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ABSTRACT
The paper considers the use of caching in mobile access net-
works and seeks to evaluate the optimal memory for band-
width tradeoff at base station (BS), packet gateway (PGW)
and a possible intermediate mobile cloud node (MCN). For-
mulas are derived for the hit rate under time varying popu-
larity and for a novel cache insertion policy incorporating a
pre-filter. The analytical model is applied first to demon-
strate that reactive caching is not efficient for nodes with
low demand due to the negative impact of content churn.
This means BS or MCN caches must be managed proactively
with popular content items pre-fetched under some central-
ized control. Quantifying the tradeoff at each level leads
us to conclude that limited caching at BS and MCN levels
brings significant savings while to store the vast majority of
the content catalogue at the Internet edge, at the PGW or in
some higher level shared facility, is clearly cost effective.

1. INTRODUCTION
Lively debate on the optimal use of caching in infor-

mation centric networks is still ongoing. A major out-
standing issue is whether caching should be limited to
the edge of the Internet or whether the network should
be designed to make optimal use of content stores in-
corporated in routers distributed throughout the core.
Based on our own prior work, as well as arguments pub-
lished in the literature, we tend to believe edge caching
is more cost effective and has potential to significantly
simplify the network architecture. If this belief is cor-
rect, it still remains to more precisely understand where
and how caching should be performed within the access
infrastructure beyond the edge. Our objective in this
paper is to evaluate the performance and cost effective-
ness of caching solutions in a mobile access network.

We consider the network depicted in Figure 1 where
base stations (BS) are connected to a packet gateway
(PGW) at the Internet edge via a so-called mobile cloud
node (MCN) and all three levels might host a cache. In
current 4G networks the MCN is absent and BSs are
connected directly to the PGW via IP tunnels. The
MCN is envisaged for 5G mobile access and is intended
to fulfill diverse functions including radio link control

and offloading of mobile device applications. We sup-
pose the MCN would also perform caching for and in
place of its connected BSs. The number of BSs con-
nected to a PGW is around 1000 while the MCN would
serve up to 100 BSs.

Figure 1: Mobile access network: connects base
stations (BS) to Internet via packet gateway
(PGW) and optional mobile cloud node (MCN).

We consider the placement of caches from the point
of view of a network operator seeking to minimize in-
vestment by realizing an optimal tradeoff of cache mem-
ory for network bandwidth. We assume ongoing tussles
between operators and content providers have been re-
solved so that all stored content can indeed be cached.
This implies the network offers content providers the
necessary control over content delivery, for billing, ac-
counting or ad placement, say, so that there is no im-
pediment to delivering a content item from a remote
cache if available.

Cache placement has previously been considered as
an optimization problem where a fixed volume of mem-
ory, or “cache budget”, must be distributed over a given
network topology, typically in order to minimize the av-
erage download path length. Fayazbakhsh et al. [5]
concluded in this way that edge caching was preferable
while Rossi and Rossini [12] later showed that the con-
clusions of [5] would have changed had the authors con-
sidered more efficient cache insertion and request for-
warding policies. Dabirmoghaddam et al. [3] showed
that the notion of cache budget is in fact flawed since,
obviously, edge caching becomes progressively more at-
tractive as the budget increases while there is no obvious
way to determine what the budget should be. In eval-
uating the memory for bandwidth tradeoff, we do not
have to postulate a cache budget but rather to directly

1



weigh the costs of caching against the resulting savings
in network transport infrastructure.

At any given network node, the optimal cache size
will be that which minimizes, costb(D)+costm(C), where
D is busy period demand upstream of the cache in bit/s,
C is cache size and costb and costm are cost functions
for bandwidth and caching, respectively. Demand D de-
termines required infrastructure investment. It is pro-
portional to the cache miss rate so that the tradeoff
evaluation critically depends on this or, equivalently,
on the hit rate h(C). Much recent research has clar-
ified cache hit rate performance under stationary de-
mand, i.e., when the catalogue of content items is fixed
and their individual popularities do not change. How-
ever, at points low in the access network, like the BS or
MCN, where demand is relatively light, it is essential
to account for time varying popularity as content churn
then becomes the major source of cache misses.

We evaluate tradeoffs assuming cache performance is
ideal in the sense that it stores the currently most pop-
ular items that fit into the cache. It is known that this
ideal can be attained under stationary demand by ap-
plying a highly selective insertion policy where items
are only added to the cache if they have been deter-
mined, by a history of previous requests, to have high
popularity. The response to changing popularities of
such policies is slow, however, and tends to further de-
grade cache performance in nodes with low demand.
When reactive caching fails, it is necessary to envisage
proactive caching. This means some external entity de-
termines popularities in real time and ensures remote
caches contain the most popular items by pre-fetching.
Pre-fetching requires an appropriate architectural solu-
tion allowing the entity in question to infer popularities,
typically by monitoring demand from a large user base.

Our first contribution in Section 2 is to derive ac-
curate analytical hit rate approximations for an LRU
cache applying a novel selective insertion policy. Hit
rates can be evaluated under stationary or time vary-
ing popularity for any cache size. These formulas are
then used in Section 3 to determine whether reactive
or proactive caching should be employed at each of the
considered network levels. We discuss the architectural
implications of the need to perform pre-fetching when
reactive caching is not viable. Lastly, in Section 4, we
evaluate the cost tradeoff. We assume the BS would
have a fixed-size cache of limited complexity while the
PGW and MCN have a modular design, like a data
center, allowing a wide range of cache sizes.

2. CACHE HIT RATES
We first consider cache performance under stationary

demand, applying the independent reference model, be-
fore evaluating the impact of changes in popularity over
time. Notation used in the following is summarized in

N catalogue size
qi popularity of item i,

∑
1≤i≤N qi = 1

α Zipf law exponent
C cache size
c = C/N normalized cache size
K pre-filter size
tC cache characteristic time
h overall hit rate
hi hit rate for item i

h
(n)
i hit rate of nth requests for item i
τi mean lifetime of item i
pin proba. n requests in item i lifetime
ηi proba. current request for item i is not last
lk mean lifetime of items in class k
fk fraction of items in class k
σ mean requests per item per day
kb monthly per Mb/s bandwidth cost
kc monthly per GB cache cost
∆ overall cost
δ(c) normalized cost
Γ ratio of zero cache cost to full cache cost

Table 1: Summary of notation..

Table 1.

2.1 Stationary demand
Assume the content catalogue contains N items of

equal size and that demand for item i is proportional to
qi independently of time. This stationarity assumption
is reasonable if the qi are popularities in a relatively
short period like 1 day. We normalize the qi such that∑N

1 qi = 1. The “items” might typically be chunks of
videos or other data objects and are assumed to have
the same size.

An ideal cache.
An ideal cache of size C would store just the C most

popular items. The hit rate h(C) is then simply the
ratio

∑C
1 qi/

∑N
1 qi. For Zipf(α) popularity, qi ∝ 1/iα,

with α < 1 and N large, we have h(C) ≈ (C/N)1−α.
Ideal cache performance can be realized if item pop-

ularities are accurately determined (e.g., by a server
aware of demand from a large population of users and
able to anticipate changes in popularity) and the cache
content is proactively updated by pre-fetching. An al-
ternative is to augment a reactive caching policy like
LRU with a pre-filter, as discussed below.

LRU cache.
The hit rate of an LRU cache can be accurately eval-

uated by the Che approximation [6]. We have h(C) =∑N
1 qi(1−e−qitC ) where the characteristic time tC sat-

isfies C =
∑
i(1 − e−qitC ). The characteristic time is
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the time to receive requests for C distinct items. Fig-
ure 2 shows that the performance of LRU can be far
from ideal, especially for a cache that has capacity for
only a small fraction of the catalogue.

Cache with pre-filter.
Several authors have observed that the performance

of an LRU cache can be improved by equipping it with
what we term a pre-filter. We illustrate this through
the following particular filter design. The identities of
the last K items to be requested are recorded in a filter
list. If a request is a hit (the item is present in the LRU
cache), it is moved to the front of the LRU as usual. If
the item is not in the LRU but is in the filter list, it is
fetched and placed at the front of the LRU displacing
the item at the end. If the item is not in either the LRU
or the filter list, it is fetched but not cached.

To evaluate the hit rate, we adapt an approximation
proposed by Martina et al. [9] for another type of pre-
filter. We assume the states of the pre-filter and the
LRU are statistically independent and consider h(n)

i , the
probability the nth request for item i is a hit. Condi-
tioning on the fate of the nth request, we can write,

h
(n+1)
i =

(
1− e−qitC

) (
h

(n)
i + (1− h(n)

i )(1− (1− qi)K)
)
,

(1)
where tC is a characteristic time, to be determined. The
first term, (1− e−qitC ), is the probability the (n+ 1)th

request arrives within tC of the nth while the second
term is the probability i was already in the LRU fol-
lowing the nth request. Under the present stationarity
assumption, we have h(n+1)

i = h
(n)
i = hi and, from (1),

hi =
(1− e−qitC )(1− (1− qi)K)
1− (1− e−qitC )(1− qi)K

.

Equating
∑N

1 hi to C, as in the Che approximation for
LRU, gives the equation for tC and consequently all
the individual hit rates. The overall hit rate is h(C) =∑N

1 qihi.
Figure 2 shows the hit rate obtained with a pre-filter

of 100 places in comparison to ideal and LRU caching.
Crosses are hit rates derived by simulation and illus-
trate the high accuracy of the approximation based on
the independence assumption. The act of filtering pref-
erentially selects the most popular items for insertion so
that the cache has close to ideal performance. Perfor-
mance could be further improved by reducing the size
of the filter but this also reduces the reactivity of the
cache to changing popularities, as discussed next.

2.2 Time varying popularities
We propose a simple model, following Wolman et al.

[15], to account for the fact that content items have fi-
nite lifetimes. We suppose that the catalogue remains
fixed at N and that at any instant there is an item i
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Figure 2: Hit rates with pre-filter of 100 places
against cache size: N = 104 items with Zipf(.8)
popularity; crosses are simulation results.

with popularity qi for 1 ≤ i ≤ N . However, the item
labelled i can change between requests as the current
item ends its lifetime and a new one begins. This mod-
elling device allows us to retain the notion of popularity
law while accounting for the fact that content churn can
significantly reduce the hit rate.

LRU cache.
Let the mean lifetime of items labelled i be τi. The

rate of misses for such items in an unlimited capacity
cache is then 1/(1 + qiτi) (i.e., 1 in an average number
of requests of 1 + qiτi). For a cache of capacity C < N ,
the first request for a new item i is necessarily a miss
and the LRU miss probability for any request after the
first is e−qitC , as for the IRM, where tC is the Che
characteristic time. The overall hit rate is thus

hi =
(

1− 1
1 + qiτi

)(
1− e−qitC

)
. (2)

To compute tC , note that the cache may contain more
than one version of item i. To simplify we exclude this
possibility by assuming the old version is overwritten by
the new. We then still have the identity C =

∑
hi to

compute tC . However, simulations used to validate the
approximation do maintain copies of old versions until
they are ejected by the LRU policy.

Note that, in the present case, the Che equation does
not necessarily have a solution when the τi are small.
This is because content churn is too rapid for their ever
to be a finite interval in which there are requests for C
or more distinct items. In this case we must set tC to
∞ in (2).

Cache with pre-filter.
Formula (1) constitutes a recursion for calculating the

hit rate of the nth request for item i after a renewal, for
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class k interval lk fk
1 0-2 1.1 .005
2 2-5 3.3 .008
3 5-8 6.4 .005
4 8-13 10.6 .008
5 > 13 365 .974

Table 2: Lifetime in days of most popular items,
deduced from Traverso et al. : lk is the class
mean lifetime and fk the fraction of items in the
class.

n ≥ 3 with h
(1)
i = h

(2)
i = 0.The mean hit rate is

hi =
h

(1)
i + h

(2)
i (1− pi1) + h

(3)
i (1− pi1 − pi2) + . . .

1 + (1− pi1) + (1− pi1 − pi2) + . . .

where pin is the probability the number of requests be-
tween renewals is n, for n ≥ 1.

To proceed, we assume the number of requests has
a geometric distribution, pin = (1 − ηi)ηn−1

i with ηi =
qiτi/(1 + qiτi). The expression for hi then simplifies to
hi = (1 − ηi)

∑
n η

n−1
i h

(n)
i . Multiplying both sides of

(1) by ηni and summing leads eventually to an equation
for hi with solution,

hi =
η2
i (1− e−qitC )

(
1− (1− qi)K

)
1− ηi (1− e−qitC ) (1− qi)K

.

As for the LRU cache, we determine tC from the
equation

∑N
1 hi = C, letting tC → ∞ when there is

no solution.

Lifetimes.
Traverso et al. have derived some lifetime statistics

from trace data [14, Table 2]. The authors give the frac-
tions of items having a lifetime in five intervals: 0 to 2
days, 2 to 5, 5 to 8, 8 to 13, more than 13. They also
observe that lifetimes cannot be measured for the 85%
most unpopular items with fewer than 10 requests in
the entire trace. Table 2 consolidates the results from
[14], grouping in class 5 all items with lifetime > 13
days or less than 10 requests in the entire trace. Some-
what arbitrarily in the absence of data, we suppose the
mean lifetime of these items is one year. We discuss the
impact of divergence from this assumed lifetime distri-
bution below.

The average item popularity in the classes decreases
with increasing mean lifetime. In our evaluations we
assume the items in class j are in fact all more popular
than the items in class k when j < k. While these data
are clearly very rough, they do allow us to appreciate
the significant impact of time locality on cache perfor-
mance.
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Figure 3: Hit rate against normalized demand σ:
analytical results for a cache of size 1000 and an
unlimited cache for LRU and LRU+pre-filter of
100; simulation results are shown as crosses for
C = 1000; N = 104 items with Zipf(.8) popularity.

Numerical results.
In the formulas, lifetimes τi are normalized with re-

spect to the overall request arrival rate since we have∑
qi = 1. In Figure 3 we plot the overall hit rate

against overall demand σ expressed as the mean num-
ber of requests per item per day. The corresponding
mean lifetimes are then τi = σNlk, for

∑
j<k fjN <

i ≤
∑
j≤k fjN and k ≤ 5. We choose to normalize with

respect to the catalogue size since, for Zipf(α) popu-
larity with α < 1, hit rates h(σ,N) tend to a limit as
N →∞ (with filter size K increasing proportionally).

Figure 3 plots hit rates against σ for an LRU cache
and for a cache equipped with a pre-filter of size 100.
The catalogue size is 104 and popularity is Zipf(.8).
Simulation results for C = 1000, derived without the as-
sumption that an old version of item i is removed when
a new version is inserted, are shown as crosses and con-
firm the accuracy of the formulas. Lifetimes in the sim-
ulations have geometric distributions with means given
in Table 2.

The depicted results demonstrate that, though the
pre-filter brings close to ideal performance for station-
ary demand (i.e., for large σ), performance at moderate
demand is worse than LRU. Neither caching strategy is
effective when demand is low. The difference between
the two policies for an unlimited cache is due to the
fact that the pre-filter imposes a miss for the first two
requests for a new item whereas LRU imposes only one
miss.

The lifetime data constitute the best guess we have
but are clearly imprecise. We have therefore exam-
ined the impact of deviations from our assumptions.
As previously noted, as N increases, the hit rates as
a function of σ tend to a limit. The curves in this
limit are slightly above those depicted in the figure.
Increasing all lifetimes by a common factor gives the
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same curves translated horizontally by the same factor.
Changing the lifetime of class 5 from 1 year to 6 months
or 2 years, say, shifts the lower part of the curves by a
factor of 2 to the right or the left, respectively with-
out modifying the top that is mainly determined by
classes 1 to 4. Slightly modifying the lifetimes of the
latter (e.g., lifetimes l = {10.6, 6.4, 3.3, 1.1} instead of
{1.1, 3.3, 6.4, 10.4}) has only a small impact on com-
puted hit rates.

3. DEMAND AND CACHING POLICIES
Depending on the volume and characteristics of de-

mand it may or may not make sense to apply a reactive
caching policy like LRU or LRU with pre-filter (cf Sec.
2). If demand is too low, we need to envisage a proac-
tive pre-fetching policy where the most popular items
are determined externally. Note that cache performance
has been shown to be largely independent of chunk size
and we therefore choose to express catalogue size as a
volume in bytes.

3.1 Traffic mix
For illustration purposes, we consider two types of

content with very different catalogue sizes, 1 TB and 1
PB, respectively. The first might represent VoD where
the number of titles available in the US is currently
around 104 and mobile compatible rates limit the mean
byte volume per object to around 100 MB. The second
1 PB catalogue corresponds to all other content. This
is a rough order of magnitude estimate accounting for
the data volume represented by applications like user-
generated video content, social networking, file sharing
and the web.

In traffic statistics published by Sandvine [13], 95%
of mobile access downstream traffic in North America
is content retrieval with VoD applications counting for
some 20% of this. The VoD proportion has an increas-
ing trend. In fixed networks the VoD proportion already
attains 60%.

3.2 Popularity laws
For the sake of simplicity and reproducibility we choose

to model popularity for both catalogues using a Zipf law
with exponent 0.8. This value is typical of what has
been observed for the main part of the popularity law
(e.g., [7, 11]). The Zipf law does not accurately model
the tail of the law, however, and care must be taken in
interpreting the assumed catalogue sizes.

The BitTorrent popularity data described in [11] re-
veal a significant tail where popularity decreases much
faster than Zipf(.8). The observed torrent catalogue
was of 1.6 PB with 1.5 PB in the tail counting for 31%
of requests. To model this law by a Zipf(.8) having the
same weight of requests in the tail, and therefore the
same ideal cache hit rates for capacities up to the start

of the tail, the catalogue size should be limited to only
500 TB.

The above discussion highlights a deficit in our un-
derstanding of popularity, despite numerous published
measurements. The common approach of trace analysis
appears unable to correctly determine the behaviour of
the tail of the law: the trace must typically be very long
to observe any requests for the least popular items; on
the other hand, we know that popularities can change
quite rapidly and can only be measured reliably over a
relatively short period.
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Figure 4: Popularity laws for a composition of 1
TB catalogue, representing VoD, and 1 PB cat-
alogue, representing all other content; both cat-
alogues have Zipf(.8) popularity and the relative
traffic volumes are 20:80 and 80:20, respectively.

We consider the 1 TB and 1 PB catalogues individ-
ually to evaluate the impact on performance and cost
effectiveness of what might be considered two extremes.
We also combine the catalogues with traffic proportions
20:80 and 80:20, respectively. The resulting popularity
laws are depicted in Figure 4. From traffic data reported
in Section 3.1, the 20:80 combination is most plausible.

Time varying popularities.
Figure 3 shows the impact on hit rates of time varying

popularities for individual Zipf(.8) catalogues. Figure 5
shows hit rates for an unlimited cache without pre-filter
as a function of normalized demand for 100%, 80%, 20%
and 0% VoD. The lifetime distribution of Table 2 is
applied to each catalogue separately.

Demand σ is normalized with respect to the overall
catalogue of 1.001 PB, even when we assume the VoD
proportion is 100%. The difference between hit rate
plots for 0% and 100% VoD corresponds therefore to a
translation by a factor of 1000. These two plots consti-
tute a reference to understand the impact of the mix.
When VoD counts for only 20% of demand, the perfor-
mance of reactive caching is close to that of a single 1
PB catalogue. When VoD represents 80% of demand,
the hit rate first behaves like the 100% VoD plot but
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Figure 5: Hit rate against normalized demand σ
when content is from two catalogues, a 1 TB cat-
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differs for the largest hit rates when the tail of the 1 PB
catalogue popularity law predominates.

3.3 Traffic volumes
Based on traffic records from a mobile operator, we

consider two base station demand scenarios:

• “current demand” with 40 Mb/s busy hour content
traffic and 144 GB daily download (8 times the
busy hour volume),

• “future demand” with 240 Mb/s busy hour and
864 TB per day, accounting for a possible future
sixfold capacity extension.

PGW and MCN concentrate the traffic of 1000 and
100 BS, respectively, and are supposed to have propor-
tional demand with the same popularity laws.

3.4 Caching policies
We suppose the objective is to realize ideal cache per-

formance, either by using a pre-filter cache policy or by
proactively filling caches with the most popular items
as determined by some external analysis. We discuss
which of these policies is viable at each of the consid-
ered cache locations.

Base stations.
Even for the most optimistic scenario of 240 Mb/s

demand for 1 TB of content (i.e., 100% VoD), the num-
ber of requests per day per item (σ = 864 GB / 1 TB)
is less than 1 and, according to the lifetimes assumed
for Figure 3, the considered reactive caching policies
(either LRU or LRU with pre-filter) are not completely
efficient. They are even less so for smaller demand (e.g.,
40 Mb/s) or a bigger catalogue (e.g., 1 PB). It would
be far preferable therefore to perform pre-fetching to
populate the cache.

Pre-fetching would need to be orchestrated by a server
that is aware of current demand from a much larger pop-
ulation of users than that of a single BS. This server
would need to be made aware of all user requests, even
those that result in a hit at the BS. It might be located
at the PGW or at an upstream node concentrating de-
mand from multiple access networks. Note that to in-
form such a centralized entity of user requests would
also facilitate necessary content provider control over
delivery of its particular content items (for billing, ac-
counting, ad placement, etc.), as in current CDN solu-
tions

This server would perform, so far unspecified, data
analytics to determine the most popular items for each
BS accounting for the nature of its particular popula-
tion of users. Popularity might for instance be deter-
mined using the pre-filter, as long as demand σ is high
enough, with changes to local BS content performed
incrementally as necessary.

Packet gateway.
The PGW may or may not concentrate sufficient traf-

fic to make reactive caching efficient. We find σ = 144
with the current demand scenario and a catalogue of 1
TB (meaning the pre-filter gives close to ideal hit rates)
but σ = .144 only, if the catalogue size is 1 PB.

If the latter case applies one would need proactive
pre-fetching of the most popular items, even at this
highest level of concentration. This is clearly problem-
atic for a mobile provider whose knowledge of demand
is limited to that of its own limited population of users.
The provider would typically need to be informed of de-
mand from a much larger population of users than its
own.

Rather than creating a cache in the PGW, one can
thus envisage the creation of a large-scale content store
shared by multiple mobile and fixed operators and phys-
ically located at the same point of presence at the edge
of the Internet. This content store would take the form
of a data center with the data analytics capacity needed
both to perform content provider functions and to de-
termine the items that need to be pre-fetched to BS
caches.

It is significant that this calls for a separation of func-
tions between the mobile access transport infrastruc-
ture provider on one hand and a large-scale content
store provider on the other. The former would share
the cost of the latter, typically by some usage-based
pricing scheme.

Mobile cloud node.
The envisaged mobile cloud node plays the role of a

BS with 100 times more demand. This would make re-
active caching viable for the current and future demand
scenario and a catalogue of 1 TB when σ = 14.4 and
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86.4, respectively. Pre-fetching would still be necessary,
however, for the larger catalogue of 1 PB since σ is then
1000 times smaller.

3.5 Discussion
The above results and observations may have sig-

nificant impact on the ICN architecture and business
model.

Our conclusion that pre-fetching is necessary to en-
sure efficient BS caching implies a central server (at the
PGW or higher) would need to be made aware of all re-
quests, including BS hits, to be able to track dynamic
popularity. This is likely necessary in any case to pro-
vide content providers adequate control over delivery
of their content. An MCN would improve caching ef-
ficiency but still require pre-fetching if our assumption
that the catalogue attains 1 PB and not 1 TB is correct.

For the PGW, reactive caching is still only just effec-
tive for the larger catalogue. It may be preferable in this
case to create a content store that federates the con-
tent demand from multiple access network providers.
This would lead to a separation of functions between
the content store operator and the access network op-
erators. The former would likely host content as well
as provider control logic (for accounting, ad placement,
etc.).

4. MEMORY BANDWIDTH TRADEOFFS
Whether it is profitable to install a cache and what

size it should have depends on the realized memory for
bandwidth tradeoff. In this section we seek to evaluate
this tradeoff at the BS, PGW and MCN locations as-
suming that caching is ideal thanks either to an efficient
reactive cache policy or to pre-fetching.

4.1 Base stations
We propose rough cost estimates and evaluate the

tradeoff realized under current and future BS demand
scenarios.

Cost of storage.
We suppose base stations would either be equipped

with a dedicated cache of some given capacity or have
no cache. BS cache capacity is limited for cost and
complexity reasons and, for the present evaluation, we
suppose this capacity is 1 TB. Such a cache could be
realized using a solid state disk with 1 TB hard drives
currently priced at around $400. A DRAM cache would
cost roughly 20 times more.

To the cost of the hard drive must be added that of
its server logic yielding a total caching cost of perhaps
$1000. Note that cost trends tracked over many years
show the price of memory is decreasing by around 40%
each year1.
1J. C. McCallum: http://www.jcmit.com/mem2014.htm

rate charge rate charge
(Mb/s) ($) (Mb/s) ($)

10 500 100 850
20 575 200 1025
50 750 300 1220

Table 3: Monthly backhaul connection charges

Cost of bandwidth.
We assume the backhaul is sized to realize a busy

hour utilization of 80%, i.e., required connection band-
widths are 50 and 300 Mb/s for the current and future
demand scenarios, respectively. The mobile operator
typically pays a fixed network operator for backhaul
capacity. We suppose a monthly charge per Mb/s that
depends on demand, as given in Table 3. The table is
based on current tariffs for optical backhaul in France.
These tariffs have been fairly stable over the past 3
years. The charge determines the bandwidth cost of
the mobile operator irrespective of the distance from
the PGW.

Tradeoff.
An assumed cache cost of $1000 amortized over a 3

to 4 year lifetime corresponds to a monthly charge of
barely $25 to be compared to the monthly cost of the
connection. According to the tariffs of Table 3, the 1 TB
cache would economize $250 ($750 − $500) per month
for current demand and $470 ($1220− $750) for future
demand if the catalogue were only 1 TB (100% hit rate).
On the other hand, bandwidth savings would hardly be
worthwhile if the catalogue were 1 PB since the hit rate
is then less than 10%, even for ideal caching.

For a catalogue composed of 1 TB of VoD and 1 PB
of other content in proportions 20:80, an ideal cache
of 1 TB would give a hit rate of around 30%. This is
significantly more than the 20% obtained by caching
exclusively the VoD content. This is because it is more
effective to cache the most popular other content items
than the least popular VoD items. The average sav-
ing would then be around $80 per month per BS in
both demand scenarios. Assuming the more favourable
proportions of 80% VoD and 20% other content yields
an ideal cache hit rate of nearly 85% and savings only
slightly less than those given above for an individual 1
TB catalogue.

4.2 Packet gateway
The packet gateway is assumed to concentrate the

traffic of 1000 BSs with, therefore, a busy hour down-
stream demand of 40 Gb/s and 240 Gb/s for the current
and future scenarios, respectively. The PGW might
have its own dedicated cache or share a co-located cache
with other fixed and mobile operators. In the latter
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case, the tradeoff must be considered as a whole with
the assumption that a given operator shares the cost of
caching in proportion to its demand.

For the considered large scale cache at this location,
we assume linear cost functions and seek therefore to
minimize

∆ = kbT (1− h(C)) + kmC, (3)

for particular values of cost coefficients kb and km. Now,
for Zipf(α) popularity with α < 1 and a large catalogue
N , it is known that the hit rate h(C,N) is in fact a
function of the ratio c = C/N . This is true also for
the considered combinations of Zipf catalogues. It is
convenient therefore to re-write (3) in a normalized form
as follows:

δ(c) = Γ(1− h(c)) + c, (4)

where Γ = kbT/kmN . Γ is the ratio of the cost of
no cache to the cost of a full capacity cache and sum-
marizes the combined impact of the demand and cost
parameters.

Cost of storage.
We base storage costs on the charges levied for data

storage by Cloud providers. This is currently around
$.03 per GB per month. The traffic related cost of re-
trieving data from the cache is small compared to the
cost of network bandwidth and is therefore neglected in
our tradeoff evaluation.

Cost of bandwidth.
From Table 3, the cost of backhaul bandwidth is a de-

creasing function of demand and the lowest incremental
charge for connections of rate greater than 200 Mb/s is
$2 per Mb/s. In the absence of more precise data, we
take this as the value of kb. This would be a charge
paid by the mobile operator for traffic retrieved from
the Internet. The actual tariffs are certainly more com-
plex than this but they are not public and the linear
cost model allows for simpler comparisons.

Tradeoff.
Figure 6 plots normalized cost δ against normalized

cache size c for Zipf(.8) popularity assuming ideal caching.
The blue lines correspond to different values of Γ be-
tween 0.01 and 100, as determined by their intercept on
the y-axis. Vertical lines give the hit rate realized by
the given cache size.

From the figure, for most values of Γ, the optimal
choice is either no cache (c = 0) or a full capacity cache
(c = 1). As can readily be verified, the cost δ is min-
imized for some c ∈ (0, 1) if Γ < 5. The gain is very
limited when Γ is small, however. Maximum gain rel-
ative to c = 0 or c = 1 occurs for Γ = 1 and c = .13
when δ = 0.47.

Using the above cost estimates, kb = $2 per Mb/s,
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Figure 6: Normalized cost against normalized
cache size for Zipf(.8) popularity and ideal
caching. The horizontal lines correspond to val-
ues of Γ of .01, .1, 1, 10, 100 from bottom to
top.

km = $.03 per GB, we have Γ = 2000 for current de-
mand and a 1 TB catalogue. It is clearly optimal in this
case (and a fortiori with the future demand scenario) to
equip the PGW with a full capacity cache. The choice
is less obvious for a catalogue of 1 PB where Γ is only 2
for current demand. Rather than optimizing the cache
size (at around 10% of the catalogue), it would make
more sense in this case to share a common cache with
multiple mobile and fixed operators having co-located
facilities at the edge of the Internet, as discussed above
in Section 3.
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Figure 7: Normalized cost against normalized
cache size for mix of popularity laws and ideal
caching: VoD and other. The horizontal lines
correspond to values of Γ of .01, .1, 1, 10, 100
from bottom to top.

Figure 7 plots the cost δ for the two catalogue mixes
with 20% VoD and 80% VoD, respectively. Conclusions
for the more plausible 20% VoD mix are broadly the
same as for homogeneous Zipf(.8) popularity. When
VoD counts for 80% of demand, on the other hand,
there is scope for optimizing cache size. For example,
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for Γ = 2 (i.e., for the current demand scenario) it would
be optimal to equip the cache with a capacity of 40 TB.
This would yield a hit rate of 90% with cost reduced by
a factor of 4 compared to the cache all solution.

4.3 Mobile cloud node
The MCN node is supposed to be equipped as a small

data center performing various network functions and
application offloads so that marginal storage charges
are appropriate. We suppose these are the same as for
a PGW cache. Since demand is greater than 200 Mb/s,
we also assume the marginal bandwidth charge of $2
per Mb/s applies to the considered content traffic.

The tradeoff can be derived from Figures 6 and 7 on
calculating the appropriate values of Γ. For instance,
for current demand bandwidth requirement T = 5 Gb/s
and catalogue size N = 1 TB, we have Γ = 333 and to
cache all content at the MCN would be cost effective.
On the other hand, if N = 1 PB we have Γ = .33 and
caching brings only marginal gains.

Note that caching at the MCN is an alternative to
caching at the BS. Its greater effectiveness constitutes
an additional argument for actually creating such a node
in future mobile access networks.

4.4 Discussion
At the BS, a 1 TB cache costing $1000 would be ben-

eficial if pre-fetching were used to realize ideal caching
(cf. Sec. 3). Cost trends suggest this tradeoff will be-
come more favorable over time as the cost of memory
is decreasing faster than the cost of bandwidth.

The charts in Figures 6 and 7 show that it is rarely
worthwhile to optimize the size of the cache at the PGW
where simply caching the entire catalogue is the most
cost effective solution. This is not true for the 80% VoD
scenario but this not realistic according to current usage
statistics. It must be remembered that this conclusion
applies under the simplifying assumption that catalogue
popularity is Zipf. If the tail of the popularity law were
more accurately represented, with a significant volume
of very unpopular items, it would likely make sense to
store only a fraction of the catalogue leading to a hit
rate of 99%, say.

5. RELATED WORK
The models for cache performance in Section 2 are

developments on the approximation originally proposed
by Che et al. [1] and extended since, notably by Fricker
et al. [6] and Martina et al. [9]. We further extend the
approach here to account for time varying popularities
for both an LRU cache and our particular design of an
LRU cache with pre-filter. The corroborating simula-
tion results presented here confirm the versatility and
high accuracy of the Che approach.

The pre-filter cache policy we describe is an adapta-

tion of the discrete persistent access cache proposed by
Jelenkovic et al. [8]. It is simpler than insertion policies
like k-LRU, where the filter is one or more successive
virtual LRU caches, and more reactive to changing pop-
ularity than probabilistic q-LRU caching, where items
are inserted with probability q. These names were given
by Martina et al. [9] whose models directly inspired
those developed here.

The need to take proper account of time varying pop-
ularities has been underscored by recent analyses of
trace statistics, notably by Traverso et al. [14], Olmos
et al. [10] and Imbrenda et al. [7]. The authors of both
[14] and [10] propose a so-called shot noise model where
items are born at some instant in time, receive requests
at possibly varying rate for a certain lifetime and then
die. The overall request process is a superposition of
such shots. In our approach, items that die are imme-
diately replaced by a new item with identical popular-
ity, simplifying demand characterization and allowing a
straightforward application of the Che approach. This
model or content churn was first used by Wolman et
al. [15] in a study of hit rates in an unlimited capacity
web cache. We generalize the model of [15] by consider-
ing finite capacity caches with LRU or pre-filter caching
policies.

The direct evaluation of the memory for bandwidth
tradeoff has received little direct attention in the liter-
ature. Cidon et al. [2] consider the problem of mini-
mizing the joint cost of bandwidth and storage cost in
a tree network but provide no numerical evaluations.
Erman et al. [4] apply a similar approach to ours for a
3G access network assuming unlimited cache capacity
and applying trace data. Our formulation of this issue
is derived from prior work on the effectiveness of edge
caching [11]. The present work provides a quantified
evaluation of the tradeoffs in a mobile access network
using our best guess demand and cost data.

6. CONCLUSIONS
To evaluate the effectiveness of caching in the mobile

access network we have developed original mathemati-
cal models to determine the hit rate as a function of con-
tent popularity statistics. We have notably proposed a
model to account for time varying content popularities.
The results show that using a pre-filter makes an LRU
cache have close to ideal performance under stationary
popularity but can be counterproductive due to the im-
pact of content popularity churn when the request rate
is low.

The analytical models have been applied to deter-
mine the effectiveness of reactive caching, using LRU
or LRU with a pre-filter and relying, therefore, only on
locally gained knowledge of content popularity. Results
for the most plausible demand scenarios suggest reac-
tive caching at the BS or MCN levels would not be ef-
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ficient and that a proactive policy of prefetching would
therefore be necessary. This implies some upstream en-
tity must be made aware of requests from a population
of users that is large enough that request rates are typ-
ically much greater than the rate of churn. Even the
PGW may not have sufficient demand to enable effi-
cient reactive caching in the more pessimistic scenarios
implying that the upstream entity in question might be
located in a common cache at the Internet edge shared
by multiple access networks.

The memory for bandwidth tradeoff is favourable at
all levels of the considered access network. In the sce-
nario considered most plausible where 20% of demand
is for VoD, a relatively small 1 TB cache at the BS
would be cost effective in reducing upstream traffic by
30%. The addition of the MCN level would be benefi-
cial by enabling a single cache to be shared by up to 100
BS and, under our assumptions, enabling more flexible
cache sizing. A cache at the PGW would generally be
cost effective when sized to capture up to 99% of all re-
quests. It may, however, make more economic sense to
share a dedicated content store located in proximity to
the PGW at the Internet edge between multiple access
network providers.

It is clear that the above conclusions rely on input
data on demand, popularity and costs that are nec-
essarily questionable. However, we have considered a
range of scenarios and illustrated the impact of pos-
sible deviations from our best guess data and believe
the above conclusions to be robust. The methodology
and formulas can of course be applied with alternative,
more precise data when these are available. Evaluating
the realized memory for bandwidth tradeoff, even im-
precisely as here, more directly informs the debate on
ICN caching architecture than any consideration of the
optimal placement of a hypothetical “cache budget”.
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