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A Hamiltonian Monte Carlo Method for
Non-Smooth Energy Sampling

Lotfi Chaari IEEE Member, Jean-Yves Tourneret, IEEE Senior member, Caroline Chaux, IEEE Senior member,
and Hadj Batatia, Member, IEEE

Abstract—Efficient sampling from high-dimensional distribu-
tions is a challenging issue which is encountered in many
large data recovery problems. In this context, sampling using
Hamiltonian dynamics is one of the recent techniques that have
been proposed to exploit the target distribution geometry. Such
schemes have clearly been shown to be efficient for multi-
dimensional sampling, but are rather adapted to distributions
from the exponential family with smooth energy functions. In this
paper, we address the problem of using Hamiltonian dynamics to
sample from probability distributions having non-differentiable
energy functions such as those based on the `1 norm. Such
distributions are being used intensively in sparse signal and image
recovery applications. The technique studied in this paper uses
a modified leapfrog transform involving a proximal step. The
resulting non-smooth Hamiltonian Monte Carlo method is tested
and validated on a number of experiments. Results show its
ability to accurately sample according to various multivariate
target distributions. The proposed technique is illustrated on
synthetic examples and is applied to an image denoising problem.

Index Terms—Sparse sampling, Bayesian methods, MCMC,
Hamiltonian, proximity operator, leapfrog.

I. INTRODUCTION

Sparse signal and image recovery is a hot topic which has
gained a lot of interest during the last decades, especially
after the emergence of the compressed sensing theory [1].
In addition, many recent applications, especially in remote
sensing [2] and medical image reconstruction [3, 4], deal with
large data volumes that are processed either independently
or jointly. To handle such inverse problems, Bayesian tech-
niques have demonstrated their usefulness especially when the
model hyperparameters are difficult to be adjusted a priori.
These techniques generally rely on a maximum a posteriori
(MAP) estimation built upon the signal/image likelihood and
priors. Analytical expressions of the MAP estimators are
often difficult to obtain due to the complex form of the
associated efficient priors. For this reason, many Bayesian
estimators are computed using samples generated according
to the posterior using Markov chain Monte Carlo (MCMC)
sampling techniques [5]. To handle large-dimensional sam-
pling, several techniques have been proposed during the last
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decades. In addition to the random walk Metropolis Hastings
(MH) algorithm [5], one can mention the work in [6] about ef-
ficient high-dimensional importance sampling, the Metropolis-
adjusted Langevin algorithm (MALA) [7–9], elliptical slice
sampling [10] or the high-dimensional Gaussian sampling
methods of [11, 12]. To handle log-concave or multi-modal
smooth probability distributions, a Hamiltonian Monte Carlo
(HMC) sampling technique has recently been proposed in [8,
13, 14]. This technique uses the analogy with the kinetic
energy conservation in physics to design efficient proposals
that better follow the geometry of the target distribution.
HMC has recently been investigated in a number of works
dealing with multi-dimensional sampling problems for various
applications [15, 16], demonstrating its efficiency. Efficient
sampling is obtained using these strategies where the con-
vergence and mixing properties of the simulated chains are
improved compared to classical sampling schemes such as the
Gibbs and MH algorithms. However, these techniques are only
appropriate for probability distributions with smooth energy
functions whose gradient can be calculated. This constraint
represents a real limitation in applications where sparsity
is a key property, especially with large datasets. Indeed,
sparsity promoting probability distributions generally have a
non-differentiable energy function such as the Laplace or the
generalized Gaussian (GG) distributions [17] which involve `1
and `p regularizations, respectively. These distributions have
been used as priors for the target signals or images in a number
of works where inverse problems are handled in a Bayesian
framework [18–21]. Sampling from non-smooth posteriors has
been considered in a number of signal and image processing
problems such as image deblurring [22], magnetic resonance
force microscopy reconstruction [23] and electroencephalog-
raphy signal recovery [24]. However, these works did not use
efficient sampling moves based on HMC or MALA, since the
definition of these moves for non-differentiable functions is
not an easy problem.
This paper introduces a modified HMC algorithm allowing us
to sample from possibly non-differentiable energy functions.
The objective of this algorithm is therefore to be applicable
to both differentiable and non-differentiable energy functions.

The so called non-smooth HMC (ns-HMC) sampling
scheme relies on a modified leapfrog transform [13, 14] that
circumvents the non-differentiability of the target energy func-
tion. The modified leapfrog transform relies on the sub-
differential and proximity operator concepts [25]. The pro-
posed scheme is validated on a sampling example where
samples are drawn from a GG distribution with different shape
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parameters. It is also applied to a signal recovery problem
where a sparse regularization scheme is used to recover a high-
dimensional signal.

The remainder of the paper is organized as follows. Sec-
tion II formulates the problem of non-smooth sampling for
large data using Hamiltonian dynamics. Section III presents
the proposed ns-HMC sampling scheme. This technique is then
validated in Section IV to illustrate its efficiency for sampling
from non-smooth distributions. Finally, some conclusions and
perspectives are drawn in Section V.

II. PROBLEM FORMULATION

Let us consider a signal of interest x ∈ RN and let f(x;θ)
be its probability density function (pdf) which is parametrized
by the vector of parameters θ. In this work, we focus on an
exponential family of distributions such that

f(x;θ) ∝ exp[−Eθ(x)] (1)

where Eθ(x) is the energy function. Precisely, we concen-
trate on sampling from the class of log-concave probability
densities, where the energy function Eθ is assumed to be
convex but not necessarily differentiable. In addition, we will
also make the assumption that Eθ belongs to Γ0(R), the class
of proper lower semi-continuous convex functions from R to
]−∞,+∞]. Finally, we will consider probability distributions
from which direct sampling is not possible and requires the use
of an acceptance-rejection step. Example II.1 presents the case
of the GG distribution which satisfies the above mentioned
assumptions.

Example II.1 Let γ > 0 and p ≥ 1 two real-positive scalars.
The generalized Gaussian distribution GG(x; γ, p) is defined
by the following probability density function

GG(x; γ, p) =
p

2γ1/pΓ(1/p)
exp

(
−|x|

p

γ

)
(2)

for x ∈ R.

Except for even values of p, such as p = 2, 4, . . ., the energy
function Eθ(x) = |x|p

γ is not differentiable (where θ = (γ, p)).
In what follows, we are interested in efficiently drawing
samples according to the probability distribution f defined in
(1). The following section describes the proposed non-smooth
sampling algorithm that can be used for this generation.

III. NON-SMOOTH SAMPLING

A. Hamiltonian Monte Carlo methods

HMC methods [13, 14, 16] are powerful tools that use the
principle of Hamiltonian dynamics and energy preservation.
The theory of Hamiltonian dynamics is a reformulation of
the theory of classical mechanics. It is generally used to
model dynamic physical systems [26]. Let us consider the one-
dimensional case to explain the principle of HMC methods.
A dynamic particle of mass m can be characterized by its

position x and momentum q = mv, where v =
∂x

∂t
is

the velocity of the particle (∂ denotes the partial derivative).
The Hamiltonian models the total energy of this particle,

namely the potential energy E(x) and the kinetic energy

K(v) =
1

2
mv2, which can also be expressed as a function

of the momentum since K(q) =
1

2m
q2. The Hamiltonian

H(x, q) can be expressed as

H(x, q) = E(x) +K(q). (3)

The Hamiltonian’s motion equations determine the evolution
of x(t) as a function of time t [14]

dq

dt
=
∂H

∂x
dx

dt
=− ∂H

∂q
. (4)

These equations define a transformation Fs that maps the state
of the system at time t to the state at time t+ s.
In the multidimensional case (where the particle has a unitary
mass), Hamiltonian dynamics are used to sample from a target
distribution f(x;θ) departing from a given position x by
introducing an auxiliary momentum variable q. The pdf of
the Hamiltonian dynamics energy defined in (3) is given by

fθ(x, q) ∝ exp [−H(x, q)]

∝ f(x;θ) exp

(
−q

Tq

2

)
. (5)

HMC methods iteratively proceed by alternating updates
of samples x and q drawn according to the distribution (5).
At iteration #r, the HMC algorithm starts with the current
values of vectors x(r) and q(r). Two steps have then to be
performed. The first updates the momentum vector leading
to q(r) by sampling according to the multivariate Gaussian
distribution N (0, IN ), where IN is the N×N identity matrix.
The second step updates both momentum q and position x by
proposing two candidates x∗ and q∗. These two candidates
are generated by simulating the Hamiltonian dynamics, which
are discretized using some discretization techniques such as
the leapfrog method. For instance, the discretization can be
performed using Lf steps of the leapfrog method with a
stepsize ε > 0. The parameter Lf can either be manually
fixed or automatically tuned such as in [27].
The lth leapfrog discretization will be denoted by Ts and can
be summarized as follows

q(r,(l+
1
2 )ε) =q(r,lε) − ε

2

∂Eθ
∂xT

(
x(r,lε)

)
(6)

x(r,(l+1)ε) =x(r,lε) + εq(r,(l+
1
2 )ε) (7)

q(r,(l+1)ε) =q(r,(l+
1
2 )ε) − ε

2

∂Eθ
∂xT

(
x(r,(l+1)ε)

)
. (8)

After the Lf steps, the proposed candidates are given by
q∗ = q(r,εLf ) and x∗ = x(r,εLf ). These candidates are then
accepted using the standard MH rule, i.e., with the following
probability

min

{
1, exp

[
H(x(r), q(r))−H(x∗, q∗)

]}
(9)

where H is the Hamiltonian defined in (3).
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B. Non-smooth Hamiltonian Monte Carlo schemes

The key step in standard HMC sampling schemes is the
approximation of the Hamiltonian dynamics. This approxi-
mation allows the random simulation of uncorrelated samples
according to a target distribution while exploiting the geometry
of its corresponding energy. In this section, we propose two
non-smooth Hamiltonian Monte Carlo (ns-HMC) schemes to
perform this approximation for non-smooth energy functions.
The first scheme is based on the subdifferential operator
while the second one is based on proximity operators. For
both schemes, the whole algorithm to sample x and q is
detailed in Algorithms 1 and 2. These algorithms describe
all the necessary steps to sample from a log-concave target
distribution.

1) Scheme 1 - subdifferential based approach:
Let us first give the definition of the sub-differential and a
useful example.

Definition III.1 [25, p. 223] Let ϕ be in Γ0(R). The sub-
differential of ϕ is the set ∂sϕ(x) = {ρ ∈ R| ϕ(η) ≥ ϕ(x) +
〈ρ|η − x〉 ∀η ∈ R}, where 〈·|·〉 defines the standard scalar
product. Every element ρ ∈ ∂sϕ(x) is a sub-gradient of ϕ at
point x. If ϕ is differentiable, the sub-differential reduces to
its gradient: ∂sϕ(x) = {∇ϕ(x)}.

Example III.1 Let ϕ be defined as

ϕ : R 7−→ R
x −→ |x|. (10)

The sub-differential of ϕ at x is defined by

∂sϕ(x) =

{
{sign(x)} if x 6= 0

[−1, 1] if x = 0.
(11)

In addition, if we consider a scalar λ ∈ R+ and we call
ϕλ(·) = λϕ(·), then we have ∂sϕλ(x) = λ∂sϕ(x) for every
x ∈ R [25, Prop. 16.5].

For distributions with smooth energy, one can use the
leapfrog method whose basic form requires to compute the
gradient of the potential energy Eθ(x). Since we cannot
determine this gradient for non-smooth energy functions, we
resort to the following reformulation of the leapfrog scheme
by using the concept of sub-differential introduced hereabove

q(r,(l+
1
2 )ε) =q(r,lε) − ε

2
ρ
(
x(r,lε)

)
(12)

x(r,(l+1)ε) =x(r,lε) + εq(r,(l+
1
2 )ε) (13)

q(r,(l+1)ε) =q(r,(l+
1
2 )ε) − ε

2
ρ
(
x(r,(l+1)ε)

)
(14)

where ρ ∈ ∂sEθ is sampled uniformly in the sub-differential
of Eθ. This discretization scheme will be denoted by T ′s. If
Eθ(x) is differentiable, the mapping T ′s in (12), (13) and
(14) exactly matches the conventional HMC mapping Ts in
(6), (7) and (8).

As for the standard HMC scheme, the proposed candidates
are defined by q∗ = q(r,εLf ) and x∗ = x(r,εLf ) that can be
computed after Lf leapfrog steps. These candidates are then

accepted based on the standard MH rule defined in (9). The
resulting sampling algorithm is summarized in Algorithm 1.

Algorithm 1: Gibbs sampler using Hamiltonian dynam-
ics for non-smooth log-concave probability distributions:
Scheme 1.

- Initialize with some x(0,0).
- Set the iteration number r = 0, Lf and ε;
for r = 1 . . . S do

- Sample q(r,0) ∼ N (0, IN );
- Compute q(r,

1
2 ε) = q(r,0) − ε

2ρ(x(r−1,0));
- Compute x(r,ε) = x(r−1,0) + εq(r,

1
2 ε);

for lf = 1 to Lf − 1 do
* Compute q(r,(lf+

1
2 )ε) = q(r,lf ε) − ε

2ρ(x(r,lf ε));
* Compute x(r,(lf+1)ε) = x(r,lf ε) + εq(r,(lf+

1
2 )ε);

end
- Compute q(r,(Lf+

1
2 )ε) = q(r,Lf ε) − ε

2ρ(x(r,Lf ε));
- Apply standard MH acceptation/rejection rule by
taking q∗ = q(r,εLf ) and x∗ = x(r,εLf );

end

Note that we do not need to account for any additional
term in the acceptance ratio in (9) since volume preservation
is ensured by the Metropolis update. Volume preservation is
equivalent to having an absolute value of the Jacobian matrix
determinant for the mapping Ts equal to one. This is due to
the fact that candidates are proposed according to Hamilto-
nian dynamics. More precisely, volume preservation can be
easily demonstrated by using the concept of Jacobian matrix
approximation [28] such as the Clarke generalization [29], and
by conducting calculations similar to [14, Chapter 5, p. 118].

2) Scheme 2 - proximal based approach:
Since the calculation of the subdifferential is not straightfor-
ward for some classes of convex functions, a second scheme
modifying the leapfrog steps (12), (13) and (14) can be
considered by using the concept of proximity operators. These
operators have been found to be fundamental in a number
of recent works in convex optimization [30–32], and more
recently in [33] where stochastic proximal algorithms have
been investigated. Let us first recall the proximity operator
definition.

Definition III.2 [25, Definition 12.23][34] Let ϕ ∈ Γ0(R).
For every x ∈ R, the function ϕ + ‖ · −x‖2/2 reaches its
infimum at a unique point referred to as proximity operator
and denoted by proxϕ(x).

Example III.2 For the function ϕ defined in Example III.1,
the proximity operator is given by

proxϕ(x) = sign(x) max{|x| − 1, 0} ∀x ∈ R. (15)

Many other examples and interesting properties that make this
tool very powerful and commonly used in the recent optimiza-
tion literature are given in [35]. One of these properties in
which we are interested here is the following.
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Property 1 [36, Prop. 3] Let ϕ ∈ Γ0(R) and x ∈ R. There
exists a unique point x̂ ∈ R such that x− x̂ ∈ ∂sϕ(x̂). Using
the proximity operator definition hereabove, it turns out that
x̂ = proxϕ(x).

By modifying the discretization scheme Ts (Eqs. (6)-(8)),
we propose the following l-th leapfrog discretization scheme
denoted by T ′′s

q(r,(l+
1
2 )ε) =q(r,lε) − ε

2

[
x(r,lε) − proxEθ

(x(r,lε))
]

(16)

x(r,(l+1)ε) =x(r,lε) + εq(r,(l+
1
2 )ε) (17)

q(r,(l+1)ε) =q(r,(l+
1
2 )ε) − ε

2
×[

x(r,(l+1)ε) − proxEθ
(x(r,(l+1)ε))

]
. (18)

If Eθ(x) is differentiable, the mapping T ′′s in (16), (17) and
(18) exactly matches the mapping Ts in (6), (7) and (8). The
only difference is that the sub-differential of the mapping T ′′s
is evaluated in proxEθ

(x) instead of x. As for scheme 1, the
proposed candidates are given by q∗ = q(r,εLf ) and x∗ =
x(r,εLf ) after Lf leapfrog steps. These candidates are then
accepted based on the standard MH rule (9).

The Gibbs sampler resulting from the transformation T ′′s is
summarized in Algorithm 2. Similarly to Algorithm 1, and
due to the presence of the MH acceptance rule, the elements
x(r) generated by this algorithm are asymptotically distributed
according to the target distribution f(x;θ) defined in (1).

Algorithm 2: Gibbs sampler using Hamiltonian dynamics
for non-smooth log-concave probability distributions.

- Initialize with some x(0,0).
- Set the iteration number r = 0, Lf and ε;
for r = 1, . . . , S do

- Sample q(r,0) ∼ N (0, IN );
- Compute
q(r,

1
2 ε) = q(r,0) − ε

2

[
x(r−1,0) − proxEθ

(x(r−1,0))
]
;

- Compute x(r,ε) = x(r−1,0) + εq(r,
1
2 ε);

for lf = 1 to Lf − 1 do
* Compute q(r,(lf+

1
2 )ε) =

q(r,lf ε) − ε
2

[
x(r,lf ε) − proxEθ

(x(r,lf ε))
]
;

* Compute x(r,(lf+1)ε) = x(r,lf ε) + εq(r,(lf+
1
2 )ε);

end
- Compute q(r,(Lf+

1
2 )ε) =

q(r,Lf ε) − ε
2

[
x(r,Lf ε) − proxEθ

(x(r,Lf ε))
]
;

- Apply standard MH acceptation/rejection rule by
taking q∗ = q(r,εLf ) and x∗ = x(r,εLf );

end

C. Discussions

1) Comparison of the two schemes:
Fig. 1 illustrates the use of the proposed discretization schemes
(algorithms 1 and 2) to approximate a Hamiltonian made up
of a quadratic kinetic energy and a potential energy having the
following form

Ea,b(x) = a|x|+ bx2 (19)

where (a, b) ∈ (R∗+)2. For this potential energy, the subdiffer-
ential can be analytically calculated and is given by

∂sEa,b = a∂sϕ+ (2b)Id (20)

where ∂sϕ is defined in Example III.1 and Id is the identity
operator. Both proposed algorithms can therefore be compared
for this example.

Fig. 1 shows that the discretized energy is close to the
continuous one for the two mappings T ′s and T ′′s . Moreover, the
slight difference (T ′′s − T ′s) between the two mappings shows
that the two discretization schemes perform very similarly
close to the critical region of non-differentiability (the interval
[−ε, ε] with small ε ∈ R+, see the zoom around the origin
in Fig. 1). Fig. 2 illustrates the shape of the proximity
operator for the considered energy function Ea,b, as well as
the identity function Id and the difference Id−proxEa,b

. This
figure clearly shows that, due to the thresholding property
of the proximity operator, we have x ' x − proxEa,b

x for
x ∈ [−ε, ε]. In particular, for the considered example, we have
x ' x−proxEa,b

x for every x ∈ [ −ab+1 ,
a
b+1 ]. This comparison

confirms that the two schemes perform similarly especially
close to the non-differentiability point.

p
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a
,b

(x
)
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proxEa,b

Id − proxEa,b

Id

x

Fig. 2. The proximity operator proxEa,b
, the identity function (Id) and the

difference Id− proxEa,b
for a = b = 2.

Since Algorithm 2 is more general than Algorithm 1 (the
proximity operator is generally unique with a closed-form) and
allows us to handle energies for which the sub-differential is
not straightforward (while performing well especially close to
the critical regions), we will focus on this second discretization
scheme for our experiments.

2) Convergence analysis:
The convergence conditions of the proposed sampling scheme
are discussed in this section. Since the proposed scheme relies
on an MH acceptance step with an infinite support of the
proposal distribution (which therefore includes the support of
the target distribution), ensuring volume preservation of the
discretization scheme suffices to guarantee the convergence of
the proposed scheme.
From a geometric point of view, it is worth to note that the two
modified leapfrog discretization schemes T ′s and T ′′s defined
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E
a
,b

(x
)

x

Fig. 1. The potential energy Ea,b (solid black line) in (19) (a = 10, b = 5) and its discretizations using the modified leapfrog schemes T ′
s (squares) and

T ′′
s (circles), as well as the difference between the two discretizations T ′′

s − T ′
s (dashed blue line).

respectively in (12)-(14) and (16)-(18), as well as the original
leapfrog scheme defined in (6)-(8), preserve volume since
they are shear transformations. The interested reader can refer
to [14] or [37, page 121] for more details.
Analytically speaking, volume preservation can also be
demonstrated by using the generalization of the Jacobian
matrix which is defined using the sub-gradient instead of the
gradient itself. Let us denote by Fδ (see Section III-A) the
mapping between the state at time t, denoted by (x(t), q(t)),
and the state (x(t+ δ), q(t+ δ)) at time t+ δ. Without loss of
generality, we consider here the one-dimensional case since
the multi-dimensional case can be handled through simple
generalizations. Developments similar to [14] lead to the
following form of the generalized Jacobian matrix for the one-
dimensional case

Jδ =

 1 + δ
∂2sHθ
∂sq∂sx

δ
∂2sHθ
∂sq2

−δ ∂
2
sHθ
∂sq2

1− δ ∂
2
sHθ

∂sx∂sq

+O(δ2) (21)

where ∂s denotes the sub-gradient and
∂2sHθ
∂sq∂sx

is an element

of the second-order sub-differential with respect to q and x.
The determinant of this matrix can therefore be written as

det(Jδ) = 1 + δ
∂2sHθ
∂sq∂sx

− δ ∂
2
sHθ

∂sx∂sq
+O(δ2)

= 1 +O(δ2). (22)

Following the construction proposed in [14], it turns out that
for some time interval s that is not close to zero, det(Js) = 1.
Since the transformation Fs is reversible (by replacing the
stepsize by its opposite), it then preserves volume. Hence,
the determinant of the Jacobian matrix does not need to be
involved in the MH acceptance probability. Therefore, for

the deterministic mapping Fs, the corresponding acceptance
probability is given by (9). Under the reversibility condition
of the dynamics, the joint density as well as the marginals
f(x) and f(q) are left invariant. Moreover, and as explained
in a number of works such as [8], HMC schemes for f(x) can
be interpreted as a Gibbs sampler with an auxiliary variable
q. The proposed scheme produces therefore an ergodic and
time reversible Markov chain whose stationary distribution is
fθ(x, q) with marginal distribution f(x).

3) Effectiveness analysis:
We give here a theoretical analysis of the effectiveness of
the proposed sampling scheme. Combining (16) and (17) in a
single step yields the following update form

x(r,(l+1)ε) =x(r,lε) + εq(r,lε) − ε2

2

[
x(r,lε) − proxEθ

(x(r,lε))
]

(23)

which can also be rewritten as

x(r,(l+1)ε) =
ε2

2

 (1− ε2

2
)

ε2

2

x(r,lε) + proxEθ
(x(r,lε))

+ εq(r,lε).

(24)

One can notice that this update scheme is similar to a random
walk step with random q updated around the point

x# =
ε2

2

 (1− ε2

2
)

ε2

2

x(r,lε) + proxEθ
(x(r,lε))

 . (25)
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Using the definition of the proximity operator given in Defi-
nition III.2, we can write

∀y ∈ RN , proxEθ
(x(r,lε)) = arg inf

y
Eθ(y) + ‖y − x‖2/2.

(26)

If the infimum is reached, we can write

∀y ∈ RN , proxEθ
(x(r,lε)) = arg min

y∈RN
Eθ(y) + ‖y − x‖2/2

(27)

which can be interpreted as a regularized minimization of
the target distribution energy function Eθ. The term x# can
therefore be seen as a linear combination of the current point x
and the point of minimal energy value (due to the minimization
of the energy function). As a consequence, it turns out that the
proposed scheme reduces to a random walk that is applied not
around the current point as done in the standard random walk
Metropolis-Hastings (rw-MH) algorithm, but around a more
optimal point which provides a good compromise between the
current state and the state of minimal energy (i.e., the maximal
value of the target probability density function).
As regards computational costs, the proposed scheme presents
the same level of complexity than the standard HMC scheme.
Indeed, the modified leapfrog transform relies on the calcula-
tion of the proximity operator, whose cost is not necessarily
higher than that of calculating a gradient. For example, let us
consider the function

ϕ : R 7−→ R
x −→ αx2. (28)

The gradient of ϕ is given by ∇ϕ(x) = 2αx, while the
proximity operator is proxϕ(x) = x/(2α + 1). For this
example, the gradient and proximal operators can be computed
with similar complexity. Other examples of proximity operator
calculations are available in [31, 35].

IV. EXPERIMENTAL VALIDATION

This section validates the proposed ns-HMC scheme for
non-smooth log-concave distributions through three experi-
ments. The two first experiments consider the GG distribution
whose energy function is non-differentiable for the values of
the shape parameter considered here (p = 1 and p = 1.5).
For the third experiment, a Laplace distribution (GG distri-
bution with p = 1) is used for an image denoising problem
where the clean image is recovered from noisy measurements
using a Bayesian regularization scheme involving a sampling
technique based on the proposed ns-HMC algorithm.

A. Experiment 1: 1D sampling

In the first experiment, a 1D sampling is performed for a
given configuration of the shape and scale parameters of a GG
distribution (p = λ = 1). Chains generated using the proposed
ns-HMC sampling scheme are compared to the ones obtained
with an rw-MH scheme. For our ns-HMC, the number of
leapfrog steps Lf has been empirically set to 10. The stepsize
ε of the algorithm has been set to 1/Lf . Indeed, on the one
hand, a too large stepsize leads to a low acceptation ratio. On

the other hand, a too small stepsize leads to a slow exploration
of the target space and thus decreases the convergence rate
of the method. Choosing ε = 1/Lf guarantees a reasonable
trajectory length εLf . The rw-MH strategy is used here for
comparison since it generally improves the mixing properties
of the generated samples when compared to a fixed proposal
distribution. Let x(r) be the current sample of the chain and x∗

the proposed one. A Gaussian proposal centered on the current
sample with unitary variance is used for the rw-MH algorithm,
i.e., x∗ ∼ N (x(r), 1). Fig. 3[top] displays the Kullback-Leibler
(KL) divergence between the target GG pdf (with p = 1
and λ = 1) and the histogram of the generated samples
with respect to the number of sampled coefficients. Note
that the different curves have been obtained by averaging the
outputs of 50 Monte Carlo (MC) runs. Errorbars indicate the
standard deviation around this mean. To further illustrate the
sampling efficiency of the ns-HMC algorithm, Fig. 3[bottom]
displays the autocorrelation functions (ACFs) of the sampled
chains for the same values of (p, λ). This figure clearly
shows that samples generated using the ns-HMC scheme are
less correlated than those generated using rw-MH, which
corroborates the faster convergence of the ns-HMC scheme.
Note that the proposed technique does not need any adjustment
of the proposal variance contrary to the rw-HM algorithm
while giving acceptable level of intra-chain correlation. For
the sake of comparison, Fig. 3[bottom] also displays the
ACFs of chains sampled using a standard MH algorithm
with a centered Gaussian proposal (x∗ ∼ N (0, 1)). Indeed,
it has been reported that rw-MH increases the correlation
level within sampled chains [5], while an MH algorithm
provides uncorrelated samples. The comparison between the
ACFs corresponding to ns-HMC and MH shows that chains
sampled using ns-HMC are as less correlated as the standard
MH algorithm with N (0, 1) proposal.

B. Experiment 2: sampling from multivariate distributions

This section studies different algorithms for sampling ac-
cording to a multivariate GG distribution. The scale and
shape parameters of this GG distribution have been adjusted
to the values of Experiment 1. Multimensional sampling
is performed in each simulation. However, to evaluate the
convergence rate of the algorithms, we compute the KL
divergence between the marginal one-dimensional GG pdfs
and the histograms of the samples generated by the different
algorithms. The obtained KL divergence is then averaged over
all the dimensions to get the mean value. Over 50 MC runs,
Fig. 4 displays the averages of the KL divergences and the
corresponding error bars (mean ± standard deviations) w.r.t
the iteration number. In addition to the results provided by the
rw-MH algorithm, and for the sake of comparison with other
existing algorithms that are adapted to the multidimensional
case, the KL divergence curves are also provided for the
elliptical slice sampling (ESS) [10] technique.

Fig. 4 shows that the convergence to the marginal distribu-
tions is faster with ns-HMC than with rw-MH or ESS. It is also
worth noticing that the variance over the 50 MC realizations is
lower with ns-HMC. An interesting property of the ns-HMC
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Fig. 3. 1D GG sampling with p = 1 and λ = 1. Top: mean KL
divergence (with standard deviation) between the target pdf and the histogram
of the generated samples using the MH, rw-MH and ns-HMC algorithms
(Logarithmic scale); bottom: ACFs of the sampled chains using the MH and
the rw-MH algorithms, in addition to the proposed ns-HMC method.

method is that its convergence rate does not depend on the
dimension of the problem, contrary to rw-MH. This stability
is due to the fact that HMC exploits the shape of the energy
function in contrary to the rw-MH algorithm.
These comparisons confirm the usefulness of the proposed ns-
HMC scheme especially in high-dimensional scenarios where
the convergence speed of the standard MH, rw-MH or ESS
algorithms is altered by the size of the data.

C. Experiment 3: sampling from a Bernoulli-GG distribution

In this experiment, we want to sample a vector x distributed
according to a 2D Bernoulli-GG distribution, i.e., such that

∀x ∈ R2, f(x;ω, λ, p) = ωδ(0) + (1− ω)GG(x;λ, p)

where δ(·) is the Dirac delta function. The aim of this example
is to investigate the performance of the ns-HMC algorithm
when the target energy function has a non-diifferentiable point
(x = 0) that is reached with a non-zero probability. All
simulations were performed with ω = 0.6, which denotes

2D
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L
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rw-MH
ESS
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Iteration number
6D

K
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12D

K
L
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rw-MH
ESS
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Fig. 4. Mean KL divergence (w.r.t iteration number) between the target GG
pdf and the histogram of the generated samples using the rw-MH, ESS and
ns-HMC algorithms for multidimensional signals: 2D, 6D and 12D cases
(logarithmic scale). The errorbars indicate the estimated standard deviation
around the mean values.

the probability of sampling x = 0. The GG shape and scale
parameters are the same as in experiment # 2. Fig. 5 shows the
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average KL distances (computed using 50 MC runs) between
the continuous part of the distribution and the histograms of
the corresponding generated samples, with the corresponding
error bars. The ns-HMC algorithm is clearly converging faster
than the rw-MH and ESS methods. Comparing the results
of Figs. 4 and 5, we can observe that the gain in terms
of convergence rate is faster for a Bernoulli-GG distribution
than for a multivariate GG distribution. Indeed, the modified
Leapfrog scheme investigated in this paper based on proximal
operators allows a faster convergence to be obtained.
An experiment where the target distribution has a infinite
number of singularities is detailed in the technical report [38].

K
L

Fig. 5. Mean KL divergence (w.r.t iteration number) between the target GG
pdf and the histogram of the generated samples using the rw-MH, ESS and ns-
HMC algorithms for a 2D Bernoulli-GG distribution (logarithmic scale). The
errorbars indicate the estimated standard deviation around the mean values.

D. Experiment 4: denoising

In this experiment, the performance of the proposed ns-
HMC sampling algorithm is analyzed for an image denoising
problem. The 2D image of size N = 128 × 128 displayed
in Fig. 6[top-left] has been used as a ground truth for this
example. An independent identically distributed additive Gaus-
sian noise of variance σ2

n = 40 has been added to this image
to obtain the noisy image depicted in Fig. 6[top-right]. The
objective of this third experiment is to promote the sparsity of
the wavelet coefficients associated with the target image. To
this end, we express the image formation model as function
of the wavelet coefficients x ∈ RN which are related to
the ground truth image z through the relation z = F−1x
where F−1 ∈ RN×N denotes the dual frame operator. The
analysis frame operator thus corresponds to F ∈ RN×N and as
orthonormal bases are considered here, the dual frame operator
reduces to the inverse operator yielding F−1F = FF−1 = Id.
The observation model can thus be expressed as

y = F−1x+ n (29)

where y ∈ RN is the observed image, x ∈ RN contains
the unknown wavelet coefficients and n ∈ RN is the ad-
ditive noise. Note that the denoised image ẑ can be easily

recovered from the estimated wavelet coefficients x̂ by taking
ẑ = F−1x̂.
Based on this model and the Gaussian likelihood assumption,
a hierarchical Bayesian model has been built using an inde-
pendent Laplace prior for the wavelet coefficients [39, 40]

f(x;λ) =

(
1

2λ

)N
exp

(
−||x||1

λ

)
(30)

where λ is an unknown parameter that is estimated within
the proposed Bayesian algorithm. More precisely, an inverse
gamma prior distribution is assigned to λ [23, 41]

f(λ|a, b) = IG(λ|a, b) =
ba

Γ(a)
λ−a−1 exp

(
− b
λ

)
(31)

where Γ(.) is the gamma function, and a and b are fixed
hyperparameters (in our experiments these hyperparameters
have been set to a = b = 10−3).
Using a Jeffrey’s prior for the noise variance (σ2

n ∼
1
σ2
n

1R+(σ2
n)), the full posterior of this denoising model can

be derived. The associated Gibbs sampler generates samples
according to the conditional distributions of the posterior. The
conditional distribution of the wavelet coefficients x writes

f(x|y, σ2
n, λ) ∝ exp [−U(x)] (32)

where the energy function U is defined by U(x) = ||x||1
λ +

||y−F−1x||22
2σ2

n
. Sampling according to this distribution is per-

formed using the proposed ns-HMC scheme, which requires
the calculation of the proximity operator of its energy function
given by

proxU (x) =prox||·||1/(1+α)

(
x+ αFy

1 + α

)
(33)

where α =
1

σ2
n

and prox||·||1/(1+α) can easily be calculated

using standard properties of the proximity operators [25, 31,
42] (see Appendix A for more details).
Regarding the noise variance and the prior hyperparameter,
straightforward calculations lead to the following conditional
distributions which are easy to sample

σ2
n|x,y ∼ IG

(
σ2
n|N/2, ||y − F−1x||2/2

)
(34)

λ|x, a, b ∼ IG
(
λ|a+N, b+ ||x||1

)
(35)

where IG is the inverse gamma distribution. The estimation
of the denoised image is performed based on the sampled
wavelet coefficients after an appropriate burn-in period, i.e.,
after convergence of the Gibbs sampler in Algorithm 3.

An example of denoised image using Algorithm 3 is
displayed in Fig. 6[bottom-left]. This result is compared with
the Wiener filter, which is a state-of-the-art denoising method,
(Fig. 6[bottom-right]). From a visual point of view, we can
easily notice that Algorithm 3 provides a better denoised
image compared to the Wiener filter. Quantitatively speaking,
the evaluation of the noisy and denoised images is based on
both SNR (signal to noise ratio) and SSIM [43] (structural
similarity). These values are directly reported in the figure and
show the efficiency of the denoising algorithm based on the
proposed ns-HMC technique to sample from the conditional
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Algorithm 3: Gibbs sampler for image denoising.

- Initialize with some x(0).
for r = 1, 2 . . . do

- Sample σ2
n
(r) according to (34);

- Sample λ(r) according to (35);
- Sample x(r) according to its conditional
distribution using the proposed ns-HMC scheme;

end
- After convergence, compute the MMSE estimator x̂
and return the estimated image ẑ = F−1x̂.

distribution of the wavelet coefficients x. As regards the
computational time, only 1000 iterations are necessary for
the proposed algorithm involving a burn-in period of 500
iterations, taking around 9 seconds on a 64-bit 2.00GHz
i7-3667U architecture with a Matlab implementation. For the
ns-HMC step, the second scheme has been used with Lf = 10.

Reference
Noisy

SNR = 5.68 dB, SSIM = 0.699

Algorithm 3
SNR = 20.48 dB, SSIM = 0.985

Wiener
SNR = 8.44 dB, SSIM = 0.764

Fig. 6. Reference (top-left), noisy (top-right) and denoised images using
Algorithm 3 (bottom-left) and the Wiener filter (bottom-right).

V. CONCLUSION

This paper proposed a solution to make feasible the use of
Hamiltonian dynamics for sampling according to log-concave
probability distributions with non-smooth energy functions.
The proposed sampling technique relies on some interesting
results from convex optimization and Hamiltonian Monte
Carlo methods. More precisely, proximity operators were
investigated to address the non-differentiability problem of the
energy function related to the target distribution. The proposed
technique provided faster convergence and interesting decor-
relation properties for the sampled chains when compared to

more standard methods such as the random walk Metropolis
Hastings algorithm. The proposed technique was evaluated on
synthetic data and applied to an image denoising problem.
Our results showed that the use of proximity operators in a
Hamiltonian Monte Carlo method allows faster convergence to
the target distribution to be obtained. This conclusion is partic-
ularly important for large scale data sampling since the gain in
convergence speed increases with the problem dimensionality.
In a future work, we will focus on the investigation of this
technique for sparse signal recovery where a non-tight linear
operator is involved in the observation model. A preliminary
attempt on synthetic data has already been performed in [44].
A complete comparison with other multidimensional sampling
techniques would also be interesting.

APPENDIX

A. Proximity operator calculation for the experiment of Sec-
tion IV-D

The energy function considered in this appendix is the one
involved in the conditional distribution of the wavelet coeffi-
cients in (32), i.e.,

U(x) =
α

2
||y − F−1x||22 + ϕ(x) (36)

where α = 1/σ2
n and ϕ(x) = ||x||1

λ . In order to use the
proposed ns-HMC sampling algorithm, the proximity operator
of the function U has to be calculated. Following the standard
definition of the proximity operator [31, 34], we can write

proxU (x) = p⇔x− p ∈ ∂U(p)

⇔x− p ∈ ∂ϕ(p) + αp− αFy
⇔x+ αFy − (α+ 1)p ∈ ∂ϕ(p)

⇔x+ αFy

α+ 1
− p ∈ ∂ϕ/(α+ 1)(p)

⇔p = proxϕ/(α+1)

(
x+ αFy

α+ 1

)
(37)

which proves the expresssion of the proximity operator given
in (33).
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