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Let B H " tB H ptq, t P R N u be an pN, dq-fractional Brownian sheet with Hurst index H

Introduction

In the last thirty years, several extensions of the well-known fractional Brownian motion (fBm) introduced by Mandelbrot and Van Ness [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF] have emerged in the Gaussian random fields literature. Two major classes of multiparameter processes have been defined: Lévy's N -parameter (fractional) Brownian motion and fractional Brownian sheets. The first one is an isotropic process known to be be locally non-deterministic (LND, see Pitt [START_REF] Pitt | Local times for Gaussian vector fields[END_REF] for a more complete reference), self-similar and with stationary increments. As a consequence, the geometry and fine properties of the N -parameter fractional Brownian motion have been extensively documented by extending the classic techniques developed in the literature related to the fractal geometry of the one-dimensional fractional Brownian motion.

On the another hand, the understanding of fractional Brownian sheets (fBs) introduced by Kamont [START_REF] Kamont | On the fractional anisotropic Wiener field[END_REF] has been proved to be more challenging and technical as the former does not satisfy the classic LND property. Recall that an pN, dq-fractional Brownian sheet B H " tB H ptq, t P R N u with Hurst index H " pH 1 , . . . , H N q P p0, 1q N is defined as a centered Gaussian process with independent and identically distributed components whose covariance is given by

E " B H 0 psqB H 0 ptq ‰ " N ź "1 " |s | 2H `|t | 2H ´|s ´t | 2H ı s, t P R N . (1.1)
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Note that similarly to fBm, it also admits an integral representation with respect to the Brownian sheet W :

B H 0 ptq " ż R N N ź "1 ! pt ´u q H ´1{2 `´p´u q H ´1{2 `) dW u . (1.2)
In the case H 1 " ¨¨¨" H N " 1 2 , we obtain the well-known Brownian sheet. Anisotropic Gaussian random fields such as fBs have raised an increasing interest in recent years as they appear naturally in the study of stochastic partial differential equations (SPDEs) and Markov processes [START_REF] Mueller | Hitting properties of a random string[END_REF]. In a more applied perspective, several phenomena in image processing, hydrology and spatial statistics [START_REF] Davies | Fractal analysis of surface roughness by using spatial data[END_REF][START_REF] Benson | Aquifer operator scaling and the effect on solute mixing and dispersion[END_REF] are intrinsically anisotropic, and thus, required the introduction of such theoretical models.

The study of distributional properties of fractional Brownian sheets have been considerably eased with the introduction by Khoshnevisan and Xiao [START_REF] Khoshnevisan | Images of the Brownian sheet[END_REF] of the so-called sectorial local-nondeterminism property. Namely, the latter states that for any u, v, t 1 , . . . , t n P rε, `8q N , Var `BH puq ˇˇB H pt 1 q, . . . , B H pt n q ˘ě c 0

N ÿ "1 min 1ďjďn u ´tj 2H (1.3)
where the constant c 0 ą 0 only depends on ε. Firstly introduced on the Brownian sheet, it has been then extended to general fractional Brownian sheets by Wu and Xiao [START_REF] Wu | Geometric properties of fractional Brownian sheets[END_REF]. This sectoral LND has been the cornerstone to the study of multiple geometrical properties of (fractional) Brownian sheets, allowing to adapt classic techniques used on multiparameter fractional Brownian motion to this class of processes. More precisely, the distributional properties of the local time and level sets have been investigated by Khoshnevisan and Xiao [START_REF] Khoshnevisan | Images of the Brownian sheet[END_REF], Ayache et al. [START_REF] Ayache | Joint continuity of the local times of fractional Brownian sheets[END_REF], extending earlier works by Dalang and Walsh [START_REF] Dalang | Geography of the level sets of the Brownian sheet[END_REF], Xiao and Zhang [START_REF] Xiao | Local times of fractional Brownian sheets[END_REF]. The fractal geometry of image sets B H pF q has also been extensively studied in [START_REF] Khoshnevisan | Sectorial local non-determinism and the geometry of the Brownian sheet[END_REF][START_REF] Khoshnevisan | Images of the Brownian sheet[END_REF][START_REF] Wu | Dimensional properties of fractional Brownian motion[END_REF][START_REF] Wu | Geometric properties of fractional Brownian sheets[END_REF]. Note that as pointed out by Xiao [START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields[END_REF], due to the anisotropic nature of fractional Brownian sheets, it is usually convenient to study geometrical properties using the following anisotropic metric ρ:

@s, t P R N ; ρps, tq " N ÿ "1 |s ´t | H . (1.4)
As previously outlined, we aim in this work to investigate uniform dimensional properties of image sets B H pF q of fractional Brownian sheets. The high dimension case d ě 1 H1 1 H N has been thoroughly discussed by Khoshnevisan et al. [START_REF] Khoshnevisan | Sectorial local non-determinism and the geometry of the Brownian sheet[END_REF], Wu and Xiao [START_REF] Wu | Dimensional properties of fractional Brownian motion[END_REF] who obtained the following result: with probability one, for every Borel set

F Ă R N ; dim H B H pF q " dim ρ H F, ( 1.5) 
where dim ρ H designates the Hausdorff dimension with respect to the anisotropic metric ρ. Note that a similar result exists on the multiparameter fractional Brownian motion when d ě N α (see the work of Monrad and Pitt [START_REF] Monrad | Local nondeterminism and Hausdorff dimension[END_REF]). When d ă 1 H1 `¨¨¨`1 H N , the previous uniform result does not hold any more. For instance, it is obviously false if one considers the level set F " W ´1p0q, where W is a Brownian sheet: Khoshnevisan and Xiao [START_REF] Khoshnevisan | Images of the Brownian sheet[END_REF] have proved that F has positive Hausdorff dimension when d ă 2N , whereas we clearly have dim H W pF q " 0. Nevertheless, following the ideas developed by Kaufman [START_REF] Kaufman | Dimensional properties of one-dimensional Brownian motion[END_REF], one may hope to establish a weaker uniform Hausdorff dimension result. Indeed, the former has proved that a one-dimensional Brownian motion satisfies a slightly weaker property: with probability one, for every Borel set F Ă R, dim H BpF `tq " 2dim H F for almost all t P R.

(1.6)

Khoshnevisan et al. [START_REF] Khoshnevisan | Sectorial local non-determinism and the geometry of the Brownian sheet[END_REF], Wu and Xiao [START_REF] Wu | Dimensional properties of fractional Brownian motion[END_REF] have investigated the extension of this property to the pN, 1q Brownian sheet and fractional Brownian sheets satisfying H N d ď 1 (assuming that H 1 ď ¨¨¨ď H N ). Even though it may seem to natural that the former result would hold for any fBs such that d ă 1 H1 `¨¨¨`1 H N , this question was left opened in the previous works as the authors observed that techniques based on sectorial LND do not seem to scale well the general case (on contrary to the pN, dq-fractional Brownian motion considered by Wu and Xiao [START_REF] Wu | Geometric properties of fractional Brownian sheets[END_REF]).

Consequently, the main purpose of this work is to close the gap between the statement of Wu and Xiao [START_REF] Wu | Dimensional properties of fractional Brownian motion[END_REF] and the uniform case presented in Equation (1.5). More precisely, we prove in Section 3 the following two uniform results on the geometry of fractional Brownian sheets. (

In addition, we also extend the result of Wu and Xiao [START_REF] Wu | Dimensional properties of fractional Brownian motion[END_REF] where λ d denotes the Lebesgue measure on R d .

The proof of the two previous results rely on the introduction in Proposition 3 (Section 2) of an anisotropic local non-determinism property different from sectorial LND. The former then allows to adapt the seminal methods of Kaufman [START_REF] Kaufman | Dimensional properties of one-dimensional Brownian motion[END_REF] to fractional Brownian sheets satisfying

d ă ř N "1 1 
H . Note that we hope that this anisotropic LND property can also be of independent interest to the study of remaining open questions on the fractal geometry of fractional Brownian sheets and more general anisotropic Gaussian random fields.

Anisotropic local nondeterminism

The local nondeterminism property has historically been introduced by Berman [START_REF] Berman | Local nondeterminism and local times of Gaussian processes[END_REF] in the study of local times of Gaussian processes. Since then, it has been widely and successfully used to obtain multiple fine sample paths properties of Gaussian processes, including small balls probabilities, level sets and Hausdorff dimension of graphs and image sets. We refer to the surveys of Geman and Horowitz [START_REF] Geman | Occupation densities[END_REF], Xiao [START_REF] Xiao | Properties of local-nondeterminism of Gaussian and stable random fields and their applications[END_REF] for a more precise overview on the subject.

As previously outlined, the Brownian sheet, and thereby fractional Brownian sheets, are known to be non locally non-deterministic and Khoshnevisan and Xiao [START_REF] Khoshnevisan | Images of the Brownian sheet[END_REF] have introduced the sectorial local nondeterminism property in order to still being able to investigate distributional properties of this class of processes. The simplest form has been presented in the introduction, Equation (1.3). In order to investigate uniform dimension of image sets, one needs an analogue of the former on increments. Namely, Wu and Xiao [START_REF] Wu | Dimensional properties of fractional Brownian motion[END_REF] have proved that any fractional Brownian sheet satisfies for every s, t, s 1 , . . . , s n P rε, `8q,

Var `BH psq ´BH ptq ˇˇB H ps 1 q, . . . , B H ps n q ě c 1 N ÿ "1 min " min 1ďjďn s ´sj 2H `min 1ďjďn t ´sj 2H , |s ´t | 2H * , ( 2.1) 
where the constant c 1 ą 0 only depends on ε.

Nevertheless, it appears in the work of Khoshnevisan et al. [START_REF] Khoshnevisan | Sectorial local non-determinism and the geometry of the Brownian sheet[END_REF] that the previous sectorial local nondeterminism property is not sufficiently fine to extend the result (1.6) to any fractional Brownian sheet satisfying

d ă ř N "1 1 
H . Consequently, we present in the following proposition a refinement of the former. Proposition 3. Suppose B H is a fractional Brownian sheet and ε ą 0. Then, there exists a constant c 0 ą 0 such that for every t, s, s 1 , . . . , s n P rε, 1q N .

Var `BH ptq ´BH psq ˇˇB H ps 1 q, . . . , B H ps n q ˘ě c 0 ρps, tq 2 ¨N ÿ "1 r 2H , ( 2.2) 
where for any P t1, . . . , N u, we define r :" min Proof. We aim to prove a property slightly stronger than Equation (2.2). Namely, for every t, s, s 1 , . . . , s n P rε, 1q N ,

Var `BH ptq ´BH psq ˇˇB H ps 1 q, . . . , B H ps n q ě c 0 N ÿ "1 min r 2H , |s ´t | 2H ( `c0 N ÿ "1 r 2H ¨"ÿ i‰ |s i ´ti | 2Hi * . (2.3)
We easily observe that since min Hence, we may focus on the second part, and, set k P t1, . . . , N u and i ‰ k. Without any loss of generality, we may assume that t i ´si ě 0 (unless, simply permute t and s). If

r 2H k k , |s k ´tk | 2H k ( ě r 2H k k ¨|s k ´tk | 2H k ,
|s k ´tk | ě r k , we simply observe that min r 2H k k , |s k ´tk | 2H k ( " r 2H k k ě r 2H k k ¨|s i ´ti | 2Hi .
The combination of the previous remark and the sectorial LND property yield the expected inequality. Therefore, we may assume in the sequel that |s k ´tk | ă r k .

Owing to the integral representation (1.2) of fractional Brownian sheets, we know that Var `BH ptq ´BH psq ˇˇB H ps 1 q, . . . , B H ps n q "

inf αPR n E " ´BH ptq ´BH psq ´n ÿ j"1 α j B H ps j q ¯2 " inf αPR n ż R N ˆKpu, t, Hq ´Kpu, s, Hq ´n ÿ j"1 α j Kpu, s j , Hq ˙2du.
where Kpu, t, Hq :"

ś N "1 pt ´u q H ´1{2 `´p´u q H ´1{2
`(. The previous expression of the conditional variance can be lower bounded by inf

αPR n ż R N `ˆN ź "1 pt ´u q H ´1{2 `´N ź "1 ps ´u q H ´1{2 `´n ÿ j"1 α j N ź "1 ps j ´u q H ´1{2 `˙2 du.
In order to obtain a uniform lower bound of the previous expression, the main idea is to exhibit an element h P L 2 which is orthogonal to the family of functions ś N "1 ps j ´u q

H ´1{2 `.
Hence, let us define hpuq " h k pu k q ¨1rsi,tis pu i q ¨ź ‰i,k 1 r0,εs pu q.

where h k pu k q " pu k ´tk `rk q

1{2´H k ``pu k ´tk ´rk q 1{2´H k `´2pu k ´tk q 1{2´H k `.
Note that the support of the function h is included in the set rt k ´rk , 8q ˆrs i , t i s ˆr0, εs N ´2 (up to a permutation of variables). In addition, when H k " 1{2, h k simply corresponds to the difference 1 rt k ´rk ,t k q ´1rt k ,t k `rk q . Let us prove h is well-designed for our purpose by evaluating the scalar product, for any fixed j P t1, . . . , nu:

B h, N ź "1 ps j ´u q H ´1{2 `F " c ż R`p s j k ´uk q H k ´1{2 `¨h k pu k q du k ,
where c corresponds to the integration over variables u , ‰ k. We need to distinguish two different cases, depending on the value of

s j k . 1. If s j k ă t k ´rk , ps j k ´uk q H k ´1{2
`and h k have disjoint supports (respectively r0, s j k s and rt k ´rk , 8q), and therefore, the inner product is clearly equal to zero.

If s

j k ě t k ´rk , B h, N ź "1 ps j ´u q H ´1{2 `F " c ż rt k ´rk ,s j k s ps j k ´uk q H k ´1{2 ¨hk pu k q du k .
Let a denotes either 0, ´rk or r k . Then,

ż rt k `a,s j k s ps j k ´uk q H k ´1{2 ¨pu k ´tk ´aq 1{2´H k du k " ps j k ´tk ´aq ¨żr0,1s v H k ´1{2 k p1 ´vk q 1{2´H k dv k ,
using the change of variable v k " ps j k ´uk q{ps j k ´tk ´aq. Consequently,

B h, N ź "1
ps j ´u q H ´1{2 `F " c ! ps j k ´tk ´rk q `ps j k ´tk `rk q ´2ps j k ´tk q

) " 0.
The function h is orthogonal to any ś N "1 ps j ´u q H ´1{2 `, and therefore to the linear space spanned by the previous collection. As a consequence, Var `BH ptq ´BH psq ˇˇB H ps 1 q, . . . , B H ps n q ě

1 h 2 L 2 B h, N ź "1 pt ´u q H ´1{2 `´N ź "1
ps ´u q

H ´1{2 `F2 " 1 h 2 L 2 B h, N ź "1 pt ´u q H ´1{2 `F2
, since the support of h does not intersect r0, ss due to the component 1 rsi,tis pu i q in the former.

Let us first estimate the norm h 2 L 2 :

h 2 L 2 " ε N ´2 ¨|s i ´ti | ¨żR ! pu k ´tk `rk q 1{2´H k ``pu k ´tk ´rk q 1{2´H k `´2pu k ´tk q 1{2´H k `)2 du k " ε N ´2 ¨|s i ´ti | ¨r2´2H k k ż R`! v 1{2´H k k `pv k ´2q 1{2´H k `´2pv k ´1q 1{2´H k `)2 dv k " c 0 |s i ´ti | ¨r2´2H k k .
The previous integral is finite since 1 ´2H k ą ´1 and v

1{2´H k k `pv k ´2q 1{2´H k `´2pv k 1q 1{2´H k `"8 v ´1´2H k k
. On the other hand, the inner product is equal to

B h, N ź "1 pt ´u q H ´1{2 `F " ź ‰i,k ż ε 0 pt ´u q Hi´1{2 du ż ti si pt i ´ui q Hi´1{2 du i ˆż t k t k ´rk pt k ´uk q H k ´1{2 pu k ´tk `rk q 1{2´H k du k ě c 2 |s i ´ti | Hi`1{2 ¨rk .
still using a similar change of variables and observing that c 2 ą 0 only depends on ε. Hence, we eventually obtain

Var `BH ptq ´BH psq ˇˇB H ps 1 q, . . . , B H ps n q ˘ě c 3 r 2H k k ¨|s i ´ti | 2Hi ,
where the constant c 3 ą 0 only depends on N , ε and H. This last inequality then clearly leads to the second term in Equation (2.3).

Remark 1.

We may note that the local nondeterminism property presented in Proposition 3 is not sensu stricto an extension of the sectorial LND property (2.1). Indeed, one can simply t s s 1 s 2

Figure 1: Example of conditional variance Var `Bptq ´Bpsq ˇˇBps 1 q, Bps 2 q ȏbserve that if the two terms ρps, tq 2 and ř N "1 r 2H are of same order, then the sectorial LND bound (2.1) is tighter.

On the other hand, Figure 1 illustrates the typical case where the anisotropic LND property (2.2) provides a better estimate than the classic sectorial LND. Namely, if W is a two dimensional Brownian sheet, we easily observe that the bound given by Equation (2.1) on Var `W ptq ´W psq ˇˇW ps 1 q, W ps 2 q ˘is zero. On the other hand, Proposition 3 gives an optimal lower bound, proportional to the variance of the term W ptq´W psq´W ps 2 q`W ps 1 q (informally equal to VarpW p"grey area"qq). This improvement corresponding to some specific geometrical configurations will be the cornerstone in the proofs of Theorems 1 and 2.

Remark 2. The calculus presented in the proof of Proposition 3 offers an alternative way to prove the sectorial LND property. Wu and Xiao [START_REF] Wu | Dimensional properties of fractional Brownian motion[END_REF], and originally Kahane [START_REF] Kahane | of Cambridge Studies in Advanced Mathematics[END_REF], used estimates on the Fourier representation of fractional Brownian sheets to obtain the lower bound, whereas our proof is based on the classic time integral representation (1.2).

Weak uniform Hausdorff dimension of image sets

Based on the refinement obtained in the previous section, we now extend the weak uniform Hausdorff results presented by Kaufman [START_REF] Kaufman | Dimensional properties of one-dimensional Brownian motion[END_REF], Khoshnevisan et al. [START_REF] Khoshnevisan | Sectorial local non-determinism and the geometry of the Brownian sheet[END_REF] and Wu and Xiao [START_REF] Wu | Dimensional properties of fractional Brownian motion[END_REF]. The structure of the proof of Theorem 1 follows the ideas initially described by Kaufman [START_REF] Kaufman | Dimensional properties of one-dimensional Brownian motion[END_REF] and relies mainly on the estimate obtained in the following lemma. Then, for all R ą 0, x, y P rε, 1s N and integers p ě 1,

E " `Ipx, y, Rq ˘p ‰ ď c p 0 pp!q N R ´dp ρpx, yq ´dp , (3.1)
where the constant c 0 only depends on ε.

Proof. Since B H 1 , . . . , B H d are independent copies of an pN, 1q-fractional Brownian sheet B H 0 , the p-th moment of Ipx, y, Rq is equal to ErpIpx, y, Rqq p s " ż rε,1s N p P ` B H px `tj q ´BH py `tj q ď R ´1, 1 ď j ď p ˘dt 1 ¨¨¨dt p " ż rε,1s N p P `|B H 0 px `tj q ´BH 0 py `tj q| ď R ´1, 1 ď j ď p ˘d dt 1 ¨¨¨dt p .

We will bound the previous integral by induction on the parameter p. Hence, let us fix fix t 1 , . . . , t p´1 P rε, 1s N and integrate over the variable t p . Note that without any loss of generality, we assume that all coordinates of t 1 , . . . , t p´1 are distinct. The distribution of B H 0 px `tp q ´BH 0 py `tp q conditionally to B H 0 px `tj q ´BH 0 py `tp q, j P t1, . . . , p ´1u is clearly centered and Gaussian. Therefore, Ppt p q :" P `|B H 0 px `tp q ´BH 0 py `tp q| ď R

´1 ˇˇ|B H 0 px `tj q ´BH 0 py `tj q|, 1 ď j ď p ´1 ď R ´1 ¨Var `BH 0 px `tp q ´BH 0 py `tp q ˇˇB H 0 px `tj q ´BH 0 py `tj q, 1 ď j ď p ´1 ˘´1{2

ď R ´1 ¨Var `BH 0 px `tp q ´BH 0 py `tp q ˇˇB H 0 px `tj q, B H 0 py `tj q, 1 ď j ď p ´1 ˘´1{2 .

As the reader may expect, we aim to use the anisotropic LND property (2.2) to bound the integral ş rε,1s N Ppt p q dt p . To simplify the former expression, we introduce a collection of rectangles pI l q l which forms a partition of rε, 1s N and we split the previous integral accordingly.

More specifically, define for every k P t1, . . . , N u, S k " t j k , t j k `xk ´yk , t j k ´xk `yk ; 1 ď j ď p ´1( . Then, for any index l " pl 1 , . . . , l N q P t1, . . . , 3pp ´1qu N , let I l be the N -dimensional rectangle:

I l " N ź k"1 " s l k k ´sl k k ´sl k ´1 k 2 , s l k k `sl k `1 k ´sl k k 2 ˙,
where the elements ps li k ; 1 ď l i ď 3pp´1qq of the set S k are assumed to be increasingly sorted. The collection of rectangles pI l q l clearly forms a partition of rε, 1s N (choosing accordingly s 0 k and s 3p´2 k to cover the full square). Consequently, the integration over t p on the domain rε, 1s N can be reduce to a finite sum of integrals on each element I l . Thus, let us now set l P t1, . . . , 3pp ´1qu N and observe that for any t p P I l ,

@k P t1, . . . , N u; |t p k ´sl k | ď min 1ďjďp´1 |x k `tp k ´zj k | `min 1ďjďp´1 |y k `tp k ´zj k |,
where z j denotes either x `tj or y `tj . As a consequence, according to Proposition 3, for any t p P I l , Ppt p q ď c 0 R ´1ρpx, yq ´1ρps j , t p q ´1, and thus, ż

I l Ppt p q d dt p ď c 0 R ´dρpx, yq ´d ż I l ρps j , t p q ´d dt p .
Let us prove the last integral is finite:

ż I l ρps j , t p q ´d dt p ď c ż Bp0,1q " N ÿ "1 |u | H * ´ddu ď c ż Bp0,1q v ´d N ź "1 |v | 1{H ´1 dv,
using the simple change of variable v " u H . Then, switching to spherical coordinates,

ż I l ρps j , t p q ´d dt p ď c ż 1 0 r ´d`ř N "1 1{H ´1 dr ż S N ´1 hpϕq dϕ ă `8, since ř N "1
1{H ą d and the induced function h is bounded on the sphere S N ´1 (1{H ´1 ą 0 for every ). Hence,

ż rε,1s N Ppt p q d dt p ď c 1 p N R ´dρpx, yq ´d,
and by induction on p, we obtain Inequality (3.1).

Remark 3. We may note that the proof of Lemma 3.1 also provides a slighter more general inequality. Namely, for any α such that

d ă α ă ř N "1 1 
H , ż rε,1s N p P ` B H 0 px `tj q ´BH 0 py `tj q ď R ´1, 1 ď j ď p ˘α dt 1 ¨¨¨dt p ď c p 0 pp!q N R ´αp ρpx, yq ´αp ,
This extension will be directly used in the proof of Theorem 2.

The proof of Theorem 1 follows the exact same structure as the ones presented by Khoshnevisan et al. [START_REF] Khoshnevisan | Sectorial local non-determinism and the geometry of the Brownian sheet[END_REF] and Wu and Xiao [START_REF] Wu | Dimensional properties of fractional Brownian motion[END_REF]. Consequently, we only present the main steps, and refer to the former for the technical details which remain the same.

Proof of Theorem 1. Since B H is Hölder continuous with respect to the anisotropic metric ρ, classic results (see for instance [START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields[END_REF]) on images of fractal sets show that almost surely,

dim H B H pF `tq ď min d, dim ρ H F
( for all Borel sets E and all t P r0, 1s N .

To obtain the lower bound, we first prove that almost surely, there exists n 0 pωq such that @n ě n 0 pωq, @x, y P r0, 1s N ; Ipx, y, 2 n q ď c 0 n N 2 ´nd ρpx, yq ´d.

The previous property is direct application of Borel-Cantelli lemma and the continuity of fractional Brownian sheets. We refer to [START_REF] Wu | Dimensional properties of fractional Brownian motion[END_REF] for the details of the arguments. Let us now set ω P Ω, a Borel set F Ă r0, 1s N , γ P p0, dim H F q and η P p0, d ^γq. Frostman's lemma implies the existence of a probability measure µ carrying F and such that µpSq ď c 1 pdiam ρ Sq γ for any measurable set S Ă r0, 1s The last two inequalities complete the proof of Theorem 1.

The second part of this section is devoted to the proof of Theorem 2. As previously, the sketch of the latter is highly inspired by the original work of Kaufman [START_REF] Kaufman | Dimensional properties of one-dimensional Brownian motion[END_REF], and we therefore focus on differences compared to the previous results presented by Khoshnevisan et al. [11] and Wu and Xiao [START_REF] Wu | Dimensional properties of fractional Brownian motion[END_REF].

Proof of Theorem 2. Since dim ρ

H pF q ą d, there exists a probability measure µ on F such that ť where t :" pt 1 , . . . , t 2p q, t j P R N . For any n P N, let S n be the following set

S n " 2p ď k"1 N ď "1 ! t P rε, 1s 2N p : |t k ´tj | ą r 1{H n and |x `tk ´tj ´y | ą r 1{H n @j ‰ k ) ,
where r n :" c 3,0 pn `1q2 ´n. We will begin by studying the former integral on the domain S n . It takes the following equivalent form: 

E ż Sn ż R 2pd 2p ź j"1 exp ixξ j , 2 n B H px `tj q ´2n B H py `tj qy ( dξ dt " ż Sn ż R 2pd exp " ´1 2 d ÿ "1 Var ˆ2p ÿ j"1 ξ j " B H px `tj q ´2n B H py `tj q ‰ ˙* 2p ź j"1 ψpξ j q dξ dt. Since 1{2 ď |ξ k | ď 5{2,
ξ j " B H px `tj q ´2n B H py `tj q ‰ ˙ě c 0 2 2n N ÿ "1 min j‰k ! |t k ´tj | 2H , |x `tk ´tj ´y | 2H ) ě c 1 pn `1q 2 .
Hence,

E ż Sn ż R 2pd 2p ź j"1 exp ixξ j , 2 n B H px `tj q ´2n B H py `tj qy ( dξ dt ď e ´c2n 2 ,
where c 2 can be chosen sufficiently large up to a modification of c 3,0 . As a consequence, the previous term will clearly be negligible compared to the bound we aim to obtain.

Let us now consider the second integral over the domain T n :" r0, 1s 2N p zS n , and first note that T n can be written as

T n " 2p č k"1 N č "1 ˆ!t P rε, 1s 2N p : min j ,1 ‰k t k ´tj ,1 ď r 1{H n ) Y ! t P rε, 1s 2N p : min j ,2 ‰k x `tk ´tj ,2 ´y ď r 1{H n ) ˙.
We easily observe that T n is the union of at most p4nq 2N p sets of the following form:

A j " t P rε, 1s 2N p : z `tk ´tj ,k ď r 1{H n , @k P t1, . . . , 2pu, @ P t1, . . . , N u ( , where z " 0 or x ´y . Up to a permutation of indices, the previous set can be written as

A j " N ą "1
t P rε, 1s 2p : z `tk ´tj ,k ď r 1{H n , @k P t1, . . . , 2pu ( .

As a consequence, using Lemma 3.8 proved in [START_REF] Khoshnevisan | Sectorial local non-determinism and the geometry of the Brownian sheet[END_REF], the Lebesgue measure of the previous set can be bounded as following: ) .

Since p ψ is rapidly decreasing, there exists a constant c 5 ą 0 which can be chosen as large as possible such that

I 1 ď c p 6 n c7p 2 ´np ř N "1 1 
H expp´c 5 nq.

Recall that we may assumed that N ě 2, inducing that ř N "1 1 H ą 2, meaning that the previous bound is negligible compared to the right end term in Equation (3.2) (β can be chosen small enough).

Finally Then, we may observe that ε can be chosen as small as wanted, and particularly, such that 2dp1 ´εq ``1 ´d α ˘řN ρpx, yq ´d µpdxqµpdyq ă 8.

1ďjďn

  |s ´sj | `min 1ďjďn |t ´sj |.

Lemma 3 . 1 .

 31 DefineIpx, y, Rq "ż rε,1s N 1 r´1,1s `R ¨ B H px `tq ´BH py `tq ˘dt,

λ 2N p pA j q ď 2 p

 2 on the measure of the full set T n : λ 2N p pT n q ď c p 4 n 2N p r ψp2 n B H px `tj qq ´p ψp2 n B H py `tj qq  dt into two parts I 1 and I 2 , respectively conditioning the former with respect to the events D n and D c n , whereD n " ! max 1ďjď2p B H pt `xj q ´BH py `xj q ą 2 ´p1´εqn

"1 1 H ą 2 . 8 ÿ

 128 The combination of the three previous bounds clearly shows the existence of β ą 0 such that ErJpx, y, nq 2p s ď c p 3,1 p c3,2n p2 `βq ´2np ρpx, yq ´2pd , where the constants c 3,1 and c 3,2 are independent of p P N and n P N.Proof of Theorem 2. To conclude the proof of Theorem 2, we simply observe that the previous Lemma entails

  the former clearly induces Inequality (2.2). In addition, in the two components appearing in Equation (2.3), the first one is a clear consequence of the sectorial LND property (2.1), since r " min jďn |s śj | `min jďn |t ´sj |.

  Let ν t be the image of µ by B H p¨`tq. Still according to Frostman's lemma, it is sufficient to prove Let D " tpx, yq P r0, 1s 2N : ρpx, yq ď R ´1u and J 1 , J 2 respectively denote the integral J over the domains D and D c . Since pµ ˆµqpDq ď c 1 R ´γ , Furthermore, as for any px, yq, Ipx, y, Rq ď c 0 pωq R ´dρpx, yq ´d,

	to obtain our result. Following the idea of Kaufman [9], we have
	I "	ij	µpdxq µpdyq B H px `tq ´BH py `tq η
			ż 8	ij	
	" η			1 r´1,1s	`R	B H px `tq ´BH py `tq ˘Rη´1 µpdxqµpdyq dR
			0			
	ď 1	`η ż 8	ij	1 r´1,1s	`R	B H px `tq ´BH py `tq ˘Rη´1 µpdxqµpdyq dR
					1	
	Integrating the previous integral over t P r0, 1s N , we thus need to show that
							ij ż 8
					J :"	Ipx, y, RqR η´1 dR µpdxqµpdyq ă 8.
							1
							ż 8
							J 1 ď c 1	R ´γ`η´1 dR ă 8.
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							ij	ż 8
		J 2 ď c 0 pωq	ρpx, yq ´d µpdxqµpdyq	ρpx,yq	´1 R η´d´1 logpRq N dR
							ij
			ď c 2 pωq	ρpx, yq ´η logpρpx, yq ´1q N µpdxqµpdyq ă 8.
					I :"	ij	ν t pduq ν t pdvq u ´v η ă 8 for almost all t P r0, 1s N ,
							R 2d

N 

.

  N e ixu,B H px`tqy µpdxq and the exceptional set does not depend on t. Let ψ ě 0 be a smooth function on R d such that ψpuq " 1 when 1 ď |u| ď 2 and ψpuq " 0 outside 1{2 ď |u| ď 5{2. Since ş |u|ą1 |p ν t puq| 2 du is bounded above by H px `tq ´2n B H py `tq ˘µpdxqµpdyq dt ă 8. There exist two positive constants c 0 and β such that with probability 1, for all n ě npωq and ρpx, yq ě c 0 n N 2 ´n, Jpx, y, nq ď p2 `βq ´nρpx, yq ´d.Proof. As observed originally by Kaufman[START_REF] Kaufman | Dimensional properties of one-dimensional Brownian motion[END_REF], using the reasoning presented in the proof of Theorem 1 and a Borel-Cantelli argument, it is sufficient to show the existence of positive constants β, c 3,1 and c 3,2 independent of p such that ErJpx, y, nq 2p s ď c p 3,1 n c3,2p p2 `βq ´2np ρpx, yq ´2pd .

	it remains to prove	
		8	ż		ij
	ÿ n"0 ψ `2n B For that purpose, we study in the following lemma the component J defined by 2 n r0,1s N R 2N p
					ż
			Jpx, y, nq :"	p ψ `2n B H px `tq ´2n B H py `tq ˘dt.
					r0,1s N
	Lemma 3.2. (3.2)
	Namely, we need to upper bound the following term
			"ż	2p
					ź
			E		p ψp2
				rε,1s 2N p	j"1
	R 2N	µpdsq µpdtq ρps,tq d	ă 8. To prove that λ d	`BH pF `tq ˘ą 0, it is sufficient to show that
					ż	ż
					a.s.	|p ν t puq| 2 du dt ă 8.
					r0,1s N	R d
	where p ν t puq "	ş R 8		ij
			ÿ	2 n	p ψ `2n B H px `tq ´2n B H py `tq ˘µpdxqµpdyq,
			n"0	R 2N

n B H px `tj qq ´p ψp2 n B H py `tj qq dt  ,

  there exists 0 P t1, . . . , du such that ξ k

	0 ě p2	?	dq ´1. Hence, owing
	the classic sectorial LND property (1.3),		
	ˆ2p		
	ÿ		
	Var		
	j"1		

  , we may conclude the proof by bounding the term I 2 . Let us set α such that d ă α ă ř N using the classic Hölder inequality. Based on Remark 3 and the previous estimates, we get ż

				"1	1 H and observe
	ż Tn	P ´max 1ďjď2p	B H px `tj qq ´BH py `tj qq ď 2 ´p1´εqn ¯dt
	"	ż Tn	P ´max 1ďjď2p	B H 0 px `tj qq ´BH 0 py `tj qq ď 2 ´p1´εqn ¯ddt
	ď λ 2N p pT n q 1´d α	"ż rε,1s 2N p	P ´max 1ďjď2p	B H 0 px `tj qq ´BH 0 py `tj qq ď 2 ´p1´εqn ¯αdt  d α
					P ´max
					Tn

1ďjď2n B H px `tj qq ´BH py `tj qq ď 2 ´p1´εqn ¯dt ď c p 8 p c9n 2 ´np `2dp1´εq``1´d α ˘řN "1 1 H ˘ρpx, yq ´2pd