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Abstract. Model checking has made a lot of progress since its infancy. For a long time,
industrial applications were still limited to some very specific domains out of which the
technique bumps into the state explosion wall. Nowadays things evolve and some tools are
able to tackle real world use cases outside of the known domains.
We give here the feedback collected when using model checking on several industrial
strength use cases and give indication on how we take into account the specific domain
constraints.

1 Model Checking for Industrial
Problems

Model checking refers to the problem of exhaus-
tively and automatically checking whether a
given model of a system meets a given speci-
fication.

Model Checking is now an old technique
which takes its ground in the mid 1970s as
a response to concurrent problem analysis. It
was until recently essentially confined to some
specific areas, such as hardware analysis or
protocol verification. Extension to other do-
mains such as software verification has always
been difficult due to the combinatorial explo-
sion problem (the size of the space state grows
exponentially with the size of the problem to
analyze).

However, recent developments in a variety
of fields, ranging from symbolic model check-
ing to SAT solver engines and including model
checker parallelization lead to a broader range
of application in industry including software
analysis.

1.1 Industrial Use Cases
Model checking may be used for the following
use cases, depending on the tool abilities:
Safety Proof consists in verifying some prop-

erties on a system model. The model may
be designed by hand or automatically de-
rived from existing artefacts, such as Ada,
C, Simulink or Scade code…
If one of the properties is not being verified,
the tool provides a counterexample explain-
ing why the property does not hold.

System Debugging. One of the great fea-
tures of model checking is its ability to pro-
vide the user with counterexamples. Such a
feature may be used in different ways, but
is generally of a good help for debugging a
system.
For example, when designing a complex
system which should ensure a safety prop-
erty (e.g. a non collision property for an
automatic train system), it is very useful
to debug the root concepts which should
ensure the safety upon a system model on
which you can analyse counterexamples.

Equivalence Checking. The ability to prove
some properties upon an existing model
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may be used as a way to prove the equiva-
lence of two models.
One application of equivalence checking is
to verify that a software design in C satisfies
its specification, by proving the equivalence
between a model of the design and a man-
ually written model of the specification.
Another application is to verify the correct-
ness of a tool transformation — for example
a translation from one formalism to another
— by proving the equivalence between the
before and after transformation artefacts.

Constraint Solving. A somewhat more con-
trived use of model checking is the use of
its ability to provide counterexamples as a
way to solve a constraint problem. The way
to do it is to ask the tool to verify that the
problem has no solution. If one exists, the
tool will return a counterexample which is
one solution to the problem.

Test Case Generation. Another use case,
derived from the preceding one, is to use a
test objective as a constraint. The provided
counterexamples then give inputs and asso-
ciated oracles which fulfill these test objec-
tives and may be used as test scenarios.

1.2 Industrial Constraints
Putting aside the many use cases listed be-
fore, industry faces many constraints which
may have prevented the use of model checking
until now:

Regulatory Constraints Many companies
must obtain approval from a suitable au-
thority that the system they develop is
acceptably safe to operate with regards to
the applicable assurance standards (CEN-
ELEC EN-50128, DO-178C,…).
As such, it must be shown that the tools
who have contributed to the system or to
its verification have been qualified with re-
spect to their usage and to their contri-
bution to the global safety. Such a quali-
fication bears a lot of constraints upon the
tools and their development process. Few
of the known model checkers are designed
with such compliance in mind.

Cost Reduction The use of formal methods
and model checking is of interest for indus-
try only if they lead to cost reduction or
to standard compliance. In a context where
standard compliance is already achieved,
the only motivation left for applying formal
methods is to gain significantly over costs.
Such an objective may be reached either
by using model checking in order to auto-
mate some testing steps or in a less mea-
surable way, by rising the overall quality
beyond what is required by the regulatory
constraints. Proving a property is indeed re-
ally an improvement over testing it, even in
the frame of standard compliance, and can
lead to finding bugs that would be other-
wise discovered much later and would cost
a lot more to be corrected.

2 The S3 Toolbox
2.1 S3
Systerel Smart Solver4 (S3) is Systerel’s re-
sponse to the aforementioned use cases and in-
dustrial constraints. S3 is constructed around:

– a high level synchronous modelling lan-
guage,

– several frontends for C, Ada, Scade, …
– a translation tool chain from the high level

language towards a bit level language,
– a proof engine working over the bit level

language,
– a proof verification engine,
– several tools for animation and debugging.

The performance of the proof engine allows us
and our clients to manage the proof of indus-
trial size problems some of them we will men-
tion in the next section. The size of those mod-
els routinely topped ten millions variables and
several hundred millions of clauses.

The qualification of S3 is made possible by
the use of several diversified tool-chain with
some small key tools built with respect to the
higher integrity constraints that may be re-
quired — namely, an equivalence model con-
structor, and a tool to verify the validity of the
proof (see fig. 1 on the following page).

4 S3 is maintained, developed and distributed by Systerel.
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Fig. 1. Example of application for proving equiv-
alence between C sources and a HL model specifi-
cation. The two tool-chains are diversified and the
software in the circles are developed with the higher
level of integrity (HL = High Level, BL = Bit Level).

2.2 Floating-Point Arithmetic Library
in S3

Critical applications used to use fixed-point
arithmetic that requires less memory and less
processor time then floating-point arithmetic
(FPA) to perform non-integer computations on
executing processors with no Floating-Point
Unit (FPU), while leading to a limited-precision.
Floating-point numbers support a trade-off be-
tween range and precision due to its formulaic
representation which approximates a real num-
ber. Another advantage stands in the existence
of a standard [1] based on solid mathematical
grounds. Nowadays, FPA is more and more used
in the space, aeronautics and automotive in-
dustries, due to the increasing complexity of
the computations and because FPUs are be-
coming standard for most processors. Floating-
point numbers are not real numbers. Floating-
point operations behave in quite different way
from the real counterparts, due, for instance, to
rounding and cancellations [17]. Consequently,
a software implementation of some mathemati-
cal expression usually provides results that are
not strictly, mathematically, exact. As it is of-

ten difficult to foresee the behavior of floating-
point programs, formal verification of floating-
point programs is highly desired in the indus-
try.

The basic approaches to address formal
verification of floating-point programs include
abstract interpretation, formal proof and bit-
blasting (also called bit-flattening). Abstract
interpretation partially executes program on an
abstract domain. This approach performs well
in program analysis with floating-point vari-
ables [2]. Formal proof supported by proof as-
sistants is a very powerful approach that re-
quires to be guided by highly skilled expert
to direct the reasoning towards target proper-
ties. Interactive theorem provers such as ACL2,
Coq, HOL Light and PVS have been applied to
floating-point verification [14]. Both of abstract
interpretation and formal proof approaches lack
ability to generate counterexamples when the
property does not hold. Bit-blasting represents
floating-point operations as circuits, which are
then transformed to Boolean formula with bit-
wise operators to be solved by SAT solvers. Bit-
blasting relying on SAT solvers is a fully au-
tomatic reasoning benefiting from counterex-
amples for floating-point programs. It is imple-
mented in the Satisfiability Modulo Theories
(SMT) solvers such as Z3 [10], MathSAT 5 [7],
SONOLAR [15] and CBMC [5]. It is also the ele-
mentary but the most significant part of other
floating-point verification strategies using SAT
solvers as the back-end. Since the publication
of SMT-LIB theory of binary FPA [18], solvers
are starting to support it using some advanced
QF_FP solving strategies, such as mixed abstrac-
tion in CBMC [5], non-conservation approxima-
tions in Z3 [13], abstraction into interval arith-
metic in MathSAT [3,4], translation into non-
linear reals in Realizer [16], etc.

S3 will be used to verify part of the floating-
point software embedded in a rover platform,
TwIRTee (a three-wheeled autonomous rover)
used as the demonstrator for the INGEQUIP
project. The INGEQUIP research project at
the Institut de Recherche Technologique (IRT)
Saint-Exupéry in Toulouse addresses the follow-
ing equipment engineering topics: architecture
modelling and evaluation, early V&V using vir-



tual platforms, and formal verification. For this
purpose, we implemented an FPA standalone li-
brary to enable the floating-point verification
by means of bit-blasting. This optimized FPA
library will establish a solid foundation and ba-
sic strategy for our future investigation on ad-
vanced FPA strategies in S3.

The implementation of FPA library in S3 is
based on the IEEE FPA standard 754-2008 [1].
The FPA library in S3 includes:

– Binary interchange format encoding that
allows user-defined ranges of exponent and
mantissa, including single and double pre-
cisions

– Normal, subnormal, infinity, NaN numbers
– 5 rounding directions: roundTiesToEven,

roundTiesToAway, roundTowardPositive,
roundTowardNegative, roundTowardZero

– Comparison operations: Equal, NotEqual,
Greater, GreaterEqual, Less and
LessEqual

– Arithmetic operations: Addition, Sub-
traction, Multiplication, Division and
SquareRoot

– Conversion operations: convertIntToFloat
and convertFloatToInt

– Trigonometric operations: Sin, Cos, and
Tan

– Default exception handling: invalid opera-
tions, division by zero, overflow and under-
flow

The SquareRoot and trigonometric opera-
tions are implemented by means of both in-
terpolation table and the function proposed by
Cody and Waite [8].

3 Industrial Applications

3.1 Railway Use Case — Interlocking
Safety Proof

An interlocking is an arrangement of signal ap-
paratuses that prevents conflicting movements
through an arrangement of tracks such as junc-
tions or crossings. An interlocking is designed
so that it is impossible to display a signal to
proceed unless the route to be used is proven
safe.

The main challenge is to ensure that what-
ever scenario will happen, the designed inter-
locking will stay safe. And albeit its apparent
simplicity one quickly understands the real un-
derlying complexity — whatever rule you may
imagine, it looks like one can always find a sce-
nario breaking it (train can go backwards, can
sometime appear to fly due to concurrency arte-
facts, …)

Instanciation Design Process In a recent work,
we have considered a Computer Based Inter-
locking (CBI) designed through an instantia-
tion process. In such a process, the signaling
principles are captured by the engineers to pro-
duce the Generic Design in some suitable lan-
guage. This design contains a set of generic
descriptions of code parts that an interlocking
system shall execute for some specific object of
the system such as signals, switches, routes,…
Each of these generic descriptions is given in a
parametrized form which allows for the speci-
ficities of the object to which it applies. For ex-
ample, the generic design for a route will prob-
ably be parametrized with the list of switches
contained in the route. The generic design is
thus specific to a set of signaling principles, but
independent of a particular track layout.

The generic design is then instantiated upon
a particular track layout to produce the running
software.

Verification Process We graft our verification
process onto the instantiation scheme by de-
signing a Generic Safety Specification made of:

– some high level proof obligations (3 to
4 properties about absence of derailments
and collisions),

– some intermediate predicates modeling the
domain (such as topological predicates
which encode the track layout, integration
predicates which associate input and out-
put variables with their object instance,
helper predicates conveying high level re-
lations between objects such as reachabil-
ity,…)

– an environment model upon which the
proof obligations are expressed (trains be-
havior,…).



and then instantiate those properties and mod-
els with the specific track layout data. The over-
all uncertified process is given in figure 2.

Topology
Generic
Safety
Specifi-
cation

Generic
Design

+topo.
translator

Instantiation
Tool

+
design
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Proof
Engine OK/NOK

Fig. 2. Overview of an uncertified verification pro-
cess for an instantiated design. The specific topology
translator tool translates topological data in an High
Level Language model. The specific design trans-
lator tool translates the instantiated design in a
High Level Language model. The concatenation of
all models is then feed to S3 proof engine. Manual
lemmas may be added into the Generic Safety Spec-
ification to help the proof.

As an example of intermediate predicates
used in the Generic Safety Specification, the
fact that “every block belonging to a given
route” is free can be expressed as:

ALL b:BLOCKS (contains(route,b) -> free(b))

where ALL is the universal quantifier, b:BLOCKS
indicates that b shall range on every instances
of the BLOCKS, and -> is the implication opera-
tor.

Results The proof process was applied to a
CBI of more than 200 routes and permit us to
pinpoint 3 safety counterexamples which where
then corrected whether in the design or in the
topology data. The overall proof took less than
25 mn in the worst case, which would go as

high as 1 hour for a certified process implying
the use of a second tool chain, an equivalence
verification and a prooflog check.

The verification was successful and proved
to be usable enough to assist the design team in
debugging the CBI. It also paved the way for a
certified verification that would be used by the
safety team.

In the competitive interlocking market, this
would clearly give an edge to the CBI manu-
facturer when comparing to other solutions in-
tegrating or not formal verification.

3.2 Aerospace and Automotive Use
Case

The floating-point verification by S3 has been
applied to two case studies: the avionic triplex
sensor voter and the automatic rover protection
system. It is also used to automatically gener-
ate the test cases.

Triplex Sensor Voter Case Study The
triplex sensor voter5 is used in a common form
of redundant aircraft system Triplex Modular
Redundancy (TMR), which relies on three iden-
tical sensors to compute an output value from
the three input values by the voter. It is im-
plemented using linear arithmetic operations as
well as conditional expressions (such as satura-
tion). Its formal analysis covers functional and
non-functional properties including stability,
absence of runtime errors, and also to param-
eterize certain parts of the model to help the
formal analysis. The formal analysis of triplex
sensor voter was first studied by Dajani-Brown
et al. in [9], where real values were abstracted
by integer values and integrators were not used.
In [11], Dierkes analyzed the Simulink model
with real numbers by both simulation and for-
mal verification, then estimated the impact of
rounding errors caused by the floating-point
implementation using SMT solvers and abstract
interpretation. In [6], Champion et al. strength-
ened the stability property by generating lem-
mas using a property-directed approach.

5 Triplex sensor voter case study is provided by Rockwell Collins to make it publicly available to the
research community.



In our work, we start from a SCADE model
of the voter and translate it to HLL model us-
ing the SCADE-translator. Thanks to our FPA
library, the HLL model is then verified using
the S3 solver. In parallel, we use SMT-solvers
Z3 v4.4, MathSAT 5 and SONOLAR to verify the
SMT model. Experiments are carried out using
both simple and double precision floating-point
numbers with or without subnormal numbers
and with different rounding modes.

The results show that neither Z3 v4.4
(bit-blasting strategy, floating-point strategy)
nor MathSAT 5 (bit-blasting strategy, abstract
CDCL algorithm) or SONOLAR are able to han-
dle the step instance, be it in simple or dou-
ble precision. We managed to prove the induc-
tive instance using a combination of SONOLAR
bit-blasting to a CNF and a pure SAT solver
(glucose 4.0 multithread with 8 threads and
aggressive restart strategies, satellite prepro-
cessing) in 10min of computation for the sim-
ple precision instance, and 4h15min of compu-
tation for the double precision instance (wall
clock time). S3 proved the step instance in 6min
using glucose 4.0 and 5mins using S3’s own
solver for the simple precision instance, and in
9h32min using glucose 4.0 for the double pre-
cision instance.

Test Generation In order to conform to the
domain standards, companies sometimes have
to setup processes where a structural test cov-
erage must be achieved by mean of manual test-
ing activities. Those activities consist mainly
in finding the inputs and oracles such that the
structural coverage criterion is respected.

We successfully used model checking with S3
in order to setup an automatic process of find-
ing the set of tests that will achieve the struc-
tural node coverage on a Scade model, where
the criterion was that at most one entry of a
given node should change at once. Automation
of such a task leads to great cost reductions.

Formal Verification for ARP Case Study
The Automatic Rover Protection (ARP) system,
a simple collision avoidance function, is devel-
oped for the twIRTee platform in the INGEQUIP

project. It performs a predefined trajectory (a
“mission”) on a predefined track and avoid col-
lisions with other rovers. The set of tracks are
statically defined and embedded in the rover.
The ARP is based on the following principles:

1. Missions (trajectories) are precomputed us-
ing an adapted shortest path algorithm[12].

2. A rover shall only move on a reserved path
if there is a free reserved space ahead.

3. A reserved path is a stack of reserved nodes.
4. A rover resends reservation request to get

the exclusive access to the tracks located
ahead of it, if there is not enough reserved
space (D_REQ) ahead.

5. A rover stops if there is not enough reserved
space (D_STOP) ahead.

6. A rover reserves enough space (D_RSV)
ahead for each request.

7. In order to ensure a consistent management
of node reservations, a distribution strategy
using id-priority is implemented.

In this case, S3 is exploited to verify several
properties applicable to all independent rovers,
such as P1: rovers are never granted simultane-
ous access to the same area (safety), and P2:
all rovers eventually reach their destinations
(bounded liveness), etc.
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Fig. 3. Rover Trajectories for ARP

We present experimental results from a ARP
case study with two rovers. The trajectories of
rovers within an enclosed space of 10m×10m
are predefined (see fig. 3). The rover R1 pro-
ceeds with a speed v1 = 0.4m/s from node A,
through node E, F, G and H, then stops at node



B, while the rover R2 proceeds with a speed v2

= 0.3m/s from node C, through nodes G, F, E
and H, then stops at node D. The length of each
trajectory is about 20m. As the first step of our
study, we assume that the space occupied by
rovers are ignored, and that the clocks of rovers
are synchronized. Consequently, rovers are con-
sidered to perform actions synchronously. We
proved the property P1 in almost no time us-
ing induction and the property P2 in several
seconds using bounded model checking in S3.

3.3 Other Use Case — Constraint
Solving for Matrix Wiring

S3 was used as a constraint solver to automate
finding of solution to a wiring problem over a
100 × 100 matrix with several layers of wires
and several limitations over the deformations
that wires may undergo.

Once the counterexample obtained, a small
and easy tool allowed to translate it into a
netlist.

4 Conclusion and Future Work

Our experience with model checking has shown
that S3 is a great tool to manage different
types of industrial size problems with respect
to their specific regulatory constraints. How-
ever, the tool is still at pains for some pecu-
liar problems and has some intrinsic limitations
that prevent its application on a wider range of
problems, one of it being its current inability to
handle designs which make use of floating-point
arithmetic.

In order to tackle the floating-point limita-
tion, we have designed an FPA library and inte-
grated it in S3. Our next goal is to investigate
how well it works on a wider range of industrial
designs from automotive, aeronautic, industry,
energy… and to establish benchmark (or reuse
existing SMT benchmarks) to evaluate the per-
formance of floating-point verification by S3.

The proof engine at the core of S3 is also
undergoing heavy work in order to improve its
efficiency for big size models.

This significant improvement, associated to
the heavy work ongoing on the proof engine at

the core of S3, shows great promises for dealing
with future industrial challenges.
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