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ABSTRACT
A major issue that arises when designing scientific experiments
(i.e., workflows) is that of identifying the modules (which are of-
ten “black boxes”), that are suitable for performing the steps of the
experiment. To assist scientists in the task of identifying suitable
modules, semantic annotations have been proposed and used to de-
scribe scientific modules. Different facets of the module can be de-
scribed using semantic annotations. Our experience with scientists
from modern sciences such as bioinformatics, biodiversity and as-
tronomy, however, suggests that most of semantic annotations that
are available are confined to the description of the domain of input
and output parameters of modules. Annotations specifying the be-
havior of the modules, as to the tasks they play, are rarely specified.
To address this issue, we argue in this paper that data examples are
an intuitive and effective means for understanding the behavior of
scientific modules. We present a heuristic for automatically gener-
ating data examples that annotate scientific modules without rely-
ing on the existence of the module specifications, and show through
an empirical evaluation that uses real-world scientific modules the
effectiveness of the heuristic proposed.

The data examples generated can be utilized in a range of scientific
module management operations. To demonstrate this, we present
the results of two real-world exercises that show that: (i) Data ex-
amples are an intuitive means for human users to understand the
behavior of scientific modules, and that (ii) data examples are an
effective ingredient for matching scientific modules.
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1. INTRODUCTION
We have recently recorded a dramatic increase in the number of
scientists who utilize scientific modules, which are programs that
are hosted either remotely, e.g., as web and grid services, or locally,
e.g., as Java and Python programs, as building blocks in the com-
position of their experiments. For example, the European Bioin-
formatics Institute1 hosts multiple scientific modules in the form of
web services. In 2011, it recorded 21 millions invocations to those
scientific modules [29]. Typically, an experiment is designed as a
workflow, the steps of which represent invocation to scientific mod-
ules, and the edges define data flow dependencies between module
invocations [9].

EXAMPLE 1. Consider the workflow shown in Figure 1, which
specifies a simple form of protein identification experiment [2]. The
first module (Identify) is used to detect the protein that was present
in a given sample. To do so, it takes as input peptide masses pro-
duced by mass spectrometric analysis of some sample of interest
together with an identification error (percentage), and delivers as
output the accession of the protein suspected to be present in the
sample. The second module (GetRecord) takes the accession pro-
duced by the first module and returns the corresponding protein
record. Finally, the last module (SearchSimple) performs an align-
ment search to identify the proteins that are similar to the one iden-
tified by the first module. To do so, it takes as input the record of
the protein identified as well as parameters specifying the name of
the alignment algorithm to be used (program) and the name of the
protein database against which the alignment is to be performed
(database), and produces an alignment report. Such a workflow is
used in proteomic studies to identify, e.g., which protein may be
responsible for a given infection.

To assist scientists in the task of identifying the modules that are
fit for their needs and experiments, semantic annotations have been
proposed and used to describe scientific modules [38]. Such anno-
tations can be used by scientists to discover and compose modules
that are relevant for their experiments [14, 24], and to identify in-
teroperability issues between connected modules during the exper-
iment design [23].

A module is semantically annotated by associating it to concepts
from ontologies. Different facets of the module can be described
using semantic annotations, e.g., input and output parameters, task
and quality of service (QoS). In practice, however, we observe that
most of semantic annotations that are available are confined to the

1http://www.ebi.ac.uk
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Figure 1: Protein identification workflow.

description of the domain of input and output parameters of mod-
ules. Annotations specifying the behavior of the module, as to the
task it performs, are rarely specified. Indeed, the number of mod-
ules that are semantically described with concepts that describe the
behavior of the module lags well behind the number of modules
that are semantically annotated in terms of the domains of the in-
put and output parameters, e.g., in Biocatalogue [15]. Even when
they are available, annotations that describe the behavior of the
module tend to give a general idea of the task that the module im-
plements, and fall short in describing the specifics of its behavior.
For example, the modules in Biocatalogue, which is a registry that
provides information about scientific modules, are described using
terms such as filtering, merging and retrieving. While such terms
provide a rough idea of what a module does, they do not provide
the user with sufficient information to determine if a given module
is suitable for the experiment at hand.

The failure in crisply describing the behavior of scientific modules
should not be attributed to the designers of task ontologies. In-
deed, designing an ontology that captures precisely the behavior
of modules, without increasing the difficulty that the human an-
notators who use such ontologies may face thereby compromising
the usability of the ontology, is challenging. Moreover, we note
that many scientific modules are polymorphic [30], in the sense
that they implement multiple tasks depending on the input values.
Describing the behavior of those modules using (named) concepts
from existing ontologies can be difficult.

To address the above problem, we investigate in this paper a promis-
ing and practical solution that augments the semantic annotations
that describe the domain of input and output parameters of a given
module with data examples that illustrate the behavior of the mod-
ule. Given a modulem, a data example provides concrete values of
inputs that are consumed by m as well as the corresponding output
values that are delivered as a result. Data examples provides an in-
tuitive means for users to understand the module behavior: the user
does not need to examine the source code of the module, which
is often not available, or the semantic annotations, which require
the user to be familiar with the domain ontology used for annota-
tion. Moreover, they are amenable to describing the behavior of a
module in a precise, yet concise, manner.

EXAMPLE 2. To illustrate how data examples can be used to
understand a module behavior, consider the module GetRecord,

Figure 2: Data Example.

which has one input and one output. Figure 2 illustrates an input
instance that is consumed by GetRecord and the corresponding
value obtained as a result of the module invocation. By examining
such a data example, a domain expert will be able to understand
that the GetRecord module retrieves the protein record that cor-
responds to the accession number given as input. It is worth men-
tioning that we chose an intuitive name for the module that hints
to its general behavior. In practice, however, scientific modules of-
ten have vague and non-intuitive names. This is partly due to the
fact that many modules are generated automatically from existing
legacy command lines tools, e.g., SoapLab2. Because of this, un-
derstanding a module behavior from its name becomes a difficult
task even for a domain expert.

The main difficulty when attempting to characterize the module
behavior using data examples is the choice of data examples. Enu-
merating all possible data examples that can be used to describe a
given module may be expensive or impossible since the domains of
input and output parameters can be large or infinite. Moreover, data
examples derived in such a manner may be redundant in the sense
that multiple data examples are likely to describe the same behavior
of the module. This raises the question as to which data examples
should be used to characterize the functionality of a given module.

In software engineering, test cases, which can be thought of as data
examples, are widely used for verifying that the behavior of a soft-
ware program conforms with its specification [34]. A software pro-
gram is tested by using a test suite composed of a collection of test
cases that specify data values for feeding the software execution,
and the outputs expected as a result according to the specifica-
tion. We show in this paper how software testing techniques can
be adapted to the problem of generating data examples that char-
acterize scientific modules using only the annotations of input and
output parameters, without relying on the availability of the module
specification, which often is not accessible.

In summary, we make the following contributions:

• Data example model. We propose a model of data examples
for semantically annotating the behavior of scientific mod-
ules (Section 2).

• A heuristic for generating data examples. We show how
data examples that characterize scientific modules can be au-
tomatically constructed without relying on the availability of
module specifications (Section 3).

• Evaluation of the methods proposed. We report on evalu-
ation exercises that show the effectiveness of the data exam-
ples generated using our heuristic to characterize scientific

2http://www.ebi.ac.uk/soaplab/
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modules in terms of completeness and conciseness (Section
4).

• Usefulness of data examples for human users. We report
on the results of a study that we conducted to gain insight on
the extent to which the human user is able to understand the
module behavior based on data examples (Section 5).

• Matching modules based on data examples. We show how
data examples can be used to compare the behavior of two
modules (Section 6).

Additionally, we analyze and compare existing works to ours (in
Section 7). We conclude the paper (in Section 8) underlining our
main contributions and discussing venues for future work.

2. OVERVIEW OF THE SYSTEM
Figure 3 depicts an overview of the system that implements our
approach, which distinguishes between the annotation of scientific
modules and the use of the resulting annotations. The annotation
task is a two-step process. Given a module, in the first step, the cu-
rator annotates its input and output parameters by associating them
with concepts in the domain ontology used for annotation (labeled
by the number 1 in the figure). To do so, the curator can use ex-
isting parameter annotation tools such as Radiant [20], Meteor-S
[31], APIHUT [19]. For example, Meteor-S [20] allows curators
to annotate the parameters of modules using the domain ontology
of their choice. It also assists the curators in the annotation of pa-
rameters by suggesting an ordered list of concepts. Such a list is
constructed by matching the module parameters with the domain
ontology used for annotation using schema matching techniques
[36].

Once specified, the annotations of module parameters are stored
in a module registry. Based on parameter annotations, in the sec-
ond step, data examples that characterize the module behavior are
generated in an automatic manner (labeled by the number 2 in the
figure). The resulting data examples are stored together with pa-
rameter annotations in the module registry.

The experiment designer can then make use of the module reg-
istry to explore and understand the behavior of scientific modules
as to the task they perform (labeled by the number 3 in the figure).
Once the designer identifies suitable modules, s/he can use them
to compose and enact his/her experiment using scientific workflow
systems such as Galaxy [18], Taverna [40] and Vistrails [12]. For
example, the Taverna system provides a workbench that allows sci-
entists to compose their experiment graphically by linking the mod-
ules they choose by means of data links.

As well as assisting designers in composing new experiments, the
module registry can be utilized to assist them in the task of repair-
ing existing workflows. Indeed, a problem that frequently arises in
scientific workflows is the volatility of the modules that compose
the workflow. Such modules are in the majority of cases provided
by third parties who are not compelled to continuously supply the
functionality of the modules they host. In this respect, an empirical
study that was conducted by Zhao et al. [42] showed that the ma-
jority of scientific workflows stop working few months following
their specification because of module volatility. This problem, i.e.,
module volatility, is widely recognized as one of the main impedi-
ments against workflow reuse in the eScience community [17].

Annotation 

Annotate	  Module	  
Parameters	  

Scien3fic	  
Module	  Registry	  

Generate	  Data	  
Examples	  

Use 
Explore	  and	  
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Compare	  Modules	  
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Experiment 
Designer 
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Figure 3: Overall architecture.

To address the above problem, we show that the data examples an-
notating module behavior can be used to assist workflow designer
in repairing broken workflows by identifying available modules
that can play the same task as the modules that are no longer avail-
able. To do so, we provide workflow designers with an automatic
means for comparing the behavior of modules (labeled by the num-
ber 4 in the figure).

In the rest of this paper, we present in details the method we pro-
pose for generating data examples that characterize scientific mod-
ules, we report on a study that we conducted to understand the ex-
tent to which data examples help users understand the behavior of
scientific modules, and go on to present the method that we propose
for automatically comparing the behavior of modules based on data
examples. Before doing so, we present in the remaining of this sec-
tion the data model that we use for specifying data examples.

For the purposes of this paper, we define a scientific module by the
pair:

m = 〈id, name〉

where id is the module identifier and name its name. A module m is
associated with two ordered sets inputs(m) and outputs(m), rep-
resenting its input and output parameters, respectively. A parameter
p of a module m is characterized by a structural type, str(i), and
a semantic type, sem(i). The former specifies the structural data
type of the parameter, e.g., String or Integer, whereas the lat-
ter specifies the semantic domain of the parameter using a concept,
e.g., Protein, that belongs to a domain ontology [21].

A data example δ that is used to describe the behavior a module m

can be defined by a pair: δ = 〈I, O〉, where:

I = {〈i, insi〉} and O = {〈o, inso〉}

i (resp. o) is an input (resp. output) parameter of m, and insi
and inso are parameter values. δ specifies that the invocation of
the module m using the instances in I to feed its input parameters,
produces the output values in O.
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Note that a module m may have optional parameters, in which case,
some of the input parameters may be associated with null (or de-
fault) values. We use in what follows ∆(m) to denote the set of data
examples that are used to describe the behavior of a module m.

3. ANNOTATING SCIENTIFIC MODULES
USING DATA EXAMPLES

Data examples, of the form presented in the previous section, can
be used as a means to describe the behavior of scientific modules.
However, as mentioned earlier, enumerating all possible data exam-
ples that can be used to describe a given module may be expensive,
and may contain redundant data examples that describe the same
behavior. We present in this section, a method for selecting data
examples that characterize the behavior of a given module.

3.1 Identifying the Classes of Behavior of a
Scientific Module

To identify the classes of behavior of a given module m, we use
and adapt the well established equivalence partitioning technique,
which is used in software testing for verifying that a program is
conform to its specification [34]. Without loss of generality, con-
sider that m has a single input parameter i. To construct data ex-
amples that characterize the behavior of m, the domain of its input
i is divided into partitions, p1, p2, . . . , pn. The partitioning is per-
formed in a way to cover all classes of behavior of m. For each par-
tition pi, a data example δ is constructed such that the value of the
input parameter in δ belongs to the partition pi. The issue with the
above partitioning method is that it requires the specification of the
module m to identify its classes of behavior. However the majority
of scientific modules available are not accompanied with specifica-
tions [16]. This raises the question as to how the domains of module
parameters can be partitioned without using module specifications.

A source of information that we use to overcome the above issue is
the semantic annotations used to describe module parameters. In-
deed, the input and output parameters of many scientific modules
are annotated using concepts from domain ontologies [28]. In its
simple form, an ontology can be viewed as a hierarchy of concepts.
For example, Figure 4 illustrates a fragment of the myGrid domain
ontology used for annotating the inputs and output parameters of
bioinformatics modules [15]. The concepts are connected together
using the subsumption relationship, e.g., ProteinSequence is a
sub-concept of BiologicalSequence, which we write using the
following notation: ProtSequence < BioSequence. Such a hier-
archy of concepts can be used to partition the domain of parameters.
For example, we have shown in previous work that ontology-based
partitioning is an effective means for guiding the verification of se-
mantic annotations of web service parameters [3]. In this paper, we
exploit the same source of information, i.e., domain ontologies used
to annotate module parameters, for a different problem, namely
automatic generation of data examples that characterize scientific
modules.

EXAMPLE 3. To illustrate the approach we adopt, using
a concrete example, consider the operation getAccession,
which given an input annotated as biological sequence returns
the accession used for its identification. The domain of in-
put of such an operation can be partitioned into the follow-
ing subdomains using the ontology illustrated in Figure 4:
BiologicalSequence, NucleotideSequence, RNASequence,
DNASequence, and ProteinSequence.

Figure 4: Fragment of the myGrid Ontology.

3.2 Generating Data Examples Covering In-
put Parameter Partitions

Given the partitions of the input parameter i of a module m identi-
fied using the domain ontology, we need to construct data examples
that cover those partitions. Such data examples can be specified by
soliciting from the human annotator examples input values that be-
long to the respective partitions, and then invoking the module m

to obtain the corresponding output values, necessary for construct-
ing the data examples. The construction of such data examples
can, however, be fully automated if a pool of annotated instances is
available. Specifically, given pl, a pool of annotated instances, the
values of i necessary for constructing data examples that cover the
partitions of the input i of the module m can be obtained as follows:

{〈c, getInstance(c, pl)〉 s.t. c v sem(i)}

where getInstance(c, pl) is a function that returns an instance
of the concept c from the annotated pool of instances pl. Note that
this function returns a realization of the concept in question [25],
in the sense that the instance of c chosen is not an instance of any
strict subconcept of c, i.e. not an instance of any concept c′ < c.
Note that if it is not possible to have an instance that is a realiza-
tion of a concept because its domain is covered by the domains
of its subconcepts, then we do not create a data example for such
a concept, since it is represented by the data examples of its sub-
concepts. Note also that the data structure (grounding) [26] of the
instances selected need to be compatible with the data structure of
the input parameter in question, str(i).

A module may have multiple inputs parameters. This raises the
question as to which combinations of input values, that are selected
for each input parameter, should be used in the data examples to
annotate the module in question. Because different combinations
may allow capturing different behaviors of the module, we invoke
the module using the different combinations. Note, however, that
certain combinations may not be valid. In other words, if they are
used to feed the execution of the module, then the module execu-
tion throw an error. Therefore, when generating data examples, we
only consider the combinations that yield normal termination of the
module invocation.

Having specified how the domains of parameters can be partitioned
and how input values can be selected for the identified partitions,
we can now define the overall procedure whereby the data examples
covering the partitions of the input parameters are constructed.

1. Partitioning of the domains of the module inputs based on
their semantic annotations.

2. Selection of input values that cover the partitions identified
from a pool of annotated instances.

3. Invocation of the module using selected input values.
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4. Construction of data examples using the input values and the
output values obtained as a result of the module invocations.

Given a module m, the first phase consists in partitioning the do-
main of each input parameter i of m into the sub-domains that are
subsumed by the concept used for annotating i, i.e., sem(i), as il-
lustrated in Section 3.1. In the second phase, for each input i and
each partition pi of i, a value vi that belongs to the partition pi is
retrieved from an annotated pool of instances pl. The data struc-
ture of the value selected vi needs to be compatible with that of
the input i. The module is then invoked using the input values se-
lected. Where the module has multiple input parameters, then the
module is invoked using all possible combinations of the values se-
lected for those parameters. In the last phase, data examples are
constructed by using the input values and the corresponding values
obtained as a result of the module invocations. Where the module
has multiple input parameters, data examples are constructed only
for the combinations of the values of those parameters that yield a
normal termination of the module invocations.

3.3 Generating Data Examples Covering Out-
put Parameter Partitions

Note that so far, we have only considered the domains of the in-
put parameters. The method proposed can be complemented to
derive data examples based on the partitioning of the domains of
the output parameters. To construct data examples that character-
ize the behavior of m, the domain of its output o is first divided into
partitions, p1, p2, . . . , pn. For each partition pi, a data example δ is
constructed such that the value of the output parameter in δ belongs
to the partition pi.

The method for constructing data examples based on the partition-
ing of the domains of output parameters is, in principle, similar to
that based on the partitioning of the domains of input parameters.
However, the former can be difficult to implement. Specifically,
given a partition po of the output parameter o of a module m, we
need to find values that if used to feed the inputs of the module
m, the output o generates a value that belongs to the partition po.
Where a module m′ that is known to implement the inverse func-
tionality of m exists, then it can be used to construct data examples
that cover the output partitions of the module m. However, our ex-
perience suggests that scientific modules often do not have corre-
sponding inverse modules that are available.

Fortunately, there is a source that can be readily used to construct
data examples that (at least partially) cover the output partitions,
namely the data examples constructed to cover the partitions of the
input parameters. Indeed, the empirical evaluation that we report
on in the next section shows that, in most cases, the data examples
generated to cover the partitions of the input parameters, cover the
majority of the partitions of the output parameters. More impor-
tantly, the evaluation showed that partitioning of the domains of
input parameters yield data examples that completely characterize
the classes of the behavior of scientific modules.

4. REAL-WORLD EVALUATION
The method that we have just described is not an exact method.
Rather, it is a heuristic that provides a working solution for gen-
erating data examples based on the partitioning of the domains of
module parameters, thereby overcoming the lack of module speci-
fications. Because of this:

• The domain of a given module parameter may be be over-
partitioned. Consider for example, a module m that accepts as in-
put biological sequences, and consider that the partitioning method
described above divided the domain of biological sequences into
the following partitions: Proteinsequences, DNAsequences and
RNAsequences. If the module m has the same behavior for DNA
and RNA sequences, then the data examples that will be used to
cover the DNAsequences and RNAsequences partitions will be re-
dundant as far as the characterization of the module is concerned.

• The domains of a given module parameter may be under-
partitioned. This occurs when the module behaves differently for
two or more instances of the same partition.

The above discussion calls for an empirical evaluation that assesses
the effectiveness of the method proposed for generating data exam-
ples in practice. To do so, we ran an experiment that we report on
in the remaining of this section.

4.1 Experiment Datasets
We assessed the method we proposed by generating data exam-
ples of 252 scientific modules from the life sciences field. Such
modules are used for different scientific tasks ranging from path-
way analysis, to sequence alignment, to phylogenetic analysis, and
are supplied in the forms of: Java and Python programs (56), rest
services [37] (60) and soap web services [8] (136) . We selected
modules for which documentation describing their specifications is
available, to be able to assess the quality of the data examples we
generate vis a vis the behavior of the modules. Specifically, given
data examples, we were able to identify the classes of behavior of
the module that such data examples cover.

For some of the modules, in particular, the SOAP web services,
the parameters were annotated using the myGrid domain ontol-
ogy3. Therefore, we directly applied the partitioning strategies and
generated the data examples for their characterization. For the re-
maining scientific modules, we manually annotated their parame-
ters with the assistance of the domain expert using the same ontol-
ogy, and generated the data examples that characterize them using
the method we described in this paper.

Notice that a pool of annotated instances is a key ingredient to the
method presented for generating data examples. Such a pool can
be obtained by harvesting, e.g., publicly available workflow prove-
nance corpora. For instance, in our experiment, we made use of the
Taverna workflow provenance corpus [5]. Such a corpus contains
traces of past workflow executions including the data values used as
input and obtained as output of the scientific modules that compose
the workflows. The input and output parameters of some of those
modules are semantically annotated using the myGrid domain on-
tology. Thanks to those annotations, we were able to semantically
annotate the data instances used and produced by such modules in
the provenance corpus, thereby constructing the pool of annotated
instances necessary for running our experiment.

Using the pool of annotated instances and the semantic annotations
of the module parameters, we applied the method presented in this
paper to generate data examples that annotate the behavior of the
252 modules.

4.2 Performance Measure
3http://www.mygrid.org.uk/ontology/
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To assess the performance of the method for generating data exam-
ple, we use the following metrics.

Coverage. This metric determines the number of partitions of
the parameters of m that are covered by the data examples specified
for m. Recall that we may not always be able to generate data ex-
amples that cover all the partitions identified for output parameters
(see Section 3.3). Coverage can be defined by the following ratio:

coverage(m) =
#coveredPartitions(∆(m), m)

#partitions(m)

where #partitions(m) is the total number of partitions ob-
tained by partitioning the input and output parameters of m, and
#coveredPartitions(∆(m), m) is the number of partitions of the
parameters of m that are covered by the data examples in ∆(m). A
value of 1 means that all partitions identified are covered by the
data examples.

Completeness. This metric is used to determine the degree to
which the data examples generated for a given module m character-
ize the classes of its behavior. Here, it is worth stressing that a class
of behavior does not refer to a class in the domain ontology used
for annotating module parameters. Instead, by classes of behavior,
we refer to the different tasks that a given module can perform. The
higher the value of completeness, the larger the number of classes
of behavior the data examples cover. It can be defined as follows:

completeness(m) =
#classesCovered(∆(m), m)

#classes(m)

where #classes(m) is the number of classes of behavior of
the module m, and #classesCovered(∆(m), m) is the number of
classes of the behavior of m that are characterized by the data exam-
ples generated for characterizing the module m, i.e., ∆(m). A value
of 1 means that the data examples generated characterize all classes
of behavior of the module m.

Conciseness. This metric is used to determine the degree to
which the data examples specified are free from redundancies. Two
data examples are considered redundant if they describe the same
class of behavior. The higher the value of conciseness, the lower
the number of data examples that are redundant. Conciseness can
be defined as follows:

conciseness(m) = 1− #redundantExamples(∆(m), m)

#∆(m)

where #redundantExamples(∆(m), m) is the number of redun-
dant examples in ∆(m).

4.3 Experiment Results
Using the partitioning method described in Section 3.1, we par-
titioned the domains of the module parameters. Following the
method described in Section 3.2, we then generated data examples
that cover the partitions of the input parameters using the pool of
annotated instances. We were able to construct data examples that
cover all the partitions of the input parameters.

Moreover, the data examples generated were found to cover most
of the partitions of the output parameters. Indeed, with the ex-
ception of the partitions of the outputs of 19 modules. e.g.,
get_genes_by_enzyme, link and binfo, all the partitions of the
outputs of the remaining 233 modules were covered by the data
examples generated.

# of modules % of modules Completeness
236 93.65 1
8 3.18 0.75
4 1.59 0.625
4 1.59 0.6
2 0.8 0.5

Table 1: Data examples completeness.

# of modules % of modules Conciseness
192 76.19 1
32 12.7 0.5
7 2.78 0.47
4 1.59 0.4
4 1.59 0.33
8 3.17 0.2
4 1.59 0.17
1 0.4 0.1

Table 2: Data examples conciseness.

To assess the completeness and conciseness of the data examples
generated, we examined the data examples generated for the char-
acterization of each module, and checked them against the mod-
ule’s classes of behavior. As mentioned before, the ground truth
classes of behavior of the modules were identified using module
specifications with assistance from the domain expert. We then
computed, for each module, the completeness and conciseness of
the data examples.

The results that we obtained in terms of completeness and concise-
ness are illustrates in Table 1 and Table 2, respectively. The analy-
sis of Table 1 shows that the data examples generated characterize
completely the behavior of the 236 out of 252 modules. Only for
a small proportion of the modules, namely 16, the data examples
did not characterize all classes of behavior. This is an encouraging
result, as it means that our methods is effective in identifying data
examples that characterize module behavior. This is evidence that
data examples derived based on the partitioning of the domains of
inputs can be sufficient for characterizing module behavior.

Regarding conciseness, the results were good, but less positive than
for the case of completeness. The data examples generated for
192 modules, which represent 76% of the total number of mod-
ules, were concise. We identified redundancies in the data exam-
ples generated for the remaining 60 modules. The analysis of the
data examples generated for those 60 modules revealed that redun-
dancy was due to over-partitioning of the input parameters.

In summary, the above evaluation exercise is evidence that the
method presented is effective to a large degree in generating data
examples that (completely) characterize the behavior of scientific
modules. Although it is possible to obtain redundant data exam-
ples as a result of over-partitioning of module parameters, in the
majority of cases, the data examples generated are concise. This
is a good result, specially considering that the data examples were
generated in an automatic manner without access to module speci-
fications or source code, which are generally not available.
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Figure 5: Understanding the behavior of scientific modules with
and without data examples.

5. UNDERSTANDING SCIENTIFIC
MODULES USING DATA EXAMPLES

We have seen in the previous section that data examples are an ef-
fective means for characterizing the behavior of modules. In this
section, we report on a study that we conducted to gain insight into
the degree to which human users can understand the behavior of
modules by examining data examples. To do so, we ran an experi-
ment in which we asked a user to textually describe the behavior of
scientific modules by examining data examples. Specifically, given
a module m, we adopted the following two-step process. In the
first step, the user was asked to describe the behavior of a module
based on its name, the name of its input and output parameters, and
the structural and semantic types of those parameters. In a second
stage, the user was given additionally the data examples that char-
acterize the module and was asked to update the module’s behavior
if s/he deems necessary given the data examples. For the purpose
of this experiment, we asked three users with background in the
life sciences to textually describe the modules used in the previous
experiment. The user had to provide a full account of the behavior
of the module for the answer to be counted as correct.

The results of the experiment are shown in Figure 5. The figure
shows that the user was able to identify the behavior of a number
of modules without access to data examples. For example, user1
identified the behavior of 47, which is important as it represents
18% of the total number of modules. This partly due to the fact
that those modules are popular modules that are available as web
services, and which the user recognized. Note however the thanks
to the data examples, the three users identified the behavior of the
majority of the modules. For example, user1 identified correctly
the behavior of 169 modules. That is 67% of the total number of
modules. We recorded similar figures for user2 and user3. It
is worth noting none of the modules that were correctly identified
without access to data examples was then incorrectly identified us-
ing data examples.

Although the number of modules that the user identified thanks to
data examples is high, we carried out an analysis of the modules to
see why users were unable to identify the behavior of the remaining
modules. A careful analysis of our results together with inputs from
the user revealed that success or failure in identifying the module
behavior is correlated with the nature of the functionality imple-
mented by the module. In particular, we found out that the users
were able to identify correctly the majority of the modules imple-

menting data retrieval, format transformation, mapping identifiers.
On the other hand, they were not as successful in identifying the
behavior of modules implementing data filtering and complex data
analysis, such as text mining.

• Format transformation: these modules are frequently used in
scientific experiments (workflows) to resolve mismatches in
representation between modules that are developed by inde-
pendent third parties [35]. An example of a format transfor-
mation is that of translating a Uniprot protein record4 into a
Fasta record5. The three users were able to identify the be-
havior of all format transformation modules given the data
examples.

• Data retrieval: modules of this kind are used to retrieve
records from scientific databases that correspond to an iden-
tifier, also known as accession. For example, the module
GetPDBEntry retrieves the biological DNA record corre-
sponding to a given accession that is provided as input. Data
retrieval modules are frequently used in annotation pipeline
workflows, which are used to augment input given by the
user with annotations from third party data sources. Users
were able to identify the behavior of most data retrieval mod-
ules. Of the 51 data retrieval modules in our experiment,
user1 was able to identify 43 by examining the data exam-
ples. The user was unable to identify the remaining 8 mod-
ules, the reason being the user unfamiliarity with the formats
of the outputs of the modules, e.g., Glycan6 ad Ligand7.

• Mapping identifiers: modules of this kind are used to
map identifiers from one data source to another, e.g., from
Uniprot8 to GO9. As such, these modules are used in data
integration workflows to combine and link data coming from
different sources. The three users were able to identify the
behavior of all modules that belong to this category.

• Filtering: filtering modules are used to extract from the in-
put values those that meet given criteria or conditions. The
three users were able to identify only a small portion of the
modules in this category. For example, user1 was able to
identify the behavior of 5 of the 27 filtering modules.

• Data analysis: modules of this kind apply complex data anal-
ysis, such as text mining. As for filtering the three users were
able to identify a small portion of the data analysis modules.
For example, user1 was able to identify 6 of the 59 data
analysis modules. For instance, the user was not able to iden-
tify the behavior of the GetConcept module, which given a
text document derives the gene pathway concepts that are
subject of the document.

The above experiment shows that data examples are generally a
good means for users to grasp the behavior of the data modules. In
average the three users were able to correctly identify the behavior
of 73% of the modules they were asked to describe. The analy-
sis also showed that for modules that implement data filtering and
4http://web.expasy.org/docs/userman.html
5http://www.bioinformatics.nl/tools/crab_
fasta.html
6http://www.genome.jp/kegg/glycan
7http://ligand.info
8http://web.expasy.org/docs/userman.html
9www.geneontology.org
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Kind of data manipulation # of modules
Format transformation 53

Data retrieval 51
Mapping identifiersl 62

Filtering 27
Data analysis 59

Table 3: Kinds of data manipulation carried out by the scientific
modules.

complex data analysis, data examples may not have the same value
as for other module kinds, as far as the human user is considered.
Note, however, that a large proportion of scientific modules imple-
ment format transformation, data retrieval and mapping identifiers,
which are refereed to in the scientific workflow literature using the
term Shims [35]. For example, Table 3 classifies the modules that
we analyzed in the experiment. It shows that format transforma-
tion, data retrieval and mapping identifiers modules represent be-
tween them 66% of the total number of modules that we analyzed.
That said, it is worth stressing, as we will demonstrate in the next
section, that other applications can still benefit from the availabil-
ity of data examples, even for those modules that implement data
filtering and complex data analysis.

6. MATCHING SCIENTIFIC MODULES
USING DATA EXAMPLES

As well as understanding scientific modules, users may be inter-
ested in comparing the behavior of two or more modules. Module
comparison, as a functionality, is particularly requested by work-
flows curators. Indeed, a problem that frequently occurs within
scientific workflows is the volatility of the modules that compose
workflows [42]. Generally, there is no agreement that compels the
providers to continuously supply their modules. In such situations,
users (and curators) of workflows would want to identify available
modules that can play the same role as the missing modules.

Figure 6: Value-added protein identification

EXAMPLE 4. To illustrate the problem of scientific module
volatility, we will use an example of a real-world experiment, which
is variant of the experiment presented earlier in Figure 1. The ex-
periment is used for performing value-added protein identification
in which protein identification results are augmented with addi-
tional information about the proteins that are homologous to the

identified protein. Figure 6 illustrates the workflow that was im-
plemented to automate this experiment. The workflow consists of
three modules. The Identify module takes as input peptide masses
obtained from the digestion of a protein together with an identifica-
tion error and outputs the Uniprot accession number of the “best”
match. Given a protein accession, the operation GetHomologous
performs a homology search and returns the list of similar pro-
teins. The accessions of the homologous proteins are then used to
feed the execution of the GetGOTerm operation to obtain their cor-
responding gene ontology term10.

This workflow was built in the context of the iSPIDER project 11,
which ended in 2008. Three years later on, we received a request
from a bioinformatician from the myGrid project12 to use the work-
flow. However, because the module GetHomologous that we used
for performing the protein homology search did no longer exist,
the user was unable to execute the workflow. Therefore, we had to
search for an available module that performs homology searches
and that we can use instead. This operation turned out to be time
consuming. We found several candidate modules for performing
homology searches and that are provided by the DNA Databank of
Japan13, the European Bioinformatics Institute14 and the National
Center for Biotechnology Information15. However, we had to try
several modules before locating a module that can actually replace
the GetHomologous operation within the protein identification work-
flow. The reason is that even though the candidate modules that we
found fulfill the task that the unavailable module used to perform
(i.e., protein homology search), they use different aligement algo-
rithms and therefore deliver different results from the module used
initially in the experiment. In what follow, we show how data ex-
amples can be used to address the above problem, by providing a
systematic means for comparing the behavior of scientific modules.

If data examples characterizing the unavailable module are avail-
able, then they can be used to identify suitable substitutes, if such
substitutes exist. Consider two modules m and m′, and consider
that the inputs and outputs of those modules are semantically and
structurally compatible. In other words, there is a 1-to-1 mapping
mapparam from inputs(m) (resp. outputs(m)) to inputs(m′) (resp.
outputs(m′)), such that the parameters connected by such a map-
ping have the same semantic domain and structure. To be able to
compare the behavior of m and m′, we generate data examples that
characterize their behavior using the method presented in Section
3. However, to make the comparison of their behavior straightfor-
ward, we generate the data examples of m and m′ in a way that their
data examples have the same input values.

This is better illustrated using an example. Consider that i is an
input of m and i′ is its corresponding input in m′ according to the
mapping mapparam. And consider that i (and therefore i′) are anno-
tated using the semantic domain c. Consider now that the partition-
ing method that we presented in Section 3, divided the domain of c
into the following partitions p1, . . . , pn. When selecting the input
values that will be used for constructing data examples for m and m′,
we choose the same values for both i and i′. In other words, for
each partitions in p1, . . . , pn, we choose the same value for both i

10http://www.geneontology.org/
11http://www.taverna.org.uk/introduction/related-projects/ispider/
12http://www.mygrid.org.uk/
13http://www.ddbj.nig.ac.jp/
14http://www.ebi.ac.uk/
15http://www.ncbi.nlm.nih.gov/
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and i′. As a result, the data examples generated for characterizing
m and m′ have the same input values. That is, there is a mapping
map∆ that maps each data example in ∆(m) to a data example in
∆(m′), such that the two data examples have the same input val-
ues. When comparing the behavior of i and i′, we distinguish the
following three cases:

• Equivalent behavior: If the data examples mapped using
map∆ have the same output values, then we conclude that the
modules m and m′ are eventually equivalent. Notice that we
use the adverb eventually. This is because the method that
we propose for generating data examples is a heuristic. As
such, there may be corner cases where the data examples for
the two modules do not cover all classes of behavior, as il-
lustrated in the experiment reported on in Section 3. Note,
however, that if the data examples have output values that
are different for the same input values, then we can safely
conclude that the two modules do not have equivalent behav-
ior.

• Overlapping behavior: If some, but not all, the data exam-
ples mapped using map∆ have the same output values, then
we say that the modules m and m′ have overlapping behav-
iors. In essence, this means that for a subset of the domains
of their inputs, the two modules behave in the same manner.
We distinguish this case, as in certain situations, a module
that have an overlapping behavior with an unavailable mod-
ule can play the same role as the unavailable module in a
given workflow. To illustrate how this may happen consider
the workflow illustrated in Figure 7-(a), which is used to re-
trieve the gene ontology term of the protein that is most sim-
ilar to the protein provided as input. The first module returns
the accession of the protein that is most similar to the protein
given as input to the workflow. The second module retrieves
the protein sequence corresponding to the accession deliv-
ered by the first module. Finally, the last module GetGOTerm
returns the gene ontology term of such protein. Consider now
that the supplier of the second module GetProteinSequence
decided to interrupt the supply of the module functionality.
To repair the workflow, we can make use of the module Get-
BiologicalSequence (see Figure 7-(b)). Given a Biological
Sequence, which is a superconcept of Protein Sequence, it
delivers the corresponding Biological Sequence, which is a
superconcept of the Protein Sequence concept. GetBiolog-
icalSequence have input and output parameters that are se-
mantically different from those of the unavailable module
GetProteinSequence. However, it behaves in the same way as
GetProteinSequence for the inputs that are Protein Sequence,
which is the kind of inputs that GetBiologicalSequence will
receive as input in the context of the workflow in Figure 7-
(b). This is because the input of GetBiologicalSequence is
fed using the output of GetMostSimilarProtein, which only
delivers Protein Sequences.

• Disjoint behavior: if all the data examples mapped using
map∆ have different output values, then we say that the mod-
ules m and m′ have disjoint behaviors.

To assess the effectiveness of the above method for comparing
modules’ behavior, we used it to assist in the curaction of broken
workflows. That is workflows for which one or more modules are
not available because they are delivered by distributed third party

providers that stopped their supply. For our experiment, we used
workflows from the popular myExperiment workflow repository16.
A recent analysis that we conducted revealed that almost half of the
workflows (i.e., ∼ 1500 workflows) that are stored in that repos-
itory could not be enacted because of the unavailability of third
party supplied modules [42]. We therefore decided to curate those
workflows by locating modules that can play the same role as the
unavailable module.

To apply our method for such a purpose, however, we will need data
examples that characterize such modules. This is a problem since
we cannot construct the data examples, as this operation would
require invoking the unavailable modules! Fortunately, there is a
source of information that can be utilized to construct the data ex-
amples for some, but not all, of those modules, namely workflow
provenance traces. Indeed, most of scientific workflow systems
are instrumented to capture provenance traces that specify among
other aspects the data products used and generated by the module
as part of the workflow enactment. We have inspected the publicly
available workflow provenance corpus [5], as well as provenance
traces captured as part of previous eScience projects, in particular
the iSpider project. By trawling those provenance traces, we were
able to construct data examples that characterize 72 unavailable sci-
entific modules.

Using the method presented above, we then matched those unavail-
able modules to the 252 modules that we used the experiment re-
ported on in Section 4. The results of this comparison are depicted
in Figure 8. The figure shows that we were able to identify mod-
ules with equivalent behavior for 16 unavailable modules, and mod-
ules that have overlapping behavior for 23 unavailable modules. 16
modules may sound small. However, such a small number allowed
us to curate an important number of workflows 321. This is be-
cause some unavailable modules that we identified equivalent mod-
ules for are popular modules that are used in multiple workflows.
This is, in particular, the case of the KEGG17 modules provided
in the form of SOAP web services, which were interrupted, and
for which we identified equivalent modules supplied in the form
of Rest web services. Regarding the 23 unavailable modules for
which we identified modules with overlapping behavior, we con-
ducted a manual examination of the workflows in which those un-
available modules are used. We were able to detect 13 workflows
in which the modules we identified can play the same role as the
unavailable modules. Specifically, of the 23 unavailable modules,
we identified modules with overlapping behavior for 6 of them such
that those modules play the same role as the unavailable ones in 13
workflows.

To verify that the substitute modules discovered have equivalent
behavior as the unavailable modules within the workflows in which
they were incorporated, we enacted those workflows using sam-
ples of randomly selected inputs. We then verified with the help of
the domain expert that their invocations do not through any errors
and that they deliver results comparable with those that the corre-
sponding missing unavailable modules would deliver. Regarding
the workflows in which some but not all the unavailable modules
were substituted, we extracted from each of them sub-workflows
that contain the substitute modules and verified that the execution
of these sub-workflows deliver valid results. This test confirmed
that all the discovered substitutes, without exception, have the same

16http://www.myexperiment.org
17www.genome.jp/kegg
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Figure 7: Example of a substitute module that does not have semantically equivalent input and output as the unavailable module.

Figure 8: Identifying modules with matching behavior to unavail-
able modules.

behavior as the modules they replace within the workflows in which
they were used.

To summarize, the above experiment showed that, when avail-
able, data examples can be used as an effective means for identi-
fying modules with similar behavior. In particular, the experiment
showed the practicality of the method in resolving a real problem,
i.e., the curation of broken workflows, where the funcionalities of
modules are suspended by their third party providers. Although we
were able to construct data examples for a subset of the modules
that are unavailable (mainly because data examples were not col-
lected for the remaining modules while they were available), we
were able to locate suitable substitutes for 22 unavailable modules.
The substitutes were used to repair a large number of workflows,
334 in total. Of the 334 workflows, 73 were partly repaired as they
contained other unavailable modules for which we did not locate
substitute either because we could not construct data examples that
characterize them or because the set of the available modules did
not contain any suitable substitutes.

The experiment, therefore, demonstrates the utility of data exam-
ples when they are available, and therefore can be used to incite
module providers and workflow designers to collect data examples
characterizing scientific modules they are providing/using with the
objective to facilitating their substitution when needed.

7. RELATED WORK
In this section, we analyze and compare existing proposals to ours.
We organize the section into four subsections thereby covering the
elements of our solution.

7.1 Semantic Annotations of Web Services
Semantic annotations of web services have been proposed as a
means for enabling the understanding, discovery and composition
of web services [7]. These annotations relate the various service
elements (i.e. operations, inputs and outputs) to concepts in on-
tologies describing their semantics, form and role. However, the
literature suggests that, by and large, most of the proposals in this
field consider annotations that describe the semantics of the input
and output parameters, e.g., [31, 33]. There have been propos-
als that attempt to describe the behavior of the operations of web
services, e.g., the EDAM ontology 18, or more generally computa-
tional modules, e.g., [13]. However, such proposals aim to provide
a high level description of the behavior. In doing so, they fail to
capture the specifics of the transformations carried out by the mod-
ules (web services).

7.2 Data Example Generation
Data examples have been used as a means for characterizing
queries and schema mappings. In particular, in the area of testing
database applications, Binnig et al. [6] proposed a method for gen-
erating test databases. Given a query and a result, the method they
propose produces a database instance that can be used to produce
such a result. Similarly, Abdul Khaled et al. proposed an algo-
rithm that given a database schema and an SQL query as inputs,
generates data to populate the test database as well as the results
expected from by issuing the query over the database. Regarding
schema mappings, Alexe et al. [1] reported on a systematic investi-
gation of universal examples [11], underlying their capabilities and

18http://edamontology.org
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limitations in understanding schema mappings. The data examples
characterizing schema mappings can be used for specifying and re-
fining schema mapping [41].

While related, the scope of our work is different from the above
proposals in the sense that we consider existing black box mod-
ules (as opposed to query or mapping specifications) for which we
do not have any specification, and we aim to elaborate a working
solution to derive data examples for their characterization.

The work by Olson et al. [32] is perhaps the closest to ours. They
investigated the problem of generating example data that illustrate
the behavior of data flow programs. In their proposal, Olson et al.
assume that the specification of the modules is available in the form
of equivalence classes that characterize the behavior of the steps in
the dataflow program. In our work, we do not make such assump-
tion, but rather investigate how such equivalence classes can be au-
tomatically identified (or approximated). Also, the work by Olson
et al. focuses on workflows with modules that resemble relational
algebra primitives such as project, filter, join. Instead, in our work,
we are targeting black box modules that implement (possibly com-
plex) data analyses and transformations.

Our work is also related to the well established discipline of soft-
ware testing [34, 27]. Given the specification of a software pro-
gram, test cases, which are similar to the notion of data examples
introduced in this paper, are specified to verify that the software
program is conform to its specification. However, software testing
techniques assume the availability of the source code [27] of the
program and/or its specification [34], neither of which are available
for the majority of scientific modules. While inspired by software
testing techniques, we propose in this paper a working solution for
generating data examples for black-box and un-documented scien-
tific modules.

7.3 Understanding by Means
of Data Examples

A number of proposals have investigated characterization of behav-
ior through data examples, as specified in the previous section. Yet,
there is no proposal in the literature that investigates if the human
user is able to grasp the behavior based on data examples, that we
are aware of. For example, there is a reasonable number of propos-
als that seek to generate and characterize schema mappings using
data examples. However, there is no proposal in the literature that
investigates the ability of the human user to grasp the behavior of
schema mappings using data examples [39]. Our proposal is, there-
fore, the first to investigate the ability of human users to identify
module behavior based on data examples, to our knowledge, and to
come up with a classification distinguishing the kinds of behavior
that can be identified by the human user from those that are difficult
to identify.

7.4 Scientific Module Comparison
Paolucci et al [33] is perhaps one of the first proposals to suggest
matching web services, which are a kind of module, using seman-
tic annotations. Specifically, the authors of this work used semantic
descriptions of web services as defined by the DAML-S language19.
Two service operations are considered to match if they have com-
patible input and output parameters. In other words, the task ful-

19DAML-S is a service description language, it is the predecessor
of the OWL-S language.

filled by the operations is not taken into account by the matching
algorithm proposed in [33].

Hull et al proposed an approach for matching modules in which
the module task is described using an OWL expression that cap-
tures the relationship between the inputs of the module and its out-
puts [22]. The modules are then matched by comparing their asso-
ciated expressions. In practice, however, it is difficult to capture the
behavior of a module using a mathematical expression, and when
it is possible, such expression cannot be formulated because of the
absence of the module specification. In those circumstances, data
examples remain a cheap resource that can be easily obtained, and
can be used to effectively compare the behavior of the module with-
out requiring the availability of the module specifications, which
are usually not available, or the use of a task ontology, which often
fail to capture the specifics of a module behavior.

In a previous work [4], we have investigated the use of provenance
traces as a means for comparing the behavior of modules. However,
that method was not guided by any principle. It merely checked if
two modules have provenance traces that takes similar inputs and
delivers similar outputs. The solutions that we propose in this pa-
per goes beyond (i) by proposing a principled means for identifying
the data examples that characterize module behavior taking into ac-
count properties such as completeness and conciseness (as opposed
to using random data examples), and (ii) by providing a classifica-
tion that characterizes module comparison into equivalent, overlap-
ping and disjoint behavior.

8. CONCLUSIONS
We showed that it is possible to characterize scientific modules us-
ing data examples without relying on module specifications. Cen-
tral to the method proposed for generating data examples is the
partitioning used to divide the domains of module parameters into
sub-domains. We showed that, in the majority of cases, partitioning
based on the semantic annotations that describe module parameters
yields data examples that completely describe the behavior of mod-
ules. We also presented two functionalities that can benefit from
the generated data examples. Specifically, we showed that human
users can understand the behavior of modules based on data ex-
amples when such modules do not implement filtering or complex
data analyses. Furthermore, we presented a method for compar-
ing the behavior of modules based on data examples, and showed
the practical utility of such method in repairing decayed workflows
by replacing unavailable modules with modules that can fulfill the
same role within the workflow.

This paper constitutes a first step in an important, yet thus far
overlooked, research area, namely the characterization of scientific
modules using data examples. The evaluation of the method used
for generating data examples showed that they are not always con-
cise. We are investigating, as part of our future work, techniques
that can be used for detecting redundant data examples. In partic-
ular, we envisage examining the use of record linkage techniques,
such as those reported on by Elmagarmid et al. [10], for this pur-
pose. We also envisage investigating the problem of composition
of scientific modules within workflows based on data examples. In
other words, how to use data examples to implicitly guide module
composition.
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