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We compute the Fourier coefficients of the weight one modular form ηpzqηp2zqηp3zq{ηp6zq in terms of the number of representations of an integer as a sum of two squares. We deduce a relation between this modular form and translates of the modular form ηpzq 4 {ηp2zq 2 .

Introduction

In this note we consider the η-product (1.1) ηpzqηp2zqηp3zq ηp6zq " ź ně1 p1 ´qn q 2 1 ´qn `q2n .

where q " e 2πiz . Recall that ηpzq is Dedekind's eta function ηpzq " e πiz{12 ź ně1 p1 ´qn q.

The η-product ηpzqηp2zqηp3zq{ηp6zq is a modular form of weight 1 and level 6. Since it is invariant under the transformation z Þ Ñ z `1, it has a Fourier expansion of the form (1.2) ηpzqηp2zqηp3zq ηp6zq " ÿ ně0 a 6 pnq q n , where the Fourier coefficients a 6 pnq are integers. For general information on ηproducts, see [START_REF] Köhler | Eta products and theta series identities Springer Monographs in Mathematics[END_REF]Sect. 2.1].

Our first result expresses a 6 pnq in terms of the number rpnq of representations of n as the sum of two squares, i.e the number of elements px, yq P Z 2 such that x 2 `y2 " n. Observe that rpnq is divisible by 4 for all n ě 1 (for n " 0 we have rp0q " 1). The sequence rpnq appears as Sequence A004018 in [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF].

Theorem 1.1. For all non-negative integers m we have a 6 p3mq " p´1q m rp3mq, a 6 p3m `1q " p´1q m`1 rp3m `1q 4 ,

a 6 p3m `2q " p´1q m`1 rp3m `2q 2 .
We next relate ηpzqηp2zqηp3zq{ηp6zq to the weight one modular form ηpzq 4 {ηp2zq 2 and two of its translates. Theorem 1.2. Set j " e 2πi{3 . We have the following linear relation between weight one modular forms:

ηpzqηp2zqηp3zq ηp6zq " 1 4 
ηpzq 4 ηp2zq 2 `1 ´j 4 ηpz `1{3q 4 ηp2z `2{3q 2 `1 ´j2 4 ηpz `2{3q 4 ηp2z `1{3q 2 .
Both modular forms ηpzqηp2zqηp3zq{ηp6zq and ηpzq 4 {ηp2zq 2 came up naturally in [START_REF] Kassel | On the zeta function of a punctual Hilbert scheme of the two-dimensional torus[END_REF], where we computed the number C n pqq of ideals of codimension n of the algebra F q rx, y, x ´1, y ´1s of Laurent polynomials in two variables over a finite field F q of cardinality q. Equivalently, C n pqq is the number of F q -points of the Hilbert scheme of n points on a two-dimensional torus. We proved that C n pqq is the value at q of a palindromic one-variable polynomial C n pxq P Zrxs with integer coefficients, which we computed completely (see [START_REF] Kassel | On the zeta function of a punctual Hilbert scheme of the two-dimensional torus[END_REF]Th. 1.3]).

We also showed (see [START_REF] Kassel | On the zeta function of a punctual Hilbert scheme of the two-dimensional torus[END_REF]Cor. 6.2]) that the generating function of the polynomials C n pxq can be expressed as the following infinite product:

(1.3) 1 `ÿ ně1 C n pxq x n q n " ź ně1 p1 ´qn q 2 1 ´px `x´1 qq n `q2n .
It follows from the previous equality that C n p1q " 0. Actually, we proved (see [START_REF] Kassel | On the zeta function of a punctual Hilbert scheme of the two-dimensional torus[END_REF]Th. 1.3 and 1.4]) that there exists a polynomial P n pxq P Zrxs such that C n pxq " px ´1q 2 P n pxq. Moreover, P n pxq is palindromic, has non-negative coefficients and its value at x " 1 is equal to the sum of divisors of n: P n p1q " ř d|n d. When x " e 2iπ{k with k " 2, 3, 4, or 6, then x `x´1 " 2 cosp2π{kq is an integer. For such an integer k, we define the sequence a k pnq by (1.4)

ÿ ně0 a k pnq q n " ź ně1 p1 ´qn q 2 1 ´2 cosp2π{kq q n `q2n .
Since 2 cosp2π{kq is an integer, so is each a k pnq. It follows from (1.3) that these integers are related to the polynomials C n pxq by C n pe 2iπ{k q " a k pnq e 2niπ{k .

In [START_REF] Kassel | On the zeta function of a punctual Hilbert scheme of the two-dimensional torus[END_REF] we computed a 2 pnq, a 3 pnq, and a 4 pnq explicitly in terms of well-known arithmetical functions. In particular, we established the equality

(1.5) a 2 pnq " p´1q n rpnq,
where rpnq is the number of representations of n as the sum of two squares. We also observed in [3, (1.8)] that

(1.6) ÿ ně0 a 2 pnq q n " ηpzq 4 ηp2zq 2 and ÿ ně0 a 6 pnq q n " ηpzqηp2zqηp3zq ηp6zq .
The question of finding an explicit expression for a 6 pnq had been left open in [START_REF] Kassel | On the zeta function of a punctual Hilbert scheme of the two-dimensional torus[END_REF]. This is now solved with Theorem 1.1 of this note. In view of this theorem, of (1.5), and of (1.6), for all m ě 0 we obtain

$ ' ' ' ' ' & ' ' ' ' ' % a 6 p3mq " a 2 p3mq, a 6 p3m `1q " a 2 p3m `1q 4 , a 6 p3m `2q " ´a2 p3m `2q 2 .
(1.7)

We had experimentally observed (see [3, Note 7]) that a 6 pnq " 0 whenever a 2 pnq " 0. As a consequence of (1.7) we can now state that a 6 pnq " 0 if and only if a 2 pnq " 0, i.e. if and only n is not the sum of two squares.

Theorems 1.1 and 1.2 will be proved in the next two sections.

Remarks 1.3. (a) The sequence a 6 pnq is Sequence A258210 in [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]. The sequence a 6 p3n `1q is probably the opposite of Sequence A258277 in loc. cit. (b) It can be seen from Table 1 that a 6 pnq is not a multiplicative function. Indeed, a 6 p10q ‰ a 6 p2qa 6 p5q or a 6 p18q ‰ a 6 p2qa 6 p9q or a 6 p20q ‰ a 6 p4qa 6 p5q. Next consider the excess function E 1 pn; 4q defined by

E 1 pn; 4q " ÿ d|n , d"1 pmod 4q 1 ´ÿ d|n , d"´1 pmod 4q 1.
It is a multiplicative function, i.e., E 1 pmn; 4q " E 1 pm; 4q E 1 pn; 4q whenever m and n are coprime. It is well known that the excess function can be computed in terms of the prime decomposition of n. Write n " 2 c p a 1 1 p a 2 2 ¨¨¨q b 1 1 q b 2 2 ¨¨¨, where p i , q i 's are distinct prime numbers such that p i " 1 pmod 4q et q i " 3 pmod 4q. Then E 1 pn; 4q " 0 if and only if one of the exponents b i is odd. If all b i 's are even, then (2.3) E 1 pn; 4q " p1 `a1 qp1 `a2 q ¨¨¨.

In the sequel we will need the following result. 

ÿ ně0 a k pnq q n " 1 ´4 sinpπ{kq ÿ ně1 ¨ÿ d|n , d odd sin ˆˆ2n d ´d˙π k ˙' q n .
Consider the special case k " 6 of (2.5). Since sinpπ{6q " 1{2, Equality (2.5) becomes

ÿ ně0 a 6 pnq q n " 1 ´2 ÿ ně1 ¨ÿ d|n , d odd sin ˆˆ2n d ´d˙π 6 ˙' q n " 1 `ÿ ně1 ¨ÿ d|n , d odd ξ ˆ2n d ´d˙' q n .
The formula for a 6 pnq follows.

Proof of Theorem 1.1. Let us first mention the following well-known fact (see [ We now distinguish three cases according to the residue of n modulo 3.

(a) We start with the case n " 1 pmod 3q. We have n " 3ℓ `1 for some nonnegative integer ℓ. Since the odd divisors d of n are not divisible by 3, they must satisfy d " 1, 5, 7 or 11 pmod 12q. Such divisors are invertible pmod 12q et we have d 2 " p´1q ℓ`1 2E 1 pn; 4q " p´1q n`ℓ`1 a 2 pnq{2.

Since n and ℓ are of the same parity, we have a 6 pnq " ´a2 pnq{2.

(c) Finally we consider the case when n is divisible by 3. We write n " 3 N m, where m is coprime to 3 and N ě 1. Any odd divisor d of n is of the form d " 3 r s for some odd divisor s of m and 0 ď r ď N. Since m and its divisors s are not divisible by 3 and since s is odd, we again have s " 1, 5, 7 or 11 pmod 12q. Recall that for such s we have s 2 " 1 pmod 12q. Thus, for d " 3 r s, we obtain 2n d ´d " `2 ¨3N´r m ´3r ˘s pmod 12q.

If r " 0, then 2n{d ´d " p6 ¨3N´1 m ´1qs pmod 12q. Therefore,

ξ ˆ2n d ´d˙" ξ `p6 ¨3N´1 m ´1qs ˘" p´1q m ξp´sq " p´1q m´1 ξpsq.
in view of (2.1). If 0 ă r ă N, then 2n{d ´d " p6 ¨3N´r´1 m ´3r qs pmod 12q. Therefore, ξ ˆ2n d ´d˙" ξ `p6 ¨3N´r´1 m ´3r qs ˘" p´1q m ξp´3 r sq " p´1q m´1 ξp3 r sq. Now, 3 r " 3 pmod 12q if r is odd, and 3 r " ´3 if r ą 0 is even. Then by (2.1), ξ ˆ2n d ´d˙" p´1q m´r ξp3sq.

since E 1 p3 N ; 4q " 1 for even N. Finally, m and n being of the same parity, we have a 6 pnq " p´1q m 4 E 1 pm; 4qq " p´1q n 4 E 1 pn; 4qq " a 2 pnq.

Q.e.d.

3. Proof of Theorem 1.2

Set f pqq " ηpzqηp2zqηp3zq{ηp6zq " ř ně0 a 6 pnq q n and gpqq " ηpzq 4 {ηp2zq 2 " ř ně0 a 2 pnq q n ; see (1.6). To prove Theorem 1.2 it suffices to check that f pqq " agpqq `bgp jqq `cgp j 2 qq, where a " 1{4, b " p1 ´jq{4, and c " p1 ´j2 q{4. Now, agpqq `bgp jqq `cgp j 2 qq " a ÿ ně0 a 2 pnq q n `b ÿ ně0 a 2 pnq j n q n `c ÿ ně0 a 2 pnq j 2n q n " pa `b `cq ÿ mě0 a 2 p3mq q 3m

`pa `jb `j2 cq ÿ mě0 a 2 p3m `1q q 3m`1

`pa `j2 b `jcq ÿ mě0 a 2 p3m `2q q 3m`2 .

It follows from (1.7) that agpqq `bgp jqq `cgp j 2 qq " pa `b `cq ÿ mě0 a 6 p3mq q 3m `4pa `jb `j2 cq ÿ mě0 a 6 p3m `1q q 3m`1 ´2pa `j2 b `jcq ÿ mě0 a 6 p3m `2q q 3m`2 .

The right-hand side is equal to f pqq since a `b `c " 1, a `jb `j2 c " 1{4, and a `j2 b `jc " ´1{2. Q.e.d.

Table 1 .

 1 First values of a 6 pnq

	n	1	2	3 4 5 6 7	8	9	10 11 12	13	14 15 16 17 18 19	20
	a 6 pnq	´1 ´2 0 1 4 0 0 ´2 ´4	2	0	0	´2	0	0	1	4	4	0	´4
	We have											
					$ '	´1 if m " 1, 5 pmod 12q,
					'								
	(2.2)			ξpmq "	' & ' '	´2 if m " 3 pmod 12q, 1 if m " 7, 11 pmod 12q,
					' %	2		if m " 9 pmod 12q.	

2. Proof of Theorem 1.1 2.1. For any odd integer m we set ξpmq " ´2 sinpmπ{6q. Because of the wellknown properties of the sine function, ξpmq depends only on the class of m modulo 12 and we have the following equalities for all odd m:

(2.1)

ξp´mq " ´ξpmq and ξpm `6q " ´ξpmq, which is equivalent to ξp´mq " ´ξpmq and ξp6 ´mq " ξpmq.

  Proof. Let d be an odd divisor of n; it is not divisible by 3 since n is not. Therefore, d " 1, 5, 7 or 11 pmod 12q. Observe that d " 1, 5 pmod 12q if and only if d " 1 pmod 4q since d " 3 pmod 12q is excluded. Similarly, d " 7, 11 pmod 12q if and only if d " 3 pmod 4q. Now, ξpdq " ´1 if d " 1, 5 and ξpdq " 1 if d " 7, 11 pmod 12q. Consequently, We now express a 6 pnq in terms of the function ξ introduced above.

	ÿ d|n , d odd	ξpdq "	ÿ d|n , d"3 pmod 4q	1	´ÿ d|n , d"1 pmod 4q	1 " ´E1 pn; 4q.
	Similarly, ξp3dq " ξp3q " ´2 if d " 1, 5 and ξp3dq " ξp9q " 2 if d " 7, 11
	pmod 12q. Therefore,			
	ÿ d|n , d odd	ξp3dq "	ÿ d|n , d"3 pmod 4q	2	´ÿ d|n , d"1 pmod 4q	´2 " ´2E 1 pn; 4q.
	2.2. Proposition 2.2. We have		
							ˆ2n
	(2.4)			a 6 pnq "	ÿ d|n , d odd	ξ	d	´d˙.

Lemma 2.1. Let n be a positive integer which is not divisible by 3. We have ÿ d|n , d odd ξpdq " ´E1 pn; 4q and ÿ d|n , d odd ξp3dq " ´2E 1 pn; 4q.

Note that 2n{d ´d is an odd integer since d is an odd divisor of n.

Proof. Set u " π{k and ω " d in Formula (9.3) of [2, p. 10]. It becomes

(2.5) 

  1, § 51, Th. 65]): the number rpnq of representations of n as a sum of two squares is related to the excess function E 1 pn; 4q by

	(2.6)	rpnq " 4 E 1 pn; 4q
	for all n ě 0. It follows from this fact and from (1.5) that
	(2.7)	a 2 pnq " p´1q n 4 E 1 pn; 4q.

  " 1 pmod 12q. Consequently, Finally observe that n is odd (resp. even) if ℓ is even (resp. odd). Therefore, a 6 pnq " a 2 pnq{4.(b) Now consider the case n " 2 pmod 3q. We have n " 3ℓ `2 for some non-negative integer ℓ. Again the odd divisors d of n must satisfy d " 1, 5, 7, 11 pmod 12q since they are not divisible by 3. Consequently, as above,

					2n d	´d "	2nd 2 d	´d " 2nd ´d pmod 12q.
	Hence,			
	ˆ2n		
	ξ	d	´d˙"	ξp2nd ´dq " ξp6dℓ `dq " pp´1q d q ℓ ξpdq " p´1q ℓ ξpdq
	in view of (2.1). Therefore, by Proposition 2.2,
					a 6 pnq " p´1q ℓ	ÿ	ξpdq.
					d|n , d odd
	Together with Lemma 2.1 and (2.7), this implies
				a 6 pnq " p´1q ℓ`1 E 1 pn; 4q " p´1q n`ℓ`1 a 2 pnq{4.
				ˆ2n
			ξ	d	´d˙"	ξp2nd ´dq " ξp6dℓ `3dq " p´1q ℓ ξp3dq.
	By Lemma 2.1 and (2.7), we obtain
				a 6 pnq " p´1q ℓ	ÿ	ξp3dq
					d|n , d odd

Now consider the case r " N. If N is odd, then 3 N " 3 pmod 12q and ξ ˆ2n d ´d˙" ξ `p2m ´3N qs ˘" ξpp2m ´3qsq.

Now, if m is odd, then m " 1, 5, 7 or 11 pmod 12q. We have 2m ´3 " 7 or 11 pmod 12q and the multiplication by 7 or by 11 exchanges the sets t1, 5u and t7, 11u. Since by (2.2) ξ takes opposite values on such sets, we have ξpp2m´3qsq " ´ξpsq. Consequently, ξp2n{d ´dq " ´ξpsq when m is odd.

If m is even, then m " 2, 4, 8 or 10 pmod 12q. Then 2m ´3 " 1 or 5 pmod 12q. The multiplication by 1 or by 5 preserves each set t1, 5u and t7, 11u, so that by (2.2) we have ξpp2m ´3qsq " ξpsq. In conclusion, ξp2n{d ´dq " p´1q m ξpsq when r " N is odd.

If r " N is even, then 3 N " ´3 pmod 12q and ξp2n{d ´dq " ξpp2m ´3N qsq " ξpp2m `3qsq. A reasoning as in the odd N case shows that when N is even we have ξp2n{d ´dq " p´1q m´1 ξpsq.

We can now compute a 6 pnq. We start with the case of odd N. Putting the above information together, we obtain

p´1q m´r ¸ξp3sq `p´1q m ξpsq " `p´1q m´1 `p´1q m ˘ÿ s|m , s odd ξpsq " 0.

On the other hand, since the power of 3 in n is odd, then by (2.3) we have a 2 pnq " p´1q n 4 E 1 pn, 4q " 0. Therefore, a 6 pnq " a 2 pnq in this case.

If N is even, then