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1 Introduction 

Grid systems are differentiated from distributed and parallel systems by their large-scale, 
dynamic and heterogeneous characteristics (Foster and Kesselman, 2004). These 
characteristics raise additional challenges to the distributed query processing domain 
such as resource discovery, resource selection, resource allocation, autonomous 
computing, monitoring, replication, caching, security issues and many others (Gounaris 
et al., 2005). From those, resource allocation is one of the most important steps that 
directly affect the performance of query execution. However finding near optimal 
resource allocation alone may not be sufficient for efficiently processing queries in grid 
environments. Defining the policies in case of node failures during query execution is 
also very important and should be included in the resource allocation method. Since grid 
environments are dynamic, eventual node failures are likely during the execution of 
queries. These failures may be very costly if the queries are long running and if the 
system is not designed fault-tolerant. Therefore fault-tolerance must be considered in 
processing queries in grid environments. 

In the current literature, there can be found many resource allocation algorithms with 
dynamicity support (Gounaris et al., 2005; Silva et al., 2006; Venugopal et al., 2006; 
Kotowski et al., 2008; Gounaris et al., 2009; Paton et al., 2009; Quiane-Ruiz et al., 2009). 
Although these studies provide resource allocation methods by considering dynamicity of 
resource properties, none of them consider failure of nodes during execution of stateful 
operators in queries. A query operator is considered to be stateful if its execution requires 
storage of any kind of state such as a hash table (Bestehorn et al., 2010). Since stateful 
operators like hash join require recovery of states of the nodes in case of node failures, 
dynamic resource allocation methods are not sufficient in such cases. We have found few 
studies for fault-tolerant query processing in the current literature (Smith and Watson, 
2005; Smith and Watson, 2007; Taylor, 2008; Bestehorn et al., 2010). Although these 
studies provide fruitful algorithms, none of them is specialised on processing stateful 
query operators in grid environments. 



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

In this paper, we propose a resource allocation algorithm for fault-tolerant query 
processing in grid environments based on passive replication of stateful operations in 
queries. For finding the Initial Resource Allocation (IRA) scheme, we first propose the 
IRA algorithm. After completion of the IRA we propose the Fault-Tolerant Resource 
Allocation (FTRA) algorithm in which each allocated node applies a replication policy 
by itself according to the type of the task that it executes. 

The contribution of this section is therefore twofold. First, we propose the IRA 
algorithm by taking advantages of Single Join Operator Resource Allocation (SJORA) 
algorithm which is presented by Cokuslu et al. (2012b). Second, we propose the FTRA 
algorithm that presents fault-tolerance for stateful query operators in grid environments. 
With IRA, we struggle large-scale and heterogeneity characteristics, with FTRA we deal 
with the dynamicity characteristic of the grid environments taking hash join query 
requirements into consideration. 

In this paper, we assume that the node that posts the query and the nodes in which 
base relations reside are fault-tolerant or stable by default during the execution of the 
query. We consider a query as consisting of hash join operators which are composed of 
atomic tasks, namely scan, build and probe. Scan tasks act as providers to both build and 
probe tasks by reading tuples from their storage units and sending them to their 
corresponding tasks. Build tasks receive tuples from their scan tasks and create hash 
tables for that operator. Probe tasks are blocked during the execution of their 
corresponding build tasks. After build tasks complete, probe tasks start receiving tuples 
from their corresponding scan tasks and check for matching tuples in the hash table. 
Probe tasks pipeline matched tuples through their successor tasks in the query tree. More 
detailed description of distributed hash join operator can be found in the work of Özsu 
and Valduriez (2011). 

The structure of this paper is as follows; in Section 2 we present a brief literature 
survey about the current resource allocation studies. In Section 3, we propose the IRA 
algorithm followed by the FTRA algorithm for query processing in grid environments. 
We present detailed design, analyses and simulations for each algorithm. Finally in 
Section 4, we present our conclusions. 

2 Related work 

There can be found many studies in the literature, which examine resource allocation for 
query processing in grid environments (such as Gounaris et al., 2004; Gounaris et al., 
2005; Kant and Grosu, 2005; Mandal et al., 2005; Soe et al., 2005; Gounaris et al., 2006; 
Silva et al., 2006; Venugopal et al., 2006; Bose et al., 2007; Kotowski et al., 2008; Liu 
and Karimi, 2008; Gounaris et al., 2009; Paton et al., 2009; Quiane-Ruiz et al., 2009). A 
very detailed literature survey related to these studies is presented by Cokuslu et al. 
(2012a). These studies either present static resource allocation algorithms in which the 
resource allocation is performed once, and allocated nodes sustain execution until the 
tasks are completed, or they present dynamic resource allocation algorithms in which 
allocation is dynamically modified during the execution of the tasks according to the 
monitored status of the resources. Although dynamic resource allocation algorithms take 
dynamicity of the characteristics of the environment into account, none of these 
algorithms consider the case in which node failures occur. Still, there can be found many 
other studies in the current literature, which examine fault-tolerant distributed query 
processing in different environments (Abadi et al., 2005; Balazinska et al., 2008; 



   

 

   

   
 

   

      

      
 

    

 

 

   

   
 

   

   

 

   

       
 

Bestehorn et al., 2010; Chandrasekaran et al., 2003; Hwang et al., 2005; Hwang et al., 
2007; Kwon et al., 2008; Smith and Watson, 2005; Smith and Watson, 2007). However, 
few of them are applicable in grid environments especially for processing stateful query 
operators such as hash joins (Bestehorn et al., 2010).  

More precisely, Smith and Watson (2005) presented a fault-tolerant query processing 
system for distributed query processing. Their study is an extension to their previous 
work OGSA-DQP (Alpdemir et al., 2004) with the addition of fault detector and fault 

handler modules. In their study, the queried node generates a query plan, performs an 
IRA and initiates the execution of the query. For the fault-tolerance, the algorithm 
performs a rollback recovery protocol. Smith and Watson (2007) discuss failure recovery 
alternatives in query processing in grid environments. In their study, they examined three 
failure recovery alternatives, namely restart, reduce and replace. Bestehorn et al. (2010) 
presented a fault-tolerant query processing algorithm in structured P2P systems. In their 
study, they examined the query operations in two classes: namely stateless and stateful 
operations. The proposed method examines fault-tolerance over these operations with 
two different perspectives: fault-tolerant routing and replication. The study exploits the 
functionalities proposed by the CAN peer-to-peer system for selecting the backup peers. 
A very detailed survey study related to fault-tolerant distributed query processing can be 
found in the work of Taylor (2008). In his study, Taylor examines different fault-tolerant 
distributed query processing algorithms in three classes, namely: (a) upstream backup 
(Smith and Watson, 2007; Smith and Watson, 2005), (b) active standby (Abadi et al., 
2005; Balazinska et al., 2008; Chandrasekaran et al., 2003) and (c) passive standby 
(Hwang et al., 2005; Hwang et al., 2007; Kwon et al., 2008).  

Considering our analyses related to fault-tolerance in query processing, we have 
found many studies examining this problem. Although these studies present valuable 
algorithms, to the best of our knowledge, we cannot find studies designed especially for 
grid environments, which examine fault-tolerance in stateful query operators. Most of the 
examined studies are focused on stream processing which does not include stateful 
operators. Moreover most of these studies are designed for P2P systems. Although there 
are many similarities between grid systems and P2P systems, in many aspects they have 
distinct differences. Therefore, we believe that the characteristics of grid environments 
and requirements of query processing tasks should be focused in order to find suitable 
RA algorithms for fault-tolerant query processing in grid environments. 

3 Algorithms 

In this section, we propose an algorithm for FTRA for query processing in grid 
environments. To realise this, we first propose an IRA algorithm by extending the 
SJORA algorithm which is presented by Cokuslu et al. (2012b). Then, after setting the 
IRA, we propose FTRA algorithm by introducing a fault-tolerance module that realises 
passive replication of stateful operators in the queries. 

3.1 Initial Resource Allocation (IRA) algorithm 

In the IRA algorithm, we aim at finding suitable nodes for all tasks that compose the join 
operators in the entire query. However, since the residing nodes of the temporary 
relations cannot be determined beforehand, we design the IRA algorithm in bottom-up 
fashion starting from allocation of resources to the operators that use base relations. In  



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

this section, we examine hash join queries, which consist of one or more join operators, 
as a use case for query operators. We assume that the optimised query operator tree is 
provided explicitly. The relations that are involved in the query are assumed to be 
horizontally partitioned into the grid without replication. We consider a query as 
consisting of hash join operators which are composed of atomic tasks namely, scan, build 
and probe. A brief description of these tasks is given in the introduction section and 
detailed are presented in the work of Özsu and Valduriez (2011). 

In SJORA algorithm, Cokuslu et al. (2012b) find and allocate suitable resources for 
queries consisting of a single join operator assuming scan tasks are already allocated in 
the nodes in which the base relations reside. Since queries may consist of more than one 
join operator, it is necessary to extend the SJORA algorithm by materialising the 
allocation of all tasks in the entire query. In this section, we propose the IRA algorithm, 
which allocates nodes for the queries that consist of multiple join operators. For the IRA 
algorithm, we use tree representation of queries. An example query with its tree 
representation is shown in Figure 1. Vertices in the query tree represent tasks and 
directed edges represent data flow between tasks. In IRA algorithm, we consider that 
queries consist of join operators, and join operators consist of scan, build and probe tasks. 
Each join operator in the query may be composed of more than one pair of build and 
probe tasks that execute concurrently over the different data partitions. The build and 
probe tasks in each pair are tightly coupled. Therefore, we decided to allocate each pair 
of build and probe tasks in the same resource. For simplicity, in the rest of this paper, 
these pairs of build and probe tasks are named as join tasks. 

Figure 1 An example query and its query tree  

 

In SJORA algorithm, Cokuslu et al. (2012b) assumed that the partitions of base relations 
are known at the end of the resource discovery stage. However, for the temporary 
relations, it is not possible to find out their physical locations before precedent join tasks 
are allocated. Therefore, in IRA algorithm, we execute multiple instances of SJORA 
algorithm starting from the join tasks that are located at the lowest level of the query tree.  



   

 

   

   
 

   

      

      
 

    

 

 

   

   
 

   

   

 

   

       
 

These kinds of join tasks are marked as first-level join tasks as shown in Figure 1. Then, 
we allocate the join tasks that are located at the second level in the query tree. We repeat 
this process until all tasks are allocated in the query. To realise this, we apply post-order 
tree traversal on the query tree. The generation of the query tree involves query 
optimisation steps such as query reordering. Since this kind of optimisation is out of 
scope of this paper, we assume that the query tree is already provided exclusively. The 
IRA algorithm is executed by the queried node. A snapshot of the IRA is stored in the 
query tree that resides on the queried node. Each vertex in the query tree contains a data 
structure called treeElement, as shown in Figure 2. The treeElement contains four 
principal fields, namely type, list, left and right. Type field indicates the type of the task 
whether it is a scan or a join task. List field contains a list of allocated nodes for the task, 
which is initially empty. Left and right fields point to the left and right subtrees, 
respectively, in the query tree. 

Figure 2 Data structure for the treeElement 

 

The IRA algorithm is shown in Algorithm 1. The algorithm runs recursively a post-order 
tree traversal (lines 1–6). In line 7, the algorithm processes the visited vertex. If the 
visited vertex is a scan task, IRA algorithm fills list field of the treeElement with the list 
of nodes in which the partitions of the processed relation reside (line 8). Else, if the 
visited vertex is a join task, the list field is filled with the results of the SJORA algorithm. 
In this step, the list of partitions of base or temporary relations is provided by the child 
vertices (line 10). The estimated sizes of the temporary relations (sizes) are assumed to be 
known by external estimations. The ids of most distant nodes and the distance between 
them for the partitions of temporary relations (nodeA, nodeB and dist) are provided by 
the topology control module of the resource discovery algorithm, which is presented by 
Cokuslu et al. (2010). At the end of execution of the IRA algorithm, all the vertices in the 
query tree contain the list of selected nodes for the corresponding task. At this stage, the 
queried node sends the query tree to all selected nodes in order to complete allocation of 
nodes and to start execution of the query. 

Algorithm 1 IRA algorithm 

Input: Root of the query tree 

Output: List of nodes to be allocated for each operator 

1: IRAAlgorithm(treeNode) 

2:     if treeNode is empty then 

3:        return 

4:     else 

5:       IRAAlgorithm(treeNode.left) 

6:       IRAAlgorithm(treeNode.right) 



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

7:       if treeNode.type = SCAN then 

8:           treeNode.list = nodes in which partitions reside 

9:       else if treeNode.type = JOIN then 

10:           treeNode.list = SJORA(treeNode.left.list treeNode.right.list, nodeA, 

nodeB, dist, sizes) 

11:     end if 

12:   end if 

13:   return 
14: end 

3.1.1 Analysis 

In this section, we provide time and message complexity analyses of the proposed 
algorithm, IRA. 

Theorem 1: The IRA algorithm has O(jnN) time complexity, where j is the number of join 

operators in the query, n is the number of scan nodes and N is the number of nodes in the 

grid system. 

Proof: The IRA algorithm uses the SJORA algorithm (Cokuslu et al., 2012b) for each 
join operator in the query tree. Since the time complexity of the SJORA algorithm is 
O(nN), the time complexity of the IRA algorithm is O(jnN) for a query that consists of j 
join operators.  

Theorem 2: The IRA algorithm has O(jnN2) message complexity, where j is the number of 

join operators in the query, n is the number of the scan nodes and N is the number of the 

nodes in the grid system. 

Proof: The IRA algorithm uses the SJORA algorithm (Cokuslu et al., 2012b) for each 
join operator in the query tree. Since the message complexity of the SJORA algorithm is 
O(nN2), the total message complexity of the IRA algorithm is O(jnN2) for a query that 
consists j join operators. 

3.1.2 Simulations 

In this section, we present evaluation of the IRA algorithm by simulation. We compare 
our algorithm with a comparative algorithm (CA) that reflects the common properties of 
the recent resource allocation algorithms (Gounaris et al., 2004; Gounaris et al., 2006). 
The main idea behind the comparative algorithm is similar to the algorithm proposed by 
Gounaris et al. (2004, 2006). The algorithm ranks the nodes in the grid according to their 
properties. In our case, one of the most significant properties that influence the execution 
of queries is the connection speed of the nodes. Therefore, the CA algorithm ranks the 
nodes according to their connection speeds. Then the ranked nodes are sorted and the 
algorithm starts to allocate nodes starting from the top of the list. When addition of a new 
node does not lead to a performance increase, the algorithm terminates. The CA 
algorithm traverses the query tree and allocates resources for each join operator in the  
 
 



   

 

   

   
 

   

      

      

    

 

 

   

   
 

   

   

 

   

       
 

query. We have implemented IRA and CA algorithms in ns2 simulation environment and 
measured the cost of resource allocation process and duration of execution of a sample 
query. 

We have generated grid simulation scenarios consisting of 100 through 800 nodes. 
Each node in the scenario represents a uniprocessor computer in the grid system that has 
arbitrary connections to other nodes in the environment. The bandwidths of duplex 
connections between nodes are randomly assigned between 1 and 10 Gbps. In our 
simulation scenarios, we have simulated resource allocation and execution of a sample 
query consisting of three join operators, which joins four relations in total. The formal 
representation of the sample query is shown in Figure 3 where R1, R2, R3 and R4 

present relations and  presents the join operator. 

Figure 3 Formal representation of the sample query 
 

{(R1  R2)  (R3  R4)}  

Each relation is horizontally partitioned into five arbitrary scan nodes in our scenarios. 
The distribution of the scan nodes is realised randomly over the simulated environment. 
Each scan node is assumed to store a partition of a base relation of size 50 GB. Each scan 
node stores only one partition. 

We have collected test results for the cost of IRA and cost of query execution.  
Figure 4 shows the IRA process for the sample query. As it can be seen in Figure 4, the 
cost of the IRA algorithm is higher than the CA. This is because the IRA algorithm 
processes its entire candidate list to find the best possible resource allocation within its 
candidates and measures the communication speeds from each candidate node to all scan 
nodes while calculating the estimated query duration. This overhead results in a worse 
performance than the CA initially in return for a better selection of resources. However, 
it can be seen in Figure 4 that the IRA algorithm scales well with the number of nodes in 
the grid environment. The cost of resource allocation process remains nearly constant as 
the number of nodes increase. This is caused by the limitation of the candidate resource 
search space. In each scenario, the algorithm examines nearly the same number of 
candidate resource in the IRA. Like the IRA, the CA also remains nearly constant as the 
number of nodes increase. This is because in CA the algorithm stops adding new 
resources when the performance increase reaches to a threshold limit, instead of 
examining all resources in the candidate list. Otherwise, the CA would examine every 
resource in the grid environment. This approach may miss better resource allocation 
combinations with higher number of resources. However, it is conceptually impossible to 
evaluate all possible resource allocation combinations. 

Figure 5 shows the execution cost of the sample query. It can be seen in Figure 5 that 
the resources allocated by the IRA algorithm execute the query faster than the resources 
that are allocated by the CA. This is because, although the resources that are allocated by 
the CA are the highest ranked nodes in the grid, they might be placed far from the scan 
nodes, which may result in slower data transfer rates. On the other hand, the resources 
that are allocated by the IRA algorithm are closer to the scan nodes in terms of 
connection speeds. For that reason, IRA algorithm ensures allocation of more effective 
resources in terms of the communication performances with the scan nodes. 



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

Figure 4 Initial resource allocation costs 

 

Figure 5 Sample query execution costs with resources allocated by IRA and CA 

 

Regarding the simulation results, which are shown in Figures 4 and 5, it can be 
considered that the IRA algorithm is more preferable if the cost of IRA does not exceed 
the estimated query execution durations. In our simulation scenarios, the durations of 
query executions are much higher than the costs of the resource allocation processes. 
Therefore, in such cases, the IRA algorithm might be considered as a better alternative to 
the existing resource allocation algorithms that are based on ranking functions. 



   

 

   

   
 

   

      

      

    

 

 

   

   
 

   

   

 

   

       
 

3.2 Fault-Tolerant Resource Allocation (FTRA) algorithm 

In this section, we propose the FTRA algorithm for query processing in grid 
environments based on the passive replication of stateful join operators in the queries. 
The FTRA algorithm works in succession with the IRA algorithm and is responsible for 
the fault-tolerance of the nodes that are allocated for the join tasks. The nodes that 
execute tasks are named as master nodes; and the nodes that are allocated for the fault-
tolerance purpose are named as backup nodes or replicas. It is assumed that a master 
node and its replica do not fail at the same time. 

The FTRA algorithm is composed of four steps: (a) replica selection, (b) query 
execution & backing up, (c) failure detection and (d) failure recovery. These steps are 
defined as follow: 

1 Replica selection: The replica selection step is realised before the master node starts 
its execution. When the IRA algorithm completes, each master node determines a 
backup node by choosing its closest available neighbour. The selection of the closest 
available neighbour as the replica aims at minimising the replication overhead that 
will be caused by the FTRA. In this step, we assume that a master node has always 
at least one available neighbour for replica selection. 

2 Query execution & backing up: After the replica selection step, the master node 
starts executing the query while backing up its state for fault-tolerance. In order to 
avoid synchronisation issues between replicas and master nodes, the replication 
scheme in this step is chosen to be passive replication. In passive replication, the 
states of the master nodes are backed up to their replicas periodically. The states 
depend on the type of tasks that are being executed. More precisely, build tasks 
generate hash tables for the join operators. The failure of a node during the execution 
of build task results in the loss of the hash table that is generated so far. Therefore, 
during the execution of the build task the state is composed of the hash table and the 
sequence number of the last tuple that is received. On the other hand, probe tasks 
receive tuples from their predecessors, check the hash table for occurrences and send 
results to their successors in a pipelined fashion. Execution of a probe task means 
that the build task is already terminated and the hash table is already constructed. It 
also implies that the hash table is already backed up. Therefore, during the execution 
of the probe task the state is composed only of the sequence number of the last 
received tuple. The update interval of the replication period is determined 
heuristically. The states of master nodes are backed up incrementally. In other 
words, during the execution of build task, each time the state of the master node is 
backed up, only the additions to the hash table is transferred to the replica node since 
the last check point. 

3 Failure detection: In FTRA, the failure detection is held by both master nodes and 
replicas. Failures of nodes are detected by exploiting the periodical backup 
messages. The replica nodes monitor failures of their master nodes and master nodes 
monitor failure of their replicas by examining delivery of backup and their 
acknowledgement messages. 

4 Failure recovery: Whenever a replica node detects failure of its master node, it 
replaces itself with its master and notifies its predecessor and successor nodes for the 
change. Before it starts acting as a master node, it requests a replica node for itself 



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

by choosing its closest available neighbour. On the other hand, if a master node 
detects failure of its replica, it requests a new replica and backs up its last state 
entirely once and continues incremental backing up later. 

The algorithm is executed successively to the IRA algorithm that is proposed in the 
Section 3.1. When the IRA algorithm is executed beforehand, the algorithm outputs a 
tree structure, namely query tree, which contains the tree representation of the query with 
the selected nodes included for the IRA. A sample query tree is shown in Figure 6. 

Figure 6 Example query tree that is used for input of the FTRA algorithm 

 

Each vertex in the query tree is composed of the data structure treeElement that is shown 
in Figure 2. The FTRA algorithm inputs the query tree and starts processing it by using 
post-order tree traversal. Each time the algorithm visits a vertex in the query tree, it sends 
a request message to resources that are selected by the IRA algorithm in order to inform 
them about the initial allocation. This allows selected nodes to know their successor and 
predecessor nodes to communicate with. The formal presentation of the FTRA algorithm 
in the queried node is shown in Algorithm 2. 

Algorithm 2 FTRA algorithm in the queried node 

Input: Root of the query tree 

Output: Query execution 

1: FTRAAlgorithm(treeNode) 

2:     if treeNode is empty then 

3:        return 

4:     else 



   

 

   

   
 

   

      

      

    

 

 

   

   
 

   

   

 

   

       
 

5:       FTRAAlgorithm(treeNode.left) 

6:       FTRAAlgorithm(treeNode.right) 

7:       if treeNode.type = SCAN then 

8:           send AllocScanReq to the each node in treeNode.list 

9:       else if treeNode.type = JOIN then 

10:           send AllocJoinReq to the each node in treeNode.list 

11:     end if 

12:   end if 

13:   return 
14: end 

After finishing the query tree traversal, the queried node waits for the resulting tuples of 
the query as a pipelined fashion. The other nodes in the grid environment, which receive 
request messages, involve in the query execution according to the algorithm that is 
suitable for their types. Basic algorithm steps in the nodes that are assigned for different 
types of tasks are shown in Algorithm 3. In Algorithm 3, the execution of FTRA 
algorithm in a node that executes a scan task is presented. A scan node will read tuples 
from its storage unit and sends them to its successor nodes. In order to start this 
operation, it first waits for all its successor nodes to become ready to receive tuples  
(line 2). When all its successor nodes become ready, it starts the scan operation (line 4). 
Upon finishing the data to be sent, the node indicates this by sending a specific message 
to its successor nodes (line 6). Notice that it is assumed that scan nodes are stable during 
the execution of the query therefore they do not require any fault-tolerance algorithm. 

Algorithm 3 Basic steps of FTRA algorithm in a scan node 

Input: Received messages 

Output: Execution of the required steps 

1: Upon reception of AllocScanReq message: 

2:     Wait StartScan message from all successor nodes 

3:     When all successor nodes send StartScan message 

4:     Start sending tuples to the corresponding successor nodes 

5:     When the data is completely consumed 

6:       Send ScanEnd message to all successor nodes 

7:  end 

The execution steps of the FTRA algorithm in a node that is assigned for a join task are 
shown in Algorithm 4. After being allocated for the task, a join node selects a replica for 
itself that is the nearest neighbour to it (line 2). Then it claims its readiness to its 
predecessor nodes (line 3). While receiving tuples from its scan nodes, the join node 
constructs the hash table (line 4). At the same time it backs up its state periodically in its 
replica node (line 5). If failure of the backup node is detected, the join node selects 
another backup node and backs up its entire state once (lines 6–8). When construction of 
the hash table is finished, the node wakes-up the scan nodes that hold relations for the  
probe phase and starts probe operation (lines 9 and 10). At this stage, the join node only 
backs up the sequence number of the scan messages (line 11). When the probe operation 
is finished, the node informs its successor by sending a specific message (line 12). 



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

Algorithm 4 Basic steps of FTRA algorithm in a join node 

Input: Received messages 

Output: Execution of the required steps 

1: Upon reception of AllocJoinReq message: 

2:     Send ReplicaReq message to the nearest neighbour 

3:      Upon receiving ReplicaResp, send StartScan message to all predecessor nodes 

4:     Build the hash table using the received tuples from the scan nodes 

5:     Periodically send hash table updates to the backup node 

6:     if the backup node is failed then 

7:       Select another backup node 

8:      end if 

9:      When build task is finished, send StartScan message to the scan nodes that hold 

partitions of the relation that is used in the probe task 

10:   Execute probe task using the received tuples 

11:   Periodically send last received tuple information to the backup node 

12:   When probe task is finished, send ScanEnd message to the successor node 

13: end 

Finally in Algorithm 5, the algorithm steps for a node that is allocated for replication  
is presented. After agreeing with the master node (lines 1 and 2) the backup node 
periodically accepts backup messages and stores the state information of its master  
(line 3). If failure of the master node is detected, the backup node informs the 
predecessor nodes of its master about the failure to suspend data flow (lines 4 and 5). 
Then it selects a backup node for itself (line 6) and itself starts acting as a master node. It 
then makes its predecessor nodes to resume the communication and continue the 
execution of the query (lines 7and 8). 

Algorithm 5 Basic steps of FTRA algorithm in a backup node 

Input: Received messages 

Output: Execution of the required steps 

1: Upon reception of ReplicaReq message: 

2:     Send ReplicaResp message to the master node 

3:     Record periodical state updates 

4:     if master node is failed then 

5:        Send AllocUpdate message to all predecessors of the master node in order to 

suspend communication 

6:        Select a backup node by sending ReplicaReq message to the nearest neighbour 

7:       Change type of task to join 

8:        Send StartScan message to all predecessors to resume the query execution as a 

master node 

9:     end if 

10: end 



   

 

   

   
 

   

      

      
 

    

 

 

   

   
 

   

   

 

   

       
 

3.2.1 Analysis 

In this section, we present time and message complexity analyses of the FTRA algorithm. 

Theorem 3: The overhead of the FTRA algorithm to the standard query execution in 

terms of time complexity is O(j), where j is the number of join operators in the query. 

Proof: The standard execution of a query in a grid environment consists of execution of 
scan, build and probe tasks. In FTRA algorithm, additionally to the standard execution, 
replica selection is required for each join operator before starting the execution. For each 
join operator, selection of a replica node involves four steps. Since there are j join 
operators in the query, the total time overhead of the FTRA algorithm is (4j) which is 
defined as O(j). 

Theorem 4: The overhead of the FTRA algorithm to the standard query execution in 

terms of message complexity is O(jnm), where j is the number of join operators in the 

query, n is the number of scan nodes and m is the number of allocated nodes for the join 

tasks. 

Proof: In FTRA algorithm, since allocated nodes become ready to receive tuples from 
their precedent nodes only after they set their backup nodes, beginning of scan tasks are 
subject to synchronisation with their successors. This synchronisation requires each 
allocated node to send a message to its scan nodes. Therefore, for each join operator, the 
FTRA algorithm requires nm message exchanges. Therefore, the total message overhead 
of the FTRA algorithm is O(jnm). 

3.2.2 Simulations 

In this section, we present quantitative evaluations and simulation results for the FTRA 
algorithm. We compare our algorithm to the IRA algorithm and examine the overhead 
that is caused by the replication.  

For the simulation scenario, we used the same simulation setting that is used in the 
Section 3.1.2. We measured the cost of the resource allocation process.  

Figure 7 shows the initial costs of IRA and FTRA algorithms. As it can be seen in 
Figure 7, there is a slight difference between the IRA and the FTRA. In all different 
simulation scenarios, the FTRA requires a constant amount of time in order to provide 
fault-tolerance. This overhead is caused by the selection of the replica nodes. In FTRA, 
after completion of the IRA, the algorithm executes the finite state machine steps which 
are shown in Figure 7. In our scenarios, since the number of join operators and number of 
scan nodes are constant, the overhead of the FTRA algorithm is bound by the number of 
allocated nodes in the IRA. During our simulations, we observed that the number of 
allocated nodes by the IRA algorithm does not alter significantly. Therefore, the 
overhead of the FTRA algorithm remains nearly constant as the number of nodes 
increase. Regarding the simulation results, it can be considered that the FTRA can be a 
strong alternative to the classical resource allocation algorithms in the case in which the 
queries are long running and fault-tolerance overhead is acceptable. 

 
 



   

 

   

   
 

   

   

 

   

       
 

    

 

 

   

   
 

   

   

 

   

       
 

Figure 7 Cost of the FTRA algorithm 

 

4 Conclusions 

Resource allocation for query processing in grid systems is a very important step that 
directly affects the performance of query execution. Since grid environments are 
differentiated from other distributed environments by their large-scale, dynamic and 
heterogeneous nature, the resource allocation algorithm should address all problems that 
are caused by these characteristics. In this paper, we have first proposed an IRA 
algorithm, which allocates resources for a query consisting of multiple join operators by 
exploiting the SJORA algorithm which is presented by Cokuslu et al. (2012b), aiming at 
addressing scalability and heterogeneity problems. Then, aiming at addressing the 
dynamicity problems, we proposed an FTRA algorithm for query processing in grid 
environments that recovers from node failures during the execution of the query. 
Although there can be found many studies in the current literature, to the best of our 
knowledge, we cannot find any study which focuses on the dynamicity of nodes in the 
grid environment in terms of node failures. For that reason, we aimed at contributing the 
query-processing domain by proposing fault-tolerance in resource allocation. 

We presented our algorithms in detail and proposed complex analyses. Then, we 
strengthened our perspectives by the use of quantitative analyses and simulations. We 
showed that the IRA algorithm outperforms the similar existing algorithms in the cases in 
which the query execution durations are much higher than the cost of the IRA. For the 
FTRA, the simulation results showed that the algorithm is a very favourable algorithm 
with slight overhead to the IRA algorithm. Since it provides fault-tolerance, it can be 
preferred in situations in which the queries are long running and in environments in 
which node failures are likely. It can be concluded that the proposed algorithms can be 
considered to be scalable and strong alternatives to the existing algorithms in the defined 
cases. 
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