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Abstract. This paper is devoted to a study of the impact of using
bound sets in biobjective optimization. This notion, introduced by Vil-
lareal and Karwan [19], has been independently revisited by Ehrgott and
Gandibleux [9], as well as by Sourd and Spanjaard [17]. The idea behind
it is very general, and can therefore be adapted to a wide range of biob-
jective combinatorial problem. We focus here on the biobjective binary
knapsack problem. We show that using bound sets in a two-phases ap-
proach [18] based on biobjective dynamic programming yields numerical
results that outperform previous ones, both in execution times and mem-
ory requirements.

Keywords: Multiobjective combinatorial optimization, bound sets, biob-
jective binary knapsack problem.

1 Introduction

Multiobjective combinatorial optimization (MOCO) deals with combinatorial
problems where every solution is evaluated according to several objectives. In-
terest in this area has tremendously grown over the last two decades. A thorough
presentation of the field can be found for instance in a book by Ehrgott [7]. The
standard approach aims at generating the whole set of Pareto optimal solutions,
i.e. solutions that cannot be improved on one objective without being depreci-
ated on another one. Most of the classical exact and approximate methods for
finding an optimal solution in single objective discrete optimization have been
revisited for finding the Pareto set under multiple objectives, e.g. dynamic pro-
gramming [6, 12], branch and bound [4, 11, 14], greedy algorithm [16], as well as
many heuristic and metaheuristic methods [8].

In order to perform implicit enumeration in multiobjective optimization prob-
lems, the formal notion of bound set needs to be introduced. This has been done
several times in the literature. Roughly speaking, bound sets are sets of bounds.
Indeed, due to the partial nature of the ordering relation between solutions, the
use of a set of bounds instead of a single bound makes it possible to more tightly
approximate the image set of the solutions in the objective space. To our knowl-
edge, one of the first work mentioning that notion was performed by Villareal
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and Karwan [19], and deals with branch and bounds for multiobjective integer
linear programming problems. However, in this work and subsequent ones, no
operational way to compute bound sets has been devised where the bound set
does not reduce to a singleton. Very recently, based on the convex hull of the
image of the solutions in the objective space, new bound sets have been proposed
[9, 17]. The use of these new bound sets has proved very efficient in the biob-
jective spanning tree problem [17]. The purpose of the present paper is to show
how these bound sets can be used to design efficient algorithms for the biobjec-
tive binary knapsack problem. Our contribution is twofold: we first explain how
to hybridize multiobjective dynamic programming with the fathoming criterion
provided by the bound sets, and then detail how multiobjective dynamic pro-
gramming can be embedded in a two-phases approach to further improve the
method. The hybridization we propose is in the spirit of the dominance relations
between states used in a work by Bazgan et al. [2, 3], but enables huge savings
in memory requirements as well as improvements in execution times. The two-
phases version of the algorithm provides even better results thanks to a shaving
procedure [13] that makes use of the bound sets.

2 Preliminaries

2.1 Preliminary definitions

We first recall some preliminary definitions concerning MOCO problems. They
differ from the standard single objective ones mainly in their cost structure, as
solutions are valued by m-vectors instead of scalars. Let us denote by X the set
of feasible solutions, and by Y its image in the objective space. The image of
solution x ∈ X is f(x) = (f1(x), . . . , fm(x)). Comparing solutions in X amounts
then to comparing m-vectors in Y. In this framework, the following notions prove
useful (in a maximisation setting):

Definition 1. The weak dominance relation on m-vectors of Zm+ is defined,
for all y, y′ ∈ Zm+ , by y < y′ ⇐⇒ [∀i ∈ {1, . . . ,m}, yi ≥ y′i)]. The dominance
relation is defined as the asymmetric part of <: y � y′ ⇐⇒ [y < y′ and y′ 6< y].

Definition 2. Within a set Y ⊆ Y, an element y is said to be dominated (resp.
weakly dominated) when y′ � y (resp. y′ < y) for some y′ in Y , and non-
dominated when there is no y′ in Y such that y′ � y. The set of non-dominated
elements in Y is denoted by Y ?.

By abuse of language, when f(x) � f(x′), we say that solution x dominates
solution x′. Similarly, we use the term of non-dominated solutions. The set of
non-dominated solution of X ⊆ X is denoted by X?. Following Bazgan et al. [2,
3], we say that a set of non-dominated solutions is reduced if it contains one and
only one solution for each non-dominated objective vector in Y = f(X) = {f(x) :
x ∈ X}. The aim of a multiobjective combinatorial problem is to determine a
reduced set of non-dominated solutions.
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2.2 Multiobjective binary knapsack problem

An instance of the multiobjective binary knapsack problem (0-1 MOKP) con-
sists of a knapsack of integer capacity c, and a set of items N = {1, . . . , n}. Each
item j has a weight wj and a m-vector profit pj = (pj1, . . . , p

j
m), variables wj , pjk

(k ∈ {1, . . . ,m}) being integers. A solution is characterized by a binary n-vector
x, where xj = 1 if item j is selected. Furthermore, a solution x is feasible if
it satisfies the constraint

∑n
j=1 w

jxj ≤ c. The goal of the problem is to find a
reduced set of non-dominated solutions, which can be formally stated as follows:

maximize
n∑
j=1

pjkxj k ∈ {1, . . . ,m}

subject to
n∑
j=1

wjxj ≤ c

xj ∈ {0, 1} j ∈ {1, . . . , n}
The special case when k = 2 is named biobjective binary knapsack problem

(0-1 BOKP).
Example 1. Consider the following prob-
lem:

maximize


10x1 + 2x2 + 6x3 + 9x4 + 12x5 + x6

2x1 + 7x2 + 6x3 + 4x4 + x5 + 3x6

subject to 4x1 + 4x2 + 5x3 + 4x4 + 3x5 + 2x6 ≤ 6
xj ∈ {0, 1} j ∈ {1, . . . , 6}

The non-dominated solutions are:
X ? = {(0, 0, 0, 0, 1, 1), (1, 0, 0, 0, 0, 1),
(0, 0, 0, 1, 0, 1), (0, 1, 0, 0, 0, 1)}, and their
image set in the objective space is
Y? = {(13, 4), (11, 5), (10, 7), (3, 10)} (see
Figure 1). Note that all solutions in X ?

have distinct images in the objective
space, therefore X ? is a reduced set of
non-dominated solutions.
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Fig. 1. Objective space.

Problem 0-1 MOKP can be solved by using a dynamic programming (DP)
procedure. For the ease of presentation, we only detail here the way the non-
dominated points in the objective space are computed. Note that the non-
dominated solutions themselves can of course be recovered, by using standard
bookkeeping techniques that do not impact on the computational complexity of
the algorithm. Let subproblem P (i, w) denote an instance of 0-1 MOKP consist-
ing of item set {1, . . . , i}, and capacity w. Let Y (i, w) be the image set of the
feasible solutions in P (i, w). If all sets Y ?(i−1, w) are known, for w ∈ {0, . . . , c},
then Y ?(i, w) can be computed by the recursive formula:

Y ?(i, w) =
{
Y ?(i− 1, w) if w < wi

ND
(
Y ?(i− 1, w) ∪ {y + pi : y ∈ Y ?(i− 1, w − wi)}

)
if w ≥ wi

Notation ND(·) stands for a set function returning the subset of non-dominated
points in a set of m-vectors. The complexity in time and space of the DP pro-
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cedure crucially depends on the cardinality of sets Y ?(i, w). Any result enabling
to discard elements in these sets is therefore worth investigating. Obviously, an
element y ∈ Y ?(i, w) can be discarded if there exists an element y′ ∈ Y ?(i, w′)
such that w′ < w and y′ < y . With the same goal in mind (discarding ele-
ments in the dynamic programming procedure), Villareal and Karwan presented
a hybrid DP approach to solve multicriteria integer linear programming prob-
lems [19]. They hybridize DP with fathoming criteria and relaxations, so as to
discard some elements that would not lead to non-dominated solutions. Since
we use a similar technique (by providing a more powerful fathoming criterion),
we are going to present and define the bound sets used to discard most of the
unwanted elements.

3 Bound sets in MOCO problems

3.1 Definition of upper and lower bound sets

Having good upper and lower bounds is very important in many implicit enu-
meration methods. It is well known that the tightness of these bounds is a key
parameter for the efficiency of the methods. In a multiobjective optimization
setting, since one handles sets of m-vectors, the very notion of upper and lower
bound has to be revisited. This work has been undertaken by Villareal and Kar-
wan [19], by introducing the notion of bound sets (in the terminology of Ehrgott
and Gandibleux [9]). Since the formalism used here slightly differs from the one
presented in these works, we give below our own definitions of upper and lower
bound sets.

Upper bound set. The simplest idea that comes to mind to upper bound a set Y of
vectors is to define a single vector yI such that yIi = maxy∈Y yi for i = 1, . . . ,m.
This point is called the ideal point of Y . However, this ideal point is usually very
“far” from the points in Y . For this reason, it is useful to define an upper bound
from a set of vectors instead of a singleton. Such a set is then called an upper
bound set [9].

Definition 3 (upper bound set). A set UB is an upper bound set of Y if
∀y ∈ Y, ∃u ∈ UB : u < y.

This is compatible with the definition of an upper bound in the single objective
case (UB reduces then to a singleton). As previously indicated, the upper bound
set defined by UB = {yI} is poor. In practice, a general family of good upper
bound sets of Y can be defined as UBΛ =

⋂
λ∈Λ{u ∈ Rm : 〈λ, u〉 ≤ UBλ},

where the λ ∈ Λ are weight vectors of the form (λ1, . . . , λm) ≥ 0, 〈., .〉 denotes
the scalar product, and UBλ ∈ R is an upper bound for {〈λ, y〉 : y ∈ Y }. Of
course, the larger |Λ| is, the better the upper bound set becomes. Clearly, the
best upper bound set in this family is obtained for Λ = Λc(Y ) where Λc(Y )
characterizes the facets of the non-dominated boundary of the convex hull of
Y (see Example 2). Interestingly, we will see in the next subsection that this
boundary can be efficiently computed in the biobjective case, provided UBλ

can be determined within polynomial or pseudo-polynomial time.
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Lower bound set. Similarly to the upper bound set, the simplest idea that comes
to mind to lower bound a set Y of vectors is to define a single vector yA such
that yAi = miny∈Y yi for i = 1, . . . ,m. This point is called the anti-ideal point
of Y . Here again, taking several points simultaneously into account in the lower
bound enables to bound more tightly set Y . Such a set is then called a lower
bound set [9].

Definition 4 (lower bound set). A set LB is a lower bound set of Y if
∀y ∈ Y, ∃l ∈ LB : y < l.

As above, the compatibility with the single objective case holds. In the biobjec-
tive case, when Y only includes mutually non-dominated points, we will show in
the next subsection a way to refine the lower bound set defined by LB = {yA}.

Comparing bound sets. Implicit enumeration is about eliminating entire subsets
of solutions by using simple rules. In order to perform the elimination, we need
to evaluate if a subset X ⊆ X of feasible solutions potentially includes non-
dominated solutions in X . To do this, one compares an upper bound set UB
of f(X) and a lower bound set LB of f(X ?) = Y?. Unlike the single objective
case, the comparison is not trivial since one handles sets instead of scalars. We
introduce here two notions that make it possible to simply define this operation
in a multiobjective setting.

Definition 5 (upper and lower relaxations). Given an upper bound set UB,
the upper relaxation UB4 is defined as: UB4 = {x ∈ Rm+ ,∃u ∈ UB, u < x}.
Similarly, given a lower bound set LB, the lower relaxation LB< is defined as:
LB< = {x ∈ Rm+ ,∃l ∈ LB, x < l}.

Coming back to the comparison of UB and LB, it is clear that UB4 ⊇ f(X)
and LB< ⊇ Y?. Consequently, UB4 ∩ LB< = ∅ implies that f(X) ∩ Y? = ∅.
In this case, subset X can of course be safely pruned. Note that this pruning
condition can be refined by using the fact that one only looks for a reduced set of
non-dominated solutions as well as the fact that valuations are integers. Due to
space constraints, this refinement is not detailed here. The main point is now to
be able to efficiently compute good lower and upper bound sets. In the following
subsection, this issue will be answered for the 0-1 BOKP.

3.2 Computation of bound sets in 0-1 BOKP

We now detail the algorithms used in 0-1 BOKP to compute the bound sets and
perform their comparison.

Computation of an upper bound set. Given a subset X ∈ X of feasible solutions,
upper bound set UBΛc(f(X)) can be compactly represented by storing the ex-
treme points of Y = f(X), i.e. the vertices of the non-dominated boundary of
the convex hull of Y (points y1, y2, y3, y4 in the left part of Figure 2). Aneja
and Nair’s method [1] enables to efficiently compute these vertices in biobjective
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combinatorial problems whose single objective version is solvable within poly-
nomial or pseudo-polynomial time. It proceeds by launching a single objective
version of the problem for determining each extreme points. The number of times
the single objective solution method is launched is therefore linear in the number
of extreme points.

Example 2. Let us come back to Example 1. Assume that one wants to up-
per bound the set X6̄ of feasible solutions where item 6 is not selected. Aneja
and Nair’s method yields the following list L of extreme points, characterizing
UBΛc(f(X6̄)): L = ((12, 1), (9, 4), (6, 6), (2, 7)). The corresponding upper relax-
ation UB4

Λc(f(X6̄)) is represented in Figure 2.
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Fig. 2. Upper and lower bound sets in a biobjective setting.

Computation of a lower bound set. Given a subset I ⊆ Y, a tight lower bound
set LB of I? can be computed as follows. When there are two objectives and
{(ij1, i

j
2) : 1 ≤ j ≤ k} are the points of I? maintained in lexicographical order

(i.e., in decreasing order of the first objective, and increasing order of the second
one), one can set LBN (I) = {nj = (i(j+1)

1 , ij2) : 0 ≤ j ≤ k}, where i02 = 0 and
i
(k+1)
1 = 0. The set LBN (I) can here be viewed as a generalization of the nadir

point of I (whose components are the worst possible value among the points of
I?). The points in LBN (I) are therefore sometimes called local nadir points [9].
One can note that LBN (I) is also a lower bound set for Y?.

Example 3. Let us come back to Example 1 once again, and consider the follow-
ing subset of points in Y: I = {(13, 4), (10, 7), (3, 10)}. The lower bound set is
then: N (I) = {(13, 0), (10, 4), (3, 7), (0, 10)}. This lower bound set is represented
in the middle part of Figure 2, as well as its lower relaxation LB<

N (I).

As described in the previous subsection, in order to know if one can prune
a subset X of solutions, one must compute the intersection of the relaxations
of a lower bound set of Y? and an upper bound set of Y = f(X). Testing if
UB4

Λc(f(X)) ∩ LB<
N (I) = ∅ amounts to check whether one element of LBN (I) is

included in UB4
Λc(f(X)). It can be formally expressed by:

∀n ∈ LBN (I),∃λ ∈ Λc(f(X)) : λ1n1 + λ2n2 > max
y∈f(X)

(λ1y1 + λ2y2)
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Example 4. Continuing Example 2 and Example 3, we shall compare the two
obtained relaxations. Both sets are represented in the right part of Figure 2.
Their intersection is empty, meaning that subset X6̄ can be safely discarded.

4 A new solution algorithm for 0-1 BOKP

Unlike the single objective case, in an implicit enumeration procedure for biob-
jective optimization, there is not a single incumbent but a set of incumbents:
the set of non-dominated solutions among the solutions explored so far. For sim-
plicity, we only refer to its image set I ⊆ Y in the following. The idea is then
of course to discard subsets X of solutions such that UB4

Λc(f(X)) ∩LB<
N (I) = ∅.

We now detail the various parts of our solution method for 0-1 BOKP.

4.1 Shaving procedure

The term “shaving” was introduced by Martin and Shmoys [13] for the job-shop
scheduling problem. It enables to reduce the size of a problem by making some
components forbidden or mandatory before starting the solution procedure. In
knapsack problems, it amounts to consider subsets of solutions of the following
form: for each item j, a subset Xj where item j is made mandatory, and a subset
Xj̄ where item j is made forbidden. For 0-1 BOKP, after initializing I with the
extreme points of Y (by Aneja and Nair’s method), the shaving procedure we
propose consists in checking whether UB4

Λc(f(Xj))∩LB<
N (I) = ∅ or UB4

Λc(f(Xj̄))∩
LB<

N (I) = ∅. If Xj or Xj̄ grants no non-dominated solution in X , item j can be
excluded from the problem by permanently setting xj = 0 or xj = 1. Note that
the computation of the upper bound sets yields feasible solutions, possibly non-
dominated. Consequently, during the running of the shaving procedure, set I is
updated by inserting these possible new non-dominated elements. The shaving
procedure is therefore launched twice in order to exclude some additional items
during the second round of the procedure. Example 4 above shows that it is
possible to shave item 6 in Example 1, by setting x6 = 1.

4.2 Hybrid dynamic programming

During the dynamic programming (DP) procedure, the use of bound sets as
a fathoming criterion, makes it possible to considerably reduce the number of
stored elements in each set Y ?(i, w). This is called hybridization. Given an ele-
ment y ∈ Y ?(i, w), by abuse of notation, we denote by f -1(y) a feasible solution
in P (i, w) such that f(f -1(y)) = y (if there are several solutions with the same
image in the objective space, f -1(y) is any of them), and we denote by Xy ⊆ X
the subset of feasible solutions in P (n, c) whose projection on P (i, w) is f -1(y).
When computing Y ?(i, w) by DP, the fathoming criterion consists in discarding
any element y such that UB4

Λc(f(Xy)) ∩ LB<
N (I) = ∅. Finding UBΛc(f(Xy)) can

be done by applying Aneja and Nair’s method to find the extreme points of the



8 Charles Delort and Olivier Spanjaard

subproblem on {i+ 1, . . . , n} with capacity c− w, that is denoted by P̄(i+1,w):

maximize
n∑

j=i+1

pjkxj k ∈ {1, 2}

subject to
n∑

j=i+1

wjxj ≤ c− w xj ∈ {0, 1}

One can then obtain the vertices of UBΛc(f(Xy)) by simply translating the ex-
treme points of P̄(i+1,w) by y.

4.3 Two-phases method

Visée et al. [20] introduced a two-phases method to solve the biobjective binary
knapsack problem. They first calculate the set of extreme solutions (i.e., whose
images in the objective space are extreme points of Y), and second, by launching
several branch-and-bound procedures, they compute the set of non-extreme non-
dominated solutions located in the triangles generated in the objective space by
two successive extreme solutions. Since the work of Visée et al., other approaches
have been proposed that outperform the two-phases method: a labeling approach
developed by Captivo et al. [5], and the already mentioned DP approach by
Bazgan et al. [2, 3]. We propose here a two-phases version of our DP procedure.
This technique is called two-phasification in the sequel. Instead of applying one
single DP procedure directly on the 0-1 BOKP instance, one first computes the
extreme solutions, and then applies one DP procedure for each triangle T in the
objective space. Let us denote by YT ⊆ Rm the subset of the objective space
corresponding to triangle T . When applying the DP procedure for finding feasible
solutions within T , one checks whether UB4

Λc(f(Xj)) ∩ LB<
N (I) ∩ YT = ∅ during

the local shaving procedure, and one checks whether UB4
Λc(f(Xy)) ∩ LB<

N (I) ∩
YT = ∅ for the fathoming criterion. Clearly, these conditions will hold much
more frequently than if the problem is considered in its whole. Moreover, one
can limit the computation of the upper bound sets to the area of the triangle
under consideration. By subdividing the problem in this way, both the shaving
procedure and the fathoming criterion are more efficient, since one focuses on
a restricted area of the objective space. This is confirmed by the numerical
experiments.
Example 5. In Figure 3 are represented
the triangles that would be obtained
in the problem described in Exam-
ple 1. In a two-phases method, the
feasible solutions corresponding to the
extreme points (in black) would be
found during the first phase, and the
other non-dominated solutions (grey
points) would be found during the sec-
ond phase.
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Fig. 3. Two-phases method.
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5 Numerical experiments

All experiments presented here were performed on an Intel R© CoreTM 2 Duo CPU
E8400 @ 3.00GHz personal computer, endowed with 3.2GB of RAM memory.
All algorithms were written in C++. To solve the single objective knapsack
problems, we used the minknap algorithm [15] which proved to be one of the
quickest in the literature (see the book by Kellerer et al. [10]).

5.1 Instances

The types of instances considered here are the same as in [2, 3], where the pa-
rameters are uniformly randomly generated and c = d0.5

∑n
j=1 w

je.
Type A: random instances, where pj1, pj2 and wj ∈ {1, . . . , 1000};
Type B: unconflicting instances, where pj1 ∈ {101, . . . , 1000}, pj2 ∈ {p

j
1−100, . . . , pj1+

100} and wj ∈ {1, . . . , 1000} ;
Type C: conflicting instances, where pj1 ∈ {1, . . . , 1000}, pj2 ∈ {max{900 −
pj1, 1}, . . . ,min{1100− pj1, 1000}} and wj ∈ {1, . . . , 1000} ;
Type D: conflicting instances with correlated weights, where pj1 ∈ {1, . . . , 1000},
pj2 ∈ {max{900−pj1, 1}, . . . ,min{1100−pj1, 1000}} and wj ∈ {pj1+pj2−200, . . . , pj1+
pj2 + 200}.

5.2 Results

We compared our method (named S2H for Shaving, 2-phases, and Hybrid DP)
and the one of Bazgan et al. [2, 3] (named BHV: initials of the authors) by run-
ning both methods on the same instances1. Table 1 shows the time and memory
spent to solve different types and sizes of instances. The first two columns in-
dicate the size and type of the instances solved. For each size and type, 30
randomly generated instances have been solved using different methods, and the
average and maximum times and memory requirements are indicated. Numbers
in bold represent the best value for a given type and size. Shaving, hybridiza-
tion and two-phasification are the three main parts of the algorithm presented
in this paper. We evaluated some variations of our method in order to measure
the importance of each part: 2H is a two-phases method using a hybridized DP
procedure, SH is a hybridized DP procedure applied to a shaved problem, and
finally S2 is a two-phases method using simple DP on problems reduced by shav-
ing. A time limit was set to 10000 seconds. Symbol “-” in the table denotes that
at least one instance of this type and size reached this limit. Symbol “*” indi-
cates that at least one instance couldn’t be solved due to insufficient memory.

Shaving. The shaving procedure is particularly effective on instances of type A
or B: there is indeed a lot of items that are not interesting, such as items with
low profits on both objectives, and high weights, and conversely items that have
1 We wish to thank Hadrien Hugot who kindly sent us the code of the BHV method.
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high profits and low weights, which will be taken in all non-dominated solutions.
On the other hand, since all items in types C and D have conflicting profits, it
is more difficult to shave items.

Two-phases. Using a two-phases method makes it possible to divide the problem
into several smaller problems, but there can be a lot of them (for problems of
type A and size 1000, there are on average 155 subproblems to solve). The com-
bination with the shaving procedure is interesting, because it further reduces the
sizes of the subproblems. The memory space spared this way is not as important
as that of the shaving for type A and B; the opposite is observed for types C
and D.

Hybridization. Hybridizing the DP is the main part of our algorithm. Not only
does it tremendously reduces the memory requirements, it also saves a lot of
computation time for larger, or more difficult instances. This can be seen by
looking at the results of method S2 on instances of types C and D, both in
terms of time and memory requirements.

We will now compare the S2H method to the BHV method. First, from a memory
consumption point of view, our method largely outperforms the BHV method
for all sizes and types of instances. From the computation time perspective, re-
sults depend on the sizes and types of instances. For types A and B the S2H
method is much faster than the BHV method, while for types C and D it is
slower, although when the size grows our method seems to become more and
more competitive (it is as good as method BHV for type C and size 500, and
within a factor two for type D and size 250). The reason for this behaviour is
that the fathoming criterion is rather time consuming, but this is compensated
for bigger instances by the fact that a lot of computation time is saved thanks
to the important number of elements that have been fathomed.

6 Conclusion

In this paper, we have presented a new solution algorithm for 0-1 BOKP, based
on the use of bound sets. It outperforms previous dynamic programming ap-
proaches from the viewpoint of memory requirements. Concerning the resolution
times, the performances are better than the best known algorithm for this prob-
lem on random and unconflicting instances, and slower on conflicting instances
(but within the same order of magnitude). A natural extension of this work
would be to investigate the impact of the use of bound sets on other MOCO
problems. Another extension would be to study how to improve the resolution
times on conflicting instances of 0-1 BOKP. For this purpose, an incremental
resolution of the single objective problems is worth investigating. Finally, note
that our fathoming criterion has only been implemented in the biojective case
up to now. The study of its practical implementation in problems involving more
than two objectives is an interesting and potentially fruitful task in our opinion.
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Type Size Method Time (sec.) RAM (MB) Type Size Method Time (sec.) RAM (MB)
Avg. Max. Avg. Max. Avg. Max. Avg. Max.

A 300 S2H 17 30 2.6 3.1 B 1000 S2H 7.0 11 2.0 2.3
BHV 51 103 80 113 BHV 4.1 10 11 15
2H 73 134 5.8 6.3 2H 17 40 15.2 16
SH 60 88 4.0 4.4 SH 10 16 2.5 2.8
S2 113 208 13.4 16 S2 10 15 2.3 3.6

500 S2H 73 109 3.1 3.7 2000 S2H 50 68 2.6 3.0
BHV 564 1031 401 449 BHV 132 272 132 272
2H 459 626 8.8 9.3 2H 195 334 30.1 31
SH 448 679 6.2 6.6 SH 109 181 3.8 4.3
S2 671 1045 38 56 S2 91 123 14 21

700 S2H 193 254 3.6 3.8 3000 S2H 160 211 3.1 3.4
BHV 2740 4184 1308 1800 BHV 874 1292 449 449
2H 1566 2038 11.1 12 2H 830 1227 44.6 45
SH 2209 3353 8.7 9.4 SH 517 699 4.9 5.2
S2 2820 3624 116 159 S2 344 468 45 74

1000 S2H 558 705 4.2 4.7 4000 S2H 358 435 3.7 3.9
BHV * * * * BHV 3017 4184 1307 1800
2H 5588 6981 15.7 16 2H 2292 3032 59.1 60
SH - - - - SH 1648 2097 6.1 6.4
S2 - - - - S2 970 1308 84 130

C 200 S2H 73 121 4.3 5.0 D 100 S2H 84 136 5.1 6.0
BHV 32 47 63 113 BHV 35 57 80 113
2H 112 172 4.8 5.3 2H 108 169 5.1 6.0
SH 147 239 3.1 3.4 SH 125 165 6.0 6.7
S2 1835 2307 107 163 S2 2138 3252 124 168

300 S2H 319 497 5.9 6.9 150 S2H 389 723 7.5 8.8
BHV 206 288 257 449 BHV 154 228 311 449
2H 539 832 6.7 7.3 2H 517 879 7.5 8.8
SH 788 1159 9.4 10 SH 698 1123 9.2 10
S2 - - - - S2 - - - -

400 S2H 946 1479 7.7 9.0 200 S2H 1143 2015 9.7 12
BHV 748 1006 782 897 BHV 770 897 897 897
2H 1756 2647 8.9 9.9 2H 1596 2796 9.5 12
SH 2806 3956 14.8 18 SH 2689 3747 13.1 16
S2 - - - - S2 - - - -

500 S2H 2138 3046 9.6 10 250 S2H 2555 3540 11.7 17
BHV 2014 2651 1458 1800 BHV 1989 1100 1730 1800
2H 4165 5952 10.4 11 2H 3585 4668 11.7 17
SH - - - - SH 6984 8516 18.1 21
S2 - - - - S2 - - - -

2H: method S2H without shaving SH: method S2H without two-phases
S2: method S2H without hybridization

Table 1. Computation times, and memory requirements of different methods for the
0-1 BOKP.
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