Charles Delort
email: charles.delort@lip6.fr

Olivier Spanjaard
email: olivier.spanjaard@lip6.fr

Using bound sets in multiobjective optimization: Application to the biobjective binary knapsack problem

Keywords: Multiobjective combinatorial optimization, bound sets, biobjective binary knapsack problem

 based on biobjective dynamic programming yields numerical results that outperform previous ones, both in execution times and memory requirements.

Introduction

Multiobjective combinatorial optimization (MOCO) deals with combinatorial problems where every solution is evaluated according to several objectives. Interest in this area has tremendously grown over the last two decades. A thorough presentation of the field can be found for instance in a book by Ehrgott [START_REF] Ehrgott | Multicriteria Optimization[END_REF]. The standard approach aims at generating the whole set of Pareto optimal solutions, i.e. solutions that cannot be improved on one objective without being depreciated on another one. Most of the classical exact and approximate methods for finding an optimal solution in single objective discrete optimization have been revisited for finding the Pareto set under multiple objectives, e.g. dynamic programming [START_REF] Daellenbach | Note on multiple objective dynamic programming[END_REF][START_REF] Klamroth | Dynamic programming approaches to the multiple criteria knapsack problem[END_REF], branch and bound [START_REF] Bitran | A combined approach to solve binary multicriteria problems[END_REF][START_REF] Kiziltan | An algorithm for multiobjective zero-one linear programming[END_REF][START_REF] Mavrotas | A branch and bound algorithm for mixed zero-one multiple objective linear programming[END_REF], greedy algorithm [START_REF] Serafini | Some considerations about computational complexity for multiobjective combinatorial problems. In Recent advances and historical development of vector optimization[END_REF], as well as many heuristic and metaheuristic methods [START_REF] Ehrgott | Approximative solution methods for multiobjective combinatorial optimization[END_REF].

In order to perform implicit enumeration in multiobjective optimization problems, the formal notion of bound set needs to be introduced. This has been done several times in the literature. Roughly speaking, bound sets are sets of bounds. Indeed, due to the partial nature of the ordering relation between solutions, the use of a set of bounds instead of a single bound makes it possible to more tightly approximate the image set of the solutions in the objective space. To our knowledge, one of the first work mentioning that notion was performed by Villareal and Karwan [START_REF] Villareal | Multicriteria integer programming: A (hybrid) dynamic programming recursive approach[END_REF], and deals with branch and bounds for multiobjective integer linear programming problems. However, in this work and subsequent ones, no operational way to compute bound sets has been devised where the bound set does not reduce to a singleton. Very recently, based on the convex hull of the image of the solutions in the objective space, new bound sets have been proposed [START_REF] Ehrgott | Bound sets for biobjective combinatorial optimization problems[END_REF][START_REF] Sourd | A multi-objective branch-and-bound framework. Application to the bi-objective spanning tree problem[END_REF]. The use of these new bound sets has proved very efficient in the biobjective spanning tree problem [START_REF] Sourd | A multi-objective branch-and-bound framework. Application to the bi-objective spanning tree problem[END_REF]. The purpose of the present paper is to show how these bound sets can be used to design efficient algorithms for the biobjective binary knapsack problem. Our contribution is twofold: we first explain how to hybridize multiobjective dynamic programming with the fathoming criterion provided by the bound sets, and then detail how multiobjective dynamic programming can be embedded in a two-phases approach to further improve the method. The hybridization we propose is in the spirit of the dominance relations between states used in a work by Bazgan et al. [START_REF] Bazgan | An efficient implementation for the 0-1 multi-objective knapsack problem[END_REF][START_REF] Bazgan | Solving efficiently the 0-1 multiobjective knapsack problem[END_REF], but enables huge savings in memory requirements as well as improvements in execution times. The twophases version of the algorithm provides even better results thanks to a shaving procedure [START_REF] Martin | A new approach to computing optimal schedules for the job shop scheduling problem[END_REF] that makes use of the bound sets.

Preliminaries

Preliminary definitions

We first recall some preliminary definitions concerning MOCO problems. They differ from the standard single objective ones mainly in their cost structure, as solutions are valued by m-vectors instead of scalars. Let us denote by X the set of feasible solutions, and by Y its image in the objective space. The image of solution x ∈ X is f (x) = (f 1 (x), . . . , f m (x)). Comparing solutions in X amounts then to comparing m-vectors in Y. In this framework, the following notions prove useful (in a maximisation setting): Definition 2. Within a set Y ⊆ Y, an element y is said to be dominated (resp. weakly dominated) when y y (resp. y y) for some y in Y , and nondominated when there is no y in Y such that y y. The set of non-dominated elements in Y is denoted by Y .

By abuse of language, when f (x) f (x), we say that solution x dominates solution x . Similarly, we use the term of non-dominated solutions. The set of non-dominated solution of X ⊆ X is denoted by X . Following Bazgan et al. [START_REF] Bazgan | An efficient implementation for the 0-1 multi-objective knapsack problem[END_REF][START_REF] Bazgan | Solving efficiently the 0-1 multiobjective knapsack problem[END_REF], we say that a set of non-dominated solutions is reduced if it contains one and only one solution for each non-dominated objective vector in Y = f (X) = {f (x) :

x ∈ X}. The aim of a multiobjective combinatorial problem is to determine a reduced set of non-dominated solutions.

Multiobjective binary knapsack problem

An instance of the multiobjective binary knapsack problem (0-1 MOKP) consists of a knapsack of integer capacity c, and a set of items N = {1, . . . , n}. Each item j has a weight w j and a m-vector profit p j = (p j 1 , . . . , p j m), variables w j , p j k (k ∈ {1, . . . , m}) being integers. A solution is characterized by a binary n-vector x, where x j = 1 if item j is selected. Furthermore, a solution x is feasible if it satisfies the constraint n j=1 w j x j ≤ c. The goal of the problem is to find a reduced set of non-dominated solutions, which can be formally stated as follows:

maximize n j=1 p j k x j k ∈ {1, . . . , m} subject to n j=1 w j x j ≤ c x j ∈ {0, 1} j ∈ {1, . . . , n}
The special case when k = 2 is named biobjective binary knapsack problem (0-1 BOKP).

Example 1. Consider the following problem: maximize

 10x1 + 2x2 + 6x3 + 9x4 + 12x5 + x6 2x1 + 7x2 + 6x3 + 4x4 + x5 + 3x6 subject to 4x1 + 4x2 + 5x3 + 4x4 + 3x5 + 2x6 ≤ 6 xj ∈ {0, 1} j ∈ {1, . . . , 6}
The non-dominated solutions are: X = {(0, 0, 0, 0, 1, 1), (1, 0, 0, 0, 0, 1), (0, 0, 0, 1, 0, 1), (0, 1, 0, 0, 0, 1)}, and their image set in the objective space is Y = {(13, 4), [START_REF] Kiziltan | An algorithm for multiobjective zero-one linear programming[END_REF][START_REF] Captivo | Solving bicriteria 0-1 knapsack problems using a labeling algorithm[END_REF], [START_REF] Kellerer | Knapsack Problems[END_REF][START_REF] Ehrgott | Multicriteria Optimization[END_REF], (3, 10)} (see Figure 1). Note that all solutions in X have distinct images in the objective space, therefore X is a reduced set of non-dominated solutions. Problem 0-1 MOKP can be solved by using a dynamic programming (DP) procedure. For the ease of presentation, we only detail here the way the nondominated points in the objective space are computed. Note that the nondominated solutions themselves can of course be recovered, by using standard bookkeeping techniques that do not impact on the computational complexity of the algorithm. Let subproblem P (i, w) denote an instance of 0-1 MOKP consisting of item set {1, . . . , i}, and capacity w. Let Y (i, w) be the image set of the feasible solutions in P (i, w). If all sets Y (i -1, w) are known, for w ∈ {0, . . . , c}, then Y (i, w) can be computed by the recursive formula:

Y (i, w) = Y (i -1, w) if w < w i ND Y (i -1, w) ∪ {y + p i : y ∈ Y (i -1, w -w i)} if w ≥ w i
Notation ND(•) stands for a set function returning the subset of non-dominated points in a set of m-vectors. The complexity in time and space of the DP pro-cedure crucially depends on the cardinality of sets Y (i, w). Any result enabling to discard elements in these sets is therefore worth investigating. Obviously, an element y ∈ Y (i, w) can be discarded if there exists an element y ∈ Y (i, w) such that w < w and y y . With the same goal in mind (discarding elements in the dynamic programming procedure), Villareal and Karwan presented a hybrid DP approach to solve multicriteria integer linear programming problems [START_REF] Villareal | Multicriteria integer programming: A (hybrid) dynamic programming recursive approach[END_REF]. They hybridize DP with fathoming criteria and relaxations, so as to discard some elements that would not lead to non-dominated solutions. Since we use a similar technique (by providing a more powerful fathoming criterion), we are going to present and define the bound sets used to discard most of the unwanted elements.

3 Bound sets in MOCO problems

Definition of upper and lower bound sets

Having good upper and lower bounds is very important in many implicit enumeration methods. It is well known that the tightness of these bounds is a key parameter for the efficiency of the methods. In a multiobjective optimization setting, since one handles sets of m-vectors, the very notion of upper and lower bound has to be revisited. This work has been undertaken by Villareal and Karwan [START_REF] Villareal | Multicriteria integer programming: A (hybrid) dynamic programming recursive approach[END_REF], by introducing the notion of bound sets (in the terminology of Ehrgott and Gandibleux [START_REF] Ehrgott | Bound sets for biobjective combinatorial optimization problems[END_REF]). Since the formalism used here slightly differs from the one presented in these works, we give below our own definitions of upper and lower bound sets.

Upper bound set. The simplest idea that comes to mind to upper bound a set Y of vectors is to define a single vector y I such that y I i = max y∈Y y i for i = 1, . . . , m. This point is called the ideal point of Y . However, this ideal point is usually very "far" from the points in Y . For this reason, it is useful to define an upper bound from a set of vectors instead of a singleton. Such a set is then called an upper bound set [START_REF] Ehrgott | Bound sets for biobjective combinatorial optimization problems[END_REF].

Definition 3 (upper bound set). A set UB is an upper bound set of Y if ∀y ∈ Y, ∃u ∈ UB : u y.
This is compatible with the definition of an upper bound in the single objective case (UB reduces then to a singleton). As previously indicated, the upper bound set defined by UB = {y I } is poor. In practice, a general family of good upper bound sets of Y can be defined as

UB Λ = λ∈Λ {u ∈ R m : λ, u ≤ UB λ },
where the λ ∈ Λ are weight vectors of the form (λ 1 , . . . , λ m) ≥ 0, ., . denotes the scalar product, and UB λ ∈ R is an upper bound for { λ, y : y ∈ Y }. Of course, the larger |Λ| is, the better the upper bound set becomes. Clearly, the best upper bound set in this family is obtained for Λ = Λ c (Y) where Λ c (Y) characterizes the facets of the non-dominated boundary of the convex hull of Y (see Example 2). Interestingly, we will see in the next subsection that this boundary can be efficiently computed in the biobjective case, provided UB λ can be determined within polynomial or pseudo-polynomial time.

Lower bound set. Similarly to the upper bound set, the simplest idea that comes to mind to lower bound a set Y of vectors is to define a single vector y A such that y A i = min y∈Y y i for i = 1, . . . , m. This point is called the anti-ideal point of Y . Here again, taking several points simultaneously into account in the lower bound enables to bound more tightly set Y . Such a set is then called a lower bound set [START_REF] Ehrgott | Bound sets for biobjective combinatorial optimization problems[END_REF].

Definition 4 (lower bound set). A set LB is a lower bound set of Y if ∀y ∈ Y, ∃l ∈ LB : y l.
As above, the compatibility with the single objective case holds. In the biobjective case, when Y only includes mutually non-dominated points, we will show in the next subsection a way to refine the lower bound set defined by LB = {y A }.

Comparing bound sets. Implicit enumeration is about eliminating entire subsets of solutions by using simple rules. In order to perform the elimination, we need to evaluate if a subset X ⊆ X of feasible solutions potentially includes nondominated solutions in X . To do this, one compares an upper bound set UB of f (X) and a lower bound set LB of f (X) = Y . Unlike the single objective case, the comparison is not trivial since one handles sets instead of scalars. We introduce here two notions that make it possible to simply define this operation in a multiobjective setting.

Definition 5 (upper and lower relaxations). Given an upper bound set UB, the upper relaxation UB is defined as: UB = {x ∈ R m + , ∃u ∈ UB, u x}. Similarly, given a lower bound set LB, the lower relaxation LB is defined as:

LB = {x ∈ R m + , ∃l ∈ LB, x l}.
Coming back to the comparison of UB and LB, it is clear that UB ⊇ f (X) and LB ⊇ Y . Consequently, UB ∩ LB = ∅ implies that f (X) ∩ Y = ∅. In this case, subset X can of course be safely pruned. Note that this pruning condition can be refined by using the fact that one only looks for a reduced set of non-dominated solutions as well as the fact that valuations are integers. Due to space constraints, this refinement is not detailed here. The main point is now to be able to efficiently compute good lower and upper bound sets. In the following subsection, this issue will be answered for the 0-1 BOKP.

Computation of bound sets in 0-1 BOKP

We now detail the algorithms used in 0-1 BOKP to compute the bound sets and perform their comparison.

Computation of an upper bound set. Given a subset X ∈ X of feasible solutions, upper bound set UB Λc(f (X)) can be compactly represented by storing the extreme points of Y = f (X), i.e. the vertices of the non-dominated boundary of the convex hull of Y (points y 1 , y 2 , y 3 , y 4 in the left part of Figure 2). Aneja and Nair's method [START_REF] Aneja | Bicriteria transportation problem[END_REF] Points in

L o 2 o 1 o 2 o 1 o 2 o 1 o 2 o 1 y 2 y 4 y 1 n 3 i 3 n 2 i 2 n 1 i 1 n 0 n 3 n 2 n 1 n 0 10 8 LBN (I) Points in I LB N (I) UB Λc(f (X6)) y 3
Fig. 2. Upper and lower bound sets in a biobjective setting.

Computation of a lower bound set. Given a subset I ⊆ Y, a tight lower bound set LB of I can be computed as follows. When there are two objectives and {(i j 1 , i j 2) : 1 ≤ j ≤ k} are the points of I maintained in lexicographical order (i.e., in decreasing order of the first objective, and increasing order of the second one), one can set LB N (I) = {n j = (i (j+1) 1

, i j

2) : 0 ≤ j ≤ k}, where i 0 2 = 0 and i (k+1) 1 = 0. The set LB N (I) can here be viewed as a generalization of the nadir point of I (whose components are the worst possible value among the points of I). The points in LB N (I) are therefore sometimes called local nadir points [START_REF] Ehrgott | Bound sets for biobjective combinatorial optimization problems[END_REF]. One can note that LB N (I) is also a lower bound set for Y .

Example 3. Let us come back to Example 1 once again, and consider the following subset of points in Y: I = {(13, 4), (10, 7), (3, 10)}. The lower bound set is then: N (I) = {(13, 0), [START_REF] Kellerer | Knapsack Problems[END_REF][START_REF] Bitran | A combined approach to solve binary multicriteria problems[END_REF], [START_REF] Bazgan | Solving efficiently the 0-1 multiobjective knapsack problem[END_REF][START_REF] Ehrgott | Multicriteria Optimization[END_REF], (0, 10)}. This lower bound set is represented in the middle part of Figure 2, as well as its lower relaxation LB N (I) .

As described in the previous subsection, in order to know if one can prune a subset X of solutions, one must compute the intersection of the relaxations of a lower bound set of Y and an upper bound set of Y = f (X). Testing if UB Λc(f (X)) ∩ LB N (I) = ∅ amounts to check whether one element of LB N (I) is included in UB Λc(f (X)) . It can be formally expressed by:

∀n ∈ LB N (I) , ∃λ ∈ Λ c (f (X)) : λ 1 n 1 + λ 2 n 2 > max y∈f (X) (λ 1 y 1 + λ 2 y 2)
Example 4. Continuing Example 2 and Example 3, we shall compare the two obtained relaxations. Both sets are represented in the right part of Figure 2. Their intersection is empty, meaning that subset X6 can be safely discarded.

A new solution algorithm for 0-1 BOKP

Unlike the single objective case, in an implicit enumeration procedure for biobjective optimization, there is not a single incumbent but a set of incumbents: the set of non-dominated solutions among the solutions explored so far. For simplicity, we only refer to its image set I ⊆ Y in the following. The idea is then of course to discard subsets X of solutions such that UB Λc(f (X)) ∩ LB N (I) = ∅. We now detail the various parts of our solution method for 0-1 BOKP.

Shaving procedure

The term "shaving" was introduced by Martin and Shmoys [START_REF] Martin | A new approach to computing optimal schedules for the job shop scheduling problem[END_REF] for the job-shop scheduling problem. It enables to reduce the size of a problem by making some components forbidden or mandatory before starting the solution procedure. In knapsack problems, it amounts to consider subsets of solutions of the following form: for each item j, a subset X j where item j is made mandatory, and a subset Xj where item j is made forbidden. For 0-1 BOKP, after initializing I with the extreme points of Y (by Aneja and Nair's method), the shaving procedure we propose consists in checking whether UB Λc(f (Xj)) ∩LB N (I) = ∅ or UB Λc(f (Xj)) ∩ LB N (I) = ∅. If X j or Xj grants no non-dominated solution in X , item j can be excluded from the problem by permanently setting x j = 0 or x j = 1. Note that the computation of the upper bound sets yields feasible solutions, possibly nondominated. Consequently, during the running of the shaving procedure, set I is updated by inserting these possible new non-dominated elements. The shaving procedure is therefore launched twice in order to exclude some additional items during the second round of the procedure. Example 4 above shows that it is possible to shave item 6 in Example 1, by setting x 6 = 1.

Hybrid dynamic programming

During the dynamic programming (DP) procedure, the use of bound sets as a fathoming criterion, makes it possible to considerably reduce the number of stored elements in each set Y (i, w). This is called hybridization. Given an element y ∈ Y (i, w), by abuse of notation, we denote by f -1 (y) a feasible solution in P (i, w) such that f (f -1 (y)) = y (if there are several solutions with the same image in the objective space, f -1 (y) is any of them), and we denote by X y ⊆ X the subset of feasible solutions in P (n, c) whose projection on P (i, w) is f -1 (y). When computing Y (i, w) by DP, the fathoming criterion consists in discarding any element y such that UB Λc(f (Xy)) ∩ LB N (I) = ∅. Finding UB Λc(f (Xy)) can be done by applying Aneja and Nair's method to find the extreme points of the subproblem on {i + 1, . . . , n} with capacity c -w, that is denoted by P(i+1,w) :

maximize n j=i+1 p j k x j k ∈ {1, 2} subject to n j=i+1 w j x j ≤ c -w x j ∈ {0, 1}
One can then obtain the vertices of UB Λc(f (Xy)) by simply translating the extreme points of P(i+1,w) by y.

Two-phases method

Visée et al. [START_REF] Visée | Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem[END_REF] introduced a two-phases method to solve the biobjective binary knapsack problem. They first calculate the set of extreme solutions (i.e., whose images in the objective space are extreme points of Y), and second, by launching several branch-and-bound procedures, they compute the set of non-extreme nondominated solutions located in the triangles generated in the objective space by two successive extreme solutions. Since the work of Visée et al., other approaches have been proposed that outperform the two-phases method: a labeling approach developed by Captivo et al. [START_REF] Captivo | Solving bicriteria 0-1 knapsack problems using a labeling algorithm[END_REF], and the already mentioned DP approach by Bazgan et al. [START_REF] Bazgan | An efficient implementation for the 0-1 multi-objective knapsack problem[END_REF][START_REF] Bazgan | Solving efficiently the 0-1 multiobjective knapsack problem[END_REF]. We propose here a two-phases version of our DP procedure. This technique is called two-phasification in the sequel. Instead of applying one single DP procedure directly on the 0-1 BOKP instance, one first computes the extreme solutions, and then applies one DP procedure for each triangle T in the objective space. Let us denote by Y T ⊆ R m the subset of the objective space corresponding to triangle T . When applying the DP procedure for finding feasible solutions within T , one checks whether UB Λc(f (Xj)) ∩ LB N (I) ∩ Y T = ∅ during the local shaving procedure, and one checks whether UB Λc(f (Xy)) ∩ LB N (I) ∩ Y T = ∅ for the fathoming criterion. Clearly, these conditions will hold much more frequently than if the problem is considered in its whole. Moreover, one can limit the computation of the upper bound sets to the area of the triangle under consideration. By subdividing the problem in this way, both the shaving procedure and the fathoming criterion are more efficient, since one focuses on a restricted area of the objective space. This is confirmed by the numerical experiments.

Example 5. In Figure 3 are represented the triangles that would be obtained in the problem described in Example 1. In a two-phases method, the feasible solutions corresponding to the extreme points (in black) would be found during the first phase, and the other non-dominated solutions (grey points) would be found during the second phase.

Results

We compared our method (named S2H for Shaving, 2-phases, and Hybrid DP) and the one of Bazgan et al. [START_REF] Bazgan | An efficient implementation for the 0-1 multi-objective knapsack problem[END_REF][START_REF] Bazgan | Solving efficiently the 0-1 multiobjective knapsack problem[END_REF] (named BHV: initials of the authors) by running both methods on the same instances1 . Table 1 shows the time and memory spent to solve different types and sizes of instances. The first two columns indicate the size and type of the instances solved. For each size and type, 30 randomly generated instances have been solved using different methods, and the average and maximum times and memory requirements are indicated. Numbers in bold represent the best value for a given type and size. Shaving, hybridization and two-phasification are the three main parts of the algorithm presented in this paper. We evaluated some variations of our method in order to measure the importance of each part: 2H is a two-phases method using a hybridized DP procedure, SH is a hybridized DP procedure applied to a shaved problem, and finally S2 is a two-phases method using simple DP on problems reduced by shaving. A time limit was set to 10000 seconds. Symbol "-" in the table denotes that at least one instance of this type and size reached this limit. Symbol "*" indicates that at least one instance couldn't be solved due to insufficient memory.

Shaving. The shaving procedure is particularly effective on instances of type A or B: there is indeed a lot of items that are not interesting, such as items with low profits on both objectives, and high weights, and conversely items that have high profits and low weights, which will be taken in all non-dominated solutions. On the other hand, since all items in types C and D have conflicting profits, it is more difficult to shave items. Two-phases. Using a two-phases method makes it possible to divide the problem into several smaller problems, but there can be a lot of them (for problems of type A and size 1000, there are on average 155 subproblems to solve). The combination with the shaving procedure is interesting, because it further reduces the sizes of the subproblems. The memory space spared this way is not as important as that of the shaving for type A and B; the opposite is observed for types C and D.

Hybridization. Hybridizing the DP is the main part of our algorithm. Not only does it tremendously reduces the memory requirements, it also saves a lot of computation time for larger, or more difficult instances. This can be seen by looking at the results of method S2 on instances of types C and D, both in terms of time and memory requirements.

We will now compare the S2H method to the BHV method. First, from a memory consumption point of view, our method largely outperforms the BHV method for all sizes and types of instances. From the computation time perspective, results depend on the sizes and types of instances. For types A and B the S2H method is much faster than the BHV method, while for types C and D it is slower, although when the size grows our method seems to become more and more competitive (it is as good as method BHV for type C and size 500, and within a factor two for type D and size 250). The reason for this behaviour is that the fathoming criterion is rather time consuming, but this is compensated for bigger instances by the fact that a lot of computation time is saved thanks to the important number of elements that have been fathomed.

Conclusion

In this paper, we have presented a new solution algorithm for 0-1 BOKP, based on the use of bound sets. It outperforms previous dynamic programming approaches from the viewpoint of memory requirements. Concerning the resolution times, the performances are better than the best known algorithm for this problem on random and unconflicting instances, and slower on conflicting instances (but within the same order of magnitude). A natural extension of this work would be to investigate the impact of the use of bound sets on other MOCO problems. Another extension would be to study how to improve the resolution times on conflicting instances of 0-1 BOKP. For this purpose, an incremental resolution of the single objective problems is worth investigating. Finally, note that our fathoming criterion has only been implemented in the biojective case up to now. The study of its practical implementation in problems involving more than two objectives is an interesting and potentially fruitful task in our opinion.

Acknowledgements. This work was supported by ANR project GUEPARD.

Definition 1 .

 1 The weak dominance relation on m-vectors of Z m + is defined, for all y, y ∈ Z m + , by y y ⇐⇒ [∀i ∈ {1, . . . , m}, y i ≥ y i)]. The dominance relation is defined as the asymmetric part of : y y ⇐⇒ [y y and y y].

Fig. 1 .

 1 Fig. 1. Objective space.

Fig. 3 .

 3 Fig. 3. Two-phases method.

 enables to efficiently compute these vertices in biobjective combinatorial problems whose single objective version is solvable within polynomial or pseudo-polynomial time. It proceeds by launching a single objective version of the problem for determining each extreme points. The number of times the single objective solution method is launched is therefore linear in the number of extreme points.Example 2. Let us come back to Example 1. Assume that one wants to upper bound the set X6 of feasible solutions where item 6 is not selected. Aneja and Nair's method yields the following list L of extreme points, characterizing UB Λc(f (X6)) : L = ((12, 1),[START_REF] Ehrgott | Bound sets for biobjective combinatorial optimization problems[END_REF][START_REF] Bitran | A combined approach to solve binary multicriteria problems[END_REF],[START_REF] Daellenbach | Note on multiple objective dynamic programming[END_REF][START_REF] Daellenbach | Note on multiple objective dynamic programming[END_REF],[START_REF] Bazgan | An efficient implementation for the 0-1 multi-objective knapsack problem[END_REF][START_REF] Ehrgott | Multicriteria Optimization[END_REF]). The corresponding upper relaxation UB Λc(f (X6)) is represented in Figure2.

						10						10 10						
						8						8 8						
	6					6						6 6						
	4					4						4 4						
	2					2						2 2						
	2	4	6	8	10	12	2	4	6	8	10	12	2 2	4 4	6 6	8 8	10 10	12 12

Table 1 .

 1 Type Size Method Time (sec.) RAM (MB) Type Size Method Time (sec.) RAM (MB) Avg. Max. Avg. Max. Computation times, and memory requirements of different methods for the 0-1 BOKP.

	Avg. Max. Avg. Max.

We wish to thank Hadrien Hugot who kindly sent us the code of the BHV method.

Numerical experiments

All experiments presented here were performed on an Intel R Core TM 2 Duo CPU E8400 @ 3.00GHz personal computer, endowed with 3.2GB of RAM memory. All algorithms were written in C++. To solve the single objective knapsack problems, we used the minknap algorithm [START_REF] Pisinger | A minimal algorithm for the 0-1 knapsack problem[END_REF] which proved to be one of the quickest in the literature (see the book by Kellerer et al. [START_REF] Kellerer | Knapsack Problems[END_REF]).

Instances

The types of instances considered here are the same as in [START_REF] Bazgan | An efficient implementation for the 0-1 multi-objective knapsack problem[END_REF][START_REF] Bazgan | Solving efficiently the 0-1 multiobjective knapsack problem[END_REF], where the parameters are uniformly randomly generated and c = 0.5 n j=1 w j . Type A: random instances, where p j 1 , p j 2 and w j ∈ {1, . . . , 1000}; Type B: unconflicting instances, where p j 1 ∈ {101, . . . , 1000}, p j 2 ∈ {p j 1 -100, . . . , p j 1 + 100} and w j ∈ {1, . . . , 1000} ; Type C: conflicting instances, where p j 1 ∈ {1, . . . , 1000}, p j 2 ∈ {max{900p j 1 , 1}, . . . , min{1100 -p j 1 , 1000}} and w j ∈ {1, . . . , 1000} ; Type D: conflicting instances with correlated weights, where p j 1 ∈ {1, . . . , 1000}, p j 2 ∈ {max{900-p j 1 , 1}, . . . , min{1100-p j 1 , 1000}} and w j ∈ {p j 1 +p j 2 -200, . . . , p j 1 + p j 2 + 200}.