separate XML (Extensible
Markup Language) files, containing described and classified
parameters and the associated information. The authors addi-
tionally specify a meta-model for the AUTOSAR exchange
formats that describe the ECU configuration parameter defini-
tion and the ECU configuration description.

Jo et al. [9] describe an approach for the design of a ve-
hicular code generator for distributed automotive systems. The
increasing complexity during development of an automotive
embedded software and systems and the manual generation
of software have the effect of leading to more and more
software defects and problems. The authors thus integrated
a RTE module into their earlier development phase tool to
design and evolve an automated embedded code generator with
a predefined generation process. The presented approach saves
time through automated generation of software code, compared
to manual code generation, it reduces error-prone and time-
consuming tasks and is also based on an AUTOSAR aligned
approach. The output of the code generator tool is limited
to the RTE source code and the application programming
interface (API) of the input information. As in our approach,
the configuration of software modules, is not focused.

Piao et al. [15] illustrate a design and implementation
approach of a RTE generator for automotive embedded soft-
ware. The RTE layer is located in the middle-ware layer of
the AUTOSAR software architecture and combines the top
layer mentioned as application software with the underlying
hardware and basic software. Automated code generation aims
at moving the development steps closer together and thus im-
proving the consistency of the software development process.
The output of the automated RTE generator are communication
API functions for AUTOSAR SW components of the ASW.

Focusing on software complexity, Jo et al. [7] presents
a design for a RTE template structure to manage and de-
velop software modules in automotive industry. The authors
focus on the design of a RTE structure also based on the
AUTOSAR methodology. Within this design they describe the
Virtual Functional BUS (VFB) which establishes independence
between the Application Software (ASW) and the underlying
basic software (BSW) and hardware.

In [14], an approach for realizing location-transparent inter-
action between software components is shown. The proposed
work illustrates the relationship between the RTE and the VFB
and shows which artifacts of the VFB are necessary for the
generation of the RTE.

A work depicting the influence of the AUTOSAR method-
ology on software development tool-chains is presented by
Voget [19]. The tool framework presented, named ARTOP
(AUTOSAR Tool Platform), is an infrastructure platform that
provides features for the development of tools used for the
configuration of AUTOSAR systems. The implemented fea-
tures are base functionalities required for different AUTOSAR
tool implementations. The work does not, however, focus on
a specific tool integration.

To summarize, none of the approaches described above

supports (1) the generation of source code and (2) configura-
tion of the basic software from information available at system
level and from system models. The approach we present
by contrast, supports not only the automatic generation of
the RTE source code, but also the automated generation of
basic software configuration of embedded systems from system
models.

III. BASIC SOFTWARE INTERFACE AND CONFIGURATION
GENERATION APPROACH

The underlying concept of the approach is to have a consis-
tent information repository as a central source of information,
to store all information of all engineering disciplines involved
in embedded automotive system development in a structured
manner [13]. The concept focuses on allowing different engi-
neers to do their job in their own specific way, but providing
traces and dependency analysis of features concerning the
overall system, e.g. safety, security, or dependability. The
approach stirs out of common AUTOSAR based approaches
and additionally supports a non-AUTOSAR or AUTOSAR
ICC1 approach, which are frequently hampered due to a
lack of supporting tools. The decision of not fostering a full
AUTOSAR approach is based on the one hand on focusing not
only AUTOSAR based automotive software development and
on the other hand, experiences we have made with our previous
approach [12] confirm the problem mentioned by Rodriguez
et al. [16]. Not all development tools fully support the entire
AUTOSAR standard, because of its complexity, which leads to
several mutual incompatibilities and interoperability problems.

Figure 2 shows an overview of the approach and highlights
the main contributions. For a more detailed overview of the
orchestration for the overall development tool-chain see [13].

The tool approach introduced in this work provides a
framework for the visualization of ASW and BSW interface
configuration and automated generation of these interfacing
.c and .h files (see Figure 2). Furthermore, the available
hardware- software interfacing (HSI) information can be used
to generate basic software (BSW) component configurations
and the HSI information import functionality can also handle
HSI spreadsheet templates to ensure more versatility of the
tool. More specifically, the contribution proposed in this work
consists of the following parts:

• AUTOSAR aligned UML modeling framework:
Enhancement of an UML profile for the definition of
AUTOSAR specific artifacts, more precisely, for the
definition of the components interfaces (based on the
virtual function bus abstraction layer), see Figure 2 –
HW and SW Modeling Framework.

• BSW and HW module modeling framework:
Enhancement of an UML profile to describe BSW
components and HW components. To ensure consis-
tency of the specification and implementation for the
entire control system, see Figure 2 – HW and SW
Modeling Framework.

• RTE generator:
Enables the generation of interface files (.c and .h) be-
tween application-specific and hardware-specific soft-
ware functions, see Figure 2 – ASW/BSW Interface
Generator .



Fig. 3. Screenshot of the SW Architecture Representation within the System Development Tool and Representation of the Interface Information

• Basic software configuration generator:
Generates BSW configurations according to the spec-
ifications within the HSI definition, see Figure 2 –
BSW Configurator.

• Spreadsheet information importer:
Enables the import of HSI definition information done
in spreadsheet format, see Figure 2 – Spreadsheet
Information Importer.

This proposed approach closes the gap between system-
level development of abstract UML-like representations and
software-level development, also mentioned by Giese et al. [5],
Holtmann et al. [6], and Sandmann and Seibt [17] by support-
ing consistent information transfer between system engineering
tools and software engineering tools. Furthermore the approach
minimizes redundant manual information exchange between
tools and contributes to simplifying seamless safety argumen-
tation according to ISO 26262 for the developed system. The
benefits of this development approach are highly noticeable in
terms of re-engineering cycles, tool changes, and reworking
of development artifacts with alternating dependencies, as
mentioned by Broy et al. [3].

The contribution proposed in this work is part of the frame-
work presented in [13] aiming towards software development
in the automotive context. The implementation of the approach
is based on versatile C# class libraries (dll) and API command
implementations to ensure tool and tool version in-dependence
of the general-purpose UML modeling tool (such as Enterprise
Architect or Artisan Studio) and other involved tools (such as
spreadsheet tool and software development framework). The

following sections describe those parts of the approach that
make key contributions in more details.

A. AUTOSAR aligned UML modeling framework

The first part of the approach is a specific UML model-
ing framework enabling software architecture design in AU-
TOSAR like representation within a state-of-the-art system
development tool (in this case Enterprise Architect). A specific
UML profile to limit the UML possibilities to the needs of
software architecture development of safety-critical systems
and enable software architecture design in AUTOSAR like
representation within the system development tool (Enterprise
Architect). In addition to the AUTOSAR VFB abstraction layer
[2], the profile enables an explicit definition of components,
component interfaces, and connections between interfaces.
This provides the possibility to define software architecture
and ensures proper definition of the communication between
the architecture artifacts, including interface specifications
(e.g. upper limits, initial values, formulas). Hence the SW
architecture representation within EA can be linked to system
development artifacts and traces to requirements can be easily
established. This brings further benefits in terms of constraints
checking, traceability of development decisions (e.g. for safety
case generation), reuse and ensures the versatility to also
enable AUTOSAR aligned development as proposed in [12].
Figure 3 shows an example of software architecture artifacts
and interface information represented in Enterprise Architect.
As can be seen in the depiction, all artifacts required to model
the SW architecture are represented and inherit the required
information as tagged values.



Fig. 4. Screenshot of the BSW and HW Pin Representation within the System
Development Tool

B. BSW and HW Module Modeling Framework

The AUTOSAR architectural approach ensures hardware-
independent development of application software modules
until a very late development phase and therefore enables
application software developers and basic software developers
to work in parallel. The hardware profile of the approach
allows a graphical representation of hardware resources (such
as ADC, CAN), calculation engines (core), and connected
peripherals which interact with the software. Special basic
software (BSW) and hardware module representations are
assigned to establish links to the underlying basic software
and hardware layers. This enables an intuitive graphical means
of establishing software and hardware dependencies and a
hardware-software interface (HSI), as required by ISO 26262.
Software signals of BSW modules can be linked to HW port
pins via dedicated mappings. On the one hand this enables
the modeling and mapping of HW specifics and SW signals,
see Figure 4 and on the other hand this mapping establishes
traceable links to port pin configurations. A third point is that
this HW dependencies can be used to interlink scheduling and
task allocation analysis tools for analysis and optimization of
resource utilization.

C. Runtime Environment Generator

The third part of presented approach is the SW/SW in-
terface generator. This dll- based tool generates .c and .h
files defining SW/SW interfaces between application software
signals and basic software signals based on modeled HSI
artifacts. In addition, this generation eliminates the need for
manual SW/SW interface generation without adequate syntax
and semantic support and ensures the reproducibility and
traceability of these configurations.

Figure 5 shows the conceptual overview of generated
files. The .c and .h files on application software level are
generated via a model-based software engineering tool, such
as Matlab/Simulink. The files on the basic software level
are usually provided by the hardware vendor. While the files
referred to in the SW/SW interface layer are generated by our
approach.

The generated files are designed in a two-step approach.
The first step of the interfacing approach (interface.c and
interface.h) establishes the interface between ASW and
BSW based on AUTOSAR RTE calls. The second step
(AV LIL BSWa.c and AV LIL BSWa.h) maps these AU-
TOSAR RTE based calls to the HW specific implementation

A
P

P
LI

C
A

TI
O

N
 S

W
 

LA
YE

R
SW

 /
 S

W
 IN

TE
R

FA
CE

 L
A

YE
R

B
A

SI
C
 S

O
FT

W
A

R
E 

LA
YE

R

APPLICATION 
A.C

APPLICATION 
B.C

APPLICATION 
C.C

INTERFACE.C

BSWDRIVER

A.C
BSWDRIVER

A.C
BSWDRIVER

A.C

AVLIL_BSW
A.C

AVLIL_BSW
B.C

AVLIL_BSW
C.C

Fig. 5. Overview of Architecture Level Files Generated by the Interface
Generator

of basic SW drivers. This ensures independence from imple-
mentation of the BSW drivers and also features an AUTOSAR
ICC1 approach if needed.

D. Basic Software Configuration Generator

The basic software configuration generator is also part
of the dll- based tool, which generates BSW driver specific
∗ cfg.c files. These files configure the vendor specific low-
level driver (basic software driver) of the HW device according
to the HSI specifications. The mapping of HSI specifications to
low-level driver configuration is hardware and low-level driver
implementation specific and needs to be done once per HW
device and supported low-level driver package.

E. HSI Spreadsheet Information Importer

The HSI definition requires mutual domain knowledge of
hardware and software and is to be a work product of a
collective workshop of hardware, software, and system experts
and will act as the linkage between different levels of devel-
opment. Consistency and evidence of correct implementation
of HSI can be challenging in case of concurrent HW and SW
development and cross-dependencies of asynchronous update
intervals. Therefore, this approach enables a practicable and
intuitive way of engineering HSI definitions in a spreadsheet
tool (Excel) and transforms them to a reusable and version-
able representation in the MDB tool (Enterprise Architect).
The spreadsheet template defines the structure of the data
representation in a project-specific customizable way. On the
one hand this enables a practicable and intuitive means of
engineering HSI definitions with spreadsheet tools, while their
machine- and human-readable notation ensures a cost- and
time-saving alternative to the usually complex special-purpose
tools, while on the other hand it enables the generation of
SW/SW interface files and BSW configurations without the
need for a model-based development toolchain in place. Figure
6 depicts the project-independent template structure for HSI
definition data preparation.

IV. APPLICATION OF THE PROPOSED APPROACH

This section demonstrates the benefits of the introduced
approach for development of automotive embedded systems.



Fig. 6. Example of a project-independent spreadsheet template structure for
HSI definition

TABLE I. OVERVIEW OF THE EVALUATION USE-CASE SW
ARCHITECTURE

Object type Element-
count

Configurable
Attributes
per Element

ASW Modules 10 3
BSW Modules 7 3
ASW Module Inputs 54 10
ASW Module Outputs 32 10
ASW/ASW Interfaces 48 -
ASW/BSW Interfaces 19 -
HW/SW Interfaces 19 13

We used an automotive battery management system (BMS)
as the use-case for the evaluation of the approach. This use-
case is an illustrative material, reduced for internal training
purposes and is not intended to be either exhaustive in scope
or to represent leading-edge technology.

The definition of the software architecture is usually done
by a software system architect within the software development
tool (Matlab/Simulink). With our approach this work package
is included in the system development tool (as shown in
Figure 3). This does not hamper the work of the software
architect but enables the possibility to also link existing HSI
mapping information to the SW architecture (as shown in
Figure 4).

The use-case consists of 10 ASW modules and 7 BSW
modules with 19 interface definitions between ASW and BSW
and makes use of the 3 fundamental low-level HW functions
(digital input/output, analog input/outputs, and PWM outputs).
A more complete overview of use-case is given in Table I.

The definition of the 19 HW/SW interfaces with 10 pa-
rameters for each SW signal and 13 parameters for each HW
pin sums up to 437 parameter configurations within the HSI
spreadsheet template or in the MDB tool, which can be used
to generate ASW/BSW interfaces and BSW configurations.

This results in the file architecture depicted in Figure 7.
With the use of the approach 8 additional interfacing files with
481 lines of code (LoC) source and 288 LoC configuration
have been generated.

In terms of getting started with AUTOSAR aligned devel-
opment or supporting non-AUTOSAR SW development our
approach features a smooth first step approach of the ICC1 AU-
TOSAR and generates an interface layer (similar to AUTOSAR
RTE) without relying on full AUTOSAR tooling support. In
terms of safety-critical development the approach presented
supports traceability links between BSW configurations to HSI
information and eliminates the need of manual interface source
code rework, which further surmounts the main drawbacks of
the ICC1 AUTOSAR approach.

V. CONCLUSION

An important challenge for the development of embedded
automotive systems is to ensure consistency of the design
decisions, SW implementations, and driver configurations,
especially in the context of safety-related development. This
work presents an approach which seamlessly describes safety-
critical software, from requirements at the system level down
to software component implementation in a traceable manner.
The available hardware- software interfacing (HSI) information
can thus be used to generate basic software (BSW) component
configurations, as well as automatic software interface layer
generation (interface between application software and basic
software). With this aim in mind a framework consisting
of a basic software configuration generator and a software
interface generator producing .c and .h files for linking ASW
and BSW has been presented, which can also be used in
combination with a spreadsheet based HSI definition. The
main benefits of this enhancement are: improved consistency
and traceability from the initial design at the system level
down to the single CPU driver configuration, together with a
reduction of cumbersome and error-prone manual work along
the system development path. Further improvements of the
approach include the progress in terms of reproducibility and
traceability of configurations for software development (such
as driver configurations and SW-SW interfaces).

The application of the presented approach has been demon-
strated utilizing an automotive BMS use-case, which is in-
tended to be used for training purposes for students and
engineers and does not represent either an exhaustive or a
commercial sensitive project. While the authors do not claim
completeness of the analysis (due to confidentiality issues), the
benefits of the approach are already evident.

ACKNOWLEDGMENTS

This work is partially supported by the EMC2 and the
MEMCONS projects.

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agree-
ment nr 621429 (project EMC2) and financial support of
the ”COMET K2 - Competence Centers for Excellent Tech-
nologies Programme” of the Austrian Federal Ministry for
Transport, Innovation and Technology (BMVIT), the Austrian
Federal Ministry of Economy, Family and Youth (BMWFJ),



INTERFACE.C XCUIF.C

IO_THRVAL.CIO_ACCPED.C MOTORCONTROL.C

PORT_INIT()
RTE_IREAD_EGASSYS

TEM_1MS_PORT_APE

DL1_IN()
...

PORT.CADC.C PWM.C

AVLIL_PORT.CAVLIL_ADC.C AVLIL_PWM.C

ADC_INIT()
AVLIL_GETVALADC()
RTE_IREAD_EGASSYSTEM_1M

S_ADC_THRPOSN1_IN()
...

GETACCPEDFILTERED1()
GETACCPEDFILTERED2()

SWI_1MS()
SWI_10MS()
SWI_100MS()

B
A

SI
C
 S

W
 L

A
Y

ER
IN

TE
R

FA
C

E 
LA

Y
ER

PORT_SETPINMODEINPUT()
PORT_SETPINMODEOUTPUT()
PORT_SETPINSTATE()
PORT_SETPINMODE()
PORT_SETPINPADDRIVER()
...

A
P

P
LI

C
A

T
IO

N
 

SW
 L

A
Y

ER

ADC_INITMODULE()
ADC_INITMODULECONFIG()
ADC_INITGROUP()
ADC_INITGROUPCONFIG()
ADC_INITCHANNEL()
ADC_INITCHANNELCONFIG()
...

PWM_INIT()
RTE_IREAD_EGASSYS

TEM_1MS_PWM_AP
EDL2_IN()
...

SETMCOUTPUT()
SETMCENABLE()
CLEARMCENABLE()
...

GETTHRVALFILTERED1()
GETTHRVALFILTERED2()

GTM_TOM_TIMER_INITCONFIG()
GTM_TOM_TIMER_INIT()
GTM_PINMAP_SETTOMTOUT()
GTM_TOM_TGC_ENABLECHANNELS()
GTM_TOM_CH_SETSIGNALLEVEL()
...

Fig. 7. Excerpt of Generated Files for the BMS Use-Case

the Austrian Research Promotion Agency (FFG), the Province
of Styria, and the Styrian Business Promotion Agency (SFG).

Furthermore, we would like to express our thanks to our
supporting project partners, AVL List GmbH, Virtual Vehicle
Research Center, and Graz University of Technology.

REFERENCES

[1] AUTOSAR development cooperation. AUTOSAR AUTomotive Open
System ARchitecture, 2009.

[2] AUTOSAR Development Cooperation. Virtual Functional Bus. online,
2013.

[3] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu.
Seamless Model-based Development: from Isolated Tool to Integrated
Model Engineering Environments. IEEE Magazin, 2008.

[4] C. Ebert and C. Jones. Embedded Software: Facts, Figures, and Future.
IEEE Computer Society, 0018-9162/09:42–52, 2009.

[5] H. Giese, S. Hildebrandt, and S. Neumann. Model Synchronization
at Work: Keeping SysML and AUTOSAR Models Consistent. LNCS
5765, pages pp. 555 –579, 2010.

[6] J. Holtmann, J. Meyer, and M. Meyer. A Seamless Model-Based
Development Process for Automotive Systems, 2011.

[7] J. Hyun Chul, P. Shiquan, C. Sung Rae, and J. Woo Young. RTE
Template Structure for AUTOSAR based Embedded Software Platform.
In Basic Research Program of the Ministry of Education, Science and
Technology, pages 233–237, 2008.

[8] ISO - International Organization for Standardization. ISO 26262 Road
vehicles Functional Safety Part 1-10, 2011.

[9] H. C. Jo, S. Piao, and W. Y. Jung. Design of a Vehicular code
generator for Distributed Automotive Systems. In Seventh International
Conference on Information Technology. DGIST, 2010.

[10] D. Kum, G.-M. Park, S. Lee, and W. Jung. AUTOSAR Migration from
Existing Automotive Software. In International Conference on Control,
Automation and Systems, COEX, Seoul, Korea, 2008. DGIST.

[11] J.-C. Lee and T.-M. Han. ECU Configuration Framework based on
AUTOSAR ECU Configuration Metamodel. 2009.

[12] G. Macher, E. Armengaud, and C. Kreiner. Automated Generation of
AUTOSAR Description File for Safety-Critical Software Architectures.
In 12. Workshop Automotive Software Engineering (ASE), Lecture Notes
in Informatics, pages 2145–2156, 2014.

[13] G. Macher, E. Armengaud, and C. Kreiner. Bridging Automotive
Systems, Safety and Software Engineering by a Seamless Tool Chain.
In 7th European Congress Embedded Real Time Software and Systems
Proceedings, pages 256 –263, 2014.

[14] N. Naumann. Autosar runtime environment and virtual function bus.
Department for System Analysis and Modeling.

[15] S. Piao, H. Jo, S. Jin, and W. Jung. Design and Implementation
of RTE Generator for Automotive Embedded Software. In Seventh
ACIS International Conference on Software Engineering Research,
Management and Applications. DGIST, 2009.

[16] E. Rodriguez-Priego, F. Garcia-Izquierdo, and A. Rubio. Modeling
Issues: A Survival Guide for a Non-expert Modeler. Models2010,
2:361–375, 2010.

[17] G. Sandmann and M. Seibt. AUTOSAR-Compliant Development
Workflows: From Architecture to Implementation - Tool Interoperability
for Round-Trip Engineering and Verification & Validation. SAE World
Congress & Exhibition 2012, (SAE 2012-01-0962), 2012.

[18] G. Scuro. Automotive industry: Innovation driven by elec-
tronics. http://embedded-computing.com/articles/automotive-industry-
innovation-driven-electronics/, 2012.

[19] S. Voget. AUTOSAR and the Automotive Tool Chain. In DATE10,
2010.


