
HAL Id: hal-01291611
https://hal.science/hal-01291611

Submitted on 20 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A new optimized Stockwell transform applied on
synthetic and real non-stationary signals

Ali Moukadem, Bouguila Zied, Djaffar Ould-Abdeslamb, Alain Dieterlen

To cite this version:
Ali Moukadem, Bouguila Zied, Djaffar Ould-Abdeslamb, Alain Dieterlen. A new optimized Stockwell
transform applied on synthetic and real non-stationary signals. Digital Signal Processing, 2015, 46,
pp.226-238. �10.1016/j.dsp.2015.07.003�. �hal-01291611�

https://hal.science/hal-01291611
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A new optimized Stockwell transform applied on synthetic and real
non-stationary signals

Ali Moukadem ∗, Zied Bouguila, Djaffar Ould Abdeslam, Alain Dieterlen

University of Haute Alsace, MIPS Laboratory, Mulhouse, France

1. Introduction

Time–Frequency analysis is a powerful tool to describe signals 
both in the time and in the frequency domain. It transforms a one 
dimensional signal x(t) into a two-dimensional function of time 
and frequency Tx(t, f ) [1]. This can be done by several approaches. 
The first class of solutions is named the linear time–frequency rep-
resentations methods which the well-known Short-Time Fourier 
Transform (STFT) and the Wavelet-Transform (WT) are part of the
main concept used in those approaches lies in the signal decom-
position into elementary parts (atoms) and tries to localize each 
part in time and frequency properly and simultaneously. The sec-
ond approach concerning the Time–Frequency (TF) methods is the 
quadratic transforms which aim at distributing the energy of the 
signal over the two description variables: time and frequency. Each 
approach has some advantages and drawbacks; while linear time–
frequency representations are intuitive they suffer from poor TF 
resolution in many cases. This depends on the windows used to 
analyze the signal. On the other hand, the quadratic transforms 
(the Wigner–Ville for example) have a high TF resolution. However, 
they suffer from cross-terms in multicomponent signals and may 
also suffer from inner interference for non-linear mono-component 
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signal. There is no time–frequency method which can be consid-
ered as optimal for all applications.

The Stockwell transform (S-transform) can be considered as a 
hybrid between the Short Time Frequency Transform (STFT) and 
the wavelet transform [2]. It can be viewed as a frequency depen-
dent STFT or a phase corrected wavelet transform. It has gained 
popularity in the signal processing community because of its easy 
interpretation and fast computation [3]. The S-transform has been 
shown high performance in classification and feature extraction 
problems applied on non-stationary signals, such as heart sounds 
[4–6], power quality signals [7], EEG signals [8] etc. Generally the 
S-transform uses a Gaussian window, whose standard deviation 
varies over frequency. Whatever the analyzed signal, the width of 
the Gaussian window will decrease as the frequency increases. This 
produces a higher frequency resolution at lower frequencies and 
a higher time resolution at higher frequencies. This can be con-
sidered as limitation in some signal analysis, for example, for a 
signal containing a single sinusoid, the time–frequency localization 
can be considerably improved if the window is very narrow in the 
frequency domain. Similarly, for signals containing only a Dirac im-
pulse, it would be beneficial for good time–frequency localization 
to have very wide window in the frequency domain [9]. It would 
be more appropriate to adapt the window to the signal in order to 
maximize the energy localization of the S-transform.

Many studies in the literature tried to improve the Stockwell 
transform by proposing new windows. McFadden et al. [10] pro-

The aim of this paper is to improve the energy concentration of the Stockwell transform (S-transform) in the time–frequency domain. 
Amodified S-transform is proposed with several parameters to control the width of a hybrid Gaussian window. Aconstrained optimization 
problem is proposed based on an energy concentration measure as objective function and inequalities constraints to define the bounds of the 
Gaussian window. An active-set algorithm is applied to resolve the optimization problem. The optimization of the energy concentration in the 
time–frequency plane can lead to more reliable applications for non-stationary signals. The simulation results show a significant improvement 
of the proposed methodology most notably in the presence of noise comparing with the standard S-transform and existing modified S-
transform in the literature. Moreover, comparison with other known time–frequency transforms such as Short-time Fourier transform (STFT) 
and smoothed-pseudo Wigner–Ville distribution (SPWVD) is also performed and discussed. The proposed S-transform is tested also on real 
non-stationary signals through an example of split detection in heart sounds.
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posed a generalized S-transform which provides greater control on 
the window function. Later, Pinnegar et al. [11] proposed another 
generalized S-transform in which two prescribed functions of fre-
quency control the scale and the shape of the analyzing window. 
The same authors proposed another modified S-transform with a 
bi-Gaussian window which seems better at resolving the sharp on-
set of events in a time series [12]. Sejdic et al. and Djurovic et al. 
[9,13] introduced a novel parameter to the Gaussian window and 
the parameter which maximizes the concentration energy is se-
lected [9]. This is the main study in the literature interested to 
optimize the energy concentration directly in the TF domain, that 
is, to minimize the spread of the energy beyond the actual signal 
components. More recently, Assous et al. [14] proposed another 
modified S-transform in which the scaling parameter of the Gaus-
sian window varies linearly with the frequency.

The energy concentration in the Time–Frequency (TF) domain 
is a very important criteria for the algorithms that aim to detect 
or extract relevant feature from time–frequency domain. Hence, 
the importance of an energy concentration optimization process 
to improve the detection and the classification of non-stationary 
signals. As it is well known, the ideal time–frequency transforma-
tion should only be distributed along frequencies for the duration 
of signal components. So the neighboring frequencies would not 
contain any energy and the energy contribution of each compo-
nent would not exceed its duration [15]. In this paper, we adopt 
the strategy proposed by Sejdic et al. [9], that is, to adapt the ana-
lyzed window to the energy concentration criteria.

The main contributions of this paper can be summarized as:

• Proposing a methodology to optimize the energy concentration
of the S-transform. For that, new parameters are introduced
to control better the width of the Gaussian window and an
active-set algorithm is applied to select properly these param-
eters.

• An application of the modified S-transform on the detection of
splits in heart sounds is proposed.

This paper is an improved and extended version of the paper 
published in [16]. The paper is organized as follows: Section 2
presents the proposed modified S-transform with the optimization 
problem. Section 3 presents the simulation study to compare the 
proposed method to other existing S-transform where the robust-
ness against noise and the performance of estimation of instan-
taneous frequency are discussed and detailed. A comparison with 
other classic time–frequency representations is also discussed. Sec-
tion 4 tries to show the importance of the time–frequency resolu-
tion enhancement in the detection of real non-stationary signals by 
presenting an application on heart sounds. Finally, Section 5 gives 
the conclusion and the future work.

2. Optimization of the modified Stockwell transform

2.1. The original S-transform and the link with Fourier

The original S-transform of a time varying signal x(t) is defined 
by [2]:

Sx(τ , f ) =
+∞
∫

−∞

x(t)w(t − τ , f )e−2π j f tdt (1)

where the window function w(t, f ) is chosen as:

w(t, f ) =
1

σ ( f )
√
2π

e
−t2

2σ ( f )2 (2)

and σ ( f ) is a function of frequency as:

σ ( f ) =
1

| f |
(3)

The window is normalized as:

+∞
∫

−∞

w(t, f )dt = 1 (4)

This gives the direct relation between the S-transform and the 
Fourier spectrum by averaging the local spectrum over time:

+∞
∫

−∞

Sx(τ , f )dt = X( f ) (5)

where X( f ) is the Fourier transform of x(t). The signal x(t) can be 
recovered from Sτ (t, f ) as follows:

x(t) =
+∞
∫

−∞

⎧

⎨

⎩

+∞
∫

−∞

Sx(τ , f )

⎫

⎬

⎭

ei2π f tdf dτ (6)

Another way to directly express the link between the S-transform 
and the Fourier transform is by writing the ST as a convolutions 
process as follows:

Sx (τ , f ) =
+∞
∫

−∞

p (t, f ) g (τ − t, f )dt

= p (τ , f ) ∗ g (τ , f ) (7)

where:

p (τ , f ) = x (τ ) e−i2π f τ (8)

and:

g (τ , f ) =
| f |

√
2π

e
−τ2 f 2

2 (9)

By calculating the Fourier transform of Sx (τ , f ), the convolution 
becomes a multiplication in the frequency domain:

Fτ→α {Sx (τ , f )} = P (α, f )G (α, f )

= X (α + f ) e
−2π2α2

f 2 (10)

where P (α, f ) and G(α, f ) are as the corresponding Fourier trans-
forms for p(τ , f ) and g(τ , f ), respectively and α is the frequency 
Fourier variable related to τ . The direct relation between the 
S-transform and the Fourier transform can be obtained by applying 
the inverse Fourier transform to the last equation:

S(τ , f ) =
+∞
∫

−∞

X(α + f )e
−2π2α2

f 2 ei2πατdα (11)

This will facilitate the implementation of the ST by using the ad-
vantages of the FFT (Fast Fourier Transform) algorithms. The expo-
nential function in Eq. (10) is the frequency dependent localizing 
window. This window is centered on the zero frequency and thus 
plays the role of a low pass filter for each particular voice.

2.2. Energy concentration enhancement

It has been shown that the original S-transform uses a Gaussian 
window, whose standard deviation varies over frequency. What-
ever the analyzed signal, the width of the Gaussian window will 
decrease as the frequency increases. As we mentioned it above, 
this strategy can be considered as a limitation since it does not 
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take the nature of the analyzed signal into consideration. It would 
be more appropriate to adapt the window to the signal in order to 
maximize the resolution of the S-transform. We will present the 
main modified S-transform existing in the literature before pre-
senting the proposed modified S-transform in this paper with the 
optimization methodology.

2.2.1. The modified S-transforms in the literature
The first modification made on the classic Gaussian window of 

the S-transform was to introduce a novel parameter to better con-
trol the resolution [17]. The parameter γ is introduced as follows:

w(τ − t, f ,γ ) =
| f |

γ
√
2π

e
− f 2(τ−t)2

2γ 2 (12)

This allows a better control of the time–frequency resolution 
of the S-transform by controlling the width of the Gaussian win-
dow. Another way to control the width of Gaussian window in the 
S-transform is proposed by Sejdic et al. [9] and consists to fix γ to 
1 and introduce a new parameter p as follows:

w(τ − t, f , p) =
| f |p
√
2π

e
− f 2p (τ−t)2

2 (13)

The equation (13) can be rewritten as:

w(τ − t, f , p) =
| f |

f (1−p)
√
2π

e

− f 2(τ−t)2

2 f (1−p)2 (14)

In this case γ can be written as follows:

γ ( f ) = f (1−p) (15)

Recently, George et al. [18] and Assous et al. [14] proposed an-
other way to control the Gaussian window by varying the scaling 
parameter γ linearly with frequency as follows:

γ ( f ) =mf + k (16)

This modification provides a better progressive control of the win-
dow width.

2.2.2. The proposed window

In this paper, we propose to generalize the modifications pro-
posed by [9] and [18,14] by introducing a new Gaussian window 
with the following standard deviation:

σ ( f ) =
mf p + k

f r
(17)

In this case the modified Gaussian window can be given as:

w(τ − t, f ) =
| f |r

(m f p + k)
√
2π

e

−(τ−t)2 f 2r

2
(

m f p+k
)2

(18)

The parameter f r/
(

m f p + k
)

represents the number of cycles
(periods) of a frequency that can be contained within one standard 
deviation of the Gaussian window.

The introduced parameters m, p, k and r aim to give more flexi-
bility to the Gaussian window. The modified S-transform becomes:

S
m,p,k,r
x (τ , f ) =

+∞
∫

−∞

x(t)
| f |r

(m f p + k)
√
2π

e

−(τ−t)2 f 2r

2
(

m f p+k
)2
e−i2π f tdt

(19)

The new window satisfies the normalization condition for the 
original S-transform window which insures the invertibility of the 
modified S-transform:

Fig. 1. The variation of function γ over frequency for: proposed ST (m = 0.3,
p = 0.0386, k = 0.4276, r = 0.6035); (dashed line) Sejdic’s ST (m = 0, p = 1, k = 1,
r = 0.8); (dashed dotted line) Assous’s ST (m = 0.05, p = 1, k = 0.1, r = 1); (dotted
line) standard ST (m = 1, p = 0, k = 0, r = 1).

+∞
∫

−∞

| f |r

(m f p + k)
√
2π

e

−(τ−t)2 f 2r

2
(

m f p+k
)2
dt = 1 (20)

As in equation (14) the windows in (18) can be rewritten as:

w(τ − t, f ) =
| f |

(m f p + k) f (1−r)
√
2π

e

−(τ−t)2 f 2

2
(

(

m f p+k
)

f (1−r)
)2

(21)

and then the scaling parameter γ ( f ) function can be given as:

γ ( f ) =
(

m f p + k
)

f (1−r)

=m f (p−r+1) + k f (1−r) (22)

The scaling rule for the proposed Gaussian window is made as a 
polynomial function of frequency. The introduced parameters aims 
to make the Gaussian window more flexible and more adaptive 
to the analyzed signal. We note here that we can retrieve Sejdic’s
window from equation (21) by setting m = 0 and k = 1 and As-
sous’s window by setting p = 1 and r = 1 and the standard ST by 
setting m = 0, k = 1 and r = 0. Fig. 1 shows examples of the varia-
tion of γ function over frequency for the different windows.

2.2.3. Optimization methodology to select optimal parameters

A crucial question is how to choose the parameters of the Gaus-
sian window? Assous et al. select empirically the value of m and k, 
k is fixed to 1/N where N is the number of signal’s samples and 
m is fixed to four times the variance of the signal [14]. Select em-
pirically the values of parameters may not be adequate for some 
types of signals. It will be more appropriate to generate automat-
ically adaptive parameters which respect the nature of analyzed 
signal. The modified S-transform proposed by Sejdic et al. [9] in-
troduce one parameter to the Gaussian window and this parameter 
is varied iteratively over the selected interval and the value which 
maximize the concentration energy is selected. In this paper, since 
we have several parameters that control the Gaussian window, we 
propose to apply a more advanced optimization methodology to 
select automatically m, p, k and r.

The objective function used in this paper is the energy concen-
tration measure (CM) proposed in [19]. By applying this measure 
to the modified S-transform, we obtain:

CM(m, p,k, r) =
1

+∞
∫

−∞

+∞
∫

−∞

∣

∣

∣

∣

S
m,p,k,r
x (t, f )

∣

∣

∣

∣

dtdf

(23)

where the module of the S-transform is normalized as:
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S
m,p,k,r
x (t, f ) =

S
m,p,k,r
x (t, f )

√

+∞
∫

−∞

+∞
∫

−∞

∣

∣

∣
S
m,p,k,r
x (t, f )

∣

∣

∣

2
dtdf

(24)

Then, the optimization problem can be expressed as follows:

argmax
m,p,k,r

⎛

⎝1/

+∞
∫

−∞

+∞
∫

−∞

∣

∣

∣

∣

S
m,p,k,r
x (t, f )

∣

∣

∣

∣

dtdf

⎞

⎠ (25)

The constraints of our optimization problem are related to the 
width bounds of the analyzed window. The window should not be 
very narrow which alters the time resolution and not very large 
which destroys the frequency resolution

Lb < σ ( f ) < Ub (26)

with Lb being chosen as nT s and Ub as lT s where T s is a sam-
pling period of the discretized window. Theoretically, the integer 
n should be greater than 2, in this paper n is fixed empirically as 
10 and l is fixed as 1000, so for a sampling frequency of 1000 Hz 
(T s = 0.001s) Ub is about 1 second.

By taking the first inequality of equation (26) we obtain:

mf p + k

f r
≥ nT s (27)

We have f ∈ [ fmin, fmax]. fmin is fixed to 1 Hz however fmax de-
pends on the analyzed signal. By developing equation (27) and by 
majorating the two sides we obtain:

m f
p

min
+ k ≥ nT s f

r
max (28)

Since fmin is generally set to 1 Hz, this allows us to write the first 
constraint as follows:

nT s f
r
max − k −m ≤ 0 (29)

By following the same methodology, the second constraint can be 
written as:

m f
p
max + k − lT s ≤ 0 (30)

The third constraint delimits the interval of the parameters m, p, k
and r which is chosen between [0, 3]. The lower bound is set to 0
to ensure to have a positive windows width and the upper bound 
3 is chosen based on our experience. Then the overall optimization 
problem can be written as:

argmax
m,p,k,r∈R

⎛

⎝1/

N
∑

1

fmax
∑

fmin

∣

∣

∣

∣

S
m,p,k,r
x (t, f )

∣

∣

∣

∣

dtdf

⎞

⎠

Subject to: nT s f
r
max − k −m ≤ 0

m f
p
max + k − lT s ≤ 0

0 ≤m, p,k, r ≤ 3 (31)

This can be considered as nonlinear optimization problem with 
constraints. An active-set strategy is applied. The principle behind 
active-set algorithms states that if a minimizer on each working 
surface is found during each iteration within the defined active-set 
region and there is a decrease in the value of the objective function 
at each iteration then the algorithm terminates after finitely many 
iterations. So if there is a solution that satisfies the constraints 
within the given feasible region then the algorithm terminates. 
In [16] we have used Genetic Algorithm (GA) to resolve the op-
timization problem without constraints. However, by adding the 
respective constraints to ensure the width limits of the Gaussian 
window, the GA became very time consuming. The active-set was 
used as it requires the least computation time and it seems to give 
a very satisfied results as we will show in the results later.

3. Illustration and comparison on test synthetic signals

Firstly, we apply the proposed S-transform on synthetic signals 
and we compare its energy concentration with two main groups of 
time–frequency representations:

• The standard Stockwell transform and the main modified ver-
sions proposed in the literature by Sejdic et al. and Assous
et al. [9,14].

• The Short-time Fourier Transform (STFT) and the smoothed-
pseudo Wigner–Ville distribution (SPWVD).

We propose to compare with three classes of synthetic signals: 
signals with sinusoidal modulated components and crossing linear 
chirp components x1(t), signals with four short duration transients 
x2(t) and signals with fast frequency variation and crossing com-
ponents x3(t).

The synthetic signals can be given as:

x1(t) = cos(aπt − bπt2) + cos(4π sin( f πt) + 80πt) (32)

where the introduced parameters (a, b and f ) control the chirp 
rate and the frequency of the sinusoidal modulated component 
and they are chosen as follows: 80 ≤ a ≤ 200, 20 ≤ b ≤ 80 and 
1 ≤ f ≤ 10

x2 (t) = e−35π(t−t1)
2
cos ( f1πt) + e−35π(t−t2)

2
cos ( f1πt)

+ e−55π(t−t3)
2
cos ( f2πt) + e−45π(t−t3)

2
cos ( f3πt) (33)

where the introduced parameters (t1, t2, t3, f1, f2 and f3) control 
the time and frequency positions of the Gaussian modulated ker-
nels and they are chosen as follows: t2 = t1+α, t3 = t1+(t2−t1)/2
with 0.1 ≤ t1 ≤ 0.3 and 0.2 ≤ α ≤ 0.5 f2 = f1+β , f3 = f1−β with 
20 ≤ f1 ≤ 70 and 15 ≤ β ≤ 40

x3 (t) = cos (20π ln (at + 1)) + cos
(

bπt + cπt2
)

(34)

where the introduced parameters (a, b and c) control the chirp 
rates of the two crossing components and they are chosen as fol-
lows: 1 ≤ a ≤ 50, 1 ≤ b ≤ 100 and 1 ≤ c ≤ 200.

The introduced parameters in each signal are generated ran-
domly in the adequate intervals in order to generate 100 realiza-
tions of each class of signals (x1, x2, x3).

3.1. Comparison between different versions of Stockwell transform

As it is mentioned above, Assous et al. select empirically the 
value of m and k [14]. Fig. 2 shows the limitation of this ap-
proach compared the proposed one. The synthetic signal used in 
the paper of Assous et al. is illustrated in Fig. 2 in order to show 
clearly that the optimization phase is very helpful to adapt the 
Gaussian parameters to the analyzed signal, hence to increase the 
time–frequency resolution (CM = 0.0051 and CM = 0.0035, respec-
tively). We note here that in Fig. 2 the time resolution of the 
proposed method gives a little less time resolution than the As-
sous et al. method but much better frequency resolution. In the 
rest of this comparison section, and to be fare in the comparison, 
we will apply the same optimization methodology proposed in this 
paper to Assous’s ST method and this will be named “optimized 
Assous’s ST” method.

For the signal x1(t) (a = 100, b = 20 and f = 5) (Fig. 3) the 
proposed approach gives clearly the better time–frequency repre-
sentation. While the sinusoidal modulated component suffers from 
poor concentration in the standard ST overall the frequency band, 
Sejdic’s ST method gives a poor resolution for this component for 
low frequencies as for the optimized Assous’s ST.
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Fig. 2. Comparison between on the synthetic signal used in [14]: (a) Assous’s ST [14]; (b) Proposed ST.

Fig. 3. Time–Frequency representations of sinusoidal modulated component signal x1(t) (a = 100, b = 20 and f = 5): (a) Standard ST; (b) Sejdic’s ST; (c) Optimized Assous’s ST; 
(d) The proposed ST.

Fig. 4 shows a four duration transients signal example for x2(t)
(t1 = 0.3, t2 = 0.7, t3 = 0.5, f1 = 45, f2 = 75, f3 = 15), where 
the standard ST suffers from bad frequency resolution in middle 
and high frequencies and bad temporal resolution in low frequen-
cies. Sejdic’s ST and optimized Assous’s ST methods suffer also 
from bad temporal resolution for low frequencies. The proposed ST 
has a good time–frequency resolution overall the time–frequency 
plane.

For the cross-component signal example (Fig. 5) (a = 30, b = 40
and c = 150) the standard ST has a good resolution for the hyper-
bolic component since it follows the philosophy of the standard 
Gaussian window of the ST: a higher frequency resolution at lower 
frequencies and higher time resolution at higher frequencies. How-
ever, the resolution is decreased for the linear chirp component 
since the standard ST gives a poor frequency resolution for high 
frequencies. Sejdic’s ST method has a good resolution for high and 
middle frequencies but a poor resolution for low frequencies as 
in Fig. 4. The optimized Assous’s ST gives a better resolution for the 
hyperbolic component than Sejdic’s ST but a worse resolution for 
the linear chirp especially for the high frequencies. The proposed 
ST gives a good resolution overall the time–frequency plane. This 

Table 1

Shows the mean of the concentration energy measures (CM) calculated on 100 re-
alizations of randomly generated parameters for each signal class and for different
versions of ST.

CM Standard ST Sejdic’s ST Optimized Assous’s ST Proposed ST

x1(t) 0.0043 0.0045 0.0047 0.0050
x2(t) 0.0083 0.0086 0.0086 0.0092
x3(t) 0.0047 0.0051 0.0052 0.0056

example is used as demonstration to show that the proposed ST 
can deal with the problem of linear chirps. The generation of op-
timal parameters followed by the modified Gaussian window gives 
the proposed methodology the flexibility and the adaptability on 
the analyzed signal overall time–frequency plane. The concentra-
tion energy measures are calculated for 100 different parameters 
for each signal class and the different versions of ST are resumed 
in Table 1. The Kruskal–Wallis test is also applied on the obtained 
results of each method. A significant statistical differences are con-
firmed with a p-value < 0.05. Fig. 6 illustrates the box plot for 
overall concentration energy measures and for each class of sig-
nals (x1, x1 and x3).
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Fig. 4. Time–Frequency representations of four duration transients signal x2(t) (t1 = 0.3, t2 = 0.7, t3 = 0.5, f1 = 45, f2 = 75, f3 = 15): (a) Standard ST; (b) Sejdic’s ST; 
(c) Optimized Assous’s ST; (d) The proposed ST.

Fig. 5. Time–Frequency representations of cross-component signal x3(t) (a = 30, b = 40 and c = 150): (a) Standard ST; (b) Sejdic’s ST; (c) Optimized Assous’s ST; (d) The 
proposed ST.

3.1.1. Robustness against noise
To test the robustness of the proposed method on noisy sig-

nals, two levels of Gaussian noise are added (SNR = 5 dB and 0 dB) 
medium and high level of noise respectively. The proposed ST is 
applied on x2(t) (a = 30, b = 40 and c = 150) and x3(t) signals 
and the results are shown in Figs. 7 and 8.

For the four duration transients signal x2(t), the optimized As-
sou’s method and Sejdic’s ST still suffer from bad temporal res-
olution in low frequency (especially for medium level of noise
SNR = 5 dB). For high level of noise (SNR = 0 dB) it is always 
possible to distinguish the four transient components (Fig. 6.b 
and 6.c) but the influence of noise becomes serious. For the cross-
component signal x3(t), in the presence of high level of noise 

(SNR = 0 dB) the optimized Assou’s method fails to give pertinent 
results (Fig. 7.c). Its performance does not exceed much more the 
standard ST. For a medium level of noise (SNR = 5 dB), the opti-
mized Assou’s method gives a better resolution for the non-linear 
component than Sejdic’s ST (Fig. 7.b) in high frequency but worth 
resolution for the linear chirp.

The results given in Fig. 7.d and 8.d illustrate visually the im-
provement of the proposed methodology comparing to the other 
versions of ST.

3.1.2. Estimating the instantaneous frequency
In order to complete the discussion on the behavior of the pro-

posed ST in the presence of noise, the instantaneous frequency 
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Fig. 6. Boxplot of the concentration energy measures for the different ST methods: (a) x1(t); (b) x2(t); (c) x3(t).

is estimated for seven levels of noise (0–30 dB) where 1000 re-
alizations are used for each level and the mean square error 
(MSE) between the analytic equation of the instantaneous fre-
quency (IF) and the obtained IF from time–frequency representa-
tion is compared between the different ST methods. A linear chirp 
cos(20πt+150t2) is used in this test. The estimation of the instan-
taneous frequency is performed based on the peaks values of the 
S-matrix and the obtained MSE results are resumed in Fig. 9. The 
results show clearly the advantageous of the proposed method-
ology to estimate the instantaneous frequency in the presence of 
noise comparing the other methods. The proposed method reached 
the lowest MSE in all cases. The standard ST gives best estima-
tion than Sejdic’s ST and optimized Assous’s ST in the case of 
low and middle levels of noise. However, for high level of noise 
(SNR = 0 dB) the MSE of Sejdic’s ST and optimized Assous’s ST is 
lower than the standards ST. Fig. 10 illustrates an example of the 
estimated IF for each method compared with the analytical expres-
sion.

The main reason of the high performance of the proposed ST 
is the flexibility of the proposed window. In the presence of noise 
the transform is able to adapt to the noisy signal and provide high 
energy concentration and high performance in the estimation of 
the IF. The active-set algorithm generate correctly the adequate 
parameters even if the signal is contaminated with high level of 
noise.

3.2. Comparison between different time–frequency representations

The SPWVD gives a bad time–frequency resolution for the si-
nusoidal modulated component in the example of x1(t) (a = 150, 
b = 20 and f = 5) (Fig. 11). However, for the linear chirp compo-
nent the SPWVD gives the better resolution. The proposed ST gives 
a good resolution for the two components (Fig. 11.c). For the x2(t)
example (Fig. 12). However for the signal x3(t) in the multicom-
ponent zone (Fig. 13) the transform still suffers from interference 
terms and from poor resolution for the non-linear chirp compo-

Table 2

Shows the concentration energy measures (CM) for different Time–Frequency rep-
resentations applied on synthetic signals.

CM STFT SPWVD Proposed ST

x1(t) 0.0039 0.0050 0.0050
x2(t) 0.0053 0.0095 0.0079
x3(t) 0.0039 0.0051 0.0050

Table 3

Shows the corresponding computational time (in second) of the different ST meth-
ods for each synthetic signal (150 frequency voices ∗ 1000 samples number for the
3 different signals).

Signal Standard Sej. ST Aso. ST Proposed

x1(t) 0.3 1.9 0.83 2.1
x2(t) 0.3 1.9 0.9 1.87
x3(t) 0.3 1.9 1.1 1.78

nent at high frequencies. The proposed S-transform in this paper 
gives a good compromise overall the time frequency plane. We 
note here that the concentration energy measure (CM) is a quan-
titative measure and not a qualitative one. This can explain the 
higher CM for SPWVD method in the case of signal x3(t) while it’s 
visually clear from Fig. 13 that the quality of the time–frequency 
representation provided by SPWVD is lower than the proposed ST 
(Fig. 13.c). The concentration energy results for each method and 
for one example of each signal are resumed in Table 2.

3.3. Computational time

Table 3 shows the computational time (in second) of the pro-
posed ST and other modified ST for each synthetic signal. The 
proposed method does not acquire a huge computational time. 
As example, to compute an example of the synthetic signal x2(t)
(150 frequency voices ∗ 1000 samples number) on MATLAB® and 
a standard PC configurations the computing time is around 1 sec-
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Fig. 7. Time–Frequency representations of four duration transients signal x2(t) (t1 = 0.2, t2 = 0.8, t3 = 0.5, f1 = 100, f2 = 160, f3 = 40) with SNR 5 dB (left column) and 
SNR = 0 dB (right column): (a) Standard ST; (b) Sejdic’s ST; (c) Optimized Assous’s ST; (d) The proposed ST.

ond. There are no significant differences in the computational com-
plexity between the proposed scheme and the others optimization 
schemes proposed in the literature. The proposed scheme takes a 
similar computational time as Sejdic’s ST method and little more 
than the optimized Assous’s method. Indeed, for real time appli-
cations the computing time can be much more enhanced by im-
plementing the proposed method on DSP or FPGA platforms for 
example.

4. Application on real non-stationary signals: heart sounds

The analysis of the cardiac sounds solely based on the human 
ear is limited by the experience of the clinician for a reliable di-

agnosis of cardiac pathologies and to obtain all the qualitative 
and quantitative information about cardiac activity. Proposing an 
objective signal processing methods able to extract relevant in-
formation from heart sounds is a great challenge for specialists 
and auto-diagnosis fields. The electronic stethoscope is capable 
to register and optimize the quality of the acoustic heart signal, 
completed by the PhonoCardioGraphic (PCG) presentation of the 
auscultation signal. The localization of the first and the second 
heart sounds (S1 and S2), the number of their internal compo-
nents, their frequential content, etc. can be considered as pertinent 
information very useful for patricians and for classification sys-
tems [6]. The application proposed in this paper consists to detect 
splits in heart sounds. The split within the S1 and the S2 heart 
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Fig. 8. Time–Frequency representations of noisy cross-component signal x3(t) (a = 30, b = 40 and c = 150) with SNR 5 dB (left column) and SNR = 0 dB (right column): 
(a) Standard ST; (b) Sejdic’s ST; (c) Optimized Assous’s ST; (d) The proposed ST.

sounds emerged as an indicator of several valvular diseases [20]. 
In addition, the PCG signal is a powerful tool for assessing the pul-
monary artery pressure. Xu et al. found out that the pulmonary 
artery pressure is correlated with the split in S2 [21]. The modi-

fied S-transform proposed in this paper is being applied to the PCG 
signal to detect split and calculate its duration. The optimization 
of the time–frequency representation of heart sounds can lead to 
more objective and reliable methods and diagnostics. The proposed 
algorithm to detect splits in heart sounds can be summarized as 
follows:

• First, the heart sound is segmented by using the proposed al-
gorithm in [6] to detect the first and the second heart sounds.

• We calculate the optimized S-transform Sm,p,k,r
x for each seg-

mented sound.
• Then, we calculate the envelope of the segmented sound xi

based on the optimized S-transform as follows:

Env(xi) = −
+∞
∫

−∞

∣

∣

∣
S
m,p,k,r
x (τ , f )

∣

∣

∣

2
log(

∣

∣

∣
S
m,p,k,r
x (τ , f )

∣

∣

∣

2
)df

(35)

• Finally, we apply an algorithm to detect the local extrema of
the extracted envelope. Normally, a heart sound with split is
supposed to have two local extrema in its extracted envelope.
The duration of split is calculated as the distance between the
two detected extrema.
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Fig. 14 shows the time–frequency representations of a real 
heart sound (S1) acquired with a Littmann electronic stethoscope 
with a clear split. The STFT does not separate the two components 
due to its poor time–frequency resolution. However, the SPWVD 
and the proposed ST show a better performances. Fig. 15 shows 
the envelope calculated by equation (35) and applied on each 
transform. It favorites the middle amplitudes and attenuate the 
high and low amplitudes which can help to separate the two com-

ponents in noisy environment.

Fig. 9. MSE for the instantaneous frequency for linear chirp with different levels of
noise (from 0 to 30 dB).

5. Conclusion

A new methodology is presented in this paper to enhance the
time–frequency resolution of the Stockwell transform. The method-
ology is based on a new hybrid Gaussian window with several 
parameters to control the width. For the first time, an optimiza-
tion process based on active-set method is applied to select prop-
erly the window’s parameters. This methodology enhances signif-
icantly the time–frequency resolution of the Stockwell transform 
and for the different existing modified S-transform in the litera-
ture. These results are confirmed in the presence of Gaussian ad-
ditive noise and in the estimation of instantaneous frequency from 
time–frequency plane. Moreover, the proposed method showed a 
better resolution than some classic time–frequency methods as the 
STFT and the SPWVD (especially in multicomponent signals with 
non-linear chirp and sinusoidal modulated components). The per-
formance of the proposed S-transform is confirmed on real non-
stationary signals through an example of split detection in heart 
sounds. The method can be useful for other applications related to 
non-stationary signals and the optimized parameters m, p, k and r
can be used as features for classification schemes.

6. Annex

We provide the MATLAB code of the main functions involved in
the proposed Stockwell transform

function y=Proposed_ST(x,fe,fmax,params)

M=length(x);

if mod(M,2)~=0

t = fliplr([1:floor(M/2) -floor(M/2):0])/M;

else

t = fliplr([1:floor(M/2) -floor(M/2)+1:0])/M;

end

Fig. 10. An example on the estimation of the instantaneous frequency for linear chirp with different levels of noise (without additive noise, SNR = 5 dB and SNR = 0 dB)
compared with the analytical expression of the IF for: (a) Standard ST; (b) Sejdic’s ST; (c) Optimized Assous’s ST; (d) The proposed ST.

10



Fig. 11. Time–Frequency representations of signal x1(t) (a = 150, b = 20 and f = 5): (a) STFT; (b) SPWVD; (c) The proposed ST.

Fig. 12. Time–Frequency representations of four duration transients signal x2(t) (t1 = 0.2, t2 = 0.8, t3 = 0.5, f1 = 100, f2 = 160, f3 = 40): (a) STFT; (b) SPWVD; (c) The 
proposed ST.

Fig. 13. Time–Frequency representations of cross-component signal x3(t) (a = 30, b = 40 and c = 150): (a) STFT; (b) SPWVD; (c) The proposed ST.
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Fig. 14. Temporal real heart sound S1 (top) and its time–frequency representations: (a) The STFT; (b) The SPWVD; (d) The proposed ST.

Fig. 15. The envelope given in equation 43 calculated on the example of Fig. 8
for: (solid line) the proposed ST; (dashed dotted line) the STFT; (dashed line) the
SPWVD.

%The obtained parameters of the proposed Gaussian window

r=params(1); m=params(2); p=params(3); k=params(4);

Fx=fft(x); XF = [Fx Fx];

%Calculate the number of steps to compute the S_matrix

%fe: sampling frequency in Hz

%fmax: maximum frequency to calculate the S_transform

Pas=(fmax*M/fe);

%tic

for f =1:Pas %loop to compute the S matrix

%Compute the proposed window

wind=((f^r)/(sqrt(2*pi)*(m*(f)^(p)+k))) ...

*exp(-0.5*(1/((m*(f)^(p)+k).^2))*(f^(2*r))*t.^2);

wind = wind/(sum(wind)); %normalization

W = fft(wind);

S_matrix(f,:) = ifft(XF(f+1:f+M).*W);

end

%toc

%Normalize the S_matrix

N_S_matrix = S_matrix/sqrt(sum(sum(S_matrix.

*conj(S_matrix))));

%Compute the Concentration Measure

CM_proposed=1/sum(sum(abs(N_S_matrix)));

y=S_matrix;

}

function [r,m,p,k]=optimST

%optimST is the function that performs the active-set

%based algorithm to generate the optimized parameters

ObjectiveFunction = @(v) Fitness_Function(v,x,Fs,fmax);

nvars =4; % Number of variables

LB = [0 0 0 0]; % Lower bound

UB = [3 3 3 3]; % Upper bound

x0=[1 1 1 1]; %start point

ConstraintFunction = @simple_constraint;

options = optimoptions(@fmincon,’Algorithm’,’Active-set’,

’Display’,’off’);

[x,fval]=fmincon(ObjectiveFunction,x0,[],[],[],...

[],LB,UB,ConstraintFunction,options)

r=x(1); m=x(2); p=x(3); k=x(4);

y=[r,m,p,k];

end

function y=Fitness_Function (v,x,fe,fmax)

A=v(1); m=v(2); p=v(3); k=v(4);

X1=ST_Proposed(x,fe,1,fmax,[A,m,p,k]);

X1p = X1/sqrt(sum(sum(X1.*conj(X1))));

CM=1/sum(sum(abs(X1p)));

y=-CM;

end

function [c, ceq] = simple_constraint(x)

fmax=100; Ts=1/1000;
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c = [10*Ts*(fmax)^x(1) - x(4) - x(2);

x(2)*(fmax)^x(3)-0.1+x(4)];

ceq = [];
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