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ABSTRACT   

In this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a 

microstructure (MOF) low-finesse Fabry-Pérot sensing head is presented and characterized. The interrogation of the 

sensing head is carried out by monitoring the fast Fourier transform phase variations of the FP interference frequency. 

This method is independent of the signal amplitude and also avoids the necessity of tracking the wavelength evolution in 

the spectrum; moreover, it is applicable networks that require narrow band sensors, allowing high multiplexation rates. 

The sensor is operated within a wide humidity range (20%–90% relative humidity) with a maximum sensitivity achieved 

of 0.14rad/%. The system uses an optical interrogator as unique active element which presents a cost-effective feature. 

Keywords: Photonic crystal fiber, microstructured optical fiber, fiber sensor, humidity sensing. 

 

INTRODUCTION  

Optical fiber based sensors have shown relevant capabilities to measure different parameters such as temperature, 

curvature, displacement, pressure, refractive index, electric field, relative humidity and gases, among others. Since the 

first experiments with microstructured optical fibers (MOFs), they have shown improved characteristics over 

conventional optical fibers and great potential for sensing applications [1]. Several geometries have been proposed for 

this kind of fiber. Among them, suspended-core MOFs present relatively large air holes surrounding a small core 

(typically few m of diameter) that seems to be suspended along the fiber length and maintained by small width silica 

bridges. Different pure silica suspended-core fibers have been applied for instance in temperature and curvature sensing 

[2] and in gas sensing [3]. 

Fiber based optical Fabry-Pérot (FP) interferometers are quite a popular sensor configuration due to their compactness, 

simple configuration, flexibility in tuning sensitivity and dynamic range. A fiber based FP sensor is most of the times 

fabricated by splicing a section of waveguide, which acts as the cavity, to a standard optical fiber, providing it with the 

potential for low insertion-loss and multiplexing capability. The FP cavity output signal presents an interference pattern 

that is a function of the length and of the refractive index of the cavity, or more precisely, the effective indices of the 

different modes supported by the fiber sample. FP cavities composed by MOFs are an even more common structure: a 

hybrid structure that used a MOF as the guiding fiber and cascade it with a hollow-core fiber and a single mode fiber 

(SMF), for high-temperature sensing, was demonstrated [4]. Other fiber based sensors were accomplished by fusing a 

small length of PCF to the end of a cleaved SMF for relative humidity ranged 40%-95% RH [5] or by chemical 

deposition of PSP and PAH [6]. 

Among optical fiber sensors, those based on nanocoatings have recently experienced a remarkable development [7]. 

Furthermore, new techniques in chemical deposition, such as sputtering [8], allow the morphology of the deposited 

coatings to be controlled with high accuracy, and as a consequence, the final features (sensitivity, kinetics) of the sensor. 

In this paper, a SnO2-(would it be interesting to explain a little bit here or just at the beginning of the next section how 

SnO2 coating is performed in order to facilitate the understanding?) hybrid-Fabry-Pérot interferometer based on a novel 

four-bridge dual highly coupled Y shaped cores microstructured optical fiber is presented and characterized. By 

monitoring the fast Fourier transform (FFT) phase variations of the PF interference frequency an experimental study of 
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this cavity’s response with relative humidity changes, and optical power fluctuations in time is presented. This measuring 

method is independent of the signal amplitude and avoids the necessity of tracking the wavelength evolution in the 

spectrum, which simplifies the measurements. 

 

EXPERIMENTAL SET-UP AND OPERATION PRINCIPLE 

The Fabry-Pérot interferometer was fabricated by splicing a single mode fiber to ~1mm of a novel four-bridge MOF, 

with its end cleaved, as shown in Figure 1 a. (which process for SNO2 coating, where and what are the characteristics of 

the coating layer?) The fiber is composed by four big air holes divided by four thin silica bridges, approximately 900 nm 

thick, and presents an elongated core of 3.2µm by 1.07µm, exhibiting a double Y shape. This specific core shape can be 

seen as two coupled single mode guiding cores [9]. This specific shape provides unprecedented possibilities for 

interferometric sensing. The cross-section of the four-bridge MOF and its core details are presented in Figure 1 b and 1 c, 

respectively. 

 

 

Figure 1. A) MOF based Fabry-Perot interferometer, (B) the cross-section of the used four-bridge MOF and (C) the four-bridge MOF 

core detail. 

 

Figure 2 presents the experimental set-up used to characterize the four-bridge MOF Fabry-Pérot based sensing head and 

the SnO2-FP final sensor. A commercial interrogating sensor device (Smartec SM125) was used to illuminate the 

network and also to analyze the spectra of the signal guided through the sensor. It should be noticed that this equipment 

was originally commercialized for FBG sensors´ monitoring and allows sensors to be interrogated in real time (sampling 

frequency of 1Hz) [10]. The SM125 is remotely controlled through a MATLAB software that also executes the FFT real 

time analysis. The sensing head was inserted into a climatic chamber where humidity ranges from 20% to 90% were 

applied at a constant temperature of 25ºC to evaluate its response to this magnitude. 

Due to the use of the FFT phase as the sensing parameter, power constraints are not as limiting as in other techniques, 

allowing more sensors to be multiplexed. 

 

Figure 2. Experimental setup of the proposed system. 

 

The MOF-FP optical fiber core was used as the substrate in a DC-Sputter deposition process (Pulsed DC Sputtering 

System, Nadetech Innovations) with a partial pressure of argon of 6.75×10-2 mbar, intensity of 140 mA and voltage of 

190 V. The SnO2 target 99.99% of purity was purchased from ZhongNuo Advanced Material Technology Co. 

The device sensing principle consists on the interaction between the evanescent field of the guided light and the SnO2 

deposition on the core lateral surfaces and on the reflective interface at the end of the FP cavity. 



 

 
 

 

EXPERIMENTAL RESULTS  

The output signal of the Fabry-Pérot interferometer can be seen in Figure 3. It presents an interferometric fringe pattern 

with a wavelength spacing of 1.6 nm (Figure 3.A). Figure 3 b) shows the FFT of the FP spectra. As a result of the 

periodicity of the spectra, the FFT presents a narrow set of frequencies that characterize completely the sensing head, 

with its main component located at 0.8375nm-1. To measure the changes induced by the humidity changes, the phase 

variations of this frequency component were studied. This behavior in addition to the FFT analysis allows a number of 

different sensors to be multiplexed and simultaneously interrogated of just by setting correctly its spatial frequency, 

which is a result of the wavelength spacing and so of the length of the fiber PCF fused. 

Figure 3. (a) Optical spectra of the sensor before deposition at 25ºC and 40% humidity (room conditions) and (b) its fast Fourier 

transform. 

 
In order to verify the proper operation of the SnO2-FP sensing head, the humidity-sensing performance of the sensor in 

the atmosphere of different RHs, with the temperature set at 25ºC, was experimentally carried out. Figure 4 a) illustrates 

the FP performance without any chemical deposition. It can be seen that there is an unclear tendency to follow the 

climatic chamber variations in humidity: sensitivity is very low and the signal is too much noisy. Therefore, the 

interferometer is inoperative with no deposition.  

 
Figure 4. Sensor response to humidity: a) before deposition, and b) after SnO2 deposition. 

 

The sensor performance after the chemical deposition is shown in Figure 4 b). SnO2 chemical deposition enhances its 

sensitivity and improves de Signal to Noise rate. Typically, the sensitivity of humidity sensors is different depending on 

the humidity range [5], but in our case, the sensor response shows a linear behavior in the measured humidity range 

(20%-90%) with a sensitivity of 0.14π rad/% RH. Two of the main characteristics of this sensing head are its speed 



 

 
 

 

reaction to humidity changes and its reversibility, allowing the sensor to work continuously without its replacement after 

saturation. 

Finally, in order to probe the stability of the system, the phase variations during 200 minutes for a 40% RH and 25ºC, 

have been tested showing an instability of around 0.007π rad. These results are shown in Figure 5. 

 
Figure 5. Phase fluctuations along 200 minutes for 40% and 25ºC. 

 

CONCLUSIONS 

To summarize, a new sensor system for relative humidity measurements based on its interaction with a SnO2 chemical 

deposition on a MOF-Fabry-Pérot cavity has been proposed and experimentally demonstrated. The interrogation of the 

sensing head has been carried out by monitoring the FFT phase variations of one of the FP interference frequency. This 

method is independent of the signal amplitude and also avoids the necessity of tracking the wavelength evolution of the 

spectrum, which can be a handicap when noise is present and allows to multiplex several sensors. The sensor has been 

operated within a wide humidity range (20%–90% RH) with a maximum sensitivity achieved of 0.14rad/% RH and a 

phase standard deviation of 0.0043π rad. It presents linear and constant response along the entire RH range. The SnO2 

MOF-FP sensor presents high-speed response, reversibility, high repeatability rate, robust and compact features, and the 

FFT-based interrogation technique complements the system with powerful multiplexing capabilities. 
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