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Abstract—The rapid growth in demand for video streaming
applications is stressing the performance of wireless access
networks. To alleviate congestion, vendors currently propose
devices to be placed in the operator’s network that transcode
videos to a lower rate in order to reduce traffic volume in
case of congestion. The devices are also able to cache popular
videos, both to reduce the burden of transcoding and to alleviate
backhaul load. The paper proposes a model of this augmented
radio access network enabling an evaluation of the performance
benefits for given transcoding and caching capacities. Our results
show that a gain in cell capacity of 15% can be realized with
moderate transcoding and cache capacities.

I. INTRODUCTION

Video downloads represent a large and increasing propor-
tion of the traffic handled in mobile access networks. Cisco
forecasts a 69% annual growth rate for video demand with
its share of traffic increasing from 53% in 2013 to more than
70% in 2018 [4]. This growth is stressing the performance of
the wireless segment and, as any user knows, video streaming
frequently suffers from stalling events that occur whenever the
download rate is persistently less than the intrinsic video rate
causing the playout buffer to empty.

If congestion cannot be avoided, network operators may
consider it preferable to avoid stalling and other manifestations
of demand overload by reducing the quality of downloaded
content. Devices to perform “dynamic content optimization”
are currently marketed by equipment vendors [13] [10]. More-
over, this function is highlighted as a use case to be considered
by the recently launched Mobile-edge computing industry
initiative [6]. Reducing image quality means reducing the
traffic volume, thus alleviating congestion. From another point
of view, since traffic is reduced, the required network capacity
to meet user quality requirements is smaller leading to lower
expenditure. The aim of the present paper is to investigate the
tradeoff realized between the cost of the content optimization
devices and the resulting savings in network infrastructure.

In view of the high proportion of video traffic, we restrict
attention in this paper to an evaluation of the benefits of
optimizing just video content. The considered devices reduce
the volume of video demand, as necessary, by transcoding
downloaded videos to a lower rate. The devices can also cache
frequently requested items to limit the transcoding load. We
consequently coin the generic name for such a device as,
“video transcoder and cache” or VTC. Figure 1 shows the
position of the VTC in the mobile access network. It is situated
at some convenient point to act on the traffic of a number of

Fig. 1. The video transcoder and cache (VTC) concentrates the traffic of a
number of base stations.

base stations. Determining the precise location, implying the
degree of traffic concentration and the device workload, is a
design issue.

Other questions we address are, what capacity gain is
possible through transcoding? and how should the device be
dimensioned? i.e., how many videos can be transcoded in
parallel and how many videos should the VTC be able to hold
in its cache. It is impossible to provide definitive answers to
these questions since the relative benefits of alternative so-
lutions depend on many local parameters. Rather, we provide
analytical tools to be used to evaluate relevant scenarios. These
tools take account of the impact of different radio conditions,
the dynamics of flow arrivals of different types, the traffic mix
between these types, the distribution of video popularity and
its impact on cache performance. We illustrate the use of the
tools and how they can guide design and network planning
decisions though a number of numerical applications.

Only certain downloads are susceptible to transcoding and
the relative proportion of traffic in this category clearly
significantly impacts the effectiveness of the VTC device.
The current trend is towards greater proportions of content
encryption reducing the potential advantage of transcoding and
caching since these operations become ineffective. Neverthe-
less, it remains of interest to evaluate these advantages since,
if they are significant, it might in fact modify the observed
trends. Moreover, the emergence of so-called information-
centric networks may solve the security and commercial issues
that encryption is designed to resolve.

In the next section we more completely describe the consid-



ered VTC equipped mobile access network. We then proceed
in Section III to build a performance model accounting for
the random process of download arrivals and completions and
the impact of diverse radio conditions within a cell, under the
assumption that the VTC is “perfect” in always being able
to supply a transcoded version of a requested video when
necessary. In this section, we also propose performance criteria
to be used when determining cell traffic capacity. Section IV
further develops the performance model to account for limited
VTC transcoding and caching capacity. The model is used in
Section V to derive some numerical results illustrating possible
system parameter choices and their impact on performance
and, ultimately, on network traffic capacity.

II. SYSTEM DESCRIPTION

We first broadly characterize downloads into three types
depending on their adaptivity. We then describe the considered
VTC device before proposing a simple model of the radio link
and how its spectrum is shared by concurrent downloads.

A. Traffic types

Cell downlink capacity is shared by flows of three types.
Type 1 flows are video downloads that can be identified by
the considered VTC device through deep packet inspection.
These video downloads are subject to transcoding and are
the principal object of this evaluation. The other two types
constitute background traffic.

Type 2 flows consist of regular downloads of documents of
various kinds like web pages, emails, pictures as well as videos
that are not compressible (because they are encrypted, for ex-
ample). Type 3 flows are adaptive video streaming flows. Their
download rate is adjusted by the application to approximately
match the currently available bandwidth. This is achieved by
the application requesting the video in segments of 2 to 4
seconds, say, where each segment exists in several versions
corresponding to different rates. The application selects the
segment version corresponding to its evaluation of the current
path available bandwidth (see [9], for example).

B. Video transcoding and caching

The VTC can transcode and cache type 1 videos. These
videos are assumed to be downloaded as fast as possible for
subsequent viewing. “As fast as possible” means the download
rate is determined as a fair share of cell capacity accounting
for the number of competing flows and their particular radio
conditions, as discussed in Section II-C below. With respect
to transcoding, we envisage online and offline scenarios. In
the online scenario, the original version is transcoded on-the-
fly and a compressed version is sent to the user. The VTC
can only perform online transcoding for a limited number of
videos in parallel. In the offline scenario, a compressed version
is created when absent from the cache, either systematically
whenever the video is requested, or just when the video is
requested and the user’s cell has attained a certain degree of
congestion. The user triggering transcoding always receives a
copy of the original version.

The VTC can cache a limited number of videos. Several
options are possible.
• it caches the version requested by the operator, original

or compressed,
• it caches both versions systematically when either is

requested and the video is not already cached,
• it only ever caches the compressed version, always re-

ferring to an upstream cache or server for the original
version.

The adopted caching policy impacts the effectiveness of the
VTC in increasing cell capacity.

The network operator determines which version of the video
to download based on current cell traffic conditions. In periods
of light traffic, or when the radio conditions of a requester
are particularly favorable, the operator will forward the user’s
request for the original version. This might be found in the
VTC cache or, if not, in some upstream cache or video server.
Otherwise, the operator will seek to download a compressed
version obtained from the cache or by online transcoding.
The type of coding is determined by the operator at the start
of transmission and does not change, even though the cell
congestion status might evolve.

C. Download rates
We consider an isolated cell where the radio condition of

a given user is assumed to remain constant for the duration
of a download. Specifically, we assume a discrete set of M
radio conditions (determined by the user’s position relative to
the base station, for instance) characterized by peak rates Ri
bit/s for i = 1, . . . ,M . Ri is the rate a mobile terminal with
conditions i would get if it were alone in the cell. When the
overall number of users in the cell is n, users in radio class
i get rate Ri/n. This is approximately the rate provided by
the MAC layer of 3G and 4G cellular networks where cell
capacity is shared by assigning roughly the same rate of equal
length time slots to all cell users [2], [14].

The operator is assumed to determine which version of a
downloaded video of type 1 to request from two parameters:
• the radio condition, as determined by the peak rate Ri,

of the user in question,
• the number n of users currently active in the cell of any

type.
The rate available to a new user is then Ri/(n + 1) and the
requested coding rate should be chosen in consequence.

Type 2 downloads naturally proceed at the current fair
rate for their class, Ri/n. The adaptive video streaming
applications managing type 3 flows have several versions of
each segment available, each corresponding to a different rate.
The application in the user terminal chooses the version to
request for each segment depending on its current vision of the
network congestion state. Available rates vary from application
to application and the algorithm used to choose the rate of each
segment is typically quite complex (e.g., [9]). As our focus is
on the performance of the VTC, we adopt a simplified model
of type 3 rate adjustments in the following evaluation (see Sec.
III-A).



III. CELL PERFORMANCE

We propose a Markov model to characterize the population
of simultaneous downloads of all types. The model is first
defined here under the simplifying assumption that a com-
pressed coding is always available for download whenever
requested. We then discuss performance criteria to be used to
determine the maximum per-cell load attainable. We consider
the additional impact of limited VTC capacity in Section IV.

A. Markov model

We adopt a simple Markovian traffic model for the sake
of tractability. We note, however, that the derived results
are typically more generally valid thanks to the insensitivity
properties of the underlying processor sharing system [2].
Flows of type j with radio condition i are assumed to arrive as
a Poisson process of rate λij for i = 1, ...,M and j = 1, 2, 3.

The size of a type 1 flow depends on the video coding rate.
We assume the video when played back has an exponentially
distributed duration of mean τ1 seconds and that the original
and compressed coding rates are Co and Cc bit/s, respectively.
The amount of data to download is thus either Coτ1 or Ccτ1
bits. We consider here that the compressed version is always
available, either through online transcoding or thanks to a very
large cache yielding negligible miss rates. This enables us to
quantify the maximum gain in capacity attainable by the use
of the VTC. We assume compressed coding is requested for a
new download under condition i whenever the population of
users n is greater than Ri/Co.

Each flow of type 2 requires the download of an expo-
nentially distributed volume of mean σ2 bits and a download
with condition i proceeds at rate Ri/n. To model type 3
adaptive streaming flows, we suppose their rate is adjusted
continuously, exactly like type 2 flows. However, the duration
of the flow is now independent of the download rate. We
assume the distribution of this duration is exponential of mean
τ3.

System state is defined by the number of flows in progress
of each radio condition and each type, distinguishing the video
coding rate of type 1 flows. Let aio and aic be the number of
type 1 flows with radio condition i downloading the original
and the compressed version, respectively. Let bi and ci be
the number of type 2 and 3 flows with radio condition i,
respectively. Finally, denote by n the overall number of flows
in progress, n =

∑M
i=1(aio + aic + bi + ci).

Vector ~n = (a1o, . . . , aMo, a1c, . . . , aMc, b1, . . . , bM , c1, . . . , cM )
is a Markov process with the following non-zero transition
rates:
• aio increases to aio + 1 at rate λi2 if Ri

n+1 ≥ Co,
• aio decreases to aio − 1 at rate aio Ri

nCoτ1
,

• aic increases to aic + 1 at rate λi2 if Ri
n+1 < Co,

• aic decreases to aic − 1 at rate aic Ri
nCcτ1

,
• bi increases to bi + 1 at rate λi1,
• bi decreases to bi − 1 at rate bi Rinσ2

,
• ci increases to ci + 1 at rate λi3,
• ci decreases to ci − 1 at rate ci

nτ3
.

The above transition rates for valid states ~n define a tran-
sition matrix Q and the steady state probabilities π(~n) can
be obtained by solving πQ = 0. This system can be readily
solved numerically as long as the state space is not too large.

B. Performance criteria

We consider the following three performance metrics.
a) Compression probability: This is the probability an

arriving type 1 user should be sent the compressed version. It
depends on the new user’s radio condition and the total number
of active users in the cell. The compression probability pic for
a flow starting with radio condition i is thus

pic = 1−
∑
~n∈Si

π(~n), (1)

where the summation domain ~n ∈ Si covers states such that∑
k(ako + akc + bk + ck + 1) < Ri

Co
.

b) Rate deficit probability: A rate deficit occurs if the
instantaneous download rate of a type 1 flow is less than the
nominal coding rate, Co or Cc for original and compressed
versions, respectively. It is a measure of video quality in
that a flow suffering persistent rate deficit will likely expe-
rience playout stalling. This metric is chosen for the sake of
tractability since it is hardly possible to compute the stalling
probability for this system [16].

The rate deficit probability is equal to the probability an
ongoing flow shares cell capacity with a number of users
greater than the threshold corresponding to its radio condition
and coding version. When the system is in state ~n, there
are aij video users of radio class i downloading version j
(original or compressed). These videos suffer rate deficit if
the overall number of users n is greater than the ratio Ri

Cj
.

The proportion of class i flows in rate deficit in state ~n is thus
equal to aio

aio+aic
1{n>Ri

Co
}+ aic

aio+aic
1{n>Ri

Cc
}. The rate deficit

probability for class i users, pid, is thus

pid =
∑
~n

(
aio

aio + aic
1{n>Ri

Co
}+

aic
aio + aic

1{n>Ri
Cc
})π(~n) (2)

and the overall rate deficit probability is

pd =
M∑
i=1

∑
~n

pid. (3)

c) Cell utilization: This metric is the proportion of time
the cell is actively downloading data. It is equal to 1−π(~0). A
classical pragmatic criterion used to dimension cell networks
is to maintain utilization below some threshold, 1−π(~0) ≤ .8,
say.

IV. IMPACT OF VTC CAPACITY LIMITATIONS

We now consider the end-to-end performance realized by
the VTC device accounting for the impact on the model of
Section III of its finite transcoding and caching capacities.



A. Cache hit rates
The VTC device is supposed to be situated at a backhaul

node as depicted in Figure 1 and processes requests from a
relatively large number of cells. The cache hit rate is evaluated
under the following assumptions:
• the type 1 catalogue is of size N videos,
• the VTC contains a cache of size Nδ bytes and applies

the least recently used (LRU) replacement policy,
• the average size of a video is σo bytes in its original

coding and σc bytes in its compressed version (σc/σo =
Cc/Co),

• we assume Nδ � σo so that we can ignore edge effects
and assume the cache is saturated if and only if noσo +
ncσc ≥ Nδ where no and nc represent the number of
videos stored in the original and compressed versions,
respectively.

• we apply the independent reference model (IRM), equiva-
lently assuming requests for both original and compressed
versions arrive as a Poisson process (see [7], for example,
for a discussion on the validity of this approximate
model),

• video popularity is assumed to follow a Zipf law of
parameter α, i.e., the arrival rate for requests for the rth

most popular video is proportional to 1/rα,
• the probability pic a compressed version is requested is

given by (1), independently for all videos.
To evaluate hit rates we use the Che approximation [3]

and, more explicitly, its Gaussian approximation for Zipf
popularities derived by Fricker et al. [7]. We in fact extend
the approximation somewhat to account for the different sizes
of the original and compressed versions.

Let po and pc denote the probability original and com-
pressed versions are inserted in the cache on a request for the
video (of either type). If only the requested version is cached,
pc =

∑
i λip

i
c/

∑
i λi and po = 1 − pc where pic is given by

(1). If both versions are systematically cached, po = pc = 1. If
only the compressed version is cached, pc =

∑
i λip

i
c/

∑
i λi

and po = 0.
By the Che approximation, the hit rate for version j ∈ {o, c}

of the rth most popular video is

h
(r)
j = 1− e−pjtC/r

α

where tC is the so-called characteristic time for a cache of
size C. A straightforward extension of the arguments in [7]
shows that tNδ is asymptotically equal to βNα where β is the
solution to the equation

δ = σo

∫ 1

0

(1− e−poβ/x
α

) + σc

∫ 1

0

(1− e−pcβ/x
α

).

In the following we need the overall hit rate for just the
compressed version (cell performance does not depend on
whether the original version comes from the VTC cache or
an upstream server). Denoting this hit rate by hc, we have

hc = pc

∑
r h

(r)
c /rα∑

r 1/rα
.

B. Impact on cell performance

We now turn to the interaction between caching perfor-
mance and cell performance, accounting for the fact that a
requested compressed coded video is not always available as
assumed in Section III. We temporarily ignore the possibility
to perform on-the-fly video transcoding.

The transition rates of Section III-A remain the same except
for the following:

• aic increases to aic+1 at rate hcλi2 if Ri/(n+1) < Co,
• aio increases to aio+1 at rate (1−hc)λi2 if Ri/(n+1) <
Co.

The overall compressed version hit rate hc is independent
of the user radio condition i. Its value depends on the assumed
caching policy. If both original and compressed versions are
cached together, or if only the compressed version is ever
cached, the value of hc does not depend on the radio model
(that determines the probability the compressed version is
requested). This is so because the hit rates, computed as in
Sec. IV-A, do not then depend on the values of po and pc. The
hit rate does depend on the radio model when the original and
compressed versions are cached independently. For this case,
we apply a fixed point approximation, as follows.

We first calculate the probabilities po and pc for each version
using an initial estimate of hc. The hit rate is then calculated
using the Che approximation with these relative request rates.
The new value of hc is used to refine the estimates of po and
pc, and so on until convergence.

C. Limited transcoding capacity

On-the-fly transcoding improves cell performance by sat-
isfying some requests for the compressed version of videos
absent from the VTC cache. Suppose the VTC is equipped to
transcode a maximum of T videos in parallel. This capacity
is to be shared by a number of cells as depicted in Figure 1.
We assume there are K cells and, for the sake of simplicity,
that these cells have the same radio and traffic characteristics.

The system operates as follows: on detecting a new type
1 flow, the network operator decides if it should request
a compressed version; if so, it checks the VTC cache and
downloads the compressed version if present; if not, and if the
VTC is currently transcoding less than T videos, the requested
video is transcoded on-the-fly; if there is no cached copy and
all transcoding capacity is already in use, the cell downloads
the original version (leading to rate deficit for some ongoing
flows).

Let θ(k) for k ≥ 0 be the distribution of the number of
type 1 videos currently being downloaded in the compressed
version. This marginal distribution is derived by summing
probabilities π(~n) over states ~n such that

∑
i aic = k. Given

k compressed version downloads, the probability that l of
these are being satisfied by transcoding, for 0 ≤ l ≤ k, can
be approximated by the binomial distribution with “success
probability” 1− hc. It is then straightforward to compute the
mean m and variance v of the number of videos currently



being transcoded. We have,

m =
∑
k≥1

k(1− hc)θ(k), (4)

v =
∑
k≥1

k(1− hc)(k − khc + hc)θ(k)−m2. (5)

We now approximate the aggregate transcoding load from K
cells by a Gaussian distribution with mean Km and variance
Kv. An estimate of the probability a transcoding request fails,
f , is then given by the probability load exceeds capacity,

f =
1
2

erfc(
T −Km√

2Kv
) (6)

where erfc is the standard error function.
Finally, for a given cell, the probability a request for a

compressed type 1 video can be satisfied is given by the
revised “hit rate”,

h′c = hc + (1− hc)(1− f).

This probability must be substituted for hc in the transition
rates of Sec. IV-B and applied in the fixed point approximation
described therein.

V. NUMERICAL RESULTS

We present a selection of numerical results intended to
illustrate the tradeoffs realized by the considered VTC device
and the possibility to optimize performance by appropriate
dimensioning.

A. Radio conditions and traffic data

We consider downloads in a nominal 3G system with just
two distinct radio conditions: users at the cell edge have a peak
rate of 5 Mbps while users at the center have a peak rate of 15
Mbps. This is clearly a crude approximation that nevertheless
allows us to capture the significant impact on performance
of heterogeneous radio conditions. Half of downloads are
assumed to be to edge users and half to center users for all
three types.

We suppose 75% of flows are video downloads of which a
variable proportion is of type 1 and can be transcoded. The
original rate of type 1 videos is Co = 1 Mb/s and we assume
the VTC transcodes this, as necessary, bringing the rate down
to Cc = 0.25 Mb/s. The mean duration of these videos is τ1 =
5 minutes. The mean size of a regular document download
(type 2 flows) is σ2 = 10 MB. The mean duration of adaptive
streaming videos is τ2 = 5 minutes. Results are plotted below
in terms of the overall flow arrival rate bearing in mind that
the cell load is not an independent variable because of the use
of transcoding (type 1) and adaptive streaming (type 3).
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Fig. 2. Probability of being served with the compressed version.
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Fig. 3. Probability of rate deficit.

B. Maximum gains from the VTC

We first assume transcoding is not limited by the capacity of
the VTC, and the model presented in Section III applies. This
enables an evaluation of the maximum potential capacity gain
as a function of the traffic mix. Figures 2, 3 and 4 plot the
values of the performance criteria, compression probability,
rate deficit probability and cell utilization, respectively, under
the assumption that 70% of video traffic can be transcoded
(i.e., is of type 1).

The results of Figure 2 show that transcoding is mainly
performed for users with the worst radio conditions at the
cell edge. The proportion is significant for moderate load and
increases steadily with load. Figure 3 plots the rate deficit with
and without transcoding, distinguishing edge and center users.
Again, this performance degradation impacts only the cell edge
users. For the particular configuration considered, the average
rate deficit probability is reduced by half when transcoding is
applied. Lastly, Figure 4 shows how cell utilization is reduced
by about 15% by the use of transcoding. Note that utilization
increases sub-linearly with the flow arrival rate even without
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TABLE I
CAPACITY GAIN FOR DIFFERENT TRAFFIC MIXES (TYPES 1:2:3).

Traffic mix (%) 52.5:22.5:25 37.5:37.5:25 22.5:52.5:25

Original capacity 0.31 flows/s 0.33 flows/s 0.35 flows/s
Gain with VTC 16% 15% 11%

transcoding due to the presence of type 3 adaptive streaming
flows. The use of transcoding for type 1 accentuates this effect.

C. Cell capacity

The performance improvement brought by the use of
transcoding leads to an increase in network capacity. By this
we mean the network is dimensioned to meet performance
targets that are reached at higher loads when the VTC is used.
This implies for a given level of demand (in flows/sec/m2) that
the cell density can be so much smaller and the investment in
infrastructure so much less. In this subsection we quantify the
average gain in the capacity of one cell under the following
performance thresholds:
• The proportion of users served with the compressed

version should be less than 30%. We choose this value as
it is commonly used as the threshold on the proportion of
calls served at half-rate in a mobile telephone network.

• The probability of rate deficit is limited to a maximum of
10%. This threshold is intended to ensure a sufficiently
small probability of stalling in video playouts.

• Cell utilization must be less than 80%. This is a threshold
typically used to dimension mobile data networks.

Table I presents some results illustrating the potential ca-
pacity gain for different proportions of the three types of flow.
The first column corresponds to the traffic mix used in Figures
2, 3 and 4 and is derived by applying the above dimensioning
thresholds. It turns out that with this configuration the most
severe constraint is the rate deficit probability. This limits cell
capacity to 31 flows/s without transcoding, increasing by 16%
to 36 flows/s with a perfect VTC. The other two columns show
that this gain is naturally less significant as the proportion of
type 1 flows in the traffic mix decreases.
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Fig. 5. Hit rate of compressed objects as a function of relative cache size δ.

This capacity gain is to be set against the cost of the VTC.
One can naturally test the impact of alternative dimensioning
criteria. If the threshold on the rate deficit probability is
increased to 20%, the cell capacity increases but the gain
brought by transcoding remains approximately the same.

D. Impact of the cache size and the online transcoding ca-
pacity

Recall that the results above are derived assuming the
compressed version is always available when requested. In
this section we relax this assumption and quantify the impact
of cache misses on realizable capacity gains. We first discuss
hc(δN) as a function of δ, giving the hit rate of requests
for the compressed version for given cache size where the
latter is expressed as a fraction of the amount of memory
needed to cache the entire catalogue in the original version.
We assume a catalogue size of N = 104 videos having a
Zipf popularity distribution with exponent α = 0.8. Figure 5
plots this function for the three caching options considered in
Section II-B: cache the version requested, cache both versions
systematically, cache only the compressed version.

To derive the first curve on the left, we assume the proba-
bility the compressed version is requested is pc = 0.1 (cf. Fig.
2). Note the unfavorable impact of only caching the requested
version. It is more effective for the hit rate of the compressed
version to cache it systematically whenever either version is
requested. This is because the popularity of the compressed
version is otherwise 10 times less than that of the original
version (since pc = .1).

More significantly, comparison with the leftmost curve
shows that the cache is much more efficiently used (for our
objective of alleviating congestion in the radio part) if only
the compressed version is ever cached. This curve is, in fact,
identical to the second (caching both versions) with the x
coordinate divided by five (since (Co + Cc)/Cc = 5).

To evaluate the impact of the hit rate on cell capacity, we
first integrate the effects of a limited transcoding capacity. We
suppose the number of cells K is equal to 100 and use the
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Fig. 6. Probability of being served with the compressed codec for different
cache sizes and different online transcoding capabilities.
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Fig. 7. Probability of rate deficit for different cache sizes and different online
transcoding capabilities.

formulas of Section IV-C to determine the modified hit rate h′c
with hc evaluated for the option where the VTC only caches
the compressed version. Our three performance criteria are
then evaluated, as previously indicated.

Figures 6, 7 and 8 plot the compression probability, rate
deficit probability and utilization, respectively, as functions of
the relative cache size δ. The figures show one curve for each
of three chosen values for the VTC transcoding capacity, 0,
10 and 20 videos in parallel.

Obviously, all three performance criteria improve as either
the cache capacity or the transcoding capacity increase. More
interestingly, the results of the figures suggest the maximum
gains discussed in Section V-C can be attained with relatively
small VTC capacities. If the transcoding capacity is 10 parallel
downloads, a relative cache size of only δ = .025 (i.e., 10%
of the entire catalogue in compressed coding) is sufficient.
Alternatively, with a coding capacity of 20, it is unnecessary to
equip the VTC with a cache (in fact, a transcoding capacity of
only slightly more than 10 is sufficient). On-the fly transcoding
would only be unnecessary if the cache were sized to contain
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Fig. 8. Cell load for different cache sizes and different online transcoding
capabilities.
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Fig. 9. Max capacity

almost all of the catalogue.
The above results relate to a VTC concentrating the traffic

of 100 base stations. It is interesting to understand how the
VTC should be dimensioned to to serve a different number
of base stations. According to the IRM model of caching, the
cache size required for a given hit rate is independent of the
concentration factor. On the other hand, the transcoding load
and the resulting probability of failure (6) do depend on how
much traffic the VTC receives.

Figure 9 shows the transcoding capacity required to realize
maximum network capacity gains as a function of the relative
cache size for a VTC concentrating 100 and 1000 base
stations. These results reveal a transcoding scale economy
in that the capacity for 1000 cells is less than 10 times the
capacity required for 100. Scale economies are actually more
significant in increasing the concentration factor from 10 to
100, say. Of course, scale economies are greatest for caching
since cache size is independent of the traffic volume. On
the other hand, larger VTCs placed to concentrate a greater
number of cells lead to more traffic to be handled in the wired



network between the VTC and the base station. This particular
cache-bandwidth tradeoff is significant but out of scope for the
present work.

VI. RELATED WORK

We are not aware of other work specifically on evaluating
the relationship between transcoding and the performance of
the radio access network, even though video transcoding in this
context has long been recognized as an interesting possibility
(e.g., [15]) and is highly relevant to very recent proposals (e.g.,
[6]). Transcoding has, of course, already been widely used for
voice calls through the use of half-rate coding, although the
performance model for this service, as proposed by Ivanovich
et al. [11], for example, cannot be applied to our system.
The accepted use of half-rate coding usefully illustrates that a
tradeoff of performance criteria, like reduced voice quality for
lower call blocking or reduced image quality for less video
stalling, is reasonable despite possible concerns over network
neutrality issues.

There is currently a large amount of ongoing research
into the performance of caching, mainly in the context of
information-centric networking. Our simple model of Zipf
popularity with the assumed independent reference model
is clearly only an approximation. Recent developments, as
discussed in the paper by Martina et al. [12], for instance,
account more accurately for phenomena like catalogue and
popularity dynamics. However, as results in the cited paper
confirm, the IRM model may be considered to remain a
reasonable choice for our intended broad discussion of design
choices.

While the literature is sparse on the envisaged transcoding
and caching solution, there is a growing body of work on
the relation between caching and adaptive video coding. For
example, the paper by Grandl et al. [8] considers how adaptive
coding impacts the performance of a proposed information-
centric network solution where variously coded video seg-
ments are cached in the access network. Caching is used in
this context mainly to reduce traffic in the backhaul, however,
and not in the radio link. The paper by Aouine et al. [1],
on the other hand, is somewhat more relevant in that it
envisages a network where the operator intervenes to limit
the number of codings available to end users. The objective
is to improve the efficiency of caching in reducing backhaul
traffic but it is interesting to note that this type of intervention
might additionally be made to alleviate radio congestion, like
transcoding, by imposing lower rate segments when necessary.

In evaluating the transcoding option, it is important to
account appropriately for the performance of the radio link.
We have adopted here a relatively simple model linking radio
conditions with dynamic, stochastic demand, inspired by the
seminal work of Bonald and Proutière [2]. There is clearly
scope for refining this model to account more precisely for
the physical and link layer mechanisms of real 3G and 4G
networks (e.g. [5]). However, for the present purpose of
gaining insight and understanding tradeoffs, we believe the
simple model is sufficient.

VII. CONCLUSIONS

We have proposed a performance model to evaluate the
potential gains brought by proposed video transcoder and
cache (VTC) devices to be introduced in the downstream
mobile access network. The model accounts for heterogeneous
radio conditions, the random process of flow arrivals of three
distinct types, and the on-the-fly transcoding and caching
capacities of the VTC. This model has been developed to
enable an operator to appraise the economic interest of these
devices, proposed either as stand-alone appliances or as part
of a future software-defined radio access network.

The operator’s appraisal must take account of multiple
criteria defining the system dimensions and costs whose de-
tailed discussion is beyond the scope of the present paper.
We believe, however, that the model itself and the sample of
numerical results presented here bring some useful insights
into the design options.

The gains in network capacity are at first sight modest (no
more than 16% in the considered scenarios) though the high
cost of the mobile access network may still outweigh the cost
of the devices. The 16% gain was evaluated assuming more
than 50% of network flows are susceptible to transcoding to
a relatively low compressed rate. Unfortunately, the trend is
for this proportion to be diminished due to the increasing
use by video content providers of encryption, preventing both
transcoding and transparent caching. A new business model to
align the interests of operator and content providers is perhaps
necessary before the gains of the VTC device can be fully
exploited.

The current trend to use adaptive streaming for video
applications is also reducing the proportion of video demand
that is susceptible to transcoding. On the other hand, adaptive
streaming applications may be considered to obviate the need
for transcoding since they naturally reduce the flow rate when
the network is congested or when radio conditions are poor.
A simpler device might be employed by an operator to ensure
the rate adaptations requested by applications have the desired
impact on cell performance.

Online, on-the-fly transcoding and caching are to some
extent interchangeable. If the VTC can transcode offline and
cache a large proportion of compressed videos using LRU
replacement, on-the fly coding is unnecessary. On the other
hand, if the device is capable of transcoding a moderate
number of videos in parallel, the VTC can dispense with
caching. The optimum mix of cache and transcoding capacity
depend on relative costs and can readily be derived from the
proposed model.

ACKNOWLEDGMENT

This research work has been partially funded by the Tech-
nological Research Institute SystemX, within the project ”Net-
work Architectures” hosted at LINCS.



REFERENCES

[1] Z. Aouini, M. T. Diallo, A. Gouta, A.-M. Kermarrec, and Y. Lelouedec.
Improving caching efficiency and quality of experience with cf-dash.
In Proceedings of Network and Operating System Support on Digital
Audio and Video Workshop, NOSSDAV ’14, pages 61:61–61:66, New
York, NY, USA, 2014. ACM.

[2] T. Bonald and A. Proutière. Wireless downlink data channels: User
performance and cell dimensioning. In Proceedings of the 9th Annual
International Conference on Mobile Computing and Networking, Mobi-
Com ’03, pages 339–352, New York, NY, USA, 2003. ACM.

[3] H. Che, Y. Tung, and Z. Wang. Hierarchical web caching systems:
modeling, design and experimental results. IEEE JSAC, 20(7):1305–
1314, 2002.

[4] Cisco. Visual networking index: Global mobile data traffic forecast
update, 20132018, 2014.

[5] R. Combes, S.-E. Elayoubi, and Z. Altman. Cross-layer analysis of
scheduling gains: Application to lmmse receivers in frequency-selective
rayleigh-fading channels. In Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks (WiOpt), 2011 International Symposium on,
pages 133–139, May 2011.

[6] ETSI. Mobile-edge computing: Introductory technical white paper, 2014.
[7] C. Fricker, P. Robert, and J. Roberts. A versatile and accurate approxi-

mation for lru. cache performance. In Proceedings of ITC 24, 2012.
[8] R. Grandl, K. Su, and C. Westphal. On the interaction of adaptive video

streaming with content-centric networking. In Packet Video Workshop,
2013.

[9] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service. In Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, pages 187–198, New York, NY, USA,
2014. ACM.

[10] Huawei. Cloud-based media storage and processing data center. Huawei
white paper, 2014.

[11] M. Ivanovich, M. Zukerman, P. Fitzpatrick, and M. Gitlits. Performance
between circuit allocation schemes for half- and full-rate connections in
gsm. Vehicular Technology, IEEE Transactions on, 47(3):790–797, Aug
1998.

[12] V. Martina, M. Garetto, and E. Leonardi. A unified approach to
the performance analysis of caching systems. In INFOCOM, 2014
Proceedings IEEE, 2014.

[13] Nokia. Intelligent base stations. Nokia Networks white paper, 2014.
[14] L. Rong, S. Elayoubi, and O. Haddada. Performance evaluation of

cellular networks offering tv services. Vehicular Technology, IEEE
Transactions on, 60(2):644–655, Feb 2011.

[15] T. Warabino, S. Ota, D. Morikawa, M. Ohashi, H. Nakamura,
H. Iwashita, and F. Watanabe. Video transcoding proxy for 3g wireless
mobile internet access. Communications Magazine, IEEE, 38(10):66–71,
Oct 2000.

[16] Y. Xu, E. Altman, R. El-Azouzi, M. Haddad, S. Elayoubi, and
T. Jimenez. Probabilistic analysis of buffer starvation in markovian
queues. In INFOCOM, 2012 Proceedings IEEE, pages 1826–1834,
March 2012.


