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Abstract: In this work, we investigate the fine regularity of Lévy processes using the
2-microlocal formalism. This framework allows us to refine the multifractal spectrum
determined by Jaffard and, in addition, study the oscillating singularities of Lévy
processes. The fractal structure of the latter is proved to be more complex than the
classic multifractal spectrum and is determined in the case of alpha-stable processes.
As a consequence of these fine results and the properties of the 2-microlocal frontier, we
are also able to completely characterise the multifractal nature of the linear fractional
stable motion (extension of fractional Brownian motion to α-stable measures) in the
case of continuous and unbounded sample paths as well. The regularity of its multi-
fractional extension is also presented, indirectly providing an example of a stochastic
process with a non-homogeneous and random multifractal spectrum.
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1. Introduction

The study of sample path continuity and Hölder regularity of stochastic processes is a very
active field of research in probability theory. The existing literature provides a variety of
uniform results on local regularity, especially on the modulus of continuity, for rather general
classes of random fields (see e.g. Marcus and Rosen [35], Adler and Taylor [2] on Gaussian
processes and Xiao [51] for more recent developments).

On the other hand, the structure of pointwise regularity is generally more complex as the
latter often tends to behave erratically as time passes. This type of sample path behaviour
was first put into light on Brownian motion by Orey and Taylor [38] and Perkins [39]. They
respectively studied fast and slow points which characterize logarithmic variations of the
pointwise modulus of continuity, and proved that the sets of times with a given pointwise
regularity have a distinct fractal geometry. Khoshnevisan and Shi [28] have recently extended
this study of fast points to fractional Brownian motion.

Lévy processes with a jump compound also present an interesting pointwise behaviour.
Indeed, Jaffard [25] has proved that despite the random variations of the pointwise exponent,
the level sets of the latter show a specific fractal structure. This seminal work has been
enhanced and extended by Durand [18], Durand and Jaffard [19] and Barral et al. [11]. Par-
ticularly, the latter have proved that Markov processes have a range of admissible pointwise
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behaviours wider and richer than Lévy processes. In the aforementioned works, multifractal
analysis happens to be the key concept to study and characterise the local fluctuations of
the pointwise regularity. In order to be more specific, we recall a few definitions.

Definition 1 (Pointwise exponent). A function f : R → Rd belongs to Cαt , where t ∈ R
and α > 0, if there exist C > 0, ρ > 0 and a polynomial Pt of degree less than α such that

∀u ∈ B(t, ρ); ‖f(u)− Pt(u)‖ ≤ C|t− u|α.

The pointwise Hölder exponent of f at t is then defined by αf,t = sup{α ≥ 0 : f ∈ Cαt },
where by convention sup{∅} = 0.

Multifractal analysis is interested in the fractal geometry of the level sets of the pointwise
exponent, which are also called the iso-Hölder sets of f :

Eh =
{
t ∈ R : αf,t = h

}
for every h ∈ R+ ∪ {+∞}. (1.1)

The geometry of the collection (Eh)h∈R+ is then studied through its Hausdorff dimension,
defining for that purpose the local spectrum of singularities df (h, V ) of f :

df (h, V ) = dimH(Eh ∩ V ) for every h ∈ R+ ∪ {+∞} and V ∈ O, (1.2)

where O designates the collection of nonempty open sets of R and dimH is the Hausdorff
dimension, with by convention dimH(∅) = −∞ (we refer to [21] for the complete definition
of the latter).

Even though (Eh)h∈R+ are random sets, stochastic processes such as Lévy processes [25],
Lévy processes in multifractal time [10] and fractional Brownian motion have a deterministic
multifractal spectrum. Furthermore, these random fields are also said to be homogeneous
since the quantity dX(h, V ) is independent of the open set V for any h ∈ R+. In addition,
when the pointwise exponent is constant along sample paths, the spectrum is described as
degenerate, i.e. its support is reduced to a single point (e.g. the Hurst exponent H in the case
of f.B.m.). Nevertheless, note that Barral et al. [11] and Durand [17] have provided examples
of respectively Markov jump processes and wavelet random series with a non-homogeneous
and random spectrum of singularities.

As outlined in Equations (1.1) and (1.2), multifractal analysis usually focuses on the
structure of pointwise regularity. Unfortunately, as presented by Meyer [37], the pointwise
Hölder exponent suffers of a couple of drawbacks: it lacks of stability under the action of
pseudo-differential operators and it is not always characterised by the wavelets coefficients. In
addition, several simple deterministic examples such as the Chirp function t 7→ |t|α sin

(
|t|−β

)
show that it does not fully capture the local geometry and oscillations of a function.

Several approaches, such as the oscillating, chirp and weak scaling exponents introduced
by Arneodo et al. [5] and Meyer [37], have emerged in the literature to address the limits
of the pointwise exponent and supplement the latter by characterising other aspects of
the local regularity. Interestingly, the aforementioned concepts are embraced by a single
framework called 2-microlocal analysis. It has first been introduced by Bony [14] in the
deterministic frame to study singularities of generalised solutions of PDEs. Several authors
have then investigated in [24, 26, 37, 33] this framework more deeply, determining in
particular the close connection between the 2-microlocal formalism and the previous scaling
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exponents. More recently, Herbin and Lévy Véhel [23] have developed a stochastic approach
of this framework to investigate the fine regularity of stochastic processes such as Gaussian
processes, martingales and stochastic integrals.

Similarly to the pointwise Hölder exponent, the introduction of this formalism starts with
the definition of appropriate functional spaces, named 2-microlocal spaces. We begin with a
simpler, but narrower, definition to give an intuition of these concepts.

Definition 2. Suppose t ∈ R, s′ ∈ R and σ ∈ (0, 1) such that σ − s′ /∈ N. A function
f : R → Rd belongs to the 2-microlocal space Cσ,s

′

t if there exist C > 0, ρ > 0 and a
polynomial Pt such that for all u, v ∈ B(t, ρ):∥∥f(u)− Pt(u)− f(v) + Pt(v)

∥∥ ≤ C|u− v|σ(|u− t|+ |v − t|)−s′ . (1.3)

In addition, Pt is unique if we suppose its degree is smaller than σ − s′. In this case, it
corresponds to the Taylor polynomial of order bσ − s′c of f at t.

The 2-microlocal spaces are therefore parametrised by a pair (s′, σ) of real numbers and
we clearly observe on Equation (1.3) that they extend the underlying ideas of the classic
Hölder spaces. To define these elements for any σ ∈ R \ Z, we need to slightly complexify
the form of the increments considered.

Definition 3. Suppose t ∈ R and b < t is fixed. In addition, consider s′ ∈ R, σ ∈ R \ Z
and k ∈ Z such that σ − s′ /∈ N and σ + k ∈ (0, 1). A function f : R → Rd belongs to the
2-microlocal space Cσ,s

′

t if there exist C > 0, ρ > 0 and a polynomial Pt,k such that for all
u, v ∈ B(t, ρ):∥∥Ikb+f(u)− Pt,k(u)− Ikb+f(v) + Pt,k(v)

∥∥ ≤ C|u− v|σ+k(|u− t|+ |v − t|)−s′ , (1.4)

where Ikb+f designates the derivative of order −k when k ≤ 0 and the iterated integral of
order k when k > 0, i.e.

(
Ikb+f

)
(u) := 1/Γ(k − 1)

∫ u
b

(u− s)k−1f(s) ds.

The time-domain characterisation (1.3)-(1.4) of 2-microlocal spaces has first been ob-
tained by Kolwankar and Lévy Véhel [31] in the case σ ∈ (0, 1) and then extended by Seuret
and Lévy Véhel [46] and Echelard [20] to σ ∈ R \Z. Note that the previous characterisation
does not depend on the value of the constant b, since a modification of the latter simply
induces an adjustment of the polynomial Pt.

Even though, we restrict ourselves in Definitions 2-3 to usual functions, 2-microlocal
spaces were originally introduced by Bony [14] for tempered distributions S ′(R). The first
definition given by Bony [14] relies on the Littlewood–Paley decomposition of distributions,
and thereby corresponds to a description in the Fourier space. Another characterisation
based on wavelet coefficients has also been presented by Jaffard [24]. In addition, note that
the previous characterisation is in fact equivalent the localised 2-microlocal spaces which
are also defined for distributions in D′(R) (we refer to [37] for a more precise distinction
between global and local definitions of the 2-microlocal spaces).

One major property of the 2-microlocal spaces is their stability under the action of pseudo-
differential operators. In particular, as proved by Jaffard and Meyer [26, Th 1.1], they satisfy

∀α > 0; f ∈ Cσ,s
′

t ⇐⇒ Iα+f ∈ C
σ+α,s′
t , (1.5)
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where the fractional integral of f of order α ≥ 0 is defined by:
(
Iα+f

)
(u) := 1/Γ(α)

∫
R(u −

s)α−1
+ f(s) ds. Note that the latter definition of the operator Iα+ coincides with the fractional

integral presented in [26] for tempered distributions (we refer to the book of Samko et al.
[43] for an extensive study of the subject).

Similarly to the pointwise Hölder exponent, the introduction of 2-microlocal spaces leads
naturally to the definition of a regularity tool named the 2-microlocal frontier :

∀s′ ∈ R; σf,t(s′) = sup
{
σ ∈ R : f ∈ Cσ,s

′

t

}
.

Due to several inclusion properties of the 2-microlocal spaces, the map s′ 7→ σf,t(s′) is
well-defined and satisfies:

• σf,t(·) is a concave non-decreasing function;
• σf,t(·) has left and right derivatives between 0 and 1.

Furthermore, as a consequence of Equation (1.5), σf,t(·) is stable under the action of pseudo-
differential operators. As a function, the 2-microlocal frontier σf,t(·) offers a more complete
and richer description of the local regularity and cover in particular the usual Hölder
exponents:

α̃f,t = σf,t(0) and αf,t = − inf{s′ : σf,t(s′) ≥ 0},

where the last equality has been proved by Meyer [37] under the assumption ω(h) =
O (1/|log(h)|) on the modulus of continuity of f . Several other scaling exponents previously
outlined can also be retrieved from the frontier: the chirp and weak scaling exponents
introduced by Meyer [37] are given by:

βcf,t =
{

dσf,t
ds′

∣∣∣∣
s′→−∞

}−1
− 1 and βwf,t = lim

s′→−∞
σf,t(s′)− s′;

These two elements characterise the asymptotic regularity of a function after a large number
of integrations and the latter was been specifically introduced to supplement the pointwise
exponent in multifractal analysis. The oscillating exponent defined by Arneodo et al. [5] can
also be retrieved from the 2-microlocal frontier:

βof,t =
{

dσf,t
ds′

∣∣∣∣
s′=−αf,t−

}−1
− 1.

The latter aims to capture the oscillating behaviour by studying the regularity after in-
finitesimal integrations. Note that the original definition of these exponents are based on
Hölder spaces (see [47] for an extensive review).

In the stochastic framework, Brownian motion provides a simple example of 2-microlocal
frontier: with probability one and for all t ∈ R

∀s′ ∈ R; σB,t(s′) =
(1

2 + s′
)
∧ 1

2 . (1.6)

Using the common terminology of Arneodo et al. [4] and Meyer [37], Brownian motion is
said to have cusp singularities as βwB,t = αB,t and βoB,t = 0,. On the other hand, oscillating
singularities appear when the slope of the frontier is strictly smaller than 1 at s′ = −αf,t,
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or equivalently, when βwB,t > αB,t. This oscillating behaviour is well-illustrated by the chirp
function whose frontier and scaling exponents at 0 respectively are equal to σf,0(s′) =
(α+ s′)(1 + β), αf,0 = 0, βcf,0 = βof,0 = β and βwf,0 =∞.

In this paper, we combine the 2-microlocal formalism with the classic use of multifractal
analysis to obtain a finer and richer description of the regularity of Lévy processes. Following
the path of [25, 18, 19], we extend the multifractal description (Section 2) to the aforemen-
tioned scaling exponents and the 2-microlocal frontier. We present in particular how this
formalism allows to capture and describe the oscillating singularities of Lévy processes. The
fractal structure of the latter is determined for a few classes of Lévy processes which include
alpha-stable processes.

This finer analysis of the sample path properties of Lévy processes happens to be very
useful for the study of another class of processes named linear fractional stable motion
(LFSM). The LFSM is a common α-stable self-similar process with stationary increments
which can be seen as the extension of the fractional Brownian motion to the non-Gaussian
frame. In Section 3, we completely characterize the multifractal nature of the LFSM, unifying
the geometrical description of the sample paths independently of their boundedness. In
addition, we also extend this analysis to the multifractional generalisation of the LFSM.

1.1. Statement of the main results

As it is well known, an Rd-valued Lévy process (Xt)t∈R+ has stationary and independent
increments. Furthermore, its law is determined by the Lévy–Khintchine formula (see e.g.
[45]): for all t ∈ R+ and λ ∈ Rd, E[ei〈λ,Xt〉] = etψ(λ) where ψ is given by

∀λ ∈ Rd; ψ(λ) = i〈a, λ〉 − 1
2 〈λ,Qλ〉+

∫
Rd

(
ei〈λ,x〉 − 1− i〈λ, x〉1{‖x‖≤1}

)
π(dx).

In the previous expression, Q is a non-negative symmetric matrix and π is the Lévy measure,
i.e. a positive Radon measure on Rd \ {0} such that

∫
Rd(1∧ ‖x‖2)π(dx) <∞. Throughout

this paper, it will always be assumed that π(Rd) = +∞ since otherwise, the Lévy process
corresponds to the sum of a simple compound Poisson process with drift and a Brownian
motion whose regularity is well-known.

Sample path properties of Lévy processes are known to depend on the growth of the
Lévy measure near the origin. More precisely, Blumenthal and Getoor [13] have defined the
following exponents β and β′,

β = inf
{
δ ≥ 0 :

∫
Rd

(
1 ∧ ‖x‖δ

)
π(dx) <∞

}
and β′ =

{
β if Q = 0;
2 if Q 6= 0.

(1.7)

Owing to π’s definition, β, β′ ∈ [0, 2]. Pruitt [41] proved that αX,0
a.s.= 1/β when Q = 0. Note

that several other exponents have been introduced in the literature to study the sample path
properties of Lévy processes (see e.g. [29, 30] for some recent developments).

Jaffard [25] has studied the spectrum of singularities of Lévy processes under the following
assumption on the measure π,∑

j∈N

2−j
√
Cj log(1 + Cj) <∞, where Cj =

∫
2−j−1<‖x‖≤2−j

π(dx). (1.8)
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Under the Hypothesis (1.8), Theorem 1 in [25] states that the multifractal spectrum of a
Lévy process X is almost surely equal to

∀V ∈ O; dX(h, V ) =


βh if h ∈ [0, 1/β′);
1 if h = 1/β′;
−∞ if h ∈ (1/β′,+∞].

(1.9)

Durand [18] has extended this result to Hausdorff g-measures, where g is a gauge function,
and Durand and Jaffard [19] have generalized the study to multivariate Lévy fields.

In this work, we first establish in Proposition 2 a new proof of the multifractal spec-
trum (1.9) which does not require Assumption (1.8). Results obtained by Durand [18] on
Hausdorff g-measure are also indirectly extended using this method.

In order to refine and extend the spectrum of singularities (1.9) using the 2-microlocal
formalism, we are interested the fractal geometry of the collections of sets (Ẽh)h∈R+ and
(Êh)h∈R+ respectively defined by

Ẽh =
{
t ∈ Eh : ∀s′ ∈ R; σX,t(s′) = (h+ s′) ∧ 0

}
and Êh = Eh \ Ẽh.

The introduction of these two collections corresponds to the natural distinction presented in
the literature [4, 5, 37] between two types of singularities: the family (Ẽh)h∈R+ gathers the
cusp singularities of Lévy processes, i.e. times at which the slope of the 2-microlocal frontier
is equal to 1, whereas the collection (Êh)h∈R+ regroups the oscillating singularities of the
process, i.e. when βwX,t > αX,t and βoX,t > 0.

In our first important result, we provide a general description of the fractal geometry of
these singularities.

Theorem 1. Suppose X is a Lévy process such that β > 0. Then, with probability one, the
cusp singularities (Ẽh)h∈R+ of X satisfy

∀V ∈ O; dimH(Ẽh ∩ V ) =


βh if h ∈ [0, 1/β′);
1 if h = 1/β′;
−∞ if h ∈ (1/β′,+∞].

(1.10)

Furthermore, the oscillating singularities (Êh)h∈R+ of X are such that

∀V ∈ O; dimH(Êh ∩ V ) ≤
{

2βh− 1 if h ∈ (1/2β, 1/β′);
−∞ if h ∈ [0, 1/2β] ∪ [1/β′,+∞],

(1.11)

where the 2-microlocal frontier at t ∈ Êh verifies σX,t(s′) ≤
(
h+s′
2βh

)
∧
( 1
β′ + s′

)
∧ 0 for all

s′ ∈ R.

Remark 1. Theorem 1 induces that dimH(Êh) < dimH(Ẽh) for every h ∈ [0, 1/β′]. There-
fore, in terms of Hausdorff dimension, chirp oscillations that might appear on a Lévy process
are always singular compared to the common cusp behaviour.

We also note that even though sample paths of Lévy processes do not satisfy the condition
ω(h) = O(1/|log(h)|) outlined in the introduction, Theorem 1 nevertheless ensures that the
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pointwise Hölder exponent can be retrieved from the 2-microlocal frontier at any t ∈ R+
using the formula αX,t = − inf{s′ : σX,t(s′) ≥ 0}. As a consequence, the pointwise regularity
of Lévy processes can also be characterised by its wavelet coefficients.

The determination of the 2-microlocal regularity of Lévy processes allows to deduce the
behaviour of several scaling exponents. In particular, we are interested in the multifractal
spectrum of the weak scaling exponent, whose level sets are defined as:

Ewh =
{
t ∈ R : βwX,t = h

}
for every h ∈ R+ ∪ {+∞}.

Corollary 1. Suppose X is a Lévy process such that β > 0. Then, with probability one

∀V ∈ O; dimH(Ewh ∩ V ) =


βh if h ∈ [0, 1/β′);
1 if h = 1/β′;
−∞ otherwise.

(1.12)

Furthermore, the oscillating exponent is such that βoX,t ≤ max
(
0, 2βh− 1

)
and

dimH

{
t ∈ Eh : βoX,t > 0

}
≤

{
2βh− 1 if h ∈ (1/2β, 1/β′);
−∞ otherwise.

(1.13)

Finally, the chirp scaling exponent satisfies βcX,t = 0 for all t ∈ R.

According to Corollary 1, the multifractal spectrum associated to the weak scaling ex-
ponent is the same as the classic one (1.9) despite the oscillating singularities which might
exist. We also note that the latter do not influence the chirp scaling exponent, showing that
chirp oscillations tend to disappear after multiple integrations.

Following the ideas presented by Meyer [37], it is also natural to investigate geometrical
properties of the sets (Eσ,s′)σ,s′∈R defined by

Eσ,s′ =
{
t ∈ R+ : ∀u′ > s′; X• ∈ Cσ,u

′

t and ∀u′ < s′; X• /∈ Cσ,u
′

t

}
.

This collection of sets can be seen as the level sets of the 2-microlocal frontier for a fixed σ.

Corollary 2. Suppose X is a Lévy process such that β > 0. Then, with probability one and
for all σ ∈ R−,

∀V ∈ O; dimH(Eσ,s′ ∩ V ) =


βs if s ∈ [0, 1/β′);
1 if s = 1/β′;
−∞ otherwise.

(1.14)

where s denotes the common 2-microlocal parameter s = σ−s′. Furthermore, for all s′ ∈ R,
E0,s′ = E−s′ and Eσ,s′ is empty if σ > 0.

As for the weak scaling exponent, we obtain in Corollary 2 a multifractal spectrum which
takes the same form as Equation (1.9) (note that the latter corresponds to the case σ = 0).
In addition, the oscillating singularities are also not captured by these scaling exponents
and the spectrum associated.
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Theorem 1 provides an upper bound of the Hausdorff dimension of the oscillating singular-
ities of a general Lévy process. In Section 2.3, we obtain the exact estimates for some specific
classes of Lévy processes, proving in particular that the Blumenthal–Getoor exponent does
not entirely characterise the structure of these chirp oscillations.

Proposition 1. Suppose π is a Lévy measure on R such that π(R±) = 0 and X is a Lévy
process with generating triplet (a,Q, π). Then, with probability one, Êh = ∅ for all h ∈ R+,
i.e.

∀t ∈ R+, ∀s′ ∈ R; σX,t(s′) =
(
αX,t + s′

)
∧ 0.

Note in particular that subordinators do not have oscillating singularities, which is quite
understandable because of their monotonicity.

Nevertheless, these singularities might appear as well for rather natural classes of processes
such as alpha-stable Lévy processes.

Theorem 2. Suppose X is a Lévy process parametrised by (0, 0, π), where the Lévy measure
π has the following form

π(dx) = a1 |x|−1−α1 1R+dx+ a2 |x|−1−α2 1R−dx, (1.15)

and a1, a2 > 0 and α1, α2 ∈ (0, 2).
Then, the Blumenthal–Getoor exponent of π is equal to β = max(α1, α2) and with

probability one, the oscillating singularities of X satisfy

∀V ∈ O; dimH(Êh ∩ V ) =
{

(α1 + α2)h− 1 if h ∈
(
1/(α1 + α2), 1/β

)
;

−∞ otherwise.
(1.16)

One of the interesting aspects of the previous result is to show that the Hausdorff
dimension of the oscillating singularities of Lévy processes is not necessarily governed by the
Blumenthal–Getoor exponent, but also takes into account the symmetrical aspect of the Lévy
measure. Furthermore, Theorem 2 proves that the upper bound obtained in Theorem 1 is
optimal, since in the case of an alpha-stable process parametrised by (α, βα), with probability
one

∀V ∈ O; dimH(Êh ∩ V ) =
{

2αh− 1 if h ∈ (1/2α, 1/α) and βα ∈ (−1, 1);
−∞ otherwise.

(1.17)

Note that owing to Proposition 1, an alpha-stable process whose skewness parameter βα is
equal to 1 or −1 does not have oscillating singularities.

The fine 2-microlocal structure presented Theorems 1 and 2 happens to be interesting
outside the scope of Lévy processes. More precisely, it allows to characterized the multifractal
nature of the linear fractional stable motion (LFSM). The latter is a fractional extension of
alpha-stable Lévy processes and is usually defined by the following stochastic integral (see
e.g. [44])

Xt =
∫

R

{
(t− u)H−1/α

+ − (−u)H−1/α
+

}
Mα(du), (1.18)

where Mα is an alpha-stable random measure parametrised by α ∈ (0, 2) and βα ∈ [−1, 1],
and H ∈ (0, 1) is the Hurst exponent. Several regularity properties have been determined
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in the literature. In particular, sample paths are known to be nowhere bounded [34] if
H < 1/α and Hölder continuous when H > 1/α. In this latter case, Takashima [50], Kôno
and Maejima [32] proved that the pointwise and local Hölder exponents satisfy almost surely
H − 1/α ≤ αX,t ≤ H and α̃X,t = H − 1/α. Throughout this paper, we will assume that
α ∈ [1, 2), which is required to obtain Hölder continuous sample paths (H > 1/α).

Using an alternative representation of LFSM presented in Proposition 3, we enhance
the aforementioned regularity results and obtain a precise description of the multifractal
structure of the LFSM.

Theorem 3. Suppose X is a linear fractional stable motion parametrized by α ∈ [1, 2),
βα ∈ [−1, 1] and H ∈ (0, 1). Then, with probability one and for all σ ≤ H − 1

α

∀V ∈ O; dimH(Eσ,s′ ∩ V ) =
{
α(s−H) + 1 if s ∈

[
H − 1

α , H
]
;

−∞ otherwise.
(1.19)

where s = σ − s′. When σ > H − 1
α , Eσ,s′ is empty for all s′ ∈ R.

In addition, the weak scaling exponent satisfies with probability one

∀V ∈ O; dimH(Ewh ∩ V ) =
{
α(h−H) + 1 if h ∈

[
H − 1

α , H
]
;

−∞ otherwise.
(1.20)

Finally, the chirp scaling exponent βcX,t is equal to 0 for all t ∈ R.

Therefore, we observe that the multifractal structure presented in Theorem 3 corresponds
to the spectrum of alpha-stable processes translated by a factor H − 1

α . Interestingly, we
also note that on the contrary to usual Hölder exponents, the weak scaling exponent and the
2-microlocal formalism allow to describe the multifractal nature of the LFSM independently
of the continuity of its sample paths, unifying the continuous (H > 1

α ) and unbounded
(H < 1

α ) cases (see Figure 1). In the latter case, the 2-microlocal domain is located strictly
below the s′-axis, implying that sample paths are nowhere bounded. Nevertheless, the proof
of Theorem 3 ensures in this case the existence of a modification of the LFSM such that
the sample paths are distributions in D′(R) whose 2-microlocal regularity can be studied as
well.

In addition, the classic multifractal spectrum can be explicated when sample paths are
Hölder continuous.

Corollary 3. Suppose X is a linear fractional stable motion parametrized by α ∈ [1, 2),
βα ∈ [−1, 1] and H ∈ (0, 1), with H > 1/α. Then, with probability one, the multifractal
spectrum of X is given by

∀V ∈ O; dX(h, V ) =
{
α(h−H) + 1 if h ∈

[
H − 1

α , H
]
;

−∞ otherwise.
(1.21)

An equivalent multifractal structure is presented in Proposition 4 for a similar class of
processes called fractional Lévy processes (see [12, 36, 15]).

The LFSM admits a natural multifractional extension which has been introduced and
studied in [48, 49, 16]. The definition of the linear multifractional stable motion (LMSM) is
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s
′

σ

0−1

−
1

2

dimH(Eσ,s′) = α(s−H) + 1

1

2

1

2

−H + 1

α

H −
1

α

−H

s = σ − s
′

(a) Continuous sample paths (H > 1
α

)

s
′

σ

0−1

−
1

2

dimH(Eσ,s′) = α(s−H) + 1

1

2

1

2

H −
1

α

−
1

2
−

1

α

s = σ − s
′

(b) Unbounded sample paths (H < 1
α

)

Figure 1: Domains of admissible 2-microlocal frontiers for the LFSM

based on Equation (1.18), where the Hurst exponent H is replaced by a function t 7→ H(t).
Stoev and Taqqu [48] and Ayache and Hamonier [6] have obtained lower and upper bounds
on Hölder exponents which are similar to LFSM results: for all t ∈ R+, H(t)−1/α ≤ αX,t ≤
H(t) and α̃X,t = H(t)− 1/α almost surely. Ayache and Hamonier [6] have also investigated
the existence of an optimal local modulus of continuity.

Theorem 3 can be generalized to the LMSM in the continuous case. More precisely, we
assume that the Hurst function satisfies the following assumption,

H : R →
( 1
α , 1

)
is δ-Hölderian, with δ > sup

u∈R
H(u). (H0)

Since the LMSM is clearly a non-homogeneous process, it is natural to focus on the study
of the spectrum of singularities localized at t ∈ R+, i.e.

∀t ∈ R+ dX(h, t) = lim
ρ→0

dX(h,B(t, ρ)) = lim
ρ→0

dimH(Eh ∩B(t, ρ)).

Theorem 4. Suppose X is a linear multifractional stable motion parametrized by α ∈ (1, 2),
βα ∈ [−1, 1] and an (H0)-Hurst function H.

Then, with probability one, for all t ∈ R and for all σ < H(t)− 1
α ,

lim
ρ→0

dimH

(
Eσ,s′ ∩B(t, ρ)

)
=
{
α
(
s−H(t)

)
+ 1 if s ∈

[
H(t)− 1

α , H(t)
]
;

−∞ otherwise.
(1.22)

where s = σ − s′. Furthermore, the set Eσ,s′ ∩ B(t, ρ) is empty for any σ > H(t) − 1
α and

ρ > 0 sufficiently small.

Theorem 4 extends the results presented in [48, 49], and also ensures that the localized
multifractal spectrum is equal to

∀t ∈ R+; dX(h, t) =
{
α
(
h−H(t)

)
+ 1 if h ∈

[
H(t)− 1

α , H(t)
]
;

−∞ otherwise.
(1.23)



Paul Balança/Fine regularity of Lévy processes and linear (multi)fractional stable motion 11

Moreover, we observe that Proposition 3 and Theorem 4 still hold when the Hurst function
H(·) is a continuous random process. Thereby, similarly to the works of Barral et al. [11]
and Durand [17], it provides a class stochastic processes whose spectrum of singularities,
given by Equation (1.23), is non-homogeneous and random.

2. Lévy processes

In this section, X will designate a Lévy process parametrized by the generating triplet
(a,Q, π). The Lévy-Itō decomposition states that it can represented as the sum of three in-
dependent processes B, N and Y , where B is a d-dimensional Brownian motion, N is a com-
pound Poisson process with drift and Y is a Lévy process characterized by

(
0, 0, π(dx)1{‖x‖≤1}

)
.

Without any loss of generality, we restrict the study to the time interval [0, 1]. Further-
more, as outlined in the introduction, we also assume that the Blumenthal–Getoor β is
strictly positive. As noted by Jaffard [25], the component N does not affect the regularity
of X since its trajectories are piecewise linear with a finite number of jumps. Sample path
properties of Brownian motion are well-known and therefore, we first focus in this section
on the study of the jump process Y .

It is well-known that the process Y can be represented as a compensated integral with
respect to a Poisson measure J(dt,dx) of intensity L1 ⊗ π:

Yt = lim
ε→0

[∫
[0,t]×D(ε,1)

xJ(ds,dx)− t
∫
D(ε,1)

xπ(dx)
]
, (2.1)

where for all 0 ≤ a < b, D(a, b) := {x ∈ Rd : a < ‖x‖ ≤ b}. Moreover, as presented in [45,
Th. 19.2], the convergence is almost surely uniform on any bounded interval. In the rest of
this section, for any m ∈ R+, Y m will denote the Lévy process:

Y mt = lim
ε→0

[∫
[0,t]×D(ε,2−m)

xJ(ds,dx)− t
∫
D(ε,2−m)

xπ(dx)
]
. (2.2)

Finally, in the following proofs, c and C will denote positive constants which can change
from a line to another. More specific constants will be written c1, c2, . . . Furthermore, we
will write un � vn when there exists two constants c1, c2 independent of n such that
c1 vn ≤ un ≤ c2 vn for every n ∈ N.

2.1. Pointwise exponent

We extend in this section the multifractal spectrum (1.9) to any Lévy process. To begin
with, we prove two technical lemmas that will be extensively used in the rest of the article.

Lemma 2.1. For any δ > β, there exists a positive constant c(δ) such that for all m ∈ R+

P
(

sup
t≤2−m

∥∥Y m/δt

∥∥
1 ≥ m2−m/δ

)
≤ c(δ)e−m.
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Proof. Let δ > β. We observe that for any m ∈ R+,{
sup
t≤2−m

∥∥Y m/δt

∥∥
1 ≥ m2−m/δ

}
=

⋃
ε∈{−1,1}d

{
sup
t≤2−m

〈
ε, Y

m/δ
t

〉
≥ m2−m/δ

}

Hence, it is sufficient to prove that there exists c(δ) > 0 such that for any ε ∈ {−1, 1}d,

P
(

sup
t≤2−m

〈
ε, Y

m/δ
t

〉
≥ m2−m/δ

)
≤ c(δ)e−m.

Let λ = 2m/δ and Mt = eλ〈ε,Y
m/δ
t 〉 for all t ∈ R+. According to Theorem 25.17 in [45], we

have E[Mt] = exp
{
t
∫
D(0,2−m/δ)

(
eλ〈ε,x〉 − 1− λ〈ε, x〉

)
π(dx)

}
. Furthermore, we observe that

for all s ≤ t ∈ R+,

E[Mt | Fs ] = Ms exp
{

(t− s)
∫
D(0,2−m/δ)

(
eλ〈ε,x〉 − 1− λ〈ε, x〉

)
π(dx)

}
≥Ms,

since for any y ∈ R, ey− 1− y ≥ 0. Hence, M is a positive submartingale, and using Doob’s
inequality (Theorem 1.7 in [42]), we obtain

P
(

sup
t≤2−m

〈
ε, Y

m/δ
t

〉
≥ m2−m/δ

)
= P

(
sup
t≤2−m

Mt ≥ em
)
≤ e−mE[M2−m ].

For all y ∈ [−1, 1], we note that ey − 1− y ≤ y2. Thus, for any m ∈ R+,

E[M2−m ] ≤ exp
{

2−m
∫
D(0,2−m/δ)

λ2〈ε, x〉2π(dx)
}
≤ exp

{
2−m

∫
D(0,2−m/δ)

λ2‖x‖2π(dx)
}
.

If β < 2, let us set γ > 0 such that β < γ < 2 and γ < δ. Then,

2−m
∫
D(0,2−m/δ)

λ2‖x‖2π(dx) = 2−m(1−2/δ)
∫
D(0,2−m/δ)

‖x‖γ · ‖x‖2−γπ(dx)

≤ 2−m(1−2/δ)2−m/δ(2−γ)
∫
D(0,1)

‖x‖γπ(dx)

= 2−m(1−γ/δ)
∫
D(0,1)

‖x‖γπ(dx) ≤
∫
D(0,1)

‖x‖γπ(dx),

since γ < δ. If β = 2, we simply observe that

2−m
∫
D(0,2−m/δ)

λ2‖x‖2π(dx) ≤ 2−m(1−2/δ)
∫
D(0,1)

‖x‖2π(dx) ≤
∫
D(0,1)

‖x‖2π(dx),

as δ > 2. Therefore, there exists c(δ) > 0 such that for all m ∈ R+, E[M2−m ] ≤ c(δ),
concluding the proof of this lemma.

Lemma 2.2. Suppose δ > β. Then, with probability one, there exist c1 > 0 and M(ω) > 0
such that

∀u, v ∈ [0, 1] : |u− v| ≤ 2−m;
∥∥Y m/δu − Y m/δv

∥∥ ≤ c1m2−m/δ (2.3)
for any m ≥M(ω).
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Proof. We first note that for any m ∈ R+ and any δ > β,{
sup

u,v∈[0,1]:|u−v|≤2−m

∥∥Y m/δu − Y m/δv

∥∥ ≥ 3m2−m/δ
}

⊆
2m−1⋃
k=0

{
sup
t≤2−m

∥∥Y m/δt+k2−m − Y
m/δ
k2−m

∥∥ ≥ m2−m/δ
}
.

Therefore, the stationarity of Lévy processes and Lemma 2.1 yield

P
(

sup
u,v∈[0,1]:|u−v|≤2−m

∥∥Y m/δu − Y m/δv

∥∥ ≥ 3m2−m/δ
)
≤ 2mc(δ)e−m = c(δ)e−cm.

Using the latter estimate and Borel–Cantelli lemma, we obtain Equation (2.3).

Let us recall the definition of the collection of random sets (Aδ)δ>0 introduced by Jaffard
[25]. For every ω ∈ Ω, S(ω) denotes the countable set of jumps of Y•(ω). Moreover, for any
ε > 0, let Aεδ be

Aεδ =
⋃

t∈S(ω)
‖∆Yt‖≤ε

[
t− ‖∆Yt‖δ, t+ ‖∆Yt‖δ

]
.

Then, the random set Aδ is defined by Aδ = lim supε→0+ Aεδ. As noted in [25], if t ∈ Aδ, we
necessarily have αY,t ≤ 1

δ . The other side inequality is obtained in the next statement which
extends Proposition 2 from [25].

Proposition 2. Suppose δ > β. Then, with probability one, for all t ∈ [0, 1] \ S(ω):

t /∈ Aδ =⇒ αY,t ≥ 1
δ .

Proof. Suppose ω ∈ Ω, t /∈ Aδ, u ∈ [0, 1] and m ∈ N such that 2−(m+1)δ ≤ |t − u| < 2−mδ.
Since t /∈ Aδ, there exists ε0 > 0 such that for all ε ≤ ε0, t /∈ Aεδ. The component∫

[t,u]×D(ε0,1)
xJ(ds,dx)− (u− t)

∫
D(ε0,1)

xπ(dx)

is piecewise linear, and therefore does not influence the pointwise exponent αY,t. Without
any loss of generality, we may assume that 2−m ≤ ε0. Then, for any jump ∆Ys such that
‖∆Ys‖ ∈ [2−m, ε0], we have ‖∆Ys‖δ ≥ 2−mδ ≥ |t− u|, implying that∫

[t,u]×D(2−m,ε0)
xJ(ds,dx) = 0.

Furthermore, using Lemma 2.2, we obtain∥∥Y mu − Y mt ∥∥ ≤ cm2−m ≤ c log
(
|t− u|−1)|t− u|1/δ,

assuming that |t− u| is sufficiently small. Therefore, the remaining term to estimate corre-
sponds to −(u− t)

∫
D(2−m,ε0) xπ(dx). To study the latter, we distinguish two different cases,

depending on the polynomial component we subtract in Definition 1.
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1. If δ ≥ 1, let us set Pt ≡ 0. Then,∥∥∥∥(u− t)
∫
D(2−m,ε0)

xπ(dx)
∥∥∥∥ ≤ c |t− u|∫

D(2−m,ε0)
‖x‖δ · ‖x‖1−δ π(dx)

≤ c |t− u| · 2−m(1−δ)
∫
D(2−m,ε0)

‖x‖δ π(dx) ≤ c |t− u|1/δ.

2. If δ < 1 (and thus β < 1), we set Pt(u) ≡ −(u− t)
∫
D(0,ε0) π(dx), which corresponds to

the linear drift of the Lévy process. We observe that −(u−t)
∫
D(2−m,ε0) xπ(dx)−Pt(u) =

(u− t)
∫
D(0,2−m) xπ(dx). Then, similarly to the previous case, the latter satisfies∥∥∥∥(u− t)
∫
D(0,2−m)

xπ(dx)
∥∥∥∥ ≤ c |t− u|∫

D(0,2−m)
‖x‖δ · ‖x‖1−δ π(dx)

≤ c |t− u| · 2−m(1−δ)
∫
D(0,2−m)

‖x‖δ π(dx) ≤ c |t− u|1/δ.

Therefore, owing to the previous estimates, we have proved that ‖Yu − Yt − Pt(u)‖ ≤
c0 log

(
|t − u|−1)|t − u|1/δ, where the constant c0 is independent of u. The latter inequality

and Definition 1 prove that αY,t ≥ 1
δ .

Proposition 2 ensures that almost surely

∀h > 0; Eh =
( ⋂
δ<1/h

Aδ

)
\
( ⋃
δ>1/h

Aδ

)
\ S and E0 =

(⋂
δ>0

Aδ

)
∪ S. (2.4)

Furthermore, since the estimate of the Hausdorff dimension obtained in [25] does not rely
on Assumption (1.8), the Lévy process Y satisfies with probability one

∀V ∈ O; dimH(Eh ∩ V ) =
{
βh if h ∈ [0, 1/β];
−∞ otherwise.

2.2. 2-microlocal frontier of Lévy processes

We now aim to refine the multifractal spectrum of Lévy processes by studying their 2-
microlocal structure. Let us begin with a few basics remarks and estimates on their 2-
microlocal frontier. Firstly, according to [37, Th. 3.13], with probability one, for all t ∈ [0, 1]
and for any −s′ < αY,t, the sample path Y•(ω) belongs to the 2-microlocal space C0,s′

t .
Furthermore, owing to the density of the set of jumps S(ω) in [0, 1], necessarily Y•(ω) /∈ Cσ,s

′

t

for any σ > 0 and all s′ ∈ R. Hence, since the 2-microlocal frontier is a concave function
with left- and right-derivatives between 0 and 1, with probability one and for all t ∈ [0, 1]:

∀s′ ∈ R+; σY,t(s′) ≥ (αY,t + s′) ∧ 0 and σY,t(s′) ≤ 0.

Therefore, we are interested in obtaining finer estimates of the negative component of the
2-microlocal frontier of Y . As outlined in the introduction and Definitions 2-3, we need to
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analyse the following type of increments in the neighbourhood of t:∥∥∥∥∫ u

b

(u− s)k−1
+ Ys ds− Pt,k(u)−

∫ v

b

(v − s)k−1
+ Ys ds+ Pt,k(v)

∥∥∥∥ (2.5)

where b < t is fixed and k ≥ 1. The polynomial component to be subtracted can be estimate
using our work on pointwise exponent. Indeed, when k = 0, the Pt,0 ≡ Pt where the latter
has been presented in the proof of Proposition 2,. Then, the consistency of the definition
of the 2-microlocal spaces imposes that Pt,k−1 must correspond to the derivative of Pt,k.
This last property shows us that the form of Pt,k can be completely deduce from the known
polynomial Pt.

For the sake of readability, we divide the proof of Theorem 1 and its corollaries in several
different technical lemmas. To begin with, we give simple estimates on the jumps of a Lévy
process.

Lemma 2.3. For any ε > 0, there exists an increasing sequence (mn)n∈N such that with
probability one, for all t ∈ [0, 1] and for every n ≥ N(ω)

∃u ∈ B(t, 2−mnα); ‖∆Yu‖ ≥ 2−mn and J
(
B(u, 2−mnγ)×D(2−mn(1+ε), 1)

)
= 1,

where α = β(1− 2ε) and γ = β(1 + 4ε).

Proof. Suppose m ∈ N, ε > 0, α = β(1 − 2ε) and γ = β(1 + 4ε). Let I be an interval
such that I = I1 ∪ I2 ∪ I3, where I1, I2, I3 are three consecutive and disjoint intervals of size
2−mnγ . Then, we are interested in the following event:

A =
{
J
(
I1, D(2−m, 1)

)
= 0
}
∩
{
J
(
I3, D(2−m, 1)

)
= 0
}
∩{

J
(
I2, D(2−m, 1)

)
= 1
}
∩
{
J
(
I,D(2−m(1+ε), 2−m)

)
= 0
}
,

Since J is a Poisson measure, A corresponds to the intersection of independent events whose
probability is equal to

P(A) = 2−mγπ(D(2−m, 1)) · exp
(
−3 · 2−mγπ(D(2−m, 1)) + 2−mγπ(D(2−m(1+ε), 2−m))

)
.

As described in [13], β can be defined by β = inf
{
δ ≥ 0 : lim supr→0 r

δπ
(
B(r, 1)

)
< ∞

}
.

Therefore, there exists r0 > 0 such that for all r ∈ (0, r0], π
(
B(r, 1)

)
≤ r−β(1+ε). Hence, for

any m ∈ N sufficiently large:

P(A) ≥ 2−mγπ(D(2−m, 1)) exp
(
−2−mβε+1) ≥ 2−mγ−1 π

(
D(2−m, 1)

)
.

Furthermore, according to the definition of β, there also exists an increasing sequence
(mn)n∈N such that for all n ∈ N, π(D(2−mn , 1)) ≥ 2mnβ(1−ε). Therefore, along this
sequence, we obtain P(A) ≥ 2−mn5βε−1 for every n ∈ N.

Let now consider an interval I of size 2−mnα. There exist at most 2−mnα+mnγ disjoint
sub-intervals I of size 3 · 2−mnγ . We designate by B the event where A is not satisfied by
all these sub-elements I. Owing to the previous estimate of P(A) and the independence of
these different events, we obtain

P(B) =
(
P (Ac)

)2mn(γ−α)

≤
(
1− 2−mn5βε−1)2mn(γ−α)

.
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Note that γ − α = 6βε. Hence, log
(
P(B)

)
≤ −2−mn5βε−1 · 2mn6βε = −2mnβε−1 and the

probability P(B) satisfies P(B) ≤ exp
(
−2mnβε−1).

Finally, we know there exist at most 2mnα+1 disjoint intervals J of size 2−mnα inside
[0, 1]. We denote by Bn the event where B is satisfied for one of the previous interval I.
Since Bn is the reunion of events, we obtain

P(Bn) ≤ 2mnα+1 · exp
(
−2mnβε−1) ≤ exp

(
−2mnβε−1 + cmnα

)
.

Therefore,
∑
n∈N P(Bn) < ∞ and owing to Borel–Cantelli lemma, with probability one,

there exists N(ω) such that for every n ≥ N(ω), ω ∈ Bcn. The latter inclusion means that
for every interval I previous defined, there exists a sub-element I such that the event A is
satisfied on I, which proves this lemma.

The previous lemma will help us to obtain a uniform upper bound on the 2-microlocal
frontier of Y .

Lemma 2.4. With probability one, for all t ∈ [0, 1], the 2-microlocal frontier of Y at t
satisfies

∀s′ ∈ R; σY,t(s′) ≤
( 1
β

+ s′
)
∧ 0. (2.6)

Proof. Let us first observe that to obtain an upper bound of the 2-microlocal frontier of
the Rd-valued Y = (Y1, . . . , Yd) process, it is sufficient to prove this bound holds for one
the component Yi. Furthermore, we also know that each of these components is a one-
dimensional Lévy process and there exists i ∈ {1, . . . , d} such that the Blumenthal–Getoor
exponent of Yi is equal to β. Hence, considering these two remarks, we may assume without
any loss of generality that we study only one component, and thus d = 1.

Let us set t ∈ [0, 1]. We need to evaluate the size of the increments described in Equa-
tion (2.5). Hence, let us first determine the form of the local process Y (u, k) :=

(
Ikb+Y

)
(u)−

Pt,k(u) used. We know that when k = 0, the polynomial component is described in Propo-
sition 2, and thus we define the local process Y (s, 0) in the neighbourhood of t as following:

∀u ∈ R; Y (u, 0) = Yu − Yt − Pt(u).

Then, since the polynomial component must correspond to the Taylor development of the
process at t, we define the elements Y (·, k) be induction:

∀u ∈ R; Y (u, k) =
∫ u

t

Y (s, k − 1) ds.

One can easily verify that the derivative of Y (·, k) is Y (·, k − 1) and Y (t, k) = 0, proving
that the Taylor development of Y (·, k) at t is P ≡ 0. Therefore, this construction procedure
ensures that the difference between Y (·, k) and Ikb+Y corresponds to the polynomial function
appearing in the definition of the 2-microlocal spaces.

Hence, we need to show in this proof that for any k ∈ N, the increments of the process
Y (·, k) are sufficiently large in the neighbourhood of t. More precisely, we will show by
induction that there exist tn,k →n t, ρn,k > 0 and δn,k > 0 such that for every k ∈ N and
all n ∈ N:

∀u ∈ [tn,k, tn,k + ρn,k); |Y (u, k)| ≥ δn,k. (2.7)
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To initialize the induction with k = 0, we make use of the estimate obtained in Lemma 2.3:
there exists an increasing sequence (mn)n∈N such that with probability one, for all t ∈ [0, 1]
and for every n ≥ N(ω)

∃v ∈ B(t, 2−mnα); |∆Yv| ≥ 2−mn and J
(
B(v, 2−mnγ)×D(2−mn(1+ε), 1)

)
= 1,

where α = β(1 − 2ε) and γ = β(1 + 4ε). Since the reasoning which follows is completely
symmetric, we may assume without any loss of generality that v ≥ t and ∆Yv ≥ 0. Let us
set n ≥ N(ω) and a proper v ≥ t. We know there is no other jump of size greater than
2−mn(1+ε) inside the ball B(v, 2−mnγ). Therefore, for all u ∈ B(v, 2−mnγ),

Yu − Yv = −∆Yv1{u<v} − (u− v)
∫
D(2−mn(1+ε),1)

xπ(dx) + Y mn(1+ε)
u − Y mn(1+ε)

v .

Furthermore, according to Lemma 2.2, the norm of the latter increment satisfies:∣∣Y mn(1+ε)
u − Y mn(1+ε)

v

∣∣ ≤ c1mn2−mn(1+ε),

as we note that |u− v| ≤ 2−mnβ(1+4ε) = 2−mn(1+ε)β(1+4ε)/(1+ε) with β(1 + 4ε)/(1 + ε) > β.
Then, similarly to the proof of Proposition 2, we need to distinguish two different cases.

1. If β ≥ 1, Pt ≡ 0 and thus Y (u, 0) = Yu − Yt. Let us first assume that Y (v, 0) ≥ 2−mn−1

and set tn,0 = v and ρn,0 = 2−mnγ . Then, for all u ∈ [tn,0, tn,0 + ρn,0):

|Y (u, 0)| ≥ |Y (v, 0)| −
∣∣Y mn(1+ε)
u − Y mn(1+ε)

v

∣∣− ∣∣∣∣(u− v)
∫
D(2−mn(1+ε),1)

xπ(dx)
∣∣∣∣.

Using the estimates presented in Proposition 2, we obtain an upper bound of the last
term:∣∣∣∣(u− v)

∫
D(2−mn(1+ε),1)

xπ(dx)
∣∣∣∣ ≤ c 2−mnγ · 2−mn(1+ε)(1−β(1+ε)) ≤ c 2−mn(1+ε),

since −γ + β(1 + ε)2 = −β(2ε − ε2) < 0. Hence, |Y (u, 0)| ≥ 2−mn−1 − c 2−mn(1+ε) ≥
2−mn−2 for any n sufficiently large.
Let now assume that Y (v, 0) ≤ 2−mn−1. Since ∆Yv ≥ 2−mn , we necessarily have
Y (v−, 0) ≤ −2−mn−1. Then, we set in this case tn,0 = v−2−mnγ and ρn,0 = 2−mnγ , and
obtain as well |Y (u, 0)| ≥ 2−mn−1 − c 2−mn(1+ε) ≥ 2−mn−2.

2. If β < 1, Pt(u) ≡ −(u− t)
∫
D(0,1) π(dx). Similarly to the previous case, we first assume

that Y (v, 0) ≥ 2−mn−1 and set tn,0 = v and ρn,0 = 2−mnγ . Then, for all u ∈ [tn,0, tn,0 +
ρn,0]:

|Y (u, 0)| ≥ |Y (v, 0)| −
∣∣Y mn(1+ε)
u − Y mn(1+ε)

v

∣∣− ∣∣∣∣(u− v)
∫
D(0,2−mn(1+ε))

xπ(dx)
∣∣∣∣,

where the latter element satisfies∣∣∣∣(u− v)
∫
D(0,2−mn(1+ε))

xπ(dx)
∣∣∣∣ ≤ c 2−mnγ · 2−mn(1+ε)(1−β(1+ε)) ≤ c 2−mn(1+ε).
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Hence, |Y (u, 0)| ≥ 2−mn−1 − c 2−mn(1+ε) ≥ 2−mn−2 for any n sufficiently large. In the
case Y (v, 0) ≤ 2−mn−1, we observe that Y (v−, 0) ≤ −2−mn−1. Therefore, setting tn,0 =
v − 2−mnγ and ρn,0 = 2−mnγ , we obtain |Y (u, 0)| ≥ 2−mn−1 − c 2−mn(1+ε) ≥ 2−mn−2.

Therefore, in both cases, we have proved that

∀u ∈ [tn,0, tn,0 + ρn,0); |Y (u, 0)| ≥ δn,0,

where ρn,0 = 2−mnγ , δn,0 = 2−mn−1 and B(tn,0, ρn,0) ⊂ B(t, 2−mnα+1).
Let now assume that Equation (2.7) is satisfied for k ∈ N. Without any loss of generality,

we may suppose that Y (u, k) ≥ δn,k on the interval [tn,k, tn,k + ρn,k) (otherwise, simply
consider the process −Y (u, k) in the following reasoning). In this case, the function u 7→∫ u
t
Y (s, k) ds is strictly increasing on the previous interval.
Let us first assume that

∫ tn,k+ρn,k/2
t

Y (s, k) ds ≥ 0. In this case, we set tn,k+1 = tn,k +
3/4ρn,k, ρn,k+1 = ρn,k/4 and δn,k+1 = ρn,kδn,k/4. Then, for all u ∈ [tn,k+1, tn,k+1 + ρn,k+1)

Y (u, k + 1) ≥
∫ u

tn,k+ρn,k/2
Y (s, k) ds ≥ (u− tn,k − ρn,k/2) δn,k

≥ ρn,kδn,k/4 = δn,k+1,

In the other case
∫ tn,k+ρn,k/2
t

Y (s, k) ds ≤ 0, we consider the set of parameters tn,k+1 = tn,k,
ρn,k+1 = ρn,k/4 and δn,k+1 = ρn,kδn,k/4. Then, for all u ∈ [tn,k+1, tn,k+1 + ρn,k+1)

Y (u, k + 1) ≤ −
∫ tn,k+ρn,k/2

u

Y (s, k) ds ≤ −(tn,k + ρn,k/2− u) δn,k

≤ −ρn,kδn,k/4 = −δn,k+1,

Therefore, assuming that Equation (2.7) holds for k ∈ N, we have proved that it does too
for k + 1 with ρn,k+1 = ρn,k/4, δn,k+1 = ρn,kδn,k/4 and B(tn,k+1, ρn,k+1) ⊂ B(tn,k, ρn,k) ⊂
B(t, 2−mnα+1).

Finally, the lower bound on Yn,k presented in Equation (2.7) will now help us to obtain the
expected bound on the 2-microlocal frontier. Owing to the previous definitions, for every
k ∈ N, |tn,k − t| ≤ 2−mnα+1 and there exist ck > 0 independent of n ∈ N such that
δn,k = ck 2−mn kγ · 2−mn . Hence, for every n ∈ N,

|Y (tn,k, k)− Y (t, k)| ≥ δn,k ≥ ck 2−mn(1+kγ) ≥ ck |tn,k − t|(1+kγ)/α,

where we recall that α = β(1− 2ε) and γ = β(1 + 4ε). Therefore, this last inequality proves
that the pointwise exponent of Y (·, k) at t satisfies αY (·,k),t ≤ (1 + kγ)/α →ε→0 1/β + k.
Owing to the Definition 3 of the 2-microlocal spaces, this last inequality induces that with
probability one, for any t ∈ [0, 1] and all s′ ∈ R, σY,t(s′) ≤

( 1
β + s′

)
∧ 0.

As we have obtained a uniform upper bound on the 2-microlocal frontier, we now study
more precisely the regularity of Y at times where αY,t < 1/β. To begin with, we prove a
simple lemma related to the number of jumps inside an interval.
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Lemma 2.5. Suppose δ > β, ε > 0 and k ∈ N are such that δ > β(1 + 2ε)(k+ 1)/k. Then,
with probability one, there exists M(ω) such that:

∀t ∈ [0, 1]; J
(
B(t, 2−mδ), D(2−m(1+ε), 1)

)
≤ k, (2.8)

for every m ≥M(ω).

Proof. Let m ∈ N and I be an interval of size 2−mδ+2. Since J is a Poisson random measure,

P
(
J
(
I,D(2−m(1+ε), 1)

)
> k

)
= exp(−λm)

{ +∞∑
`=k+1

λ`m
`!

}
,

where λm = 2−mδ+2 π
(
D(2−m(1+ε), 1)

)
≤ 2−mδ+2+mβ(1+2ε) → 0. Hence, we obtain the

inequality P
(
J
(
I,D(2−m(1+ε), 1)

)
> k

)
≤ c λk+1

m .
Considering a covering of the interval [0, 1] with d2mδe overlapping sub-elements I of size

2−mδ+2, we denote by Bm the event where at least one of these intervals has more than k
jumps inside. Then,

P(Bm) ≤ c 2mδ · λk+1
m ≤ c 2mδ−mδ(k+1)+mβ(k+1)(1+2ε).

Since δk > β(1+2ε)(k+1), there exists γ > 0 such P(Bm) ≤ c 2−mγ . Therefore,
∑
m∈N P(Bm) <

∞ and owing to Borel–Cantelli lemma, there exists M(ω) such that for every m ≥ M(ω),
J
(
I,D(2−m(1+ε), 1)

)
≤ k. Finally, since we consider intervals I of size 2−mδ+2 covering [0, 1]

and overlapping, we have proved that for all t ∈ [0, 1], J
(
B(t, 2−mδ), D(2−m(1+ε), 1)

)
≤

k.

In the next lemma, we start with the study of the 2-microlocal frontier of Y at points
t ∈ [0, 1] where αY,t ∈ [0, 1/2β].

Lemma 2.6. With probability one, for all h ∈ [0, 1/2β], the singularities of Y satisfy Ẽh =
Eh and Êh = ∅, i.e. for all t ∈ Eh

∀s′ ∈ R; σY,t(s′) = (αY,t + s′) ∧ 0.

Proof. Suppose h ∈ [0, 1/2β] and t ∈ Eh \ S(ω) (t is not a jump time). Since we already
know that σY,t(s′) ≥ (h+ s′) ∧ 0, we need to only prove the other side inequality. For that
purpose, we will proceed similarly to the proof of Lemma 2.4.

More precisely, let us set ε > 0 and δ > max
(
2β(1 + 2ε), 1/(h + ε)

)
. Since t ∈ Eh and

owing to Equation (2.4), there exist two sequences (vn)n∈N and (mn)n∈N such that

∀n ∈ N; vn ∈ B
(
t, 2−mn/(h+ε)) and

∥∥∆Yvn
∥∥ ≥ 2−mn .

Without any loss of generality, we may assume that vn ≥ t. Furthermore, owing to Lemma 2.5,
J
(
B(vn, 2−mnδ), D(2−mn(1+ε), 1)

)
= 1, i.e. there is no other jump larger than 2−mn(1+ε) in

the neighbourhood of vn. Then, similarly to the proof of Lemma 2.4, we need to distinguish
two different cases.
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1. If β ≥ 1, Pt ≡ 0 and thus Y (u, 0) = Yu − Yt. Consider n ∈ N and first assume that
‖Y (vn, 0)‖ ≥ 2−mn−1. Let us also set tn = vn and ρn = 2−mnδ. Then, for all u ∈
[tn, tn + ρn):

‖Y (u, 0)‖ ≥ ‖Y (vn, 0)‖ −
∥∥Y mn(1+ε)

u − Y mn(1+ε)
vn

∥∥− ∥∥∥∥(u− vn)
∫
D(2−mn(1+ε),1)

xπ(dx)
∥∥∥∥.

Still using the same estimates as in the proof of Lemma 2.5, we know that the last two
terms are upper bounded by c 2−mn(1+ε), proving that ‖Y (u, 0)‖ ≥ 2−mn−2 for any n
sufficiently large. The case ‖Y (vn, 0)‖ ≤ 2−mn−1 is treated completely similarly, using
tn = vn − 2−mnδ and ρn = 2−mnδ.

2. If β < 1, Pt(u) ≡ −(u − t)
∫
D(0,1) π(dx). Assuming first that ‖Y (vn, 0)‖ ≥ 2−mn−1. we

still set tn = vn and ρn = 2−mnδ. Then, for all u ∈ [tn, tn + ρn):

‖Y (u, 0)‖ ≥ ‖Y (vn, 0)‖ −
∥∥Y mn(1+ε)

u − Y mn(1+ε)
vn

∥∥− ∥∥∥∥(u− vn)
∫
D(0,2−mn(1+ε))

xπ(dx)
∥∥∥∥,

As previously, the last two terms are upper bounded by c 2−mn(1+ε), proving that
‖Y (u, 0)‖ ≥ 2−mn−2 for any n sufficiently large. The case ‖Y (vn, 0)‖ ≤ 2−mn−1 is
treated similarly using tn = vn − 2−mnδ and ρn = 2−mnδ.

Therefore, we have proved in both cases that for all u ∈ [tn, tn + ρn), with n sufficiently
large, ‖Y (u, 0)‖ ≥ 2−mn−2. Reproducing the same reasoning as in the proof of Lemma 2.4,
there exists sn such that for every n ∈ N, sn ∈ B(t, 2−mn/(h+ε)) and

‖Y (sn, 1)‖ ≥ c 2−mn · 2−mnδ ≥ |t− sn|(h+ε)(1+δ).

Hence, αY (·,1),t ≤ (h + ε)(1 + δ). Considering the limit ε → 0 and δ → 1/h, we obtain
αY (·,1),t ≤ h + 1. The latter inequality is sufficient to prove that σY,t(s′) = (h + s′) ∧ 0 for
all s′ ∈ R.

To conclude this proof, let us consider the case t ∈ S(ω). We observe that for all u ≥ t,∫ u

t

Ys ds = (u− t)Yt +
∫ u

t

(Ys − Yt) ds with
∥∥∥∥∫ u

t

(Ys − Yt) ds
∥∥∥∥ = o(|t− u|),

as Y is right-continuous. Similarly, for all u ≤ t,
∫ t
u
Ys ds = (t−u)Yt−+o(|t−u|). Therefore,

since ∆Yt = Yt−Yt− 6= 0, there does not exist a polynomial Pt which can cancel both terms
(u− t)Yt and (t− u)Yt−, proving that σY,t(s′) = s′ ∧ 0 for all s′ ∈ R.

In the last technical lemma, we focus on the particular case αY,t ∈ (1/2β, 1/β) and try
to distinguish oscillating singularities from the common cusp behaviour.

Lemma 2.7. With probability one, for all h ∈ (1/2β, 1/β), Y satisfies

∀V ∈ O; dimH(Ẽh ∩ V ) = βh and dimH(Êh ∩ V ) ≤ 2βh− 1 (< βh). (2.9)

Furthermore, for any t ∈ Êh and all s′ ∈ R, σY,t(s′) ≤ (h+ s′)/2βh.
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Proof. On the contrary to the previous lemma, we know that some oscillating singularities
might appear at a given time t. Hence, the first step in this proof is to isolate these behaviours
and estimate the fractal dimension of the corresponding set of times.

For that purpose, let us set δ ∈ (β, 2β) and ε > 0. We are interested in the double-
jump configurations, i.e. when two jumps greater than 2−m(1+ε) are sufficiently close. More
precisely, suppose I is an interval of size 2−mδ+1 and pm designates the probability of
obtaining at least two jumps greater than 2−m(1+ε) inside I. Then,

c 2−m2δ · 2m2β ≤ pm = P
(
J
(
I,D(2−m(1+ε), 1)

)
≥ 2

)
≤ C 2−m2δ · 2m2β(1+2ε)

where we may assume that δ > β(1 + 2ε). We consider d2mδe consecutive, but disjoint,
intervals of size 2−mδ+1 which are sufficient to cover [0, 1]. Then, if we denote by N1

m the
number of intervals with the previous configuration, it follows a Binomial distribution of
parameters d2mδe and pm. Moreover, Chernoff’s inequality induces that

P
(
N1
m ≥ c0 2−mδ+m2β(1+2ε) ) ≤ exp

(
−c 2−mδ+m2β),

where 2β > δ. Let us consider now the same configurations of intervals translated by 2−mδ
and denote by N2

m the corresponding Binomial random variable. Owing to the previous
estimate and Borel–Cantelli lemma, with probability one, there exists M(ω) such that for
every m ≥M(ω), N1

m ≤ c0 2−mδ+m2β(1+2ε) and N2
m ≤ c0 2−mδ+m2β(1+2ε).

Then, let Tm index the previous intervals with a double-jump configuration and F (δ, ε)
designate the following set:

F (δ, ε) = lim sup
m→∞

⋃
I∈Tm

[
c(I)− 2−mδ+2, c(I) + 2−mδ+2],

where c(I) denotes the center of any interval I ∈ Tm. Using a simple covering based on
intervals of size 2−mδ, we can obtain an upper bound of the Hausdorff dimension of F (δ, ε).
More precisely, for any m0 ∈ N, the series

+∞∑
m=m0

c |Tm| ·
(
2−mδ

)γ ≤ c +∞∑
m=m0

2−m(δ(1+γ)−2β(1+2ε)),

converges when δ(1 + γ) > 2β(1 + 2ε), i.e. γ > 2β(1 + 2ε)/δ − 1. Therefore, dimH F (δ, ε) ≤
2β(1 + 2ε)/δ − 1 almost surely.

Let now set h ∈ (1/2β, 1/β). We aim to prove that Êh ⊂ F (δ, ε) for any δ < 1/h and
ε > 0. For that purpose, we need to show that for every t ∈ Ẽh \ F (δ, ε), the 2-microlocal
frontier at t satisfies σY,t(s′) ≤ (h + s′). As t ∈ Eh, there exist two sequences (vn)n∈N and
(mn)n∈N such that

∀n ∈ N; vn ∈ B
(
t, 2−mn/(h+ε)) and

∥∥∆Yvn
∥∥ ≥ 2−mn .

We may assume that ε is sufficiently small to satisfy 2−mn/(h+ε) ≤ 2−mδ, i.e. δ < 1/(h+ ε).
Furthermore, since t /∈ F (δ, ε), for every m sufficiently large, there is no double-jump config-
uration in the neighbourhood of t and vn, meaning that J

(
B(vn, 2−mnδ), D(2−mn(1+ε), 1)

)
=

1: there does not exist other jump larger than 2−mn(1+ε) in the neighbourhood of vn.
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Therefore, we obtain the configuration presented in the proof of Lemma 2.6, and as the
latter remains valid, we have

∀s′ ∈ R; σY,t(s′) ≤ (h+ s′).

This upper bound shows that Êh ⊂ F (δ, ε), and considering the limits δ → 1/h and ε→ 0,
it induces the inequality dimH Êh ≤ 2βh − 1. Furthermore, since 2βh − 1 < βh and Eh =
Ẽh ∪ Êh, we have also proved that dimH Êh = βh.

To conclude this lemma, we obtain an upper bound of the 2-microlocal frontier in the case
t ∈ Êh. Since the sketch of the proof is similar to Lemmas 2.4 and 2.6, we only present the
main elements. Still using the previous two sequences (vn)n∈N and (mn)n∈N, Lemma 2.5
induces that

J
(
B(vn, 2−mn2β(1+3ε)), D(2−mn(1+ε), 1)

)
= 1.

Then, using the methodology presented in Lemma 2.6, there exists (sn)n∈N such that for
every n ∈ N, sn ∈ B(t, 2−mn/(h+ε)) and

‖Y (sn, 1)‖ ≥ c 2−mn · 2−mn2β(1+3ε) ≥ |t− sn|(h+ε)(1+2β(1+3ε)),

Hence, αY (·,1),t ≤ (h+ε)(1+2β(1+3ε))→ε→0 h(1+2β), and using the reasoning presented
in Lemma 2.6, we obtain σY,t ≤ (h+ s′)/2βh for all s′ ∈ R.

Before finally proving Theorem 1 and its corollaries, we recall the following result on the
increments of a Brownian motion. The proof can be found in [1] (inequality (8.8.26)).

Lemma 2.8. Let B be a d-dimensional Brownian motion. There exists an event Ω0 of
probability one such that for all ω ∈ Ω0, ε > 0, there exists h(ω) > 0 such that for all
ρ ≤ h(ω) and t ∈ [0, 1], we have

sup
u,v∈B(t,ρ)

{
‖Bu −Bv‖

}
≥ ρ1/2+ε.

Proof of Theorem 1. We use the notations introduced at the beginning of the section. As
previously said, the compound Poisson process N can be ignored since it does not influence
the final regularity. Furthermore, if Q = 0, and therefore B ≡ 0 and β′ = β, Lemmas 2.4,
2.6 and 2.7 on the component Y yields Theorem 1.

Otherwise, the Lévy process X corresponds to the sum of the Brownian motion B and the
jump component Y . Still using Lemmas 2.4, 2.6 and 2.7, it is sufficient to prove that with
probability one and for all t ∈ [0, 1], σX,t = σB,t∧σY,t. Owing to the definition of 2-microlocal
frontier, we already know that σX,t ≥ σB,t ∧ σY,t. Furthermore, when σB,t(s′) 6= σY,t(s′),
the upper bound is straightforward, and thus σX,t(s′) = σB,t(s′) ∧ σY,t(s′).

Therefore, to obtain Theorem 1, we have to prove that with probability one, for all
t ∈ [0, 1], σX,t ≤ σB,t = s′ 7→

(
1/2 + s′

)
∧1/2. For that purpose, we distinguish two different

cases.

1. If β′ = β = 2, we only need to slightly modify the proof of Lemma 2.4. More precisely,
owing to Lévy’s modulus of continuity, the increments of the Brownian motion satisfy:

∀u, v : |u− v| ≤ 2−mnγ ; ‖Bu −Bv‖ ≤ cmn2−mnγ/2 = cmn2−mn(1+4ε),
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since γ = β(1 + 4ε). Therefore, the term due to the increments of the Brownian
motion does not influence the rest of the estimates presented in the proof, ensuring
that σX,t(s′) ≤ (1/2 + s′) ∧ 0, for all s′ ∈ R.

2. If β < 2, let δ = 2 and ε > 0. According to Lemma 2.5, there exist k ∈ N and M(ω) ∈ N
such that for all m ≥ M , there are at most k jumps of size greater than 2−m(1+3ε) in
any interval of size 2−mδ. Hence, there always exists a sub-interval I of size c0 2−δm with
no jump greater than 2−m(1+3ε) inside.
Still using Lemma 2.2, we know that for all m ≥M(ω)

∀u, v ∈ [0, 1] : |u− v| ≤ 2−δm;
∥∥Y m(1+3ε)

u − Y m(1+3ε)
v

∥∥ ≤ c1m2−m(1+3ε).

Let us set t ∈ [0, 1] and I be one of the previous interval of size c0 2−δm. According to
Lemma 2.8, there exist u, v ∈ I such that ‖Bu −Bv‖ ≥ c0 2−m(1+2ε). Then,

‖Xu −Xv‖ ≥ ‖Bu −Bv‖ −
∥∥Y m(1+3ε)

u − Y m(1+3ε)
v

∥∥− |u− v| · ∥∥∥∥∫
D(2−m(1+3ε),1)

xπ(dx)
∥∥∥∥,

where |u− v| ·
∥∥∫
D(2−m(1+3ε),1) xπ(dx)

∥∥ ≤ c 2−m(1+3ε). Hence, we obtain a lower bound
of the increments on the interval I, ensuring that the rest of the proof presented in
Lemma 2.5 holds similarly.

Proof of Corollary 1. Recall that βwX,t = lims′→−∞ σX,t(s′) − s′. Hence, using the global
upper bound on the 2-microlocal frontier proved in Theorem 1, we know that βwX,t ≤ 1/β′
with probability one. In addition, owing to the geometrical properties of the frontier, we
observe that for every h ∈ [0, 1/β′]

∀h ∈ [0, 1/β′); Ẽh ⊆ Ewh ⊆ Ẽh ∪
⋃
h′<h

Êh′ .

The first inclusion clearly shows that dimH(Ewh ∩ V ) ≥ dimH(Ẽh ∩ V ) = βh. In addition, we
also know that for every h′ < h, dimH Êh′ ≤ 2βh′ − 1 < βh, which proves the other side
inequality.

To obtain the upper bound on the oscillating exponent, we only need to note that
according to its characterisation using the 2-microlocal frontier,

∀h ∈ [0, 1/β′);
{
t ∈ Eh : βoX,t > 0

}
= Êh.

Finally, the chirp exponent is equal to one because of the upper bound σX,t(s′) ≤
(
1/β′ +

s′
)
.

Proof of Corollary 2. Owing to upper bound on the 2-microlocal frontier obtained in The-
orem 1, the case σ = 0 corresponds to the classic spectrum of singularity. Hence, let us set
σ < 0. We recall that s denotes the parameter σ − s′. If s ≥ 1/β′ or s < 0, the result is
straight forward using Theorem 1 and properties of the 2-microlocal frontier.
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Therefore, we suppose that s ∈ [0, 1/β′) and note that Eσ,s′ = {t ∈ R+ : σX,t(s′) = σ},
since the negative component of the 2-microlocal frontier of X can not be constant. Hence,
similarly to the previous corollary, Eσ,s′ satisfies

∀s ∈ [0, 1/β′); Ẽs ⊆ Eσ,s′ ⊆ Ẽs ∪
⋃
h<s

Êh.

These two inclusions lead to the same estimates, and therefore the expected equality on the
Hausdorff dimension.

2.3. Oscillating singularities of some classes of Lévy processes

In this section, we aim to understand more precisely the oscillating singularities of Lévy
processes captured by the collection of sets (Êh)h∈R+ . Note that to simply our presentation,
we assume that d = 1.

Let us begin with the proof of Proposition 1 where we present a class Lévy processes
with no chirp oscillations. Recall that in this case, we consider Lévy measures such that
π(R±) = 0.

Proof of Proposition 1. In order to prove that Êh = ∅ for all h ∈ R+, we extend Lemma 2.6
to any h ∈ [0, 1/β). We may assume without any loss of generality that π(R−) = 0. We still
consider the two sequences (vn)n∈N and (mn)n∈N such that

∀n ∈ N; vn ∈ B
(
t, 2−mn/(h+ε)) and

∣∣∆Yvn ∣∣ ≥ 2−mn .

where we suppose that vn ≥ t and Y designates the jump component. In addition, we first
assume that β ≥ 1 and Y (vn, 0) ≥ 2−mn−1, and we set tn = vn and ρn = 2−mnδ. Then,
since the Lévy process only has positive jumps, for all u ∈ [tn, tn + ρn),

|Y (u, 0)| ≥ |Y (vn, 0)| −
∣∣Y mn(1+ε)
u − Y mn(1+ε)

vn

∣∣− ∣∣∣∣(u− vn)
∫
D(2−mn(1+ε),1)

xπ(dx)
∣∣∣∣,

According to the proof presented in Lemma 2.6, this inequality is sufficient to show that
σY,t(s′) ≤ (αX,t+s′)∧0. The cases Y (vn, 0) ≤ 2−mn−1 and β ≤ 1 are then treated similarly,
proving that the 2-microlocal frontier of the process X is equal to (αX,t + s′) ∧ 0.

Proposition 1 proves in particular that Lévy subordinators, in which case β ≤ 1, only
have cusp singularities.

The second important class of Lévy processes we consider are characterised by the
following Lévy measure

π(dx) = a1 |x|−1−α1 1R+dx+ a2 |x|−1−α2 1R−dx,

where a1, a2 > 0 and α1, α2 ∈ (0, 2).
The proof of Theorem 2 is rather technical and will be divided in several parts for the

sake of readability. To begin with, we present two simple technical lemmas related to the
Binomial distribution. Recall that Chernoff’s inequality states that for any ε ∈ (0, 1),

P
(
N ≤ np(1− ε)

)
≤ exp

(
−np ε2/2

)
. (2.10)
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and
P
(
N ≥ np(1 + ε)

)
≤ exp

(
−np ε2/2

)
. (2.11)

where N follows a Binomial distribution of parameters n and p.

Lemma 2.9. Suppose N follows a Binomial distribution with parameters n and p. Then,
there exists c > 0 such that when n > c and p < 1/c,

P
(

#
{

empty intervals of size ≥ 1/pLL(1/p)
}
≥ npLL(1/p)h(p)4

)
≥ 1− exp

(
−np/8 LL(1/p)2),

using the notations: LL(1/p) := log(log(1/p)) and h(p) := exp(−1/LL(p)).

Proof. To obtain this lower bound, we first estimate the probability of obtaining an empty
interval of size of l0 = b1/pLL(1/p)c. Setting p0 := (1− p)l0 , we note that

log(p0) ≥ 1
pLL(1/p) log(1− p) ≥ −2

LL(1/p) .

Therefore, p0 ≥ h(p)2 when c is sufficiently large.
Let n0 denote the number of disjoint sub-intervals of size l0 and N0 be a r.v. following a

Binomial distribution of parameters n0 and p0. Owing to Chernoff’s inequality,

P
(
N0 ≥ n0p0 h(p)

)
≥ 1− exp

(
−n0p0 g(p)2/2

)
,

where g(p) := 1 − h(p). Note that n0 ≥ npLL(1/p)h(p) and g(p) � 1/LL(1/p) when c is
large enough. Therefore, using the previous estimates,

P
(
N0 ≥ npLL(1/p)h(p)4 ) ≥ 1− exp

(
−np/8 LL(1/p)2),

proving the lemma.

Lemma 2.10. Suppose N follows a Binomial distribution with parameters n and p. Then,
there exists c > 0 such that when n > c and p < 1/c

P
(

#
{

successes spaced by ≥ 1/p
}
≥ np/6

)
≥ 1− exp

(
−np/16

)
.

Proof. The sketch of the proof is similar to Lemma 2.9. The set {1, . . . , n} can be divided
in n0 intervals of size l0 = d1/pe. The probability p0 of obtaining at least a success in one
of these intervals is equal to:

p0 = 1− (1− p)1/p −→p→0 1− e−1 ≥ 1/2.

Furthermore, only considering one third of the previous intervals, i.e. n0/3, we consider the
Binomial distribution B(n0/3, p0). Still using Chernoff’s inequality, we obtain

P
(
N0 ≥ np/6

)
≥ 1− exp

(
−np/16

)
,

which concludes the proof.



Paul Balança/Fine regularity of Lévy processes and linear (multi)fractional stable motion 26

Proof of Theorem 2. As observed in the proofs of Theorem 1 and Proposition 1, chirp
singularities appear when a compensation phenomena between jumps exists. Hence, the
main goal of the proof is to characterise in more details this particular behaviour in the case
of the Lévy measure considered. Firstly, we clearly note the Blumenthal–Getoor exponent
β of π is equal to max(α1, α2).
Hausdorff dimension (upper-bound). To obtain a tighter upper bound of the Hausdorff
dimension, we need to enhance the estimates presented in Lemma 2.7. We have observed in
the proof of Proposition 1 that oscillating singularities do not appear when there are jumps
of the same sign. Hence, we are interested in the double-jump configurations with jumps of
opposite signs.

Suppose δ ∈ (β, α1 + α2), ε > 0 and I is an interval of size 2−jδ+1. We are interested in
the following type of configurations: J

(
I, (2−j(1+ε), 1]

)
≥ 1 and J

(
I, [−1,−2−j(1+ε))

)
≥ 1.

The probability pj of such an event satisfies:

pj � 2−jδ2jα1(1+ε) · 2−jδ2jα2(1+ε) = 2−j2δ+j(α1+α2)(1+ε).

Using this probability, the rest of the proof is rather similar to Lemma 2.7. We consider d2jδe
consecutive, but disjoint, intervals of size 2−jδ+1 sufficient to cover [0, 1] and we denote by
N1
j the number of intervals with the previous configuration. Owing to Chernoff’s inequality,

P
(
N1
j ≥ c0 2−jδ+j(α1+α2)(1+ε) ) ≤ exp

(
−c 2−jδ+j(α1+α2)),

where (α1 + α2) > δ. Consider now the same configurations of intervals translated by
2−jδ and denote by N2

j the corresponding Binomial random variable. Using Borel–Cantelli
lemma, with probability one, there exists M(ω) such that for every j ≥ M(ω), N1

j ≤
c0 2−jδ+j(α1+α2)(1+ε) and N2

j ≤ c0 2−jδ+j(α1+α2)(1+ε). Using the same notation Tj , we define

F (δ, ε) = lim sup
j→∞

⋃
I∈Tj

[
c(I)− 2−jδ+2, c(I) + 2−jδ+2],

where c(I) denotes the center of any interval I ∈ Tj . Then, for any j0 ∈ N

+∞∑
j=j0

c |Tj | ·
(
2−jδ

)γ ≤ c +∞∑
j=j0

2−j(δ(1+γ)−(α1+α2)(1+ε)),

is finite when δ(1 + γ) > (α1 + α2)(1 + ε), i.e. γ > (α1 + α2)(1 + ε)/δ − 1. Therefore,
dimH F (δ, ε) ≤ (α1 + α2)(1 + ε)/δ − 1.

The rest of the proof of Lemma 2.7 does not change, proving that for any δ < 1/h and
ε > 0, Êh ⊂ F (δ, ε). Therefore, with probability one,

∀h ∈
(
1/(α1 + α2), 1/β

)
; dimH Êh ≤ (α1 + α2)h− 1.

Finally, when h /∈
(
1/(α1 +α2), 1/β

)
, the proof of Lemma 2.6 can also be similarly adapted

to prove that Êh = ∅ with probability one.
Construction (lower-bound). In order to prove the lower bound of the Hausdorff dimen-
sion, we need to construct a proper set of times with singularities.
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For our construction procedure, we will need a set of parameters p = (δ, δ′, δ′′, γ, ρ) such
that δ′ < δ < δ′′ ∈ (β, α1 +α2), δ < γ ∈ (β, α1 +α2), δ′ <

√
βδ and δ >

√
δ′δ′′. In addition,

we also define the sequence jn = (δ/δ′)n →∞.
The first step consists in constructing collections of intervals such that for every t inside,

there is no jump of size 2−j or greater closer than 2−jδ for all j ≤ j0, where j0 is a given
index. More precisely, we define by induction a collection, indexed by the random variables
Sn, of disjoint intervals of size 2−jnδ in the following way. Suppose Sn is defined such that for
every t inside an interval, there is no jump greater than 2−jn+1 closer than 2−jnδ of t. In every
interval of size 2−jnδ, we consider consecutive sub-intervals of size 2−jn+1δ with no jumps
greater than 2−jn+2 inside. Removing the left and right elements of these collections, we
obtain the family Sn+1, which corresponds to the offspring of Sn. Owing to this construction
procedure, we know that the remaining intervals satisfy the expected property, i.e. for any
t inside, there is no jump greater than 2−jn+2 closer than 2−jn+1δ.

In order to determine the number of this type of intervals, we need to estimate the law
of |Sn+1| conditionally to |Sn|. For any n ∈ N, let us denote by pn+1 the probability
of obtaining at least one jump greater 2−jn+2 inside an interval of size 2−jn+1δ. Note
that for every n sufficiently large, an interval of size 2−jnδ can be divided in at least
2−jnδ/2−jn+1δh(pn+1) = 2jn+1(δ−δ′)h(pn+1) sub-intervals. Furthermore, let Mn+1 designate
the following random variable:

Mn+1 = #
{

family ≥ 1/pn+1 LL(1/pn+1) of consecutive empty intervals of size 2−jn+1
}
.

According to Lemma 2.9,

P
(
Mn+1 ≥ s0 2jn+1δpn+1 LL(1/pn+1)h(pn+1)5 ∣∣ |Sn| ≥ s0 2jnδ

)
≥ 1− exp

(
−s0 2jn+1δpn+1/8 LL(1/pn+1)2),

for any s0 ∈ R+ such that s0 2jnδ ≥ 1. As previously outlined, for every collection of
consecutive empty intervals, we remove the extremal elements to constitute the family Sn+1.
Noting that 1/pn+1 LL(1/pn+1)− 2 ≥ h(pn+1)/pn+1 LL(1/pn+1) for any n sufficiently large,
we therefore obtain

P
(
|Sn+1| ≥ s0 2jn+1δh(pn+1)6 ∣∣ |Sn| ≥ s0 2jnδ

)
≥ 1− exp

(
−s0 2jn+1δpn+1/8 LL(1/pn+1)2).

Furthermore, the probability of obtaining an empty interval of size 2−jn+1δ is equal to:

qn+1 := P
(
J
(
[0, 2−jn+1δ]×D

(
2−jn+2 , 2−jn+1

))
= 0

)
� exp

(
−c 2jn+2β−jn+1δ

)
= exp

(
−c 2−jn+1δ(1−β/δ′)

)
−→ 1.

Hence, pn+1 = 1−qn+1 � 2−jn+1δ(1−β/δ′) for any n sufficiently large, and there exists c1 > 0
such that

P
(
|Sn+1| ≥ s0 2jn+1δh(pn+1)6 ∣∣ |Sn| ≥ s0 2jnδ

)
≥ 1− exp

(
−c1 s0 2jn+1βδ/δ

′
/(n+ 1)2).
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Furthermore, note 2jn+1βδ/δ
′−jnδ = 2jn+1(βδ/δ′−δ′). Since we have assumed that δ′ <

√
βδ

and s0 2jnδ ≥ 1, there exists r > 0 such that

P
(
|Sn+1| ≥ s0 2jn+1δh(pn+1)6 ∣∣ |Sn| ≥ s0 2jnδ

)
≥ 1− exp

(
−2jn+1r

)
.

Therefore, by induction, the law of |Sn+m| satisfies

P
(
|Sn+m| ≥ s0 2jn+mδ

m∏
k=1

h(pn+k)6
∣∣∣∣ |Sn| ≥ s0 2jnδ

)
≥

m∏
k=1

(
1− exp

(
−2jn+kr

))
.

Finally, we note that
∏m
k=1 h(pn+k)6 ≥ exp

(
−c
∑m
k=1 1/(n + k)

)
≥ exp

(
−c log(n + m)

)
,

implying that

P
(
|Sn+m| ≥ s0 2jn+mδ−c2 log(n+m)

∣∣∣ |Sn| ≥ s0 2jnδ
)
≥

m∏
k=1

(
1− exp

(
−2jn+kr

))
, (2.12)

where c2 is a constant independent of n and m.
The previous bound gives us an estimate of the probability of obtaining intervals without

any jump in a given neighbourhood. Using this estimate, we will be able to construct our
main collection of nested intervals indexed by (T`)`∈N such that a most scales 2−jn , there
is no jump in the neighbourhood, and at specific ones 2−jn(`) , a particular double-jump
configuration appears. To construct this collection, let us first define this sequence

(
n(`)

)
`∈N:

n(0) = 1 and n(`+ 1) = 2n(`) ∀` ∈ N.

For every ` ∈ N, we are interested in the following type of configuration: in an interval of size
2−jn(`)δ/3, there exist two jumps ∆Xu and ∆Xv of opposite sign inside the middle third and
such that |u−v| ≤ 2−jn(`)γ , |∆Xu|, |∆Xv| ∈ [2−jn(`)−1, 2−jn(`) ] and |∆Xv−∆Xu| ≤ 2−jn(`)ρ.
Using the independence property on the Poisson measure J , the probability r` of the previous
event can be lower bounded by

r` � exp
(
−c 2−jn(`)δ+jn(`)+1β

)
· 2−jn(`)(δ−α1) · 2−jn(`)(γ−α2−1+ρ)

� 2−jn(`)(δ+γ−α1−α2−1+ρ).

The collection of intervals T` is constructed by induction. T0 is initialised with the
singleton corresponding to the interval [0, 1]. Then, assuming T` is defined, for any I ∈ T`,
we consider the sub-intervals of size 2−jn(`+1)δ with a double-jump configuration and with
no jump in the neighbourhood at all intermediate scales 2−jn , n(`) < n < n(` + 1). Note
that if none satisfy the previous conditions, we avoid the extinction of the tree by selecting
a single sub-interval of size 2−jn(`+1)δ.

We aim to estimate the size of T`+1 conditionally to T`. For any I ∈ T`, we denote
by c(I) the middle point between the two jump times inside I. Then, for every integer
k ∈ [jn(`)δ, jn(`)δ

′′], we want to estimate the number double-jumps configurations inside the
interval of size 2−k:

Ik :=
[
c(I)− 2−k, c(I)− 2−k−1) ∪ (c(I) + 2−k−1, c(I) + 2−k

]
. (2.13)
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We designate by Sn(`)+1,k the number of sub-intervals of size 2−jn(`)+1δ inside Ik which are
empty. Using Chernoff’s inequality, the latter satisfies

P
(
|Sn(`)+1,k| ≥ 2jn(`)+1δ−k−2 ) ≥ 1− exp

(
−2jn(`)+1δ−k−4) ≥ 1− exp

(
−2jn(`)+1r

)
.

The last inequality is due to jn(`)+1δ − k ≥ jn(`)+1δ − jn(`)δ
′′ > jn(`)+1r, if r is sufficiently

small. Therefore, using the estimates obtained previously,

P
(
|Sn(`+1)−1,k| ≥ 2jn(`+1)−1δ−c3n(`)−k

)
≥
n(`+1)−1∏
k=1

(
1− exp

(
−2jn(`)+kr

))
≥
(
1− exp

(
−2jn(`)r

))n(`+1)
,

where c3 is a positive constant and we recall that n(` + 1) = 2n(`). An interval of size
2−jn(`+1)−1δ can be divided in at least 2jn(`+1)(δ−δ′)−1 sub-intervals. Hence, if M`,k denotes
the number of double-jump configurations existing among the sub-intervals of Sn(`+1)−1,k,
Lemma 2.10 and the estimate of r` induce that

P
(
|M`,k| ≥ 2−jn(`+1)(δ+γ−α1−α2−1+ρ) · 2jn(`+1)δ−c3n(`)−k−4

)
≥
(
1− exp

(
−2jn(`)r

))n(`+1)+1
.

We observe that the intervals Ik are disjoints for different integers k. Hence, the probability
of the intersection of the previous event for every k ∈ [jn(`)δ, jn(`)δ

′′] satisfies

P
( jn(`)δ

′′⋂
k≥jn(`)δ

|M`,k| ≥ 2jn(`+1)(α1+α2−γ+1−ρ)−c4n(`)−k
)

≥
(
1− exp

(
−2jn(`)r

))(n(`+1)+1)2βjn(`) ,

since we assume that δ′′ ≤ α1 +α2 ≤ 2β. The previous construction procedure leads to esti-
mate of size of T`+1. Therefore, conditionally to the event

{
|T`| ≥ k02jn(`)(α1+α2−γ+1−ρ)−2jn(`−1)δ

}
,

we obtain

P
(
|T`+1| ≥ k02jn(`+1)(α1+α2−γ+1−ρ)−2jn(`)δ

∣∣∣ |T`| ≥ k02jn(`)(α1+α2−γ+1−ρ)−2jn(`−1)δ
)

≥
(
1− exp

(
−2jn(`)r

))(n(`+1)+1) 2βjn(`) 2jn(`)c
≥
(
1− exp

(
−2jn(`)r

))2jn(`)c5

.

For any `0 ∈ N, we know that the construction ensures that |T`0 | ≥ 1 almost surely. Hence,
choosing k0 = 2−c6jn(`0) , with the proper constant c6, we obtain that the following lower
bound

P
( ⋂
`>`0

|T`| ≥ 2jn(`)(α1+α2−γ+1−ρ)−2jn(`−1)δ−c6jn(`0)

)
≥
∏
`>`0

(
1− exp

(
−2jn(`−1)r

))2jn(`−1)c5

.

Considering the logarithm of the right term, we observe∑
`>`0

log
(
1− exp

(
−2jn(`−1)r

))2jn(`−1)c5

≥ −
∑
`>`0

2jn(`−1)c5 · exp
(
−2jn(`−1)r

)
−→`0→∞ 0.
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Hence, the previous probability converges to 1 for any set of parameters p = (δ, δ′, δ′′, ρ).
Since the family of events considered is increasing with `0, it implies that almost surely there
exists `0(ω) such that |T`| ≥ 2jn(`−1)(α1+α2−γ+1−ρ)−2jn(`)δ−c6jn(`0) for all ` > `0(ω). Further-
more, owing to the construction procedure described previously, we also know that for any
I ∈ T`, every interval Ik defined in Equation (2.13) contains at least 2jn(`+1)(α1+α2−γ+1−ρ)−c4n(`)−k

proper double-jump configurations.
Hausdorff dimension (lower-bound). The previous estimates now allow us to study
more precisely the oscillating behaviour of the Lévy process. Suppose h ∈ (1/(α1 +α2), 1/β)
and p is a set of parameters such that δ < 1/h < δ′′ and 1/h < γ. Then, let us define the
set of interest G(h,p) as following:

G(h,p) =
⋂
`>`0

⋃
I∈T`

{[
c(I)− 2−jn(`)/h+1, c(I)− 2−jn(`)/h−1]

∪
[
c(I) + 2−jn(`)/h−1, c(I) + 2−jn(`)/h+1]}, (2.14)

where c(I) still denotes the middle point of any double-jump interval I ∈ T` and `0(ω)
corresponds to the random index previously defined. Owing to the construction of the tree T ,
we note that G(h,p) corresponds to to the intersection of collections T`,h of nested intervals
of size 3 ·2−jn(`)/h−1. Furthermore, according to the estimates obtained in the previous para-
graph, we know that every I ∈ T`,h contains at least 2jn(`+1)(α1+α2−γ+1−ρ)−c4n(`)−jn(`)/h−1

sub-elements separated by 2jn(`+1)(γ−α1−α2−1+ρ).
In order the estimate the Hausdorff dimension of the set G(h,p), we construct by induc-

tion a mass measure µ on it. To begin with, µ`0 attributes an equivalent weight on every
interval I ∈ T`0,h. Then, similarly to the procedure on Cantor’s set, µ`+1 is defined on
the intervals I ∈ T`+1,h such that the weight µ`(I), I ∈ T`,h, is equally distributed on its
offspring. The measure µ is then defined as the limit of the sequence (µ`)`≥`0 , which clearly
exists since the cumulative distribution functions uniformly converge on [0, 1].

Since every I ∈ T`,h contains at least 2jn(`+1)(α1+α2−γ+1−ρ)−c4n(`)−jn(`)/h elements,

∀I ∈ T`,h; µ(I) ≤
∏̀

k=`0+1
2−jn(k)(α1+α2−γ+1−ρ)+c4n(k−1)+jn(k−1)/h

≤ 2−jn(`)(α1+α2−γ+1−ρ)+c7jn(`−1) ,

since we note that n(`) ≤ jn(`) and
∑`
k=1 jn(k) ≤ c jn(`) for any ` ∈ N.

As we aim to use the usual mass distribution principle to determine a gauge function g
such that the Hausdorff measure Hg of G(h,p) is positive, we need to obtain an upper bound
of µ

(
B(t, r)

)
for any t ∈ [0, 1] and r > 0 sufficiently small. There exists ` ∈ N such that

2−jn(`)/h ≤ r < 2−jn(`−1)/h and without any loss of generality, we may assume that ` > `0.
Furthermore, as r < 2−jn(`−1)/h, we may also suppose that B(t, r) ⊂ I where I ∈ T`−1,h
(otherwise, consider the intersection B(t′, r′) between B(t, r) and the closest element I).
Since the sub-intervals I ∈ T`,h, with I ⊂ I are separated by at least 2jn(`+1)(γ−α1−α2−1+ρ),
we know that the ball B(t, r) intersects with at most r 2jn(`)(γ−α1−α2−1+ρ)+1 of them. Hence,
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since µ(I) has the same value for every I ∈ T`,h with I ⊂ I, we obtain

µ
(
B(t, r)

)
≤ r 2jn(`)(γ−α1−α2−1+ρ)+1µ(I)
≤ r 2jn(`−1)/h+c4n(`−1)+1µ(I),

as µ(I) ≤ µ(I)/2jn(`)(α1+α2−γ+1−ρ)−c4n(`−1)−jn(`−1)/h. In addition, we know that µ(I) ≤
2−jn(`−1)(α1+α2−γ+1−ρ)+c7jn(`−2) and jn(`−2) ≤ n(`− 1), inducing

µ
(
B(t, r)

)
≤ r 2−jn(`−1)(α1+α2−γ+1−ρ)+jn(`−1)/h+c8n(`−1),

Furthermore, as γ > β, 1/h > β and ρ > 1, α1 + α2 − γ − 1/h+ 1− ρ < 0, 1− (α1 + α2 −
γ + 1 − ρ)h > 0 and r1−(α1+α2−γ+1−ρ)h ≤ 2−jn(`−1)/h+jn(`−1)(α1+α2−γ+1−ρ)). Finally, since
jn(`−1) =

(
δ/δ′

)n(`−1) ≤ c log
(
1/r
)
, there exist c9, c10 > 0 such that for all t ∈ [0, 1] and

r > 0

µ
(
B(t, r)

)
≤ c9 log(1/r)c10 r(α1+α2−γ+1−ρ)h.

Using the mass distribution principle (see [22] for instance), this inequality proves that
G(h,p) has a positive g-Hausdorff measure, where the gauge function g is defined by g(r) =
log(1/r)c10 r(α1+α2−γ+1−ρ)h.

Therefore, if we restrict ourselves to rational parameters p, we have proved that with
probability one, for all h ∈ (1/(α1 + α2), 1/β), dimH G(h,p) ≥ (α1 + α2 − γ + 1− ρ)h.
2-microlocal frontier (lower-bound). In this last step of the proof, we aim to show that
the 2-microlocal frontier of every t ∈ G(h,p) has a chirp oscillation shape.

Let us set ω ∈ Ω and t ∈ G(h,p). As previously outlined in this work, we know that we
may ignore the component of Lévy process which corresponds to the jumps of size greater
than 2−jn(`0) . Furthermore, owing to the construction of the set G(h,p), we know that
for every ` ∈ N, the distance between t and the closest jump time s such that |∆Xs| ∈
[2−jn(`)−1, 2−jn(`) ], satisfies

2−jn(`)/h−2 ≤ |s− t| ≤ 2−jn(`)/h+1.

Therefore, owing to the characterisation (2.4) of the set Eh, G(h,p) ⊂ Eh, i.e. αX,t = h.
We aim to prove that the 2-microlocal frontier of X at t shows a chirp oscillation

behaviour: σX,t(s′) > h + s′ for all s′ < −h. Similarly to the proof of Theorem 1, we
therefore investigate the regularity of the integral of X. In addition, we assume that β ≥ 1,
as the proof in the other case β < 1 is completely similar.

Let us set u ∈ R, ε > 0 and h′ := h(1+ε) > h. There exist m > 0 such that 2−(m+1)/h′ <
|t − u| ≤ 2−m/h′ . Furthermore, let ` ∈ N be the greatest integer such that jn(`) ≤ m. We
have to distinguish two different cases depending on the value of m.

Let us first suppose that jn(`)(1 + ε) ≤ m. Since 1/h′ > β, Lemma 2.2 implies that

∀v ∈ B(t, |u− t|); |Xm
v −Xm

t | ≤ cm2−m ≤ c log
(
|u− t|−1) |u− t|h′ .

Furthermore, we note that |t − u| ≤ 2−jn(`)(1+ε)/h′ = 2−jn(`)/h, implying there is no jump
time s such that |∆Xs| ≥ 2−m and s ∈ B(t, |u− t|). Using in addition the estimates on the
drift obtained in Proposition 2, we obtain

∀v ∈ B(t, |u− t|); |Xv −Xt| ≤ c log
(
|u− t|−1) |u− t|h′ .
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Therefore, ∣∣∣∣∫ u

t

(Xv −Xt) dv
∣∣∣∣ ≤ c log

(
|u− t|−1) |u− t|1+h′ ,

where we recall that h′ > h.
We now consider the second case jn(`) ≤ m ≤ jn(`)(1 + ε). As previously, we know that

for all v ∈ B(t, |u − t|), |Xm
v − Xm

t | ≤ c log
(
|u − t|−1) |u − t|h′ . Nevertheless, in this case,

there might exist a double-jump of size 2−jn(`) inside the interval B(t, |u− t|). Owing to the
construction of the set G(h,p), the contribution of the double-jump to |

∫ u
t

(Xv −Xt) dv| is
upper-bounded by

2−jn(`) · 2−jn(`)γ + 2−jn(`)ρ |u− t| ≤ c |u− t|h
′(1+γ)/(1+ε) + c |u− t|ρ h

′/(1+ε)+1

= c |u− t|h(1+γ) + c |u− t|ρh+1.

In the previous exponents, we note that ρ > 1 and γ > 1/h, implying that ρh + 1 > h + 1
and h(1 + γ) > h+ 1. Hence, we have proved there exists ε0 > 0 such that∣∣∣∣∫ u

t

(Xv −Xt) dv
∣∣∣∣ ≤ c |u− t|1+h+ε0 ,

for all u in the neighbourhood of t. This last inequality proves that the regularity at t is
singular, as the 2-microlocal frontier must satisfy

∀s′ ≤ −h; σX,t(s′) ≥
s′ + h

1 + ε0
.

Therefore, with probability one, for all h ∈ (1/(α1 +α2), 1/β), G(h,p) ⊂ Êh, and dimH Êh ≥
(α1 + α2 − γ + 1− ρ)h. Considering rational parameters such that γ → 1/h and ρ→ 1, we
obtain dimH Êh ≥ (α1 +α2)h−1. Finally, since the previous reasoning holds on any interval
[a, b] where a, b ∈ Q, with probability one, we have proved the expected lower bound of the
Hausdorff dimension:

∀V ∈ O, ∀h ∈ (1/(α1 + α2)), 1/β); dimH(Êh ∩ V ) ≥ (α1 + α2)h− 1.

3. Linear (multi)fractional stable motion

The linear fractional stable motion (LFSM) is a stochastic process that has been considered
by several authors: Maejima [34], Takashima [50], Kôno and Maejima [32], Samorodnitsky
and Taqqu [44], Ayache et al. [8], Ayache and Hamonier [6]. Its general integral form is
defined by

Xt =
∫

R

{
a+[(t− u)H−1/α

+ − (−u)H−1/α
+

]
+a−

[
(t− u)H−1/α

− − (−u)H−1/α
−

]}
Mα(du), (3.1)
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where H ∈ (0, 1), (a+, a−) ∈ R2 \ (0, 0) and Mα is an α-stable random measure on R with
Lebesgue control measure λ and skewness intensity βα(·) ∈ [−1, 1]. Throughout this paper,
it is assumed that βα is constant, and equal to zero when α = 1. In this context, for any
Borel set A ⊂ R, the characteristic function of Mα(A) is given by

E
[
eiθMα(A) ] =

{
exp
{
−λ(A)|θ|α

(
1− iβα sign(θ) tan(απ/2)

)}
if α ∈ (0, 1) ∪ (1, 2);

exp
{
−λ(A)|θ|

}
if α = 1.

For the sake of readability, we consider in the rest of the section the particular case (a+, a−) =
(1, 0) (even though as stated [44], the law of the process depends on values (a+, a−) chosen).

To begin with, we present in the next statement an alternative representation for the
two-parameter field (t,H) 7→ X(t,H) =

∫
R
{

(t − u)H−1/α
+ − (−u)H−1/α

+
}
Mα(du). In the

case H ≥ H/α, the formula has been previously obtained by Takashima [50].

Proposition 3. For all t ∈ R and H ∈ (0, 1), the random variable X(t,H) satisfies

X(t,H) a.s.=


CH

∫
R
Lu

{
(t− u)H−1/α−1

+ − (−u)H−1/α−1
+

}
du if H ∈

[ 1
α , 1

)
;

Lt if H = 1
α

CH

∫
R

{
(Lu − Lt)(t− u)H−1/α−1

+ − Lu(−u)H−1/α−1
+

}
du if H ∈

(
0, 1

α

]
,

(3.2)
where CH = H − 1/α and L is an α-stable Lévy process defined by

∀t ∈ R+ Lt = Mα([0, t]) and ∀t ∈ R− Lt = −Mα([t, 0]).

Proof. For the sake of readiness, we present in the proof for any H ∈ (0, 1), even though
the first case can be found in [50]. Suppose t ∈ R and H ∈ (0, 1). Since (Lt)t∈R is an
α-stable Lévy process, it has càdlàg sample paths. According to [3] (chap. 4.3.4), the theory
of the stochastic integration based α-stable Lévy processes coincide integrals with respect
to α-stable random measure. Therefore, the r.v. X(t,H) is almost surely equal to

∫
R
{

(t −
u)H−1/α

+ − (−u)H−1/α
+

}
dLu. Let ε > 0 and b < t. Using a classic integration by parts, we

obtain

Lt−εε
H−1/α − Ls(t− b)H−1/α =

∫ t−ε

b

(t− u)H−1/α dLu

−
(
H − 1

α

)∫ t−ε

b

Lu(t− u)H−1/α−1 du. (3.3)

1. If H ∈
( 1
α , 1

)
, H − 1/α > 0. Hence,

∫ t−ε
b

Lu(t − u)H−1/α−1 du almost surely converges
to
∫ t
b
Lu−(t − u)H−1/α−1 du when ε → 0. Similarly,

∫ t−ε
b

(t − u)H−1/α dLu converges in
Lα(Ω). Therefore, using Equation (3.3) with t = 0 and b < 0, we obtain almost surely∫ t

b

{
(t− u)H−1/α − (−u)H−1/α

}
dLu = CH

∫ t

b

Lu

{
(t− u)H−1/α−1 − (−u)H−1/α−1

}
du

− Lb
{

(t− b)H−1/α − (−b)H−1/α
}
.
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When b→ −∞, the left-term clearly converges to X(t,H) in Lα(Ω). According to [41],
we know that almost surely for any ε > 0, lim supu→−∞ u1/α+ε|Lu| = 0. Furthermore,
we also have (t − u)H−1/α−1 − (−u)H−1/α−1 ∼−∞ (−u)H−1/α−2 and (t − b)H−1/α −
(−b)H−1/α ∼−∞ (−b)H−1/α−1. Therefore, as H < 1 and using the dominated conver-
gence theorem, the right-term almost surely converges to the expected integral.

2. If H ∈
(
0, 1

α

)
, we observe that Equation (3.3) can be slightly transformed into

(Lt−ε − Lt)εH−1/α − (Lb − Lt)(t− b)H−1/α

=
∫ t−ε

b

(t− u)H−1/α dLu −
(
H − 1

α

)∫ t−ε

b

(Lu − Lt)(t− u)H−1/α−1 du.

According to [41], αY,t
a.s.= 1/α. Therefore, up to an extracted sequence, the previous

expression almost surely converges when ε → 0 and using a similar formula for t = 0,
we obtain ∫ t

b

{
(t− u)H−1/α − (−u)H−1/α

}
dLu

= CH

∫ t

b

{
(Lu − Lt)(t− u)H−1/α−1 − Lu(−u)H−1/α−1

}
du

− Lb
{

(t− b)H−1/α − (−b)H−1/α
}

+ Lt(t− b)H−1/α.

The property lim supu→−∞ u1/α+ε|Lu| = 0 and the previous equivalents finally prove
Equation (3.2).

To end this proof, let us consider the integral representation in the particular case H = 1/α.
In fact, Equation (3.2) is a slightly misuse since the expression does not exist. Nevertheless,
we prove that it converges almost surely to X(t, 1/α) = Lt when H → 1/α.

Suppose first that H ↗ 1/α and rewrite X(t,H) as

X(t,H) = CH

∫
R

{
(Lu − Lt1u≥b)(t− u)H−1/α−1

+ − Lu(−u)H−1/α−1
+

}
du+ Lt(t− b)H−1/α,

The first component of the expression converges to zero since CH →H→1/α 0 and αY,t
a.s.=

1/α. As the second part simply converges to Lt, we get the expected limit. The case H ↘ 1/α
is treated similarly.

Note that Picard [40] has determined a similar representation for fractional Brownian
motion.

Proof of Theorem 3. Let us set H ∈ (0, 1) and α ∈ [1, 2). In order to obtain the multifractal
structure of the LFSM, we first relate the 2-microlocal frontier of X at t to the frontier of
the alpha-stable process L.

1. If H > 1/α, we note that the representation obtained in Proposition 3 is defined almost
surely for all t ∈ R. Therefore, let us set ω ∈ Ω and t ∈ R. As previously, we can assume
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that t ∈ [0, 1]. Then,

Xt = CH

∫ t

b

Lu(t− u)H−1/α−1
+ du+ CH

∫ 0

b

Lu(−u)H−1/α−1
+ du

+ CH

∫ b

−∞
Lu

{
(t− u)H−1/α−1

+ − (−u)H−1/α−1
+

}
du,

where b < 0 is fixed. The second term is simply a constant that does not influence
the regularity. Similarly, using the dominated convergence theorem, we note that the
third one is a smooth function on the interval [0, 1], and therefore has no impact on the
2-microlocal frontier.
Therefore, we only need to focus on the first term. Let us define the process Yu =
Lu1{u≥t}. Since the 2-microlocal spaces and frontier presented in Definitions 2 and 3 are
localised at a point t, we necessarily have σL,t = σY,t. Furthermore, we note that

Zt := CH

∫ t

b

Lu(t− u)H−1/α−1
+ du = CH

∫
R
Yu(t− u)H−1/α−1

+ du =
(
I
H−1/α
+ Y

)
(t)

Owing to the property of stability of 2-microlocal spaces under fractional integration
(see see Theorem 1.1 in [27]), we obtain σZ,t = σY,t + H − 1/α, and therefore σX,t =
σL,t +H − 1/α.

2. If H < 1/α, we first observe that according to the multifractal spectrum of alpha-stable
processes and H > 0, dimH({t ∈ R : αL,t ≤ 1/α − H}) < 1. Hence, for almost every
ω ∈ Ω, Formula (3.2) is well-defined almost everywhere on R. Anywhere else, we may
simply assume that X(t,H) is set to zero. We will explain later why the value 0 at these
particular times does not modify the 2-microlocal frontier.
Similarly to the previous case H > 1/α, the regularity of X only depends on the
behaviour of the component

Z : t 7−→ CH

∫ t

b

(Lu − Lt)(t− u)H−1/α−1
+ du.

One might recognize a Marchaud fractional derivative (see e.g. [43]). Let us modify this
expression to exhibit a more classic form of fractional derivative. For almost all s ∈ [0, 1]
and ε > 0, we have∫ s−ε

b

Lu(s− u)H−1/α du = CH

∫ s−ε

b

Lu du
∫ s

u+ε
(v − u)H−1/α−1 dv + εH−1/α

∫ s−ε

b

Lu du

= CH

∫ s−ε

b

du
∫ s

u+ε
(Lu − Lv)(v − u)H−1/α−1 dv

+ εH−1/α
∫ s−ε

b

Lu du+ CH

∫ s−ε

b

du
∫ s

u+ε
Lv(v − u)H−1/α−1 dv

The last two terms are equal to

εH−1/α
∫ s−ε

b

Lu du− εH−1/α
∫ s

b+ε
Lv dv +

∫ s

b+ε
Lv(v − b)H−1/α dv,
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which converges to
∫ s
b
Lv(v − b)H−1/αdv as ε→ 0 since H − 1/α > −1. Similarly, as we

consider times at which αL,s > 1/α − H, the dominated convergence theorem implies
that the first term converges to CH

∫ s
b

dv
∫ v
b

(Lu − Lv)(v − u)H−1/α−1 du. Therefore,∫ s

b

Lu(s−u)H−1/α du = CH

∫ s

b

dv
∫ v

b

(Lu−Lv)(v−u)H−1/α−1 du+
∫ s

b

Lv(v−b)H−1/α dv.

According to classic real analysis results, the previous expression is differentiable almost
everywhere on the interval [0, 1], and therefore

Zt
a.e.= d

dt

∫ t

b

Lu(t− u)H−1/α du− Lt(t− b)H−1/α,

for almost all t ∈ [0, 1]. Note that the last two formulas ensure that Z• ∈ L1
loc(R), and

thus X• ∈ L1
loc(R) with probability one.

Let us now explain in which sense we investigate the 2-microlocal regularity of X. As
previously outlined in the introduction, in the case H < 1/α, sample paths of LFSM
are nowhere bounded. As a consequence, it is meaningless to consider the usual Hölder
regularity. On the other hand, the 2-microlocal formalism has been introduced in a
more general frame which are distributions D′(R). Since we have previously proved that
X• ∈ L1

loc(R), with probability one, X• is a distribution whose 2-microlocal frontier
is well-defined. We refer to [37] for a complete presentation of the 2-microlocal spaces
for distributions. Also note that in this context, we can modify the values of Xt on
the negligible set {t ∈ R : αL,t ≤ 1/α − H} without modifying X• in the sense of
distributions.
Then, let first consider the term Y : t 7→

∫ t
b
Lu(t− u)H−1/α du. Since H − 1/α > −1, it

is a Riemann–Liouville fractional integral of order H − 1/α + 1 > 0. Hence, using the
techniques previously presented, we obtain that σY,t = σL,t+H−1/α+1. Furthermore,
the almost everywhere derivative d

dt
∫ t
b
Lu(t − u)H−1/α du coincide with the derivative

in the sense distribution. Still using the stability of 2-microlocal spaces, the 2-microlocal
frontier of the latter is therefore equal to σL,t +H − 1/α. In addition, the 2-microlocal
frontier of t 7→ Lt(t− b)H−1/α is equal to σL,t (the multiplication with a locally smooth
function having no effect). Hence, as σL,t > σL,t + H − 1/α, we have proved that
σZ,t = σL,t +H − 1/α, and thus σX,t = σL,t +H − 1/α with probability one.

Therefore, in both cases, we have proved that with probability one and for all t ∈ [0, 1],

∀s′ ∈ R; σX,t(s′) = σL,t(s′) +H − 1/α.

Then, using the same reasoning as in the proof of Corollary 2, we observe that

∀s ∈ [0, 1/α]; Ẽs−H+1/α(L) ⊆ Eσ,s′(X) ⊆ Ẽs−H+1/α(L) ∪
⋃

h<s−H+1/α

Êh(L).

for any σ < H − 1/α. Furthermore, since : is an alpha-stable process, Theorem 1 induces
that

dimH Ẽs−H+1/α(L) = α
(
s−H + 1/α

)
= α(s−H) + 1
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and dimH Êh(L) < α(s + H) − 1 for every h < s − H + 1/α. These two estimates clearly
prove the spectrum presented in Equation (1.19). Finally, the spectrum of singularity for
the weak scaling exponent is obtained similarly.

Another class of processes similar to the LFSM has been introduced and studied in
[12, 36, 15]. Named fractional Lévy processes, it is defined by

Xt = 1
Γ(d+ 1)

∫
R

{
(t− u)d+ − (−u)d+

}
L(du),

where d ∈ (0, 1/2) and L is a Lévy process enjoying Q = 0 (no Brownian component),
E[L(1)] = 0 and E[L(1)2] < +∞. Owing to this last assumption on L, LFSMs are not
fractional Lévy processes. Nevertheless, their multifractal regularity can be determined as
well.

Proposition 4. Suppose X is a fractional Lévy process parametrized by d ∈ (0, 1/2). Then,
with probability one and for all σ ≤ d,

∀V ∈ O; dimH(Eσ,s′ ∩ V ) =
{
β(s− d) if s ∈

[
d, d+ 1

β

]
;

−∞ otherwise.
(3.4)

where β designates the Blumenthal–Getoor exponent of the Lévy process L. Furthermore, for
all s′ ∈ R, Eσ,s′ is empty if σ > d.

Proof. Marquardt [36] has established (Theorem 3.4) a representation of fractional Lévy
processes equivalent to Proposition 3:

Xt = 1
Γ(d)

∫
R
Lu

{
(t− u)d−1

+ − (−u)d−1
+

}
du.

Based on this result, a straightforward adaptation of the proof of Theorem 3 yields Equa-
tion (3.4).

Similarly to the LFSM, this statement refines regularity results established in [12, 36] and
proves that the multifractal spectrum of a fractional Lévy process is equal to

∀V ∈ O; dX(h, V ) =
{
β(h− d) if h ∈

[
d, d+ 1

β

]
;

−∞ otherwise.
(3.5)

Let us finally conclude this section with the proof of Theorem 4.

Proof of Theorem 4. Suppose (Xt)t∈R is a linear multifractional stable motion with α ∈
(1, 2) and Hurst function H(·) ∈ (1/α, 1). According to the representation obtained in
Proposition 3, Xt is almost surely equal to X(t,H(t)).

To begin with, we first use the uniform estimate of the local Hölder exponent obtained
by Ayache and Hamonier [6, Th. 8.1] to obtain an upper bound on the 2-microlocal frontier.
The latter have proved that with probability one and for all t ∈ R, α̃X,t = H(t) − 1/α. In
addition, the 2-microlocal frontier is known to satisfy the inequality σX,t ≤ lim infu→t α̃X,u
for any t ∈ R, which proves that σX,t ≤ H(t)− 1/α with probability one.
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Let us now set ω ∈ Ω and t ∈ R and decompose X into two parts:

Xu = X(u,H(t)) +
(
X(u,H(u))−X(u,H(t))

)
.

According to the proof of Theorem 3, we already that the 2-microlocal frontier of the first
component X(•, H(t)) is equal to σL,t + H(t) − 1/α. As a consequence, we have to prove
that the second term Yu := X(u,H(u)) −X(u,H(t)) is negligible in terms of 2-microlocal
regularity. For that purpose, we observe that for any u, v ∈ B(t, ρ)

Yu − Yv = X(u,H(u))−X(u,H(t))−X(v,H(v)) +X(v,H(t))

=
∫ H(u)

H(t)
∂HX(u, h) dh−

∫ H(v)

H(t)
∂HX(v, h) dh.

Therefore, since H is δ-Hölderian,

|Yu − Yv| ≤
∫ H(u)

H(t)

∣∣∂HX(u, h)− ∂HX(v, h)
∣∣ dh+

∫ H(v)

H(u)

∣∣∂HX(v, h)
∣∣ dh

≤ c |u− t|δ · |u− v|γ + c |u− v|δ

where γ < infu∈B(t,ρ)H(u) − 1/α and δ > supu∈R H(u). Using Definition 2 of the 2-
microlocal spaces, this inequality proves that σY,t ≥

(
δ + s′

)
∧
(
H − 1/α

)
for all s′ ∈ R.

Since δ > H(t), σX,t ≤ H(t) − 1/α and σL,t(s′) ≤ (1/α + s′) ∧ 0, we therefore obtain with
probability one and for all t ∈ R

∀s′ ∈ R; σX,t(s′) = σL,t(s′) +H(t)− 1/α.

Then, the multifractal structure described in Equation (1.22) is obtained using the same
arguments as in the proof of Theorem 3.

Remark 2. In the case H(·) does not satisfy the assumption δ > supt∈R H(t), the proof
of Theorem 4 can be modified to extend the statement and generalize results obtained in
[49]. This complete study is made in [9] for the multifractional Brownian motion. For the
sake of clarity, we prefer to focus in this work on (H0)-Hurst functions and the multifractal
structure of the LMSM presented in Theorem 4.

Remark 3. Even though it is assumed all along this section that H(·) is deterministic,
owing to the deterministic representation presented in Proposition 3, Theorems 3 and 4
still hold if H(·) is a continuous random process. Hence, based on these results, a class of
random processes with random and non-homogeneous multifractal spectrum can be easily
constructed. A similar extension of the multifractional Brownian motion has been introduced
and studied by Ayache and Taqqu [7].
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[3] D. Applebaum. Lévy processes and stochastic calculus, volume 116 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, second edition, 2009.

[4] A. Arneodo, E. Bacry, S. Jaffard, and J. F. Muzy. Oscillating singularities on Cantor
sets: a grand-canonical multifractal formalism. J. Statist. Phys., 87(1-2):179–209, 1997.

[5] A. Arneodo, E. Bacry, S. Jaffard, and J.-F. Muzy. Singularity spectrum of multifractal
functions involving oscillating singularities. J. Fourier Anal. Appl., 4(2):159–174, 1998.

[6] A. Ayache and J. Hamonier. Linear Multifractional Stable Motion: fine path properties.
Preprint, 2013.

[7] A. Ayache and M. S. Taqqu. Multifractional processes with random exponent. Publ.
Mat., 49(2):459–486, 2005.

[8] A. Ayache, F. Roueff, and Y. Xiao. Linear fractional stable sheets: wavelet expansion
and sample path properties. Stochastic Process. Appl., 119(4):1168–1197, 2009.

[9] P. Balança and E. Herbin. Sample paths properties of irregular multifractional Brownian
motion. In preparation, 2013.

[10] J. Barral and S. Seuret. The singularity spectrum of Lévy processes in multifractal
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[25] S. Jaffard. The multifractal nature of Lévy processes. Probab. Theory Related Fields,

114(2):207–227, 1999.
[26] S. Jaffard and Y. Meyer. Wavelet methods for pointwise regularity and local oscillations

of functions. Mem. Amer. Math. Soc., 123(587):x+110, 1996.
[27] S. Jaffard and Y. Meyer. On the pointwise regularity of functions in critical Besov

spaces. J. Funct. Anal., 175(2):415–434, 2000.
[28] D. Khoshnevisan and Z. Shi. Fast sets and points for fractional Brownian motion.
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[36] T. Marquardt. Fractional Lévy processes with an application to long memory moving
average processes. Bernoulli, 12(6):1099–1126, 2006.

[37] Y. Meyer. Wavelets, vibrations and scalings, volume 9 of CRM Monograph Series.
American Mathematical Society, Providence, RI, 1998.

[38] S. Orey and S. J. Taylor. How often on a Brownian path does the law of iterated
logarithm fail? Proc. London Math. Soc. (3), 28:174–192, 1974.

[39] E. Perkins. On the Hausdorff dimension of the Brownian slow points. Z. Wahrsch.
Verw. Gebiete, 64(3):369–399, 1983.

[40] J. Picard. Representation formulae for the fractional Brownian motion. Séminaire de
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