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RENEWAL THEORY WITH INDEX ZERO

KENNETH S. ALEXANDER AND QUENTIN BERGER

Abstract. We study renewals τ with index 0: the inter-arrival distribution is P(τ1 = n) =
ϕ(n)n−1, with ϕ(·) slowly varying. We obtain a strong renewal theorem, that is

P(n ∈ τ)
n→∞

∼ P(τ1 = n)/P(τ1 ≥ n)2 .

If instead we only assume regular variation of P(n ∈ τ) and slow variation of Un :=∑
n

k=0
P(k ∈ τ), we obtain a similar equivalence but with P(τ1 = n) replaced by its average

over a short interval. We give an application to the local asymptotics of the distribution
of the first intersection of two independent renewals. Along the way we prove a local limit
theorem and a local (upward) large deviation theorem, giving the asymptotics of P(τk = n)
when n is at least the typical length of τk. We further derive downward moderate and large
deviations estimates, that is, the asymptotics of P(τk ≤ n) when n is much smaller than
the typical length of τk.

1. Introduction

It is classical to study renewal processes τ = {0 = τ0, τ1, τ2, . . . }, and in particular the
relation between the renewal mass function P(n ∈ τ) and the inter-arrival distribution
P(τ1 = n). We assume the inter-arrival distribution P(τ1 = n) is regularly varying: there
exists a positive slowly varying function ϕ(·) and α ≥ 0 such that

(1.1) P(τ1 = n) = ϕ(n)n−(1+α) .

In particular the process is aperiodic. The one case that has not received much attention
(under the general assumption (1.1)) is α = 0, in which τ1 has no moments and is not in
the domain of attraction of a stable law, and that is our focus here. Tauberian theorems
are of less use here than in other cases, so our methods are primarily probabilistic. An
example with α = 0 is the return times of symmetric simple random walk (SSRW) on Z

2,

τ = {n , S2n = 0}, for which P(τ1 = n)
n→∞
∼ π/n(log n)2, from [18, Thm. 4].

The limiting distributions of τn and related quantities in the α = 0 case have been studied
in [8], [16], [19], [21] or [22]. An important theorem (Theorem 4.1 in [8]) states that, if we
denote r(n) := P(τ1 > n), then provided that r(n) is slowly varying we have that for any
y > 0

(1.2) P
(
n r(τn) < y

)
→ 1− e−y as n→ +∞.

However, the references mentioned above do not give renewal results nor local limit or large
deviations estimates in the α = 0 case.

1.1. Renewal theorems. The assumption (1.1) is very natural: beyond the dimension-2
case, it includes the case τ = {n , S2n = 0}, where (Sn)n≥0 is SSRW on Z

d for any d. One has

α = 1/2 and ϕ(n)
n→∞
→ (4π)−1/2 for d = 1 (see e.g. [13, Ch. III]); and α = d

2
−1, ϕ(n)

n→∞
→ cd

for d ≥ 3 (see [11, Thm. 4]). Equation (1.1) also includes the case τ = {n , Sn = 0} where
1
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(Sn)n≥0 is an aperiodic random walk in the domain of attraction of a symmetric stable law,
see [20, Thm. 8].

The asymptotics of the renewal function P(n ∈ τ) for α > 0 have been widely studied
in the literature, including [9], [12], [14], [23]. We recall briefly the results, under assump-
tion (1.1).

First, when τ is transient and (1.1) holds, we have

(1.3) P(n ∈ τ)
n→∞
∼

P(τ1 = n)

P(τ1 = +∞)2
.

This is a consequence of Theorem 1 in [4], and is also proven in [15, App. A.5] with elementary
methods.

If τ is recurrent, then

• if E[τ1] < +∞, then the classical Renewal Theorem (see e.g. [2]) gives that

(1.4) lim
n→∞

P(n ∈ τ) =
1

E[τ1]
;

• if α = 1 in (1.1), and E[τ1] = +∞, Erickson [12, Eq. (2.4)] proved that

(1.5) P(n ∈ τ)
n→∞
∼

1

E [τ1 ∧ n]
;

• if α ∈ (0, 1) in (1.1), Doney [9, Thm. B] proved that

(1.6) P(n ∈ τ)
n→∞
∼

α sin(πα)

π
n−(1−α) ϕ(n)−1 .

The condition (1.1) is not best possible for the validity of these strong renewal theorems

with infinite mean. Assume simply that P(τ1 > n)
n→∞
∼ α−1ϕ(n)n−α with α ∈ (0, 1] (and

E[τ1] = +∞ if α = 1), so that τ1 is in the domain of attraction of a stable law with index α.
Garsia and Lamperti [14] showed that (1.6) holds whenever α ∈ (1

2
, 1), and Erickson proved

(1.5) in the case α = 1. When α ∈ (0, 1
2
], some additional conditions on the distribution

of τ1 are necessary for (1.6) to be valid, and sufficient ones were given in [6], [7], [9], [23].
It is only recently that a complete necessary and sufficient condition for the strong renewal
theorem (1.6) was proven in simultaneous papers by Caravenna [3] and Doney [10].

Throughout the paper, c1, c2, . . . are constants depending only on the distribution of τ1.
Also, we treat certain large quantities at times as if they were integers, simply to avoid
the clutter of integer-part notation; in all cases these can be treated as if the integer-part
notation were in use.

Our first result is a local limit and local large deviation theorem, proved in Section 2, in
the case of a recurrent τ . Define rn := r(n) := P(τ1 > n), which in the α = 0 case is slowly
varying and satisfies (see [5, Proposition 1.5.9a])

(1.7) ϕ(n) = o(rn) as n→ ∞.

In particular we have ϕ(n) → 0.

Theorem 1.1. If τ is recurrent and (1.1) holds with α = 0, then uniformly for k such that
kϕ(n) → 0, we have

(1.8) P(τk = n)
n→∞
∼ kP(τ1 = n)(1− rn)

k.
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Further, there exists a constant c1 > 0 such that for n sufficiently large and all 1 ≤ k ≤ n,

(1.9) P(τk = n) ≤ c1kP(τ1 = n)(1− rn)
k.

Note that, as soon as k ≫ r−1
n , we have P(τk ≤ n) ≤ (1 − rn)

k → 0, and n is therefore
much smaller than the typical size of τk. By (1.7), k ≫ r−1

n is consistent with the hypothesis
k ≪ 1/ϕ(n). Equation (1.8) therefore includes n up to a size much larger than the typical size
of τk, which is not true for α > 0 (simply because of the local limit theorem). Heuristically,
(1.8) says that even for much smaller-than-usual n, when τk = n it is because there was a
single gap of length very close to n, among the first k gaps τj − τj−1; this is unique to α = 0.

Our strong renewal theorem is an easy consequence of Theorem 1.1, as follows. Let θn
satisfy r−1

n ≪ θn ≪ ϕ(n)−1. We write P(n ∈ τ) =
∑n

k=1P(τk = n), and decompose it
according to whether k is smaller or larger than θn. Thanks to (1.8), by our choice of θn we
have ∑

k≤θn

P(τk = n)
n→∞
∼

∑

k≤θn

kP(τ1 = n)(1− rn)
k n→∞

∼ r−2
n P(τ1 = n) .

For the rest of the sum, we use (1.9) together with θn ≫ r−1
n , to get that, for n ≥ n0

∑

k>θn

P(τk = n) ≤ c1
∑

k>θn

kP(τ1 = n)(1− rn)
k = o(1)r−2

n P(τ1 = n) as n→ +∞.

We therefore obtain the following.

Theorem 1.2. If τ is recurrent and (1.1) holds with α = 0, we have

(1.10) P(n ∈ τ) ∼
P(τ1 = n)

P(τ1 > n)2
as n→ +∞.

If we combine (1.3) and Theorem 1.2, we obtain the following statement: if (1.1) holds
with α ≥ 0, and P(τ1 > n) is slowly varying (that is, either τ is transient, or τ is recurrent
with α = 0), then (1.10) holds.

The heuristic behind (1.10) may be seen by restating it as P(τ1 = n | n ∈ τ) ∼ P(τ1 > n)2.
This says that given n ∈ τ , in order to have τ1 = n (i.e. no renewals between 0 and n), the
trajectory mainly needs to “escape” without renewals at each end, and these two escapes
are approximately independent, each with probability near P(τ1 > n). This independence
in the recurrent case is unique to α = 0, since in that case the only renewals that typically
occur given n ∈ τ are very close to 0 and n.

1.2. Large and moderate deviations. Theorem 1.1 may be viewed as both a local limit
theorem and a local large deviation theorem for the case α = 0, covering upward deviations
(in the sense that n is much larger than the typical size of τk) and downward deviations that
are not too great. As a complement we now consider estimates for downward deviations of
the form P(τk ≤ n) for n much smaller than the typical size of τk, that is krn → ∞.

Let ϕ∗ denote a slowly varying function conjugate to ϕ, that is, such that x 7→ xϕ∗(x)
is an asymptotic inverse of y 7→ yϕ(y), see [5, §1.5.7] for more. For most common slowly
varying functions ϕ one has ϕ∗ ∼ 1/ϕ, but this is not true if ϕ is “barely slowly varying,”
for example ϕ(n) = n1/ log logn. We will prove the following in Section 1.3.

Theorem 1.3. Suppose τ is recurrent and (1.1) holds with α = 0. Let n ≥ k.
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(i) Given M > 0 there exists aM , with aM → 1 as M → 0, such that if n is large and
kϕ(n) ≤M , then

(1.11) aM(1− rn)
k ≤ P(τk ≤ n) ≤ (1− rn)

k.

(ii) If k, n→ +∞ with kϕ(n) → +∞ and n/k → +∞, then we have

(1.12) P(τk ≤ n) = exp
{
−(1 + o(1)) k r

(n
k
ϕ∗
(n
k

))}
.

(iii) For n = bk with b ≥ 1, the limit −I(b) = lim
n→∞

1
n
logP(τk ≤ bk) exists, and it is finite

if b ≥ min{j : P(τ1 = j) > 0}. Moreover, it satisfies

I(b) ∼ r(bϕ∗(b)) as b → +∞.

This theorem extends the result (1.2) of Darling [8] to the case y → +∞ as n→ +∞. In
particular, (i) allows to recover (1.2) by taking k = y/rn (since {τk ≤ n} = {r(τk) ≥ y/k}),
and moreover extends it to P(k r(τk) ≥ y) ∼ e−y as k → ∞, uniformly for y ≪ rn/ϕ(n) (we
recall (1.7)).

1.3. Reverse renewal theorems. Though (1.1) is very natural, verifying that it holds is
often tedious, for example if τ = {n, Sn = 0}, with (Sn)n≥0 an aperiodic random walk in the
domain of attraction of a symmetric stable distribution, see [18]. But in that case, a local
limit theorem (see [17, § 50]) easily gives the asymptotic behavior of P(Sn = 0) = P(n ∈ τ).
Therefore, one would like to get a general result to infer from P(n ∈ τ) something about
the behavior of P(τ1 = n). We call such a result a reverse renewal theorem. An additional
application of such theorems is given in Section 1.4.

In general, it is not true that regular variation of P(n ∈ τ) implies regular variation of
P(τ1 = n), an example being given in Section 4.3. But the average of the values P(τ1 = n)
over a relatively short interval may be better behaved. In fact we can obtain a reverse
renewal theorem corresponding to (1.3) and Theorem 1.2 in the α = 0 case, as follows.

Define

Un :=
n∑

k=0

P(k ∈ τ), U∞ := E[|τ |] =
∞∑

k=0

P(k ∈ τ)

(
=

1

P(τ1 = ∞)
if U∞ <∞

)
,

and note that

(1.13) if Un is slowly varying, then Un
n→∞
∼ P(τ1 > n)−1.

This is trivial if τ is transient: |τ | is then a geometric random variable, and Un converges to
E[|τ |] = P(τ1 = +∞)−1. In the recurrent case, we refer to Theorem 8.7.3 in [5]; the proof
uses standard properties of convolution of Laplace transforms. Note that in the following we
do not assume (1.1).

Theorem 1.4. Assume that P(n ∈ τ) is regularly varying and Un is slowly varying. Then
there exist ǫn → 0 such that

(1.14)
1

ǫnn

∑

(1−ǫn)n<k≤n

P(τ1 = k)
n→∞
∼ P(τ1 > n)2P(n ∈ τ) .

If also P(τ1 = n) is regularly varying, then

(1.15) P(τ1 = n)
n→∞
∼ P(τ1 > n)2P(n ∈ τ).
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This theorem applies in the recurrent case when P(n ∈ τ) is regularly varying with index
−1, and in the case of a transient renewal τ . When τ is transient, we are able to prove the
following stronger statement.

Theorem 1.5. If P(n ∈ τ) is regularly varying and τ is transient, then

P(τ1 = n)
n→∞
∼ P(τ1 = ∞)2P(n ∈ τ) .

This theorem was proved in [11] in the case where τ1, τ2, · · · are the return times to the
origin of a transient aperiodic random walk, but we prove it here in general.

Section 4.1 is devoted to the proof of Theorem 1.5, and Section 4.2 to the proof of The-
orem 1.4 (where only the recurrent case has to be considered, with Theorem 1.5 proved.)
Finally, in Section 4.3, we give an example where P(τ1 = n) is not regularly varying but
P(n ∈ τ) is, and Un is slowly varying. This shows that (1.15) cannot hold in the general
case of a recurrent renewal, and our Theorem 1.4 is in that sense optimal.

In general, Theorem 1.4 reduces the problem of proving (1.15) to showing that P(τ1 = k)
is approximately constant over the interval ((1− ǫn)n, n].

1.4. Application of reverse renewal theorems: the intersection of two independent
renewals. Let τ and σ be independent renewal processes with inter-arrival distributions
satisfying

(1.16) P(τ1 = n) = ϕ(n)n−(1+α) , P(σ1 = n) = ϕ̃(n)n−(1+α̃)

for some α, α̃ ≥ 0 and slowly varying functions ϕ(·), ϕ̃(·). We assume α ≤ α̃.
We denote the intersection ρ := τ ∩ σ, which is a renewal process with renewal mass

function and renewal function

P(n ∈ ρ) = P(n ∈ τ)P(n ∈ σ), U∗
n =

n∑

k=0

P(k ∈ ρ).

These are regularly varying, and their asymptotic behavior is thus known from the results
for σ, τ in Section 1.1. In [1] our reverse renewal theorems, 1.4 and 1.5, are applied to help
establish the following. If ρ is transient (i.e. U∗

∞ <∞) then

P(ρ1 = n)
n→∞
∼ (U∗

∞)−2P(n ∈ τ)P(n ∈ σ).

If ρ is recurrent and either (i) α, α̃ ∈ (0, 1) with α + α̃ = 1, or (ii) α = 0, α̃ ≥ 1, then U∗
n is

slowly varying, and

(1.17) P(ρ1 = n)
n→∞
∼ (U∗

n)
−2P(n ∈ τ)P(n ∈ σ)

n→∞
∼

ψ∗(n)

n

for some (asymptotically known) slowly varying ψ∗. In [1], general 0 ≤ α ≤ α̃ are covered,
and without Theorems 1.4 and 1.5 here, the cases (i) and (ii) would have to be excluded.
The key step to get from (1.14) for ρ to (1.17) is to show that, due to the regularity (1.16)
in σ and τ , P(ρ1 = k) is approximately constant over short intervals, so that the left side of
(1.14) (for ρ) is asymptotic to P(ρ1 = n).
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2. Proof of Theorem 1.1

We first prove (1.8), and turn to (1.9) as a second step. We introduce some notations: let

Gi := τi − τi−1 and Mk := max
1≤i≤k

Gi .

We also let Ĝ
(m)
1 , . . . , Ĝ

(m)
k be i.i.d. with distribution P(τ1 ∈ · | τ1 ≤ m).

2.1. Proof of the local limit and local large deviation result (1.8). The proof is
divided into three steps, in which we control several contributions to P(τk = n).

• Step 1. Contribution of the case of only one jump larger than (1− ǫ)n, all the other
ones being (necessarily) smaller than n/2. This gives the right order in Theorem 1.1
when k ≪ ϕ(n)−1;

• Step 2. Contribution of the case when all jumps are smaller than n/2: it is negligible,
so there must be one jump larger than n/2 (and there can be only one such jump);

• Step 3. Contribution of the case when there is one jump larger than n/2, but smaller
than (1− ǫ)n. This is also negligible.

Step 1: We show that, for any fixed ǫ > 0, and provided that kϕ(n)
n→∞
→ 0,

(2.1) P
(
τk = n,Mk > (1− ǫ)n

)
= (1 +O(ǫ)) kP(τ1 = n)(1− rn)

k, as n→ ∞.

We have

(2.2) P
(
τk = n,Mk > (1− ǫ)n

)
= k(1− rn)

k−1
ǫn∑

m=1

P

(
k−1∑

i=1

Ĝ
(n)
i = m

)
P(τ1 = n−m).

This gives the upper bound

P (τk = n,Mk > (1− ǫ)n) ≤ k(1− rn)
k−1 max

(1−ǫ)n≤j≤n
P(τ1 = j)

≤ (1 + 2ǫ)k(1− rn)
kP(τ1 = n),(2.3)

provided that n is large enough.
In the other direction, (2.2) gives

P
(
τk = n,Mk > (1− ǫ)n

)
≥ k(1− rn)

k−1P

(
k−1∑

i=1

Ĝ
(n)
i ≤ ǫn

)
min

(1−ǫ)n≤j≤n
P(τ1 = j) .

Then, using that E[Ĝ
(n)
1 ] = (1−rn)

−1
∑n

x=1 ϕ(x)
n→∞
∼ nϕ(n), we have that for n large enough

P

(
k−1∑

i=1

Ĝ
(n)
i ≤ ǫn

)
≥ 1−

E[Ĝ
(n)
1 ]

ǫn
≥ 1−

2(k − 1)ϕ(n)

ǫ
.

Therefore, since kϕ(n) → 0, we end up with

(2.4) P
(
τk = n,Mk > (1− ǫ)n

)
≥ (1− 2ǫ)k(1− rn)

kP(τ1 = n).

provided that n is large enough.
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Step 2: We want to show that the main contribution to P(τk = n) comes whenMk ≥ n/2.
We prove that there exists a constant c2 > 0 such that, if kϕ(n) is small enough,

(2.5) P (τk = n,Mk ≤ n/2) ≤ c2k
2ϕ(n)P(τ1 = n)(1− rn)

k ,

which is negligible compared to (2.1) when kϕ(n) → 0. It is sufficient to show that, if kϕ(n)
is small enough,

(2.6) P

(
k∑

i=1

Ĝ
(n)
i = n ; Ĝ

(n)
i ≤ n/2 for all i ≤ k

)
≤ c2k

2ϕ(n)P(τ1 = n)

To prove this, we rely on the following lemma.

Lemma 2.1. Suppose (1.1) holds with α = 0. There exist constants c3, c4 > 0 such that for
n large, for all 1 ≤ m ≤ n and k ≥ 0,

(2.7) P

(
k∑

i=1

Ĝ
(m)
i ≥ n/2

)
≤

(
c3 kmϕ(m)

n

) n
2m

≤
(
c4kϕ(n)

) n
2m

.

Proof The second inequality is a consequence of the fact that mϕ(m) is asymptotically
increasing, so we prove the first inequality.

For any λ > 0 we have

(2.8) P
( k∑

i=1

Ĝ
(m)
i ≥ n/2

)
≤ e−λn/2E

[
eλĜ

(m)
1

]k
.

There exists a constant c5 such that for any j ≥ 1

(2.9) E
[
(Ĝ

(m)
1 )j

]
≤ mj−1E[τ1 | τ1 ≤ m] ≤ c5m

jϕ(m) .

Hence, for any λ > 0, we have

E
[
eλĜ

(m)
1

]
≤ 1 + c5ϕ(m)

(
emλ − 1

)
.

Now, let us define λ by

c5ϕ(m)
(
emλ − 1

)
=

n

km
,

so that

E
[
eλĜ

(m)
1

]k
≤ en/m

and

e−λn/2 =

(
1 +

n

c5mkϕ(m)

)−n/2m

≤

(
c5kmϕ(m)

n

)n/2m

.

Therefore, (2.8) yields

(2.10) P
( k∑

i=1

Ĝ
(m)
i ≥ n/2

)
≤

(
c5kmϕ(m)

n

)n/2m

en/m ≤
(c5e2kmϕ(m)

n

) n
2m
.

�
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To control the probability on the left in (2.6), we decompose it according to the value of

the largest Ĝ
(n)
i . Let us denote ms := 2−sn and Js = (ms+1, ms]. We have

P
( k∑

i=1

Ĝ
(n)
i = n ; Ĝ

(n)
i ≤ n/2 for all i ≤ k

)

=
∑

n/k≤m≤n/2

kP

(
Ĝ

(n)
1 = m, Ĝ

(n)
i ≤ m for all 2 ≤ i ≤ k ,

k∑

i=2

Ĝ
(n)
i = n−m

)

≤
∑

1≤s≤log2 k

∑

m∈Js

k

(
1− rm
1− rn

)k−1

P
(
Ĝ

(n)
1 = m

)
P

(
k∑

i=2

Ĝ
(m)
i = n−m

)

≤ 2k
∑

1≤s≤log2 k

∑

m∈Js

ϕ(m)

m
P

(
k−1∑

i=1

Ĝ
(m)
i = n−m

)

≤ 2c6k
∑

1≤s≤log2 k

ϕ(ms+1)

ms+1
P

(
k−1∑

i=1

Ĝ
(ms)
i ≥

n

2

)
,(2.11)

where in the last inequality we used that there exists c6 such that for sufficiently large ms

and all m ∈ Js, ϕ(m) ≤ c6 ϕ(ms+1). Since n/k ≫ nϕ(n) → ∞, all values ms in (2.11) are
sufficiently large in this sense, when n is large.

Since ϕ is slowly varying, given a ≤ 1 we have ϕ(an)/ϕ(n) ≤ 1/a for n large. With (2.11)
and Lemma 2.1 this shows that

P

(
k∑

i=1

Ĝ
(n)
i = n ; Ĝ

(n)
i ≤ n/2 for all i ≤ k

)
≤ 2c6k

∑

s≥1

2s+1ϕ(n)

2−(s+1)n

(
c4 kϕ(n)

) n
2ms

≤ 8c6 k
ϕ(n)

n

∑

s≥1

4s
(
c4 kϕ(n)

)2s−1

≤ c2k
2ϕ(n)P(τ1 = n) ,(2.12)

where we used in the last inequality that kϕ(n) is small. Hence, (2.6) is proven, and so is
(2.5).

Step 3: We show that the main contribution toP(τk = n) comes when not onlyMk ≥ n/2,
but when Mk ≥ (1− ǫ)n: we prove that for n large enough,

(2.13) P
(
τk = n, n/2 < Mk ≤ (1− ǫ)n

)
≤

6

ǫ
k2ϕ(n)P(τ1 = n) (1− rn)

k.

Indeed, we have that

P
(
τk = n, n/2 < Mk ≤ (1− ǫ)n

)
≤ k (1− rn)

k−1 max
n/2≤j≤n

P(τ1 = j)P

(
k−1∑

i=1

Ĝ
(n)
i ≥ ǫn

)
.

Then, we use that maxn/2≤j≤nP(τ1 = j) ≤ 3P(τ1 = n) provided that n is large enough,

together with Markov’s inequality and the fact that E[Ĝ
(n)
1 ] ≤ 2nϕ(n) when n is large

enough. This yields (2.13).
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Combining (2.3)-(2.4) with (2.5) and (2.13), since ǫ is arbitrary we get that, uniformly for
k such that kϕ(n) → 0, (1.8) holds. �

2.2. Proof of the uniform bound (1.9). To prove the uniform bound, we rely on Lemma
2.1, and we decompose the probability according to the value of Mk.

Let n ≥ n0 and define

ℓn = min{ℓ : 2ℓ ≥ n}, ℓn,k := max{ℓ : c3k2
ℓϕ(2ℓ) ≤ 1

2
n},

where c3 is the constant from Lemma 2.1.
Then for some (large) ℓ0, there exists a constant c7 > 0 such that for all ℓ0 < ℓ ≤ ℓn − 2,

P
(
τk = n,Mk ∈ (2ℓ−1, 2ℓ]

)
≤ kP

(
G1 ∈ (2ℓ−1, 2ℓ], max

2≤i≤k
Gi ≤ 2ℓ, τk = n

)

≤ k(1− r2ℓ)
k−1 max

m∈(2ℓ−1,2ℓ]
P (τ1 = m)P

(
k−1∑

i=1

Ĝ
(2ℓ)
i ∈ (n− 2ℓ, n]

)

≤ c7k(1− r2ℓ)
k−1ϕ(2

ℓ)

2ℓ
P

(
k−1∑

i=1

Ĝ
(2ℓ)
i >

n

2

)
.(2.14)

We now have 4 cases according to the value of ℓ.

Case 1. For ℓ0 ∨ ℓn,k < ℓ ≤ ℓn − 2 we bound the last probability in (2.14) by 1, and
observe that provided ℓ0 is large enough, r2ℓ − rn ≥ 1

2
ϕ(2ℓ), which leads to

P
(
τk = n, 2ℓ0∨ℓn,k < Mk ≤ 2ℓn−2

)
≤ 2c7 k(1− rn)

k
ℓn−2∑

ℓ=ℓ0∨ℓn,k+1

ϕ(2ℓ)

2ℓ

(
1−

r2ℓ − rn
1− rn

)k

≤ 2c7 k(1− rn)
k

ℓn−2∑

ℓ=ℓ0∨ℓn,k+1

ϕ(2ℓ)

2ℓ
e−kϕ(2ℓ)/4

≤ 2c7 k(1− rn)
kϕ(n)

n

ℓn−2∑

ℓ=1

n

2ℓ
ϕ(2ℓ)

ϕ(n)
e−n/8c32ℓ ,(2.15)

where we used that 2ℓϕ(2ℓ) is asymptotically increasing in ℓ. We obtain easily that the last
sum remains bounded as n→ ∞. In the end, we have a constant c8 > 0 such that for n ≥ n0

(2.16) P
(
τk = n, 2ℓ0∨ℓn,k < Mk ≤ 2ℓn−2

)
≤ c8k(1− rn)

kP(τ1 = n).

Case 2. To handle ℓ = ℓn − 1, ℓn we have analogously to (2.14), for n ≥ n0

P
(
τk = n,Mk > 2ℓn−2

)
≤ k(1− rn)

k−1 max
m∈(2ℓn−2,2ℓn ]

P (τ1 = m)

≤ c9k(1− rn)
kP(τ1 = n).(2.17)
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Case 3. We now deal with ℓ0 < ℓ ≤ ℓn,k. We bound the last probability in (2.14) using
Lemma 2.1. We obtain, analogously to (2.15)

P
(
τk = n, 2ℓ0 < Mk ≤ 2ℓn,k

)
≤ 2c7k

ℓn,k∧ℓn∑

ℓ=ℓ0+1

(1− r2ℓ)
kϕ(2

ℓ)

2ℓ

(c3k2ℓϕ(2ℓ)
n

)n/2ℓ+1

≤ 2c7k(1− rn)
k

ℓn∑

ℓ=ℓ0+1

ϕ(2ℓ)

2ℓ

(1
2

)n/2ℓ+1

≤ c10k(1− rn)
k ϕ(2

ℓn+1)

2ℓn+1

(1
2

)n/2ℓn+1

≤ c11k(1− rn)
kϕ(n)

n

= c11k(1− rn)
kP(τ1 = n).(2.18)

Here the third inequality uses the fact that n/2ℓn+1 ≥ 1/4, and consequently the sum in the
second line of (2.18) is of the same order as the ℓ = ℓn term.

Case 4. Finally to handle ℓ ≤ ℓ0 we have, using Lemma 2.1 and writing m0 := 2ℓ0

P(τk = n,Mk ≤ 2ℓ0) ≤ (1− rm0)
kP

(
k∑

i=1

Ĝ
(m0)
i = n

)

≤ (1− rn)
k

(
1− rm0

1− rn

)k (
min

{c3m0ϕ(m0)k

n
, 1
})n/m0

≤ (1− rn)
k e−c12k

(
min

{c13k
n
, 1
})n/m0

.(2.19)

Considering separately the cases k ≤ n/2c13 and n/2c13 < k ≤ n, we conclude that there is
some c14 > 0 such that for n large,

(2.20) P(τk = n,Mk ≤ 2ℓ0) ≤ (1− rn)
ke−c14n ≤ c15k(1− rn)

kP(τ1 = n).

Collecting (2.16),(2.17),(2.18) and (2.20) concludes the proof of (1.9). �

3. Large deviations: proof of Theorem 1.3

Recall that Gi = τi−τi−1, and Ĝ
(m)
1 , Ĝ

(m)
2 , . . . are i.i.d. with distribution P(τ1 ∈ · | τ1 ≤ m).

Proof of (i). The second inequality is trivial, so we prove the first. Suppose kϕ(n) ≤M .
Given 0 < ǫ < 1,

rǫn − rn ∼ ϕ(n) log
1

ǫ
as n→ +∞,

so for large n,

P

(
max
i≤k

Ĝ
(n)
i ≤ ǫn

)
=

(
1−

rǫn − rn
1− rn

)k

≥ exp

(
−2kϕ(n) log

1

ǫ

)
≥ ǫ2M .(3.1)



RENEWAL THEORY WITH INDEX 0 11

On the other hand, since E[Ĝ
(m)
1 ]

m→∞
∼ mϕ(m), given ǫ > 0 we have for n large enough

(3.2) P

(
k∑

i=1

Ĝ
(ǫn)
i ≤ n

)
≥ 1−

1

n
kE
(
Ĝ

(ǫn)
1

)
≥ 1− 2ǫkϕ(n) ≥ 1− 2ǫM.

If M ≤ 1/3, we apply (3.2) with ǫ = 1:

(3.3) P(τk ≤ n) ≥ (1− rn)
kP

(
n∑

i=1

Ĝ
(n)
i ≤ n

)
≥ (1− rn)

k(1− 2M) .

IfM > 1/3, we take ǫ = 1/4M , and combining (3.1) with (3.2), we obtain for n large enough

P(τk ≤ n) ≥ (1− rn)
kP

(
max
i≤k

Ĝ
(n)
i ≤ ǫn

)
P

(
k∑

i=1

Ĝ
(ǫn)
i ≤ n

)
≥

1

2

(
1

4M

)2M

(1− rn)
k.

Proof of (ii). Define, for any λ > 0,

ν(λ) := 1− E
(
e−λτ1

)
,

so − log(1− ν(·)) is non-decreasing and strictly concave. Moreover, it is standard to obtain
that

(3.4) ν(λ) ∼ r

(
1

λ

)
→ 0, and ν ′(λ) ∼

1

λ
ϕ

(
1

λ

)
→ +∞ as λց 0.

We may view (1.12) as a combination of an upper and a lower bound, which we now prove.

Upper bound in (1.12). Define

fn(λ) := −nλ− k log(1− ν(λ));

note the notation suppresses the dependence on k. We will use the standard exponential
bound

(3.5) P(τk ≤ n) = P
(
e−λτk ≥ e−λn

)
≤ eλn(1− ν(λ))k = e−fn(λ) for all λ > 0 .

Now, we define λn > 0 by f ′
n(λn) = 0, or equivalently,

(3.6)
ν ′(λn)

1− ν(λn)
=
n

k
,

so that fn achieves its (positive) supremum at λn. Then λn → 0, since n/k → +∞.
Therefore, thanks to (3.4), we get that

(3.7)
n

k
n→∞
∼ ν ′(λn)

n→∞
∼

1

λn
ϕ

(
1

λn

)
,

which is equivalent to

(3.8)
1

λn

n→∞
∼

n

k
ϕ∗
(n
k

)
.

Then, (3.4) gives that ν(λn)
n→∞
∼ r(1/λn) ≫ ϕ(1/λn), which with (3.7) shows that nλn ≪

kν(λn). In the end, we get

(3.9) fn(λn) = (1 + o(1))kν(λn)
n→∞
∼ k r

(
1

λn

)
n→∞
∼ k r

(n
k
ϕ∗
(n
k

))
.
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With (3.5) this lets us conclude

(3.10) P(τk ≤ n) ≤ exp
[
−(1 + o(1))k r

(n
k
ϕ∗
(n
k

))]
.

Lower bound in (1.12) As is standard, we will obtain a corresponding lower bound using

a tilted distribution. Let ǫ > 0, and let λ̃n satisfy (analogously to (3.6))

(3.11)
ν ′(λ̃n)

1− ν(λ̃n)
= (1− ǫ)

n

k
.

Then, let P̃, Ẽ, Ṽar denote the probability, expectation and variance with respect to the
tilted distribution of the i.i.d. sequence (G1, G2, . . . ) given by

P̃(G1 ∈ ·) =
E
(
e−λ̃nτ11{τ1∈·}

)

E(e−λ̃nτ1)
.

We estimate

P(τk ≤ n) ≥
E(e−λ̃nτk)

e−(1−2ǫ)nλ̃n

E
(
e−λ̃nτk1{τk∈((1−2ǫ)n,n)}

)

E(e−λ̃nτk)

≥ exp

(
(1− 2ǫ)nλ̃n + k log(1− ν(λ̃n))

)
P̃
(
τk ∈ ((1− 2ǫ)n, n)

)
.(3.12)

Note that (3.8) translates here as

1

λ̃n

n→∞
∼ (1− ǫ)

n

k
ϕ∗
(n
k

)
,

so that ν(λ̃n)
n→∞
∼ r(1/λ̃n)

n→∞
∼ ν(λn). As in (3.9), we get that

(3.13) P(τk ≤ n) ≥ exp
[
−(1 + o(1))k r

(n
k
ϕ∗
(n
k

))]
× P̃

(
τk ∈ ((1− 2ǫ)n, n)

)
,

and it only remains to show that the last probability converges to 1 as n→ +∞.
It is standard that

(3.14) Ẽ (G1) =
ν ′(λ̃n)

1− ν(λ̃n)
= (1− ǫ)

n

k
,

so we only need to show that Ṽar (G1) = o(n2/k). In fact, we have

(3.15) Ẽ
[
(G1)

2
]
=

1

1− ν(λ̃n)

∞∑

j=1

jϕ(j)e−λ̃nj n→∞
∼

1

(λ̃n)2
ϕ

(
1

λ̃n

)
n→∞
∼

1

λ̃n
(1− ǫ)

n

k
,

where the last equivalence is a slight variant of (3.7). Since kϕ(n) → ∞, by a similar variant
of (3.8) we have

1

λ̃n
ϕ

(
1

λ̃n

)
∼ (1− ǫ)

n

k
≪ nϕ(n),

and therefore λ̃−1
n = o(n). With (3.15) this shows that indeed Ṽar (G1) = o(n2/k).

Proof of (iii). The existence of I(b) is standard, and its asymptotics as b → ∞ simply
follow from (ii).



RENEWAL THEORY WITH INDEX 0 13

4. Reverse renewal theorems

4.1. Transient case, proof of Theorem 1.5. Denote p∞ := P(τ1 = +∞) > 0. We fix
ǫ > 0, and A large enough so P(τ1 > A) ∈ [p∞, p∞ + ǫ], and hence P(A < τ1 < +∞) ≤ ǫ.
We then define the events

A1 = {τ ∩ (0, A] = ∅} and A2 = {τ ∩ [n− A, n) = ∅}.

We claim that if n is large enough,

(1− ǫ)P(τ1 ≤ A) ≤ P(Ac
1|n ∈ τ) ≤ (1 + ǫ)P(τ1 ≤ A) ,

(1− ǫ)P(τ1 ≤ A) ≤ P(Ac
2|n ∈ τ) ≤ (1 + ǫ)P(τ1 ≤ A) ,(4.1)

(1− ǫ)P(τ1 ≤ A)2 ≤ P(Ac
1 ∩ Ac

2|n ∈ τ) ≤ (1 + ǫ)P(τ1 ≤ A)2 .

Indeed, we can write

(4.2) P(Ac
1 ∩ Ac

2|n ∈ τ) =
A∑

i=1

A∑

j=1

P(τ1 = i)P(τ1 = j)
P(n− i− j ∈ τ)

P(n ∈ τ)
.

Since P(n ∈ τ) is regularly varying, for large n, the last ratio is close to 1 uniformly in
i, j ≤ A, and the third line in (4.1) follows. The first two lines are proved similarly.

It follows from (4.1) that

P(A1 ∩ A2|n ∈ τ) = 1−P(Ac
1|n ∈ τ)−P(Ac

2|n ∈ τ) +P(Ac
1 ∩ Ac

1|n ∈ τ)

≤ 1− 2P(τ1 ≤ A) +P(τ1 ≤ A)2 + 3ǫ

≤ P(τ1 > A)2 + 3ǫ

≤ (p∞ + ǫ)2 + 3ǫ .(4.3)

Therefore for large n,

(4.4) P(τ1 = n) ≤ P(A1,A2, n ∈ τ) ≤
(
(p∞ + ǫ)2 + 3ǫ

)
P(n ∈ τ) .

Similarly to (4.3), P(A1 ∩A2|n ∈ τ) ≥ p2∞ − 3ǫ and hence

(4.5) P(A1,A2, n ∈ τ) ≥ (p2∞ − 3ǫ)P(n ∈ τ) .

To turn this into a lower bound on P(τ1 = n), we show that conditionally on {A1,A2, n ∈
τ}, it is very likely that τ1 = n. More precisely, we claim that there exists c16 such that, for
n large,

(4.6) P(τ1 6= n,A1,A2, n ∈ τ) ≤ c16ǫP(n ∈ τ).

With (4.5), this shows that

(4.7) P(τ1 = n) = P(τ1 = n,A1,A2, n ∈ τ) ≥
(
p2∞ − 3ǫ− c16ǫ

)
P(n ∈ τ) .

Since ǫ is arbitrary, (4.4) and (4.7) complete the proof of Theorem 1.5.



14 K. ALEXANDER AND Q. BERGER

To prove (4.6), we write

P(τ1 6= n,A1,A2, n ∈ τ) ≤

n/2∑

i=A+1

P(τ1 = i)P(n− i ∈ τ)

+

n−A−1∑

i=n/2+1

n−i∑

j=A+1

P(τ1 = i)P(τ1 = j)P(n− i− j ∈ τ) .(4.8)

For the first sum in (4.8), since P(n ∈ τ) is regularly varying, there is a constant c17 such
that, provided that n is large, P(n− i ∈ τ) ≤ c17P(n ∈ τ) for every i ≤ n/2. Hence

(4.9)

n/2∑

i=A+1

P(τ1 = i)P(n− i ∈ τ) ≤ c17P(n ∈ τ)P(A < τ1 < +∞) ≤ c17 ǫP(n ∈ τ) .

For the second sum in (4.8), we use that P(τ1 = i) ≤ P(i ∈ τ) ≤ c17P(n ∈ τ) for n large
enough, since i ∈ (n/2, n). Therefore,

n−A−1∑

i=n/2+1

n−i∑

j=A+1

P(τ1 = i)P(τ1 = j)P(n− i− j ∈ τ)

≤ c17P(n ∈ τ)P(A < τ1 < +∞)×
+∞∑

k=0

P(k ∈ τ) ≤
c17
p∞

ǫP(n ∈ τ) ,(4.10)

and the proof of (4.6) is complete.

4.2. Recurrent case, proof of Theorem 1.4. We assume now that τ is recurrent, so that
Un grows to infinity as a slowly varying function. We can rewrite (1.14) as

(4.11) P(τ1 ∈ ((1− ǫn)n, n]) = r(1−ǫn)n − rn
n→∞
∼ r2n ǫnnP(n ∈ τ) .

Note that rn is slowly varying by (1.13), so if ǫn → 0 slowly enough then rǫnn ∼ rn. We
prove separately an upper and lower bound for the probability on the left in (4.11). The
upper bound is provided by the following lemma, which will also be useful in the proof of
the lower bound.

Lemma 4.1. Assume that P(n ∈ τ) is regularly varying and Un is slowly varying. Suppose

ǫn ∈ (0, 1) satisfies rǫnn
n→∞
∼ rn. Then

(4.12) P(τ1 ∈ ((1− ǫn)n, n]) = r(1−ǫn)n − rn ≤ (1 + o(1)) r2n ǫnnP(n ∈ τ) .

Proof The idea is to obtain a lower bound on ǫnnP(n ∈ τ) ∼ Un − U(1−ǫn)n, the mean
number of renewals in ((1− ǫn)n, n], by considering trajectories in which the first “big” gap
has size in ((1− ǫn)n, n], and lands in the interval ((1− ǫn)n, (1 + δn)n], see (4.15).

Since {rk} is slowly varying, we can choose such δn = o(ǫn) with rδnn
n→∞
∼ rn. Define

(4.13) In := min{i ≥ 1 : τi − τi−1 > δnn}, and Ln := τIn − τIn−1 ,

the index and length of the first “big” gap. Let Nn be the number of renewals in ((1 −
ǫn)n, (1 + 2δn)n], and let Tn be the location of the first renewal in the smaller interval
((1− ǫn)n, (1 + δn)n], when one exists, otherwise Tn = ∞. Then

E[Nn | Tn = t] ≥ Uδnn for all t ∈ ((1− ǫn)n, (1 + δn)n],
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so

(4.14) E
[
Nn | Tn ∈ ((1− ǫn)n, (1 + δn)n]

]
≥ Uδnn.

By independence, we therefore get that

(4.15) P
(
Tn ∈ ((1− ǫn)n, (1 + δn)n]

)
≥ P (τIn−1 ≤ δnn)P

(
Ln ∈ ((1− ǫn)n, n]

)
.

We claim that

(4.16) P (τIn−1 ≤ δnn) → 1 as n→ ∞,

so that

(4.17) P
(
Tn ∈ ((1− ǫn)n, (1 + δn)n]

)
≥ (1− o(1))P

(
τ1 ∈ ((1− ǫn)n, n] | τ1 > δnn

)
.

Together with (4.14), this shows that

(4.18) U(1+2δn)n−U(1−ǫn)n = E(Nn) ≥ (1−o(1))
r(1−ǫn)n − rn

rδnn
Uδnn = (1−o(1))

r(1−ǫn)n − rn
r2n

,

where we used (1.13). Since P(k ∈ τ) is regularly varying and δn ≪ ǫn, we also have

(4.19) U(1+2δn)n − U(1−ǫn)n
n→∞
∼ (ǫn + 2δn)nP(n ∈ τ)

n→∞
∼ ǫnnP(n ∈ τ) .

Together with (4.18), this completes the proof of the lemma.

We now prove (4.16). Notice that

(4.20) E
[
τ11{τ1≤δnn}

]
=

∑

0≤j<δnn

(rj − rδnn) ≪
∑

0≤j<δnn

rj
n→∞
∼ δnnrn.

Therefore we can choose Dn → ∞ satisfying DnE[τ11{τ1≤δnn}] = o(δnn rn). Then,

(4.21) P

(
In ≤

Dn

rn

)
= 1− (1− rδnn)

Dn/rn n→∞
→ 1.

Also, for all j ≥ 1, E[τIn−1 | In = j] = (j − 1)E[τ1 | τ1 ≤ δnn], so that

(4.22) E

[
τIn−1

∣∣∣∣ In ≤
Dn

rn

]
≤
Dn

rn
(1− rδnn)

−1E
[
τ11{τ1≤δnn}

]
= o(δnn).

With (4.21), it shows that

(4.23) P (τIn−1 ≤ δnn) ≥ P

(
τIn−1 ≤ δnn

∣∣∣∣ In ≤
Dn

rn

)
P

(
In ≤

Dn

rn

)
→ 1 as n→ +∞.

�

For the rest of the section, we let δn, In, Ln be as in the proof of Lemma 4.1.

We now complete the proof of Theorem 1.4 by proving that the upper bound in Lemma 4.1
is sharp, essentially by showing that the lower bound (4.17) is sharp. More precisely, denoting
Jn the numbers of renewals in ((1− ǫn + 2δn)n, n], we claim that

(4.24) P(Jn ≥ 1) ≤ (1 + o(1))
r(1−ǫn)n − rn

rn
.
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Since E[Jn | Jn ≥ 1] ≤ Uǫnn ≤ Un, together with (1.13) this yields

Un − U(1−ǫn+2δn)n = E[Jn] ≤ P(Jn ≥ 1)Un ≤ (1 + o(1))
r(1−ǫn)n − rn

r2n
.

Analogously to (4.19) we have Un −U(1−ǫn+2δn)n
n→∞
∼ ǫnnP(n ∈ τ) since δn = o(ǫn), and this

gives (4.12) with the inequality reversed. We are therefore left with proving (4.24).

First, we deal with the main contribution to the event {Jn ≥ 1}:

P
(
Jn ≥ 1, τIn−1 ≤ δnn, τIn ∈ ((1− ǫn + δn)n, n]

)
≤ P

(
τIn−1 ≤ δnn , Ln ∈ ((1− ǫn)n, n]

)

≤
r(1−ǫn)n − rn

rδnn
≤ (1 + o(1))rn ǫnnP(n ∈ τ) ,(4.25)

where we used Lemma 4.1 and rδnn ∼ rn for the last inequality.

Then we need to show that other ways of achieving Jn ≥ 1 have a negligible probability.
We claim that

(4.26) P
(
Jn ≥ 1, τIn−1 ≤

n
2
, τIn ≤ (1− ǫn + δn)n

)
= o(1) rn ǫnnP(n ∈ τ) ,

(4.27) P
(
Jn ≥ 1, δnn < τIn−1 ≤

n
2
, τIn ∈ ((1− ǫn + δn)n, n]

)
= o(1) rn ǫnnP(n ∈ τ) ,

and

(4.28) P
(
τIn−1 >

n
2

)
= o(1) rn ǫnnP(n ∈ τ) .

In (4.26) the big gap ends early (relative to (4.25)), in (4.27) it starts late, and in (4.28) it
starts very late. All together, (4.25)–(4.28) prove (4.24).

Proof of (4.26). Let us fix n ≥ 1 and let

Q1 = (n− 2ǫnn, (1− ǫn + δn)n], Qq = (n− 2qǫnn, n− 2q−1ǫnn] for q ≥ 2,

and let qn = min{q : 2qǫn ≥ 1}. For any fixed j ≤ n/2 the position of τIn−1, we decompose
according to the interval Qq containing τIn :

P
(
Jn ≥ 1,τIn ≤ (1− ǫn + δn)n | τIn−1 = j

)
=

qn∑

q=1

P (Jn ≥ 1, τIn ∈ Qq | τIn−1 = j)

≤

qn∑

q=1

P(τ1 ∈ Qq − j | τ1 ≥ δnn) max
m∈n−Qq

P
(
|τ ∩ (m− (ǫn − 2δn)n,m]| ≥ 1

)
.(4.29)

Here the big gap corresponds to [j, n−m].

First, we control the last probability in (4.29). Note that for any given interval (a, b] ⊂
(0,∞], conditioning on the location of the first renewal (if any) in (a, b], we get for any h ≥ 1

(4.30) P
(
|τ ∩ (a, b]| ≥ 1

)
Uh ≤ Ub+h − Ua .

For any q ≥ 2 and m ∈ n−Qq we have m ∈ (2q−1ǫnn, 2
qǫnn], and in particular m ≥ 2ǫnn.

Therefore, applying (4.30) with h = δnn, there exists a constant c18 such that

(4.31) P
(
|τ ∩ (m− (ǫn − 2δn)n,m]| ≥ 1

)
≤
Um+δnn − Um−ǫnn

Uδnn
≤ c18rnǫnnP(2qǫnn ∈ τ).
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For the last inequality we used regular variation of P(k ∈ τ), and (1.13).
For q = 1 and m ∈ n − Qq, we have m ∈ ((ǫn − δn)n, 2ǫn). Hence, applying again (4.30)

with h = δnn, we get
(4.32)

P
(
|τ ∩ (m− (ǫn − 2δn)n,m]| ≥ 1

)
≤ P

(
|τ ∩ (δnn, 2ǫnn]| ≥ 1

)
≤
U(ǫn+δn)n − Uδnn

Uδnn

n→∞
→ 0,

where we used that U(ǫn+δn)n
n→∞
∼ Un

n→∞
∼ Uδnn for the last convergence, which is uniform in

m ∈ n−Qq.

We now control P(τ1 ∈ Qq − j | τ1 ≥ δnn). For 1 ≤ q ≤ qn − 3, we have 2qǫnn < n/4 so
n − 2qǫnn − j > n/4. Hence, using Lemma 4.1 (with an interval of length 2q−1ǫnn, which

satisfies the hypotheses since rn ≤ r2q−1ǫn ≤ rǫnn
n→∞
∼ rn),

P(τ1 ∈ Qq − j) ≤ (1 + o(1))r2n 2
q−1ǫnn max

n/4<x≤n
P(x ∈ τ) ≤ c19r

2
n2

q−1ǫnnP(n ∈ τ),

and therefore, there is some constant c20 such that

(4.33) P(τ1 ∈ Qq − j | τ1 ≥ δnn) ≤ c20 rn 2
q−1ǫnnP(n ∈ τ).

For q = qn − 2, qn − 1, qn we have

(4.34) P(τ1 ∈ Qq − j | τ1 ≥ δnn) ≤
rδnn − rn
rδnn

n→∞
→ 0,

and, similarly to (4.31), there is a constant c21 such that, for m ∈ n−Qq,

(4.35) P(|τ ∩ (m− ǫnn,m]| ≥ 1) ≤ c21 rn ǫnnP(n ∈ τ).

Combining (4.31)–(4.35) with (4.29), we finally obtain

P
(
Jn ≥ 1,τIn ≤ (1− ǫn − δn)n | τIn−1 = j

)

≤ c22 rn ǫnnP(n ∈ τ)

(
o(1) + rn

qn−3∑

q=2

2q−1ǫnnP(2qǫnn ∈ τ)

)
.(4.36)

Now there is a constant c23 such that
qn−3∑

q=2

2q−1ǫnnP(2qǫnn ∈ τ) ≤ c23

qn−3∑

q=1

∑

x∈n−Qq

P(x ∈ τ) ≤ c23(Un − Uǫnn).

Therefore, since Un − Uǫnn = o(Un) = o(r−1
n ), we get that

P
(
Jn ≥ 1, τIn ≤ (1− ǫn − δn)n | τIn−1 = j

)
= o(1) rn ǫnnP(n ∈ τ) ,

uniformly for j ≤ n/2, and (4.26) follows.

Proof of (4.27). For all j ∈ (δnn, n/2], by Lemma 4.1 we have

P
(
τIn ∈ ((1− ǫn + δn)n, n] | τIn−1 = j

)
= P

(
τ1 ∈ ((1− ǫn + δn)n− j, n− j] | τ1 > δnn

)

≤ (1 + o(1))rn(ǫn − δn)nP(n− j ∈ τ) ≤ c24 rn ǫnnP(n ∈ τ) .(4.37)

Therefore, we get that

P
(
τIn ∈ ((1− ǫn − δn)n, n] | δnn < τIn−1 ≤

n
2

)
≤ c24rn ǫnnP(n ∈ τ) ,

and since P (τIn−1 > δnn)
n→∞
→ 0 (see (4.23)), (4.27) follows.
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Proof of (4.28). Since P(n ∈ τ) is regularly varying and Un is slowly varying with
Un → ∞, P(n ∈ τ) must have index of regular variation −1. Hence by [5, Proposition
1.5.9a] we have nP(n ∈ τ) ≪ Un. Therefore

(4.38) ϕ̂(n) := r2n nP(n ∈ τ)

is a slowly varying function which by (1.13) satisfies

(4.39) ϕ̂(n) ≪ rn,

and (4.28) is equivalent to proving

(4.40) P(τIn−1 > n/2) = o(1) ǫn
ϕ̂(n)

rn
.

Note that if we knew (1.1) held, necessarily with α = 0, we could conclude from Theorem
1.2 that ϕ̂(n) ∼ ϕ(n), so ϕ̂ may be viewed as a surrogate for ϕ in the absence of (1.1).

Decomposing over the value of In − 1, we get, recalling Ĝ
(m)
i from Section 2,

(4.41)

P(τIn−1 > n/2) =

+∞∑

k=1

P(In−1 = k , τk > n/2) =

+∞∑

k=1

rδnn(1−rδnn)
k−1P

(
k∑

i=1

Ĝ
(δnn)
i > n/2

)
.

We now need an analogue of Lemma 2.1.

Lemma 4.2. Assume that P(n ∈ τ) is regularly varying with index −1 and Un is slowly
varying. There exist m0, c25 > 0 such that for all m0 ≤ m ≤ n and k ≥ 1,

(4.42) P

(
k∑

i=1

Ĝ
(m)
i ≥

n

2

)
≤

(
c25kmϕ̂(m)

n

) n
2m

.

Proof The proof follows the same lines as that of Lemma 2.1. The only modification needed
is in (2.9): the computation of E[τ11{τ1≤m}] required knowledge on P(τ1 = n). Therefore it
is sufficient to show that there exists some constant c26 such that

(4.43) E[τ11{τ1≤m}] ≤ c26mϕ̂(m) .

Indeed, thanks to Lemma 4.1, we get that there exist ℓ0 > 0 and a constant c27 such that,
for any ℓ ≥ ℓ0

P
(
τ1 ∈ (2ℓ−1, 2ℓ]

)
≤ c27(r2ℓ)

22ℓ−1P(2ℓ ∈ τ) ≤ c27ϕ̂(2
ℓ) .

Therefore for any m ≥ ℓ0,

E[τ11{τ1≤m}] ≤ 2ℓ0 +

⌈log2(m)⌉∑

ℓ=ℓ0+1

2ℓP
(
τ1 ∈ (2ℓ−1, 2ℓ]

)

≤ 2ℓ0 + c27

⌈log2(m)⌉∑

ℓ=1

2ℓϕ̂(2ℓ)

≤ 2ℓ0 + c28

m∑

x=1

ϕ̂(x) ,

and (4.43) is proved. �
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Going back to (4.41), we can apply Lemma 4.2 with m = δnn, and note that 2rn ≥ rδnn ≥
rn for large n, to obtain

(4.44) P(τIn−1 > n/2) ≤ 3rn
(
c25δnϕ̂(δnn)

)1/2δn +∞∑

k=1

e−krnk1/2δn .

The sum here is readily approximated by a gamma function, and an application of Stirling’s
formula then yields

+∞∑

k=1

e−krnk1/2δn ≤
c29

δ
1/2
n rn

(
c30

ϕ̂(δnn)

δnrn

)1/2δn

,

so that for large n,
(4.45)

P(τIn−1 > n/2) ≤
c29

δ
1/2
n

(
c31

ϕ̂(δnn)

rn

)1/2δn

≤ δ3n

(
c32

ϕ̂(δnn)

rn

)1/2δn

≤ δn

(
δnϕ̂(δnn)

rn

)2

.

Since ϕ̂ is slowly varying, for n large enough we have δnϕ̂(δnn) ≤ ϕ̂(n). Since we chose
δn = o(ǫn), we therefore obtain

(4.46) P(τIn−1 > n/2) ≤ ǫn

(
ϕ̂(n)

rn

)2

,

which with (4.39) completes the proof of (4.40), hence also of (4.28), (4.24) and finally (4.11),
or equivalently (1.14).

Equation (1.15) is an immediate consequence of (1.14). �

4.3. Why not expect a stronger reverse renewal theorem? We give here an example
of a distribution for a recurrent renewal τ where P(n ∈ τ) is regularly varying (with index
of regular variation −1) but P(τ1 = n) is not. This shows that (1.15) is not true in general
under the assumptions used to obtain (1.14).

Let σ be a recurrent renewal with inter-arrival distribution of form

(4.47) P(σ1 = n) = ϕ(n)n−1.

Now, let τ1 be 2σ1 or 1, with probability 1/2 each:

P(τ1 = 1) = 1
2
, P(τ1 = 2m) = 1

2
P(σ1 = m) , P(τ1 = 2m− 1) = 0 for m ≥ 1.

Note that rn := P(τ1 > n)
n→∞
∼ 1

2
P(σ1 > n). Then P(τ1 = n) is not regularly varying, but

we show that the gaps of length 1 have a smoothing effect, and make P(n ∈ τ) regularly
varying. More precisely, we prove

(4.48) P(n ∈ τ)
n→∞
∼

ϕ(n)

2r2nn
.

Proof of (4.48) We choose θn, λn satisfying

r−1
n ≪ θn ≪ ϕ(n)−1 and 1 ≪ λn ≪ r−1/2

n ,

and decompose P(n ∈ τ) into three sums:

(4.49) P(n ∈ τ) =
∑

k≤(λnrn)−1

P(τk = n) +
∑

(λnrn)−1<k≤θn

P(τk = n) +
∑

k>θn

P(τk = n) .



20 K. ALEXANDER AND Q. BERGER

We will show that the main contribution comes from the middle sum, see (4.55), the first
and last sum being negligible, see (4.56)-(4.57).

Middle sum. We introduce Xk the number of gaps of length 1 in the first k gaps of τ .
For (λnrn)

−1 < k ≤ θn, note that λn ≤ kλ2nrn ≪ k and k ≪ n, and write

P(τk = n) = P
(
Xk −

k
2
∈ (−kλnr

1/2
n , kλnr

1/2
n ) ; τk = n

)

+P
(
|Xk −

k
2
| ≥ kλnr

1/2
n ; τk = n) .(4.50)

The last probability is small. Indeed, there is a constant c33 such that

P
(
|Xk −

k

2
| ≥ kλnr

1/2
n

)
≤ e−c33λ2

nrnk for all k ≥ 1;

conditioning on Xk we therefore get that

(4.51) P
(
|Xk −

k
2
| ≥ kλnr

1/2
n ; τk = n) ≤ e−c33λ2

nrnk sup
1≤j≤k

sup
n−k
2

≤m≤n
2

P(σj = m) .

Here the sups are over all possible values of j = k−Xk and m = (n−Xk)/2. Applying (1.9)
we see that for n large, for all m ≥ (n− k)/2 ≥ n/4 and j ≤ k, we have

P(σj = m) ≤ c34kP(σ1 = n).

Since e−c33λ2
nrnk = o(1) e−krn as n→ ∞, uniformly in middle-sum values of k, we get that

(4.52) P
(
|Xk −

k
2
| ≥ kλnr

1/2
n ; τk = n

)
= o(1)ke−krn

ϕ(n)

n
as n→ ∞ ,

with the o(1) uniform over middle-sum values of k.
For the first probability on the right in (4.50), we use (1.8). Uniformly for j in the interval

k
2
+(−kλnr

1/2
n , kλnr

1/2
n ) with j ≡ n−k mod 2, and for middle-sum values of k (which satisfy

kϕ(n)
n→∞
→ 0 and k → +∞), we have j ∼ k/2 and k ≪ n, so

P
(
σj =

n− k + j

2

)
= (1 + o(1))k

(
1− 2r(n−k+j)/2

)jϕ
(
n/2
)

n/2

= (1 + o(1)) 2ke−krn(1+o(1)) ϕ(n)

n
,(4.53)

since P(σ1 > n)
n→∞
∼ 2rn. Therefore, since

P
(
Xk −

k
2
∈ (−kλnr

1/2
n , kλnr

1/2
n ) ; Xk ≡ n mod 2

)
→

1

2
as n→ ∞ ,

conditioning again on Xk we get that for middle-sum values of k,

(4.54) P
(
Xk −

k
2
∈ (−kλnr

1/2
n , kλnr

1/2
n ) ; τk = n

)
= (1 + o(1)) ke−krn(1+o(1)) ϕ(n)

n
,

with the o(1) uniform over middle-sum values of k.
Summing (4.52) and (4.54), we obtain straightforwardly that

(4.55)
∑

(λnrn)−1<k≤θn

P(τk = n) =
∑

(λnrn)−1<k≤θn

(1 + o(1)) ke−krn(1+o(1)) ϕ(n)

n
= (1 + o(1))

ϕ(n)

2r2nn
.

We are therefore left with showing that the two other sums in (4.49) are negligible.
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First sum. Using (1.9) and (4.47) and conditioning once more on Xk, we get that there
exists a constant c35 such that for n large enough, for any k ≤ (λnrn)

−1,

P(τk = n) ≤ sup
1≤j≤k

sup
n−k
2

≤m≤n
2

P(σj = m) ≤ c35 k
ϕ(n)

n
,

which gives

(4.56)
∑

k≤(λnrn)−1

P(τk = n) ≤
c35

(λnrn)2
ϕ(n)

n
= o(1)

ϕ(n)

r2nn
.

Last sum. Similarly to (4.52)-(4.54) but using (1.9) in place of (1.8), we obtain that
there exists c36 such that for all θn < k ≤ n/2,

P(τk = n) ≤ c36ke
−krn(1+o(1))ϕ(n)

n
≤ ke−krn/2

ϕ(n)

n
,

the last inequality being valid for n large, since krn → +∞.

For k ∈ (n/2, n], we use that

P(τk = n) ≤ (1− rn)
k ≤ e−nrn/2 .

Since θn ≫ r−1
n , we therefore obtain that

(4.57)
∑

k>θn

P(τk = n) ≤
∑

k>θn

ke−krn/2
ϕ(n)

n
+ ne−nrn/2 = o(1)

ϕ(n)

r2nn
.

This completes the proof of (4.48). �
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