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ON THE MEAN SPEED OF CONVERGENCE OF EMPIRICAL

AND OCCUPATION MEASURES IN WASSERSTEIN DISTANCE

EMMANUEL BOISSARD AND THIBAUT LE GOUIC

Abstract. In this work, we provide non-asymptotic bounds for the average
speed of convergence of the empirical measure in the law of large numbers,
in Wasserstein distance. We also consider occupation measures of ergodic
Markov chains. One motivation is the approximation of a probability measure
by finitely supported measures (the quantization problem). It is found that
rates for empirical or occupation measures match or are close to previously

known optimal quantization rates in several cases. This is notably highlighted
in the example of infinite-dimensional Gaussian measures.

1. Introduction

This paper is concerned with the rate of convergence in Wasserstein distance for
the so-called empirical law of large numbers : let (E, d, µ) denote a measured Polish
space, and let

(1) Ln =
1

n

n
∑

i=1

δXi

denote the empirical measure associated with the i.i.d. sample (Xi)1≤i≤n of
law µ, then with probability 1, Ln ⇀ µ as n → +∞ (convergence is understood
in the sense of the weak topology of measures). This theorem is also known as
Glivenko-Cantelli theorem and is due in this form to Varadarajan [26].

For 1 ≤ p < +∞, the p-Wasserstein distance is defined on the set Pp(E)2 of
couples of measures with a finite p-th moment by

W p
p (µ, ν) = inf

π∈P(µ,ν)

∫

dp(x, y)π(dx, dy)

where the infimum is taken on the set P(µ, ν) of probability measures with first,
resp. second, marginal µ, resp. ν. This defines a metric on Pp, and convergence
in this metric is equivalent to weak convergence plus convergence of the moment of
order p. These metrics, and more generally the Monge transportation problem from
which they originate, have played a prominent role in several areas of probability,
statistics and the analysis of P.D.E.s : for a rich account, see C. Villani’s St-Flour
course [27].

Our purpose is to give bounds on the mean speed of convergence in Wp distance
for the Glivenko-Cantelli theorem, i.e. bounds for the convergence E(Wp(Ln, µ)) →
0. Such results are desirable notably in view of numerical and statistical applica-
tions : indeed, the approximation of a given probability measure by a measure
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with finite support in Wasserstein distance is a topic that appears in various guises
in the literature, see for example [15]. The first motivation for this work was to
extend the results obtained by F. Bolley, A. Guillin and C. Villani [5] in the case of
variables with support in Rd. As in this paper, we aim to produce bounds that are
non-asymptotic and effective (that is with explicit constants), in order to achieve
practical relevance.

We also extend the investigation to the convergence of occupation measure for
suitably ergodic Markov chains : again, we have practical applications in mind, as
this allows to use Metropolis-Hastings-type algorithms to approximate an unknown
measure (see 1.3 for a discussion of this).

There are many works in statistics devoted to convergence rates in some metric
associated with the weak convergence of measures, see e.g. the book of A. Van der
Vaart and J. Wellner [25]. Of particular interest for us is R.M. Dudley’s article [11],
see Remark 1.1.

Other works have been devoted to convergence of empirical measures in Wasser-
stein distance, we quote some of them. Horowitz and Karandikar [17] gave a bound
for the rate of convergence of E[W 2

2 (Ln, µ)] to 0 for general measures supported
in Rd under a moment condition. M. Ajtai, J. Komlos and G. Tusnady [1] and
M.Talagrand [24] studied the related problem of the average cost of matching two
i.i.d. samples from the uniform law on the unit cube in dimension d ≥ 2. This
line of research was pushed further, among others, by V. Dobrić and J.E. Yukich
[10] or F. Barthe and C. Bordenave [2] (the reader may refer to this last paper for
an up-to-date account of the Euclidean matching problem). These papers give a
sharp result for measures in Rd, with an improvement both over [17] and [5]. In
the case µ ∈ P(R), del Barrio, Giné and Matran [7] obtain a central limit theorem

for W1(Ln, µ) under the condition that
∫ +∞

−∞

√

F (t)(1 − F (t))dt < +∞ where F

is the cumulative distribution function (c.d.f.) of µ. In the companion paper [4],
we investigate the case of the W1 distance by using the dual expression of the W1

transportation cost by Kantorovich and Rubinstein, see therein for more references.
Before moving on to our results, we make a remark on the scope of this work.

Generally speaking, the problem of convergence of Wp(Ln, µ) to 0 can be divided
in two separate questions :

• the first one is to estimate the mean rate of convergence, that is the con-
vergence rate of E[Wp(Ln, µ)],

• while the second one is to study the concentration properties of Wp(Ln, µ)
around its mean, that is to find bounds on the quantities

P(Wp(Ln, µ)− E[Wp(Ln, µ)] ≥ t).

Our main concern here is the first point. The second one can be dealt with
by techniques of measure concentration. We will elaborate on this in the case
of Gaussian measures (see Appendix A), but not in general. However, this is a
well-trodden topic, and some results are gathered in [4].

Acknowledgements. We thank Patrick Cattiaux for his advice and careful reading
of preliminary versions, and Charles Bordenave for introducing us to his work [2]
and connected works.

1.1. Main result and first consequences.
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Definition 1.1. For X ⊂ E, the covering number of order δ for X , denoted by
N(X, δ), is defined as the minimal n ∈ N such that there exist x1, . . . , xn in X with

X ⊂
n
⋃

j=1

B(xi, δ).

Our main statement is summed up in the following proposition.

Proposition 1.1. Choose t > 0. Let µ ∈ P(E) with support included in X ⊂ E
with finite diameter d such that N(X, t) < +∞. We have the bound :

E(Wp(Ln, µ)) ≤ c

(

t+ n−1/2p

∫ d/4

t

N(X, δ)1/2pdδ

)

.

with c ≤ 64/3.

Remark. Proposition 1.1 is related in spirit and proof to the results of R.M. Dudley
[11] in the case of the bounded Lipschitz metric

dBL(µ, ν) = inf
f1−Lip,|f |≤1

∫

fd(µ− ν).

The analogy is not at all fortuitous : indeed, the bounded Lipschitz metric is
linked to the 1-Wasserstein distance via the well-known Kantorovich-Rubinstein
dual definition of W1 :

W1(µ, ν) = inf
f1−Lip

∫

fd(µ− ν).

The analogy stops at p = 1 since there is no representation of Wp as an empirical
process for p > 1 (there is, however, a general dual expression of the transport cost).
In spite of this, the technique of proof in [11] proves useful in our case, and the
technique of using a sequence of coarser and coarser partitions is at the heart of
many later results, notably in the literature concerned with the problem of matching
two independent samples in Euclidean space, see e.g. [24] or the recent paper [2].

We now give a first example of application, under an assumption that the un-
derlying metric space is of finite-dimensional type in some sense. More precisely,
we assume that there exist kE > 0, α > 0 such that

(2) N(E, δ) ≤ kE(Diam E/δ)α.

Here, the parameter α plays the role of a dimension.

Corollary 1.2. Assume that E satisfies (2), and that α > 2p. With notations as
earlier, the following holds :

E[Wp(Ln, µ)] ≤ c
α

α− 2p
Diam E k

1/α
E n−1/α

with c ≤ 64/3.

Remark. In the case of measures supported in Rd, this result is neither new nor
fully optimal. For a sharp statement in this case, the reader may refer to [2]
and references therein. However, we recover at least the exponent of n−1/d which
is sharp for d ≥ 3, see [2] for a discussion. And on the other hand, Corollary
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1.2 extends to more general metric spaces of finite-dimensional type, for example
manifolds.

As opposed to Corollary 1.2, our next result is set in an infinite-dimensional
framework.

1.2. An application to Gaussian r.v.s in Banach spaces. We apply the results
above to the case where E is a separable Banach space with norm ‖.‖, and µ is a
centered Gaussian random variable with values in E, meaning that the image of µ
by every continuous linear functional f ∈ E∗ is a centered Gaussian variable in R.
The couple (E, µ) is called a (separable) Gaussian Banach space.

Let X be a E-valued r.v. with law µ, and define the weak variance of µ as

σ = sup
f∈E∗, |f |≤1

(

Ef2(X)
)1/2

.

The small ball function of a Gaussian Banach space (E, µ) is the function

ψ(t) = − logµ(B(0, t)).

We can associate to the couple (E, µ) their Cameron-Martin Hilbert space H ⊂
E, see e.g. [19] for a reference. It is known that the small ball function has
deep links with the covering numbers of the unit ball of H , see e.g. Kuelbs-Li
[18] and Li-Linde [21], as well as with the approximation of µ by measures with
finite support in Wasserstein distance (the quantization or optimal quantization
problem), see Fehringer’s Ph.D. thesis [12], Dereich-Fehringer-Matoussi-Scheutzow
[8], Graf-Luschgy-Pagès [16].

We make the following assumptions on the small ball function :

(1) there exists κ > 1 such that ψ(t) ≤ κψ(2t) for 0 < t ≤ t0,
(2) for all ε > 0, n−ε = o(ψ−1(logn)).

Assumption (2) implies that the Gaussian measure is genuinely infinite dimen-
sional : indeed, in the case when dim K < +∞, the measure is supported in a
finite-dimensional Banach space, and in this case the small ball function behaves
as log t.

Theorem 1.3. Let (E, µ) be a Gaussian Banach space with weak variance σ and
small ball function ψ. Assume that Assumptions (1) and (2) hold.

Then there exists a universal constant c such that for all

n ≥ (6 + κ)(log 2 ∨ ψ(1) ∨ ψ(t0/2) ∨ 1/σ2),

the following holds :

(3) E(W2(Ln, µ)) ≤ c

[

ψ−1(
1

6 + κ
logn) + σn−1/[4(6+κ)]

]

.

In particular, there is a C = C(µ) such that

(4) E(W2(Ln, µ)) ≤ Cψ−1(log n).

Moreover, for λ > 0,
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(5) W2(Ln, µ) ≤ (C + λ)ψ−1(log n) with probability 1− exp−nψ−1(logn)
λ2

2σ2
.

Remark. Note that the choice of 6 + κ is not particularly sharp and may likely be
improved.

In order to underline the interest of the result above, we introduce some defini-
tions from optimal quantization. For n ≥ 1 and 1 ≤ r < +∞, define the optimal
quantization error at rate n as

δn,r(µ) = inf
ν∈Pn

Wr(µ, ν)

where the infimum runs on the set Pn of probability measures with finite support
of cardinal bounded by n. Under some natural assumptions, the upper bound of
(5) is matched by a lower bound for the quantization error. Theorem 3.1 in [8]
states the following : if for every 0 < ζ < 1,

µ((1− ζ)εB) = o(µ(εB)) as ε→ 0,

then

δn,r & ψ−1(logn)

(where an & bn means lim inf an/bn ≥ 1).
In the terminology of quantization, Theorem 1.3 states that the empirical mea-

sure is a rate-optimal quantizer with high probability (under some assumptions on
the small ball function). This is of practical interest, since obtaining the empirical
measure is only as difficult as simulating an instance of the Gaussian vector, and
one avoids dealing with computation of appropriate weights in the approximating
discrete measure.

We leave aside the question of determining the sharp asymptotics for the average
error E(W2(Ln, µ)), that is of finding c such that E(W2(Ln, µ)) ∼ cψ−1(logn). Let
us underline that the corresponding question for quantizers is tackled for example
in [22].

1.3. The case of Markov chains. We wish to extend the control of the speed of
convergence to weakly dependent sequences, such as rapidly-mixing Markov chains.
There is a natural incentive to consider this question : there are cases when one
does not know hom to sample from a given measure π, but a Markov chain with
stationary measure π is nevertheless available for simulation. This is the basic set-
up of the Markov Chain Monte Carlo framework, and a very frequent situation,
even in finite dimension.

When looking at the proof of Proposition 1.1, it is apparent that the main
ingredient missing in the dependent case is the argument following (18), i.e. that
whenever A ⊂ X is measurable, nLn(A) follows a binomial law with parameters n
and µ(A), and this must be remedied in some way. It is natural to look for some type
of quantitative ergodicity property of the chain, expressing almost-independence of
Xi and Xj in the long range (|i − j| large).

We will consider decay-of-variance inequalities of the following form :

(6) VarπP
nf ≤ CλnVarπf.
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In the reversible case, a bound of the type of (6) is ensured by Poincaré or spectral
gap inequalities. We recall one possible definition in the discrete-time Markov chain
setting.

Definition 1.2. Let P be a Markov kernel with reversible measure π ∈ P(E). We
say that a Poincaré inequality with constant CP > 0 holds if

(7) Varπf ≤ CP

∫

f(I − P 2)fdπ

for all f ∈ L2(π).
If (7) holds, we have

VarπP
nf ≤ λnVarπf

with λ = (CP − 1)/CP .

More generally, one may assume that we have a control of the decay of the
variance in the following form :

(8) VarπP
nf ≤ Cλn‖f −

∫

fdπ‖Lp .

As soon as p > 2, these inequalities are weaker than (6). Our proof would be
easily adaptable to this weaker decay-of-variance setting. We do not provide a
complete statement of this claim.

For a discussion of the links between Poincaré inequality and other notions of
weak dependence (e.g. mixing coefficients), see the recent paper [6].

For the next two theorems, we make the following dimension assumption on E :
there exists kE > 0 and α > 0 such that for all X ⊂ E with finite diameter,

(9) N(X, δ) ≤ kE(Diam X/δ)α.

The following theorem is the analogue of Corollary 1.2 under the assumption
that the Markov chain satisfies a decay-of-variance inequality.

Theorem 1.4. Assume that E has finite diameter d > 0 and (9) holds. Let
π ∈ P(E), and let (Xi)i≥0 be a E-valued Markov chain with initial law ν such that
π is its unique invariant probability. Assume also that (6) holds for some C > 0
and λ < 1.

Then if 2p > α(1 + 1/r) and Ln denotes the occupation measure 1/n
∑n
i=1 δXi

,
the following holds :

Eν [Wp(Ln, π)] ≤ c
α(1 + 1/r)

α(1 + 1/r)− 2p
k
1/α
E d

(

C‖ dνdπ‖r
(1− λ)n

)1/[α(1+1/r)]

for some universal constant c ≤ 64/3.

The previous theorem has the drawback of assuming that the state space has
finite diameter. This can be circumvented, for example by truncation arguments.
Our next theorem is an extension to the unbounded case under some moment
conditions on π. The statement and the proof involve more technicalities than
Theorem 1.4, so we separate the two in spite of the obvious similarities.
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Theorem 1.5. Assume that (9) holds. Let π ∈ P(E), and let (Xi)i≥0 be a E-
valued Markov chain with initial law ν such that π is its unique invariant probability.
Assume also that (6) holds for some C > 0 and λ < 1. Let x0 ∈ E and for all θ ≥ 1,
denote Mθ =

∫

d(x0, x)
θdπ. Fix r and ζ > 1 and assume 2p > α(1+1/r)(1+1/ζ).

There exist two numerical constant C1(p, r, ζ) and C2(p, r, ζ) only depending on
p, r and ζ such that whenever

C‖ dνdπ‖r
(1− λ)n

≤ C1(p, r, ζ),

the following holds :

Eν [Wp(Ln, π)] ≤ C1(p, r, ζ)K(ζ)

(

C‖ dνdπ‖r
(1 − λ)n

)1/[α(1+1/r)(1+1/ζ)]

where

K(ζ) =
mζ

m
ζ/p
p

∨ mζ+2p

m
1+ζ/p
p

∨ k1/2p(1+1/r)
E

2p

α(1 + 1/r)
mα/(2p2)(1+1/r)
p .

2. Proofs in the independent case

Lemma 2.1. Let X ⊂ E, s > 0 and u, v ∈ N with u < v. Suppose that
N(X, 4−vs) < +∞. For u ≤ j ≤ v, there exist integers

(10) m(j) ≤ N(X, 4−js)

and non-empty subsets Xj,l of X, u ≤ j ≤ v, 1 ≤ l ≤ m(j), such that the sets
Xj,l 1 ≤ l ≤ m(j) satisfy

(1) for each j, (Xj,l)1≤l≤m(j) is a partition of X,

(2) Diam Xj,l ≤ 4−j+1s,
(3) for each j > u, for each 1 ≤ l ≤ m(j) there exists 1 ≤ l′ ≤ m(j − 1) such

that Xj,l ⊂ Xj−1,l′ .

In other words, the sets Xj,l form a sequence of partitions of X that get coarser
as j decreases (tiles at the scale j − 1 are unions of tiles at the scale j).

Proof. We begin by picking a set of balls Bj,l = B(xj,l, 4
−js) with u ≤ j ≤ v and

1 ≤ l ≤ N(X, 4−js), such that for all j,

X ⊂
N(X,4−js)
⋃

l=1

Bj,l.

Define Xv,1 = Bv,1, and successively set Xv,l = Bv,l \ Xv,l−1. Discard the
possible empty sets and relabel the existing sets accordingly. We have obtained the
finest partition, obviously satisfying conditions (1)-(2).

Assume now that the sets Xj,l have been built for k + 1 ≤ j ≤ v. Set Xk,1

to be the reunion of all Xk+1,l′ such that Xk+1,l′ ∩ Bk,1 6= ∅. Likewise, define by
induction on l the set Xk,l as the reunion of all Xk+1,l′ such that Xk+1,l′ ∩Bk,l 6= ∅
andXk+1,l′ * Xk,p for 1 ≤ p < l. Again, discard the possible empty sets and relabel
the remaining tiles. It is readily checked that the sets obtained satisfy assumptions
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(1) and (3). We check assumption (2) : let xk,l denote the center of Bk,l and let
y ∈ Xk+1,l′ ⊂ Xk,l. We have

d(xk,l, y) ≤ 4−ks+ Diam Xk+1,l′ ≤ 2× 4−ks,

thus Diam Xk,l ≤ 4−k+1s as desired.
�

Consider as above a subset X of E with finite diameter d, and assume that
N(X, 4−kd) < +∞. Pick a sequence of partitions (Xj,l)1≤l≤m(j) for 1 ≤ j ≤ k, as
per Lemma 2.1. For each (j, l) choose a point xj,l ∈ Xj,l. Define the set of points
of level j as the set L(j) = {xj,l}1≤l≤m(j). Say that xj′,l′ is an ancestor of xj,l if
Xj,l ⊂ Xj′,l′ : we will denote this relation by (j′, l′) → (j, l).

The next two lemmas study the cost of transporting a finite measure mk to
another measure nk when these measures have support in L(k). The underlying
idea is that we consider the finite metric space formed by the points xj,l, 1 ≤ j ≤ k,
as a metric tree, where points are connected to their ancestor at the previous level,
and we consider the problem of transportation between two masses at the leaves of
the tree. The transportation algorithm we consider consists in allocating as much
mass as possible at each point, then moving the remaining mass up one level in the
tree, and iterating the procedure.

A technical warning : please note that the transportation cost is usually defined
between two probability measures ; however there is no difficulty in extending its
definition to the transportation between two finite measures of equal total mass,
and we will freely use this fact in the sequel.

Lemma 2.2. Let mj, nj be measures with support in Lj. Define the measures
m̃j−1 and ñj−1 on Lj−1 by setting

m̃j−1(xj−1,l′ ) =
∑

(j−1,l′)→(j,l)

(mj(xj,l)− nj(xj,l)) ∧ 0,(11)

ñj−1(xj−1,l′ ) =
∑

(j−1,l′)→(j,l)

(nj(xj,l)−mj(xj,l)) ∧ 0.(12)

The measures ˜mj−1 and ˜nj−1 have same mass, so the transportation cost between
them may be defined. Moreover, the following bound holds :

(13) Wp(mj , nj) ≤ 2× 4−j+2d‖mj − nj‖1/pTV +Wp(m̃j−1, ñj−1).

Proof. Set mj ∧ nj(xj,l) = mj(xj,l) ∧ nj(xj,l). By the triangle inequality,

Wp(m,n) ≤Wp(mj ,mj ∧ nj) + m̃j−1 +Wp(mj ∧ nj + m̃j−1,mj ∧ nj + ñj−1)

+Wp(mj ∧ nj + ñj−1, nj).

We bound the term on the left. Introduce the transport plan πm defined by

πm(xj,l, xj,l) = mj ∧ nj(xj,l),
πm(xj,l, xj−1,l′) = (mj(xj,l)− nj(xj,l))+ when (j − 1, l′) → (j, l).

The reader can check that πm ∈ P(mj ,mj ∧ nj + m̃j−1). Moreover,
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Wp(mj , ˜mj−1) ≤
(∫

dp(x, y)πm(dx, dy)

)1/p

≤ 4−j+2d





m(j)
∑

l=1

(mj(xj,l)− nj(xj,l))+





1/p

.

Likewise,

Wp(nj ,mj ∧ nj + ˜nj−1) ≤ 4−j+2d





m(j)
∑

l=1

(nj(xj,l)−mj(xj,l))+





1/p

.

As for the term in the middle, it is bounded by Wp(m̃j−1, ñj−1). Putting this

together and using the inequality x+ y ≤ 21−1/p(xp + yp)1/p„ we get

Wp(mj , nj) ≤ 21−1/p4−j+2d





m(j)
∑

l=1

|mj(xj,l)− nj(xj,l)|





1/p

+Wp(m̃j−1, ñj−1).

�

Lemma 2.3. Let mj, nj be measures with support in Lj. Define for 1 ≤ j′ < j
the measures m′

j, n
′
j with support in L′

j by

(14) mj′ (xj′,l′) =
∑

(j′,l′)→(j,l)

mj(xj,l), nj′ (xj′,l′) =
∑

(j′,l′)→(j,l)

nj(xj,l).

The following bound holds :

(15) Wp(mj , nj) ≤
j
∑

j′=1

2× 4−j
′+2d‖m′

j − n′
j‖1/pTV

Proof. We proceed by induction on j. For j = 1, the result is obtained by using

the simple bound Wp(m1, n1) ≤ d‖m1 − n1‖1/pTV .
Suppose that (15) holds for measures with support in Lj−1. By lemma 2.2, we

have

Wp(mj , nj) ≤ 2× 4−j+2d‖mj − nj‖1/pTV +Wp(m̃j−1, ñj−1)

where m̃j−1 and ñj−1 are defined by (11) and (12) respectively. For 1 ≤ i < j−1,
define following (14)

m̃i(xi,l′ ) =
∑

(i,l′)→(j−1,l)

m̃j−1(xj−1,l), ñi(xi,l′ ) =
∑

(i,l′)→(j−1,l)

ñj−1(xj−1,l).

We have

Wp(mj , nj) ≤ 2× 4−j+2d‖mj − nj‖1/pTV +

j−1
∑

j′=1

2× 4−j
′+2d‖m̃i − ñi‖1/pTV .
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To conclude, it suffices to check that for 1 ≤ i ≤ j−1, ‖m̃i−ñi‖TV = ‖mi−ni‖TV .
�

Proof of Proposition 1.1. We pick some positive integer k whose value will be de-
termined at a later point. Introduce the sequence of partitions (Xj,l)1≤l≤m(j) for
0 ≤ j ≤ k as in the lemmas above, as well as the points xj,l. Define µk as the
measure with support in L(k) such that µk(xk,l) = µ(Xk,l) for 1 ≤ l ≤ m(k). The
diameter of the sets Xk,l is bounded by 4−k+1d, therefore Wp(µ, µk) ≤ 4−k+1d.

Let Lkn denote the empirical measure associated to µk.
For 0 ≤ j ≤ k− 1, define as in Lemma 2.3 the measures µj and Ljn with support

in L(j) by

µj(xj,l′) =
∑

(j,l′)→(k,l)

µk(xk,l)(16)

Ljn(xj,l′) =
∑

(j,l′)→(k,l)

Lkn(xk,l).(17)

It is simple to check that µj(xj,l) = µ(Xj,l), and that Ljn is the empirical measure
associated with µj . Applying (15), we get

(18) Wp(µk, L
k
n) ≤

k
∑

j=1

2× 4−j+2d‖µj − Ljn‖1/pTV .

Observe that nLjn(xj,l) is a binomial law with parameters n and µ(Xj,l). The
expectation of ‖µj − Ljn‖TV is bounded as follows :

E(‖µi − Lin‖TV ) = 1/2

m(j)
∑

l=1

E(|(Ljn − µj)(xj,l)|)

≤ 1/2

m(j)
∑

l=1

√

E(|(Ljn − µj)(xj,l)|2)

= 1/2

m(j)
∑

l=1

√

µ(Xj,l)(1− µ(Xj,l))

n

≤ 1/2

√

m(j)

n
.

In the last inequality, we use Cauchy-Schwarz’s inequality and the fact that
(Xj,l)1≤l≤m(j) is a partition of X . Putting this back in (18), we get
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E(Wp(µk, L
k
n)) ≤ n−1/2p

k
∑

j=1

21−1/p4(−j+2)dm(i)1/2p

≤ 25−1/pn−1/2p
k
∑

j=1

4−jdN(X, 4−jd)1/2p

≤ 26−1/p/3n−1/2p

∫ d/4

4−(k+1)d

N(X, δ)1/2pdδ.

In the last line, we use a standard sum-integral comparison argument.
By the triangle inequality, we have

Wp(µ, Ln) ≤Wp(µ, µk) +Wp(µk, L
k
n) +Wp(L

k
n, Ln).

We claim that E(Wp(L
k
n, Ln)) ≤ Wp(µ, µk). Indeed, choose n i.i.d. couples

(Xi, X
k
i ) such that Xi ∼ µ, Xk

i ∼ µk, and the joint law of (Xi, X
k
i ) achieves an

optimal coupling, i.e. E|Xi −Xk
i |p =W p

p (µ, µ
k). We have the identities in law

Ln ∼ 1

n

n
∑

i=1

δXi
, Lkn ∼ 1

n

n
∑

i=1

δXk
i
.

Choose the transport plan that sends Xi to Xk
i : this gives the upper bound

W p
p (Ln, L

k
n) ≤ 1/n

n
∑

i=1

|Xi −Xk
i |p

and passing to expectation proves our claim.
Thus, E(Wp(µ, Ln)) ≤ 2Wp(µ, µk)+E(Wp(µk, L

k
n)). Choose now k as the largest

integer such that 4−(k+1)d ≥ t. This imposes 4−k+1d ≤ 16t, and this finishes the
proof.

�

Proof of Corollary 1.2. It suffices to use Proposition 1.1 along with (2) and to op-
timize in t. �

3. Proof of Theorem 1.3.

Proof of Theorem 1.3. We begin by noticing that statement (5) is a simple conse-
quence of statement (4) and the tensorization of T2 : we have by Corollary A.2

P(W2(Ln, µ) ≥ E(W2(Ln, µ) + t) ≤ e−nt
2/(2σ2),

and it suffices to choose t = λψ−1(logn) to conclude. We now turn to the other
claims.

Denote by K the unit ball of the Cameron-Martin space associated to E and µ,
and by B the unit ball of E. According to the Gaussian isoperimetric inequality
(see [19]), for all λ > 0 and ε > 0,

µ(λK + εB) ≥ Φ
(

λ+Φ−1(µ(εB))
)

where Φ(t) =
∫ t

−∞
e−u

2/2du/
√
2π is the Gaussian c.d.f..

Choose λ > 0 and ε > 0, and set X = λK + εB. Note
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µ′ =
1

µ(X)
1Xµ

the restriction of µ to the enlarged ball.
The diameter of X is bounded by 2(σλ + ε). The W2 distance between Ln and

µ is thus bounded as follows :

(19) W2(Ln, µ) ≤ 2W2(µ, µ
′) + ct+ cn−1/4

∫ (σλ+ε)/2

t

N(X, δ)1/4dδ

Set

I1 =W2(µ, µ
′)(20)

I2 = t(21)

I3 = n−1/4

∫ (σλ+ε)/2

t

N(X, δ)1/4dδ.(22)

To begin with, set ε = t/2.
Controlling I1. We use transportation inequalities and the Gaussian isoperimet-

ric inequality. By Lemma A.1, µ satisfies a T2(2σ
2) inequality, so that we have

W2(µ, µ
′) ≤

√

2σ2H(µ′|µ) =
√

−2σ2 logµ(λK + εB)

≤
√

−2σ2 logΦ(λ+Φ−1(µ(εB)))

=
√
2σ
√

− logΦ(λ+Φ−1(e−ψ(t/2))).

Introduce the tail function of the Gaussian distribution

Υ(x) =
√
2π

−1
∫ +∞

x

e−y
2/2dy.

We will use the fact that Φ−1 + Υ−1 = 0, which comes from symmetry of the

Gaussian distribution. We will also use the bound Υ(t) ≤ e−t
2/2/2, t ≥ 0 and its

consequence

Υ−1(u) ≤
√

−2 logu, 0 < u ≤ 1/2.

We have

Φ−1(e−ψ(t/2)) = −Υ−1(e−ψ(t/2)) ≥ −
√

2ψ(t/2)

as soon as ψ(t/2) ≥ log 2. The elementary bound log 1
1−x ≤ 2x for x ≤ 1/2

yields

√

−2 logΦ(u) =
√
2

(

log
1

1−Υ(u)

)1/2

≤
√
2e−u

2/4

whenever u ≥ Υ−1(1/2) = 0. Putting this together, we have
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(23) I1 ≤
√
2σe−(λ−

√
2ψ(t/2))2/4.

whenever

(24) ψ(t/2) ≥ log 2 and λ−
√

2ψ(t/2) ≥ 0.

Controlling I3. The term I3 is bounded by 1/2n−1/4(σλ + t/2)N(X, t)1/4 (just
bound the function inside by its value at t, which is minimal). Denote k = N(λK, t−
ε) the covering number of λK (w.r.t. the norm of E). Let x1, . . . , xk ∈ K be such
that union of the balls B(xi, t − ε) contains λK. From the triangle inequality we
get the inclusion

λK + εB ⊂
k
⋃

i=1

B(xi, t).

Therefore, N(X, t) ≤ N(λK, t− ε) = N(λK, t/2).
We now use the well-known link between N(λK, t/2) and the small ball function.

Lemma 1 in [18] gives the bound

N(λK, t/2) ≤ eλ
2/2+ψ(t/4) ≤ eλ

2/2+κψ(t/2).

so that

(25) I3 ≤ 1

2
(σλ + t/2)e

λ2

8 +κ
4ψ(t/2)−

1
4 log n.

Remark that we have used the doubling condition on ψ, so that we require

(26) t/4 ≤ t0.

Final step. Set now t = 2ψ−1(a logn) and λ = 2
√
2a logn, with a > 0 yet

undetermined. Using (23) and (25), we see that there exists a universal constant c
such that

E(W2(Ln, µ)) ≤c
[

ψ−1(a logn) + σe−(a/2) logn

+(σ
√

a logn+ ψ−1(a logn))e[a(1+κ/4)−1/4] logn
]

.

Choose a = 1/(6 + κ) and assume logn ≥ (6 + κ)(log 2 ∨ ψ(1) ∨ ψ(t0/2)).
This guarantees that the technical conditions (24) and (26) are enforced, and that
ψ−1(a logn) ≤ 1. Summing up, we get :

E(W2(Ln, µ)) ≤ c

[

ψ−1(
1

6 + κ
logn) + (1 + σ

√

1

6 + κ
logn)n−1/(12+2κ)

]

.

Impose logn ≥ (6 + κ)/σ2 : this ensures σ
√

1
6+κ logn ≥ 1. And finally, there

exists some c > 0 such that for all x ≥ 1,
√
log xx−1/4 ≤ c : this implies

√

1

6 + κ
lognn−1/(24+4κ) ≤ c.
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This gives

(1 + σ

√

1

6 + κ
logn)n−1/(12+2κ) ≤ cσn−1/[4(6+κ)]

and the proof is finished.
�

4. Proofs in the dependent case

We consider hereafter a Markov chain (Xn)n∈N defined by X0 ∼ ν and the
transition kernel P . Let us denote by

Ln =

n
∑

i=1

δXi

its occupation measure.

Proposition 4.1. Suppose that the Markov chain satisfies (6) for some C > 0 and
λ < 1. Then the following holds :

(27) Eν(Wp(Ln, π)) ≤ c

(

t+

(

C

(1 − λ)n
‖dν
dπ

‖r
)1/2p ∫ d/4

t

N(X, t)1/2p(1+1/r)dt

)

.

Proof. An application of (15) as in (18) yields

(28) E(Wp(Ln, π)) ≤ 2× 4−k+1d+

k
∑

j=1

2× 4−j+2d





m(j)
∑

l=1

E|(Ln − π)(Xj,l)|





1/p

.

Let A be a measurable subset of X , and set fA(x) = 1A(x) − π(A). We have

E|(Ln − π)(A)| = 1/nEν |
n
∑

i=1

fA(Xi)|

≤ 1/n

√

√

√

√

n
∑

i=1

n
∑

j=1

Eν [fA(Xi)fA(Xj)].

Let p̃, q̃, r ≥ 1 be such that 1/p̃ + 1/q̃ + 1/r = 1, and let s be defined by
1/s = 1/p̃+ 1/q̃. Now, using Hölder’s inequality with r and s,

Eν [fA(Xi)fA(Xj)] ≤ ‖dν
dπ

‖r(Eπ |fA(Xi)fA(Xj)|s)1/s.
Use the Markov property and the fact that f 7→ Pf is a contraction in Ls to get

Eν [fA(Xi)fA(Xj)] ≤ ‖dν
dπ

‖r‖fAP j−ifA‖s.
Finally, use Hölder’s inequality with p̃, q̃ : we get

(29) Eν [fA(Xi)fA(Xj)] ≤ ‖dν
dπ

‖r‖P j−ifA‖p̃‖fA‖q̃.
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Set p̃ = 2 and note that for 1 ≤ t ≤ +∞, we have ‖fA‖t ≤ 2π(A)1/t. Use (6)
applied to the centered function fA to get

Eν [fA(Xi)fA(Xj)] ≤ 4Cλj−i‖dν
dπ

‖rπ(A)1−1/r ,

and as a consequence,

(30) E|(Ln − π)(A)| ≤ 1√
n

2
√
2C√

1− λ
‖dν
dπ

‖1/2r π(A)1/2−1/2r .

Come back to (28) : we have

E(Wp(Ln, π)) ≤ 4−k+1d+ 32(
2
√
2C√

1− λ
)1/p‖dν

dπ
‖1/2pr n−1/2p

×
k
∑

j=1

4−jd





m(j)
∑

l=1

π(Xj,l)
1/2−1/2r





1/p

≤ 4−k+1d+ c

(

C

(1− λ)n
‖dν
dπ

‖r
)1/2p k

∑

j=1

4−jdm(j)1/2p(1+1/r)

≤ c

(

t+

(

C

(1− λ)n
‖dν
dπ

‖r
)1/2p ∫ d/4

t

N(X, t)1/2p(1+1/r)dt

)

.

�

Proof of Theorem 1.4. Use (27) and (9) to get

EWp(Ln, µ) ≤ c
[

t+At−α/2p(1+1/r)+1
]

where

A =
2p

α(1 + 1/r)
(C/(1− λ))1/2p‖dν

dπ
‖1/2pr n−1/2pdα/2p(1+1/r).

Optimizing in t finishes the proof.
�

We now move to the proof in the unbounded case.

Proof of Theorem 1.5. We remind the reader that the following assumption stands :
for X ⊂ E with diameter bounded by d,

(31) N(X, δ) ≤ kE(d/δ)
α.

In the following lines, we will make use of the elementary inequalities

(32) (x + y)p ≤ 2p−1(xp + yp) ≤ 2p−1(x+ y)p.

Step 1.
Pick increasing sequence of numbers di > 0 to be set later on, and some point

x0 ∈ E. Define C1 = B(x0, d1), and Ci = B(x0, di) B(x0, di−1) for i ≥ 2.
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The idea is as follows : we decompose the state space E into a union of rings,
and deal separately with C1 on the one hand, using the case of Theorem 1.4 as
guideline, and with the union of the Ci, i ≥ 2 on the other hand, where we use
more brutal bounds.

We define partial occupation measures

Lin = 1/n

n
∑

j=1

δXj
1Xj∈Ci

and their masses mi = Lin(E). We have the inequality

(33) W p
p (Ln, π) ≤

∑

i≥1

miW
p
p (1/miL

i
n, π).

On the other hand,

Wp(1/miL
i
n, π) ≤ (

∫

d(x0, x)
pdπ)1/p + (

∫

d(x0, x)
pd(1/miL

i
n))

1/p

≤M1/p
p + di,

so that W p
p (1/miL

i
n, π) ≤ 2p−1 (Mp + dpi ) using (32). Also, using (33) and (32)

yields

Wp(Ln, π) ≤ m
1/p
1 Wp(1/m1L

1
n, π) + 21−1/p





∑

i≥2

mi [Mp + dpi ]





1/p

.

Pass to expectations to get

(34) E[Wp(Ln, π)] ≤ E
[

m
1/p
1 Wp(1/m1L

1
n, π)

]

+21−1/p





∑

i≥2

π(Ci) [Mp + dpi ]





1/p

We bound separately the left and right term in the right-hand side of (34),
starting with the right one.

Step 2.
Choose some q > p and use Chebyshev’s inequality to bound the sum on the

right by

(35)
∑

i≥2

Mq

dqi−1

[Mp + dpi ]

Take di = ρiM
1/p
p , (35) becomes

MqM
1−q/p
p ρq

∑

i≥2

[ρ−qi + ρ(p−q)i]

=MqM
1−q/p
p

[

ρ−q

1− ρ−q
+

ρ2p−q

1− ρp−q

]

.

Assume for example that ρ ≥ 2 : this implies
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∑

i≥2

π(Ci) [Mp + dpi ] ≤ 4MqM
1−q/p
p ρ2p−q.

For later use, we set ζ = q/p− 2 and the above yields

(36) 21−1/p





∑

i≥2

π(Ci) [Mp + dpi ]





1/p

≤ 4M
1/p
(ζ+2)pM

−(1+ζ)/p
p ρ−ζ .

Step 3.
We now turn our attention to the term on the left in (34).
Once again, we apply (15) to obtain

Wp(1/m1L
1
n, π) . 4−kd1 +

k
∑

j=1

4−j





m(j)
∑

l=1

|((1/m1)Ln − π)(Xj,l)|





1/p

Multiply by m
1/p
1 and pass to expectations :

E
[

m
1/p
1 Wp(m

−1
1 L1

n, π)
]

.

k
∑

j=1

4−j





m(j)
∑

l=1

E|(Ln −m1π)(Xj,l)|





1/p

+ 4−kd1E(m
1/p
1 ).

First, notice that 0 ≤ m1 ≤ 1 a.s. so that E(m1/p
1 ) ≤ 1. Next, write

m(j)
∑

l=1

E|(Ln −m1π)(Xj,l)| ≤
m(j)
∑

l=1

E (|(Ln − π)(Xj,l)|+ |(m1π − π)(Xj , l)|)

≤
m(j)
∑

l=1

E|(Ln − π)(Xj,l)|+ E(|m1 − 1|)π(C1)

≤
m(j)
∑

l=1

E|(Ln − π)(Xj,l)|+ E|Ln(C1)− 1|.

The first of these two terms is controlled using (30) : we have

m(j)
∑

l=1

E|(Ln − π)(Xj,l)| ≤
1√
n

2
√
2C√

1− λ
‖dν
dπ

‖1/2r m(j)1/2+1/2r

And on the other hand,

E|Ln(C1)− 1| ≤ E|(Ln − π)(C1)|+ π(Cc1)

≤ 1√
n

2
√
2C√

1− λ
‖dν
dπ

‖1/2r + π(Cc1).

Here we have used (30) again.
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We skip over details here as they are similar to those in previous proofs. Choosing
an appropriate value for k and using the estimates above allows us to recover the
following :

E
[

m
1/p
1 Wp(1/m1L

1
n, π)

]

.

(

C

(1 − λ)n
‖dν
dπ

‖r
)1/2p ∫ d1/4

t

N(C1, δ)
1/2p(1+1/r)dδ

(37)

+ π(Cc1) + t.

The term π(Cc1) is bounded by the Chebyshev inequality :

π(Cc1) ≤
∫

xζdπ/dζ1 =

∫

xζdπ

(∫

xpdπ

)−ζ/p

ρ−ζ .

Step 4.
Use (36) and (37), along with assumption (31) : this yields

E(Wp(Ln, π)) . K(ζ)
(

ρ−ζ + t+Anρ
α/2p(1+1/r)t1−α/2p(1+1/r)

)

where An =
(

C
(1−λ)n‖ dνdπ‖r

)1/2p

, and

K(ζ) =
mζ

m
ζ/p
p

∨ mζ+2p

m
1+ζ/p
p

∨ k1/2p(1+1/r)
E

2p

α(1 + 1/r)
mα/(2p2)(1+1/r)
p .

The remaining step is optimization in t and ρ. We obtain the following result :
there exists a constant C(p, r, ζ) depending only on the values of p, r, ζ), such that

E(Wp(Ln, π)) . C(p, r, ζ)K(ζ)A2p/(α(1+1/r)(1+1/ζ))
n .

There is a caveat : we have used the condition ρ ≥ 2 at some point, and with
this restriction the optimization above is valid only when An ≤ C′(p, r, ζ), where
the constant C′(p, r, ζ) only depends on the values of p, r, ζ.

�

Appendix A. Transportation inequalities for Gaussian measures on a

Banach space

Transportation inequalities, also called transportation-entropy inequalities, have
been introduced by K. Marton [23] to study the phenomenon of concentration
of measure. M. Talagrand showed that the finite-dimensional Gaussian measures
satisfy a T2 inequality. The following appendix contains a simple extension of this
result to the infinite-dimensional case. For much more on the topic of transportation
inequalities, the reader may refer to the survey [14] by N. Gozlan and C. Léonard.

For µ ∈ P(E), let H(.|µ) denote the relative entropy with respect to µ :

H(ν|µ) =
∫

E

dν

dµ
log

dν

dµ
dµ

if ν ≪ µ, and H(ν|µ) = +∞ otherwise.
We say that µ ∈ Pp(E) satisfies a Tp(C) transportation inequality when

Wp(ν, µ) ≤
√

CH(ν|µ) ∀ν ∈ Pp(E)



MEAN SPEED OF CONVERGENCE IN WASSERSTEIN DISTANCE 19

We identify what kind of transport inequality is satisfied by a Gaussian measure
on a Banach space. We remind the reader of the following definition : let (E, µ) be
a Gaussian Banach space and X ∼ µ be a E-valued r.v.. The weak variance of µ
or X is defined by

σ2 = sup
f∈E∗,|f |≤1

E(f2(X)).

The lemma below is optimal, as shown by the finite-dimensional case.

Lemma A.1. Let (E, µ) be a Gaussian Banach space, and let σ2 denote the weak
variance of µ. Then µ satisfies a T2(2σ

2) inequality.

Proof. According e.g. to [20], there exists a sequence (xi)i≥1 in E and an orthogaus-
sian sequence (gi)i≥1 (meaning a sequence of i.i.d. standard normal variables) such
that

∑

i≥1

gixi ∼ µ,

where convergence of the series holds a.s. and in all the Lp’s. In particular, the
laws µn of the partial sums

∑n
i=1 gixi converge weakly to µ.

As a consequence of the stability result of Djellout-Guillin-Wu (Lemma 2.2 in
[9]) showing that T2 is stable under weak convergence, it thus suffices to show that
the measures µn all satisfy the T2(2σ

2) inequality.
First, by definition of σ, we have

σ2 = sup
f∈E∗,|f |≤1

E(
+∞
∑

i=1

f(xi)gi)
2

and since (gi) is an orthogaussian sequence, the sum is equal to
∑+∞
i=1 f

2(xi).
Consider the mapping

T :(Rn, N) → (E, ‖.‖)

(a1, . . . , an) 7→
n
∑

i=1

aixi.

(here Rn is equipped with the Euclidean norm N). With the remark above it is
easy to check that ‖T (a)‖ ≤ σN(a) for a ∈ Rn. Consequently, T is σ-Lipschitz, and
we can use the second stability result of Djellout-Guillin-Wu (Lemma 2.1 in [9]) :
the push forward of a measure satisfying T2(C) by a L-Lipschitz function satisfies
T2(L

2C). As is well-known, the standard Gaussian measure γn on Rn satisfies
T2(2) and thus T#γ

n satisfies T2(2σ
2). But it is readily checked that T#γ

n = µn,
which concludes this proof.

�

Remark. M.Ledoux indicated to us another way to obtain this result. First, one
shows that the Gaussian measure satisfies a T2(2) inequality when considering
the cost function c = d2H , where dH denotes the Cameron-Martin metric on E
inherited from the scalar product on the Cameron-Martin space. This can be done
in a number of ways, for example by tensorization of the finite-dimensional T2

inequality for Gaussian measures or by adapting the Hamilton-Jacobi arguments
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of Bobkov-Gentil-Ledoux [3] in the infinite-dimensional setting. It then suffices to
observe that this transport inequality implies the one we are looking for since we
have the bound d ≤ σdH (here d denotes the metric inherited from the norm of the
Banach space).

Let Ln denote the empirical measure associated with µ. As a consequence of
Lemma A.1, we can give an inequality for the concentration of W2(Ln, µ) around
its mean, using results from transportation inequalities. This is acutally a simple
case of more general results of N. Gozlan and C. Léonard ([13], [14]), we reproduce
a proof here for convenience.

Corollary A.2. Let µ be as above. The following holds :

P(W2(Ln, µ) ≥ E[W2(Ln, µ)] + t) ≤ e−nt
2/(2σ2).

Proof. The proof relies on the property of dimension-free tensorization of the T2

inequality, see [14]. Since µ satisfies T2(2σ
2), the product measure µ⊗n on the

product space En endowed with the l2 metric

d2((x1, . . . , xn), (y1, . . . , yn)) =
√

|x1 − y1|2 + . . .+ |xn − yn|2
also satisfies a T2(2σ

2) inequality ([14], Corollary 4.4). Therefore, it also sat-
isfies a T1 inequality by Jensen’s inequality, and this implies that we have the
concentration inequality

µ⊗n(f ≥
∫

fdµ⊗n + t) ≤ e−t
2/(2σ2)

for all 1-Lipschitz functions f : (En, d2) → R ([14], Theorem 1.7). For x =
(x1, . . . , xn) ∈ En, denote Lxn = 1/n

∑n
i=1 δxi. To conclude it suffices to notice

that (x1, . . . , xn) →W2(L
x
n, µ) is

√
n-Lipschitz from (En, d2) to R. �
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