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THE FOURIER EXPANSION OF 1(2)n(22)n(32) /n(62)

CHRISTIAN KASSEL AND CHRISTOPHE REUTENAUER

Asstract. We compute the Fourier cfigients of the weight one modular form
n(2)n(22)n(32) /n(6z) in terms of the number of representations of an integer as
a sum of two squares. We deduce a relation between this mofduta and
translates of the modular forg(z)*/n(22)2.

1. INTRODUCTION

In this note we consider thgproduct

n(@n(22)n(32) 1 _(1-9dY)?
(1.1) W — r]];g m.

whereq = €2, Recall thaty(z) is Dedekind’s eta function
n(z) _ e(riZ/lZ H (1 o qn)

n>=1
The n-productn(z)n(2z)n(3z) /n(62) is a modular form of weight 1 and level 6.
Since it is invariant under the transformatibr> z + 1, it has a Fourier expansion
of the form

12) n(@n(22n(32) _ 3

where the Fourier cdgcientsag(n) are integers. For general information gn
products, see[4, Sect. 2.1].

Our first result expressegs(n) in terms of the numberr(n) of representations
of n as the sum of two squares, i.e the number of elemeotg € Z? such that
x? +y? = n. Observe that(n) is divisible by 4 for alln > 1 (forn = 0 we have
r(0) = 1). The sequencgn) appears as Sequence A004018 in [5].

as(n) ",

Theorem 1.1. For all non-negative integers m we have

a(3m) = (—=1)"r(3m),

me1 F(BM+1)
4 b

a6(3M+2) = (—1)’"“@.

We next relatey(z)n(22)5(3z) /7(62) to the weight one modular fori(2)*/n(22)?
and two of its translates.

a3m+1) = (-1
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2 CHRISTIAN KASSEL AND CHRISTOPHE REUTENAUER

Theorem 1.2. Set j= €¥/3. We have the following linear relation between weight
one modular forms:

n(@n(2zn(32) _1n@*  1-jnz+1/3)* L1 i* n(z+2/3)*
1(62)  4p(22)2 4 n(2z+2/3)2 4 n(2z+1/3)%

Both modular forms;(2)(22)(32) /7(62) andn(2)*/n(22)? came up naturally
in[3], where we computed the numb€p(q) of ideals of codimensiom of the
algebraFq[x,y, x"1,y~1] of Laurent polynomials in two variables over a finite
field Fq of cardinality g. Equivalently,C,(q) is the number off4-points of the
Hilbert scheme ohf points on a two-dimensional torus. We proved t8atq) is
the value atj of a palindromic one-variable polynomi@},(x) € Z[x] with integer
codficients, which we computed completely (s€e[3, Th. 1.3]).

We also showed (s€e [3, Cor. 6.2]) that the generating fomaif the polynomi-
alsCp(x) can be expressed as the following infinite product:

Ca(¥) (1-q)?
(1.3) 1+ q' = — .
o e e

It follows from the previous equality that,(1) = 0. Actually, we proved
(seel[3, Th.1.3 and 1.4]) that there exists a polynomiglx) € Z[x] such that
Cn(X) = (x — 1)?Pn(X). Moreover,P,(x) is palindromic, has non-negative ¢be
cients and its value at= 1 is equal to the sum of divisors of Pn(1) = >4, d.

Whenx = é27/Xwith k = 2,3, 4, or 6, therx+ x 1 = 2 cog2x/K) is an integer.
For such an integét, we define the sequeneg(n) by

(1.4) dramd =] (1_qn)2n .
n=0 n>1 1-2cog2r/k)q" +q

Since 2 co&r/K) is an integer, so is eaci(n). It follows from (1.3) that these
integers are related to the polynomi@lg(x) by

Cn(eZin/k) _ ak(n) eZniﬂ/k.

In [3] we computedy(n), ag(n), anday(n) explicitly in terms of well-known arith-
metical functions. In particular, we established the egual

(1.5) a(n) = (—=1)"r(n),

wherer (n) is the number of representationsroés the sum of two squares.
We also observed in[3, (1.8)] that

" @ n_ 1(2)n(22)n(32)
(1.6) go ax(n)q" = 222 and go as(n) g’ = T

The question of finding an explicit expression &(n) had been left open in[3].
This is now solved with Theorem 1.1 of this note. In view ofttlieorem, of(115),
and of [1.6), for alim > 0 we obtain

a(3m) = ax(3m),

(1.7) a(3m+1) = w,

2
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We had experimentally observed (see[3, Note 7]) thgh) = O whenever
ap(n) = 0. As a consequence df (1.7) we can now state apat) = O if and
only if ax(n) = 0, i.e. if and onlyn is not the sum of two squares.

Theorem§&1]1 arid 1.2 will be proved in the next two sections.

Remarks 1.3. (a) The sequencas(n) is Sequence A258210 ini[5]. The sequence
as(3n + 1) is probably the opposite of Sequence A25827Ibm cit.

(b) It can be seen from Tabilé 1 thei(n) is not a multiplicative function. Indeed,
as(10) # ae(2)as(5) or ag(18) # as(2)as(9) or as(20) +# ag(4)as(5).

TasLe 1. First values of g(n)

[ n T 1] 2]3]4]5][6]7] 8] 9 J1oJ11]12]13J14[15]16[17][18[19] 20 |
leem [ -2]-2]of1[4fofo]-2]-4[2]o0]o]-2[0ofo0]1]4[4a[0]-4]

2. Proor or THEOREM[L.]

2.1. For any odd integan we seté(m) = —2sin(mr/6). Because of the well-
known properties of the sine functio&iim) depends only on the class wfmod-
ulo 12 and we have the following equalities for all oahd

(2.1) £(-m) = —¢(m) and &(m+6) = —£(m),
which is equivalent t@(—m) = —£(m) and£(6 — m) = £(m).
We have

-1 ifm=15 (mod 12,
—2 ifm=3 (mod 12,

1 ifm=711 (mod 12,
2 ifm=9 (mod 12.

(2.2) £(m) =

Next consider the excess functi&i(n; 4) defined by
Ei(n;4) = > 1-— > 1.
d|n, d=1(mod 4 dn, d=—1(mod 4

It is a multiplicative function, i.e.E1(mn 4) = E;(m; 4) E1(n; 4) whenevemand
n are coprime. It is well known that the excess function candyeputed in terms
of the_ p_rime dgcomposition af. Writen = 2‘3p"1‘1 pgz e qlflqu ---, wherep;, g's
are distinct prime numbers such that= 1(mod 4 etq = 3(mod 4. Then
E1(n;4) = 0 if and only if one of the exponents is odd. If allb;’s are even, then

(2.3) Eimd4) =(1+a)(l+ap)---.
In the sequel we will need the following result.

Lemma2.1. Letn be a positive integer which is not divisible dyWe have

D, £(d)=—Ex(m4) and > £(3d) = —2E(n;4).

d|n, dodd din, dodd
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Proof. Letd be an odd divisor ofi; it is not divisible by 3 sinca is not. Therefore,
d= 1,57 or 11(mod 12. Observe that = 1,5(mod 12 if and only ifd = 1
(mod 4 sinced = 3(mod 12 is excluded. Similarlyd = 7,11(mod 12 if and
only if d = 3(mod 4. Now, ¢(d) = —1ifd = LL5andé(d) = 1ifd = 7,11
(mod 12. Consequently,

doEd) = > 1- > 1= —Ei(n;4).

d|n, d odd din, d=3(mod 4 d|n, d=1(mod 4

Similarly, £(3d) = £(3) = —2ifd = 1,5 and¢(3d) = £(9) = 2ifd = 7,11
(mod 12. Therefore,

D &@Bd) = Yoo2- Y 2= 2E(nA4).

din, dodd d|n, d=3(mod 4 d|n, d=1(mod 4

2.2.  We now expressgs(n) in terms of the functiord introduced above.
Proposition 2.2. We have
2n
(2.4) as(n)= >, ¢ (E - d> .
dn, dodd
Note that 2/d — d is an odd integer sincg is an odd divisor oh.
Proof. Setu = n/k andw = d in Formula (9.3) of[[2, p. 10]. It becomes

(2.5) > an)q"=1-4sinx/k) > ( > sin((% d) E))q”.

n=0 n=1 \d|n,dodd

Consider the special cake= 6 of (2.8). Since sifr/6) = 1/2, Equality (2.5)
becomes

> as(n)q" 1-23 | > sin((@d> E) q
n>0 n>1 \dn, dodd d 6
= 1+) ( > §<?d>)q".
n=1 \d|n, dodd

The formula forag(n) follows. m]

Proof of Theorem I]11Let us first mention the following well-known fact (séé[1,
§ 51, Th. 65]): the number(n) of representations of as a sum of two squares is
related to the excess functid (n; 4) by

(2.6) r(n) =4E;(n;4)
for all n > 0. It follows from this fact and froni(115) that
(2.7) az(n) = (—=1)"4E1(n; 4).

We now distinguish three cases according to the residmamaddulo 3.
(a) We start with the case= 1 (mod 3. We haven = 3¢ + 1 for some non-
negative integef. Since the odd divisord of n are not divisible by 3, they must
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satisfyd = 1,5,7 or 11(mod 12. Such divisors are invertiblémod 12 et we
haved? = 1 (mod 12. Consequently,

?-d:%—d:md—d (mod 12.

Hence,
£( 5~ ) - etand—0) - (6 + &) = (-1°)e(d) - (-1'e(@
in view of (Z.1). Therefore, by Proposition 2.2,
() = (-1 Y £()

d|n, dodd
Together with LemmiaZl1 and(2.7), this implies
a(n) = (~1)1Ei(n;4) = ()" ax(n)/4.

Finally observe thatis odd (resp. even) ffis even (resp. odd). Thereforg(n) =
ax(n)/4.

(b) Now consider the case = 2 (mod 3. We haven = 3¢ + 2 for some
non-negative integef. Again the odd divisorsl of n must satisfyd = 1,5,7,11
(mod 12 since they are not divisible by 3. Consequently, as above,

d
By LemmdZ.1 and{2]7), we obtain
a(n) = (-1° ) &3d)
din, dodd
= (=1 2E(m4) = (—1)™ T Lay(n)/2.

Sincen and¢ are of the same parity, we hasg(n) = —ay(n)/2.

(c) Finally we consider the case wharis divisible by 3. We writen = 3Vm,
wheremis coprime to 3 andN > 1. Any odd divisord of nis of the formd = 3's
for some odd divisos of mand 0< r < N. Sincem and its divisorss are not

divisible by 3 and sinceis odd, we again have= 1,5,7 or 11(mod 12. Recall
that for suchs we haves? = 1(mod 12. Thus, ford = 3's, we obtain

% —d=(2-3"""m-3")s (mod 12.

If r =0,then 2/d —d = (6-3N"'m— 1)s (mod 12. Therefore,
: (? - d) —£((6-3V M- 1)9) = (~1)(—9) = (~1)™ ().

in view of (2.1).
IfO <r <N, then2/d —d = (6-3V""'m— 3")s (mod 12. Therefore,

2
¢ (§ - d) =£((6-3V M= 3)s) = (~)"¢(-F's) = (- 1¢(3's).
Now, 3 = 3(mod 12 if r is odd, and 3= —3if r > Ois even. Then by (211),

e( % -a) - omess),

¢ <@ _ d> _ £(2nd— d) — £(6d¢ + 3d) — (—1)'£(3d).
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Now consider the cage= N. If N is odd, then 8 = 3 (mod 12 and

¢ (% _ d) £((2m—3Y)s) = £((2m - 3)s).

Now, if mis odd, therm = 1,5,7 or 11(mod 12. We have t]n— 3= 7 or 11
(mod 12 and the multiplication by 7 or by 11 exchanges the §&t5} and{7, 11}.
Since by[[Z.2¥ takes opposite values on such sets, we §a@m—3)s) = —£(s).
Consequently¢(2n/d — d) = —£(s) whenmis odd.

If mis even, them = 2,4,8 or 10(mod 12. Then Zn— 3= 1 or 5(mod 12.
The multiplication by 1 or by 5 preserves each{deb} and{7, 11}, so that by[(Z.2)
we haves((2m — 3)s) = £(s). In conclusion,

£(2n/d —d) = (-1)"¢(s)
whenr = N is odd.
If r = Nis even, then®™ = —3(mod 12 andé(2n/d —d) = £((2m—3V)s) =
£((2m+3)s). Areasoning as in the odd case shows that whehis even we have
g(2n/d —d) = (-1 ().

We can now computeg(n). We start with the case of odd. Putting the above
information together, we obtain

2n 2. 3N m
a(n) = £(5-d) = :
dn,zd:odd (d > stsoder < Is >
N—1
= D] <(1)m‘1§(8)+ (Z (1)m‘r> 6(3S)+(1)m€(8)>
s|m, sodd r=1
= (D™ (™) D) és =0

si/m, sodd
On the other hand, since the power of 3irs odd, then by[(Z]3) we hawe(n) =

(—1)"4E1(n,4) = 0. Thereforeas(n) = ay(n) in this case.
If N is even, then

2n
ag(n) = E(——d) = ——d
d|n,2dodd <d > s|stoder ( >
N—-1
= > ((l)m‘16(8)+<2(1)’“‘r> 6(3S)+(l)m‘1€(8)>
s|m, sodd r=1
= D ((=p™r2é(s) + ()™ E(3s))
s|m, sodd
= (-ym™t (2 PEECEEDY 5(38))
sim, sodd si/m, sodd

= (=1)™AEy(m;4)
by LemmaZ2.ll. Now, by multiplicativity of the excess fonctjo
E1(n;4) = E1(3V;4) E1(m; 4) = E (m; 4)
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sinceEy(3V;4) = 1 for evenN. Finally, mandn being of the same parity, we have
as(n) = (-1)M4E; (M 4)) = (—=1)"4E1(n;4)) = ax(n).

Q.e.d. O

3. Proor ofF THEOREM[IL.Z

Setf(q) = n(2)n(22)1(32)/n(62) = X120 36(n) d" andg(q) = n(2)*/n(22)* =
=0 &(Nn) q"; seel(1.6). To prove Theorém1L.2 ifBces to check that

f(a) = ag(q) + by(ja) + cg(i*a),
wherea = 1/4,b = (1 j)/4, andc = (1 — j?)/4. Now,

ag(q) + bg(ja) + cg(j’q) = a), a(ng' +b); a(n)j"q"

n=0 n=0
+c ) ap(n) jg"
n=0
= (a+b+0) ) a@Bmg"
m=0
+(@+ jb + j’c) D] ax(3m+ 1) g™
m=0
+(@+ j?b+ jo) D] ax(3m+ 2)g>™2.

m=0

It follows from (1.7) that

(@+b+c) > as(3m) g™

m>=0
+4(a+ jb+ j%c) ) as(3m+ 1) ¥
m=0

—2(a+ %+ jc) )| as(3m+2) ¥,

m=0

ag(a) + bg(ja) + cg(j?q)

The right-hand side is equal fqq) sincea+b+c=1,a+ jb + j?c = 1/4, and
a+ j°b+ jc=—-1/2. Q.e.d.
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