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Abstract

A new method to solve the Navier-Stokes equations for incompressible viscous flows and
the transport of a scalar quantity is proposed. This method is based upon a fractional time step
scheme and the finite volume method on unstructured meshes. Predictions of Poiseuille flow,
lid-driven cavity flow, flows past a cylinder and heat transport in a cylinder are performed to
validate the method.

1 Introduction, Mathematical model

Many industrial problems deal with the transport of a scalar quantity by an incompressible flow.
These problems are usually governed by Navier-Stokes equations and are often coupled with ad-
ditional equations to model the transport of scalar quantities such as a pollutant, a volume fraction
or the kinetic energy. Even though many stable and globally convergent schemes are already avail-
able for specific cases such as Euler flows or Stokes flows, only a few fulfill the following physical
principles for more general problems:

� local conservation of mass and scalar quantities;

� numerical preservation of the maximum principle for the scalar quantities.

Some numerical schemes using the finite volume method on structured meshes satisfy these re-
quirements. However, only a few results are available for unstructured meshes (see Gallouet and
al.[8]). The scheme presented hereafter fulfills the previous requirements. The time discretization
of this scheme is based upon a fractional time-step method initially proposed by Chorin[7] and
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theoretical results more recently published by Boivin and Hérard[3]. The spatial discretization is a
generalization of the recent work of Boivin and al. (see [1], [2] and [6]).

When the density of the fluid is constant, the flow of an incompressible fluid in a domain
Ω ��� 0 � T � is governed by the Navier-Stokes equations:

∇ � v � 0 (1)
∂v
∂t
� ∇ �	� v 
 v � � ∇P � ∇ � ν∇v �
� f (2)

where

� P � p � ρ ¸ with ρ being the density and p the pressure;

� ν � µ � ρ¸ ν being the kinematic viscosity and µ the dynamic viscosity;

� f is a source term such as buyoancy force.

For this kind of flow, a model for the transport of a scalar quantity φ is:

∂φ
∂t
� ∇ �	� vφ ��� ∇ � α∇φ ��� s (3)

where α is a physical parameter for the diffusivity and s a source term.
In order to solve these equations¸ they must come with appropriate boundary conditions and¸ for

non-permanent flow¸ a suitable initial solution. This model can be extended to many applications
such as heat transfer or the transport of a pollutant by adjusting the source terms to the problem
being considered.

First of all, we will present the time discretization of the mathematical model. Then, the spatial
discretization of the governing equations will be detailed and some theoretical results will be pre-
sented. Afterwards, we will discuss the projection scheme used to compute a divergence-free vec-
tor field. This will enable the presentation of the whole algorithm used to solve the Navier-Stokes
equations on unstructured grids. Finally, numerical results used to validate the present scheme
will be shown. These results include: Poiseuille flow, lid-driven cavity flow, both permanent and
transient flow past a cylinder and heat transport in a cylinder.

2 Time discretization

The time discretization is semi-implicit and based upon a variation of the projection scheme origi-
nally proposed by Chorin[7] and often called “projection-2” scheme. Let,

∂φ
∂t

����
t � tn � 1

�
���� ���

φn � 1 � φn

δt
� permanent flow

3φn � 1 � 4φn � φn � 1

2δt
� otherwise



be the approximation of the temporal derivative and

v � t � tn � 1 ���
����� ����

3
2

vn � 1
2

vn � 1 momentum equations � permanent flow

2vn � vn � 1 momentum equations � transient flow

vn � 1 otherwise

the approximation of the velocity field at time t � tn � 1, the time discretization of the governing
equations is the following:

� Prediction:

∂v
∂t

����
t � tn � 1

� ∇ ��� v � t � tn � 1 � 
 vn � 1 � 2 � ν∇vn � 1 � 2 � � ∇Pn � f n � (4)

� Projection:

β
vn � 1 � vn � 1 � 2

δt
� � ∇ � δPn � 1 � � (5)

∇ � vn � 1 � 0 � (6)

� Convection and diffusion of other scalar variables:

∂φ
∂t

����
tn � 1

� ∇ ��� v � tn � 1 � φn � 1 � α∇φn � 1 	 � sn � (7)

The parameter β 
 � 0 � 2 � is a used for relaxation although its value is not arbitrary. When the flow
is permanent, the final solution doesn’t depend on its value. But the rate of convergence does so.
We found that a value of β � 3

2 often gives the best rate of convergence. Hence this value is the one
retained for all stationary results shown in this article. For a transient flow, the value 1

2 was chosen
accordingly with the results published by Shen and al. on projection schemes (see [10], [15] and
[14]). These authors showed that second order time accuracy for the velocity can be reached with
this class of projection scheme. Unfortunalty, the time accuracy for the pressure is only first order.
For a transient flow, the linear parabolic operator is approximated with a second-order backward
scheme often called “Gear’s scheme”. As for the non-linear convective terms, a semi-implicit time
discretization is prefered: the convective field in the momentum equations is extrapolated with the
Adams-bashworth scheme when a stationary solution is seeken. In the case of a transient flow, the
Adams-Moulton scheme is prefered.
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Figure 1: Circumcenters for tetrahedras K and L.

3 Space discretization

The convection and diffusion schemes are presented thereafter. The convection scheme is simple
and robust. The diffusion scheme is based upon theoretical results recently published (see [6], [1]
and [8]). A numerical study of this diffusion scheme was performed in the report [5]. Finally, in
2D, this numerical scheme has given good results for the resolution of incompressible two-phase
flows (see [6] and [2]).

3.1 Geometrical elements

The initial mesh is built with tetrahedras. For each tetrahedron TK , let XK be the circumcenter. This
point is allowed to be inside TK , outside TK , or on its boundary. Let σK � L be the interface between
TK and TL, the straight line going through XK and XL is always perpendicular to σK � L (figure 1).
Hence, in order to have a consistent approximation of the diffusion flux with a small stencil, the
circumcenters will be the reference positions for the numerical approximation of the fluxes.

3.2 Control volumes

Let σK � L be the interface between tetrahedras K and L, we then introduce the following quantity
called “transmittivity”:

τK � L � m � σK � L �� XL � XK ��� nK � L
�

where m � σK � L � is the area of σK � L. Locally, four categories of meshes can be encountered:

1. Categories M1 et M2: τK � L
� 0 � the control volumes are the tetrahedras.

2. Category M3: τK � L � 0 � the Delaunay condition is not fulfilled. The tetrahedron K and L are
combined to form a new macro-element. The control volume is the macro-element. At least
two positions (XK and XL ) are associated to this control volume.
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Figure 2: Mesh categories

3. Category M4:
�
τK � L

���
∞ � at least two circumcenters lie at the same location. The elements K

and L are combined to form a new macro-element. The control volume is the macro-element.
At least two positions (XK and XL ) are associated to this control volume.

These categories are the same in 2D when triangles are the elements, they are shown in figure 2.

3.3 Approximation functions

For all variables, piecewise constant functions by control volumes are used for approximation.
Even when there are more than one position associated to a control volume (meshes of categories
M3 and M4), there is only one degree of freedom (D.O.F.) or unknown per control volume.

3.4 The convection scheme

First, the convective term is integrated. Then, the divergence theorem is applied to the convection
term. The convection flux is approximated with an upwind scheme. The discrete approximation of
the total convection flux between volumes K and L is:�

K � L
� vφ � x � � � n � x � dS � m � σK � L � vσφσ � � � FC

σ

where:

� vσ is an approximation of the speed normal to the interface σ, n � x � is the outward normal
unit vector;

� φσ � � ��� φK � vK � L � 0
φL � otherwise

�



φK and φL are the unknowns associated with volumes K and L.

3.5 The diffusion scheme

The diffusion term is integrated and the divergence theorem applied. Then, the total diffusion flux
between volumes K and L is approximated with the following expression:�

K � L α∇φ � x � � n � x � dS � αK � L τK � L � φL � φK � � FD
σ �

where αK � L is a discrete approximation of the diffusivity α � x � a the interface σK � L . We recall that
τK � L is the transmittivity of the interface σK � L , it was previously defined.

Correction of the diffusion coefficient It is well known that the upwind scheme implicitly intro-
duces too much diffusion. In order to gain more precision when needed, the diffusion coefficient
is corrected. This correction is based upon the power law scheme introduced by Patankar[11].
Let αK � L be an approximation of the diffusion coefficient at the interface σK � L, it is corrected as
follows:

αK � L � αK � L � max
�
0 � � 1 � 0 � 1Rel � 5 � �

where Rel � �
vk � L ��� XK � XL

�
αK � L is called the “local Reynolds number”. Since limh � 0 Rel � 0 � the dif-

fusion scheme is still consistent (at the limit, there is no more “correction” of the diffusion coef-
ficient). Furthermore, the stability of the convection scheme is preserved. Here, it is important
to understand that this correction does not improve the order of the approximation of the convec-
tive term. But, as it will be shown later with the numerical results, the accuracy of the results are
effectively improved with this treatment. Furthermore, we want to mention that for compressible
flows where shocks can be present, the approximation of the convection scheme would have to be
improved with a reconstruction method based on MUSCL type scheme.

3.6 Boundary conditions

Let σ be a boundary interface. When the boundary condition is a Neuman boundary condition, the
numerical diffusion flux FD

σ is equal to the exact flux. Let xσ be the intersection of the orthogonal
bissectors of the interface σ. When a Dirichlet boundary g � x � condition applies, the value φσ �
g � xσ � is given at the interface. In this case, the numerical diffusion flux is

FD
σ � αστσ � φσ � φK � �

As for the convective flux, the value of the variable σ at the interface is only needed when the fluid
is incoming (vσ � 0). In this case, the convective flux is given by:

FC
σ � m � σ � vσφσ



where

φσ �
��� �� g � xσ � Dirichlet boundary condition

FD
σ

αστσ

� φK Neumann boundary condition

3.7 Theoretical results

Consider the following problem:

� ∇ � � vφ � � ∇ � α∇φ � � s
Boundary conditions

(8)

where s is supposed to be regular enough.
The properties shown in [8] depend on the quality of the triangulation. Meshes of the cate-

gories M1, M2 and M4 (with our treatment) are called “admissible meshes”. For these meshes the
following properties were shown:

1. Convergence. If the mesh is admissible, the scheme converges to the unique solution of
problem (9).

2. Error estimate. If the mesh is an admissible mesh and the unique solution φ of the problem
(9) is regular enough (φ 
 L2 � Ω � ), we have the following error estimate:

�
eK
�

L2 � Ω ��� Ch

where eK � φK � φ � XK � � is the error and C is a positive constant which is independent of the
mesh size h, h being the diameter of the largest volume.

3. Maximum principle.

Consider the transient problem,

� ∂φ
∂t
� ∇ � � vφ ��� ∇ � α∇φ ��� s

Boundary conditions
�

Initial solution
(9)

the following error estimate was demonstrated in [8] for a first order Euler discretization:�
∑

K � T
� φ � XK � � φK � 2 m � K � � C � h � δt � �

where h is the diameter of the largest volume, δt the time step and C � 0 a constant independant
from the time step and the mesh size h.

Remark. For meshes of category M3, the approximation of the flux between two control
volumes in still consistent. Nevetheless, it is assumed that φ takes the same value in at least two



K,L X
K

X
L

L

X

K

FIG. 3 – Interpolation at an interface

different positions associated to a control volume. In this case, locally, the order of approximation
could not be enough to ensure that the latter properties are fulfilled. Neverthless, in [8] it is shown
that even for meshes of category M3 the scheme can still converge to the true solution when the
following condition is fullfiled:

∑σ � E m � σ �
∑σ � Ω m � σ ��� 1 �

where σ 
 E is the set of interfaces where the flux approximation is not consistent and σ 
 Ω is
the set of all interfaces.

Remark. In the report[5], the numerical rate of convergence of the diffusion scheme was
studied in details. These numerical results show than the observed rate of convergence of the
diffusion scheme is of order 2 at the cicumcenters. It is not a contractiction with the theoritical
results, it only shows that the theoritical rate of convergence in not optimal.

3.8 Discrete approximation at an interface

When physical quantities such as the density or the conductivity are not constant, they may have to
be approximated at an interface σK � L. Let φ be a scalar variable and m � K � the measure of control
volume K (its volume), the discrete approximation of φ at the interface σK � L is:

φK � L � m � K � φK
�

m � L � φL

m � K � � m � L � (10)

The geometrical average allows us to respect locally the minima and the maxima of the solu-
tion. Unfortunatly, this approximation gives not as much precision than the linear inteprolation:

φK � L � � 1 � tK � L � φK
�

tKφL �
tK � L � � XK � XK � L ��� � XL � XK �� XL � XK � �	� XL � XK � �



This latter interpolation preserves the order of the approximation at the positions XK et XL when 0 �
tK � L � 1. Nervertheless, in 3D, it is frequent that tK � L � 1 or tK � L � 0 (see figure 3). With the linear
interpolation, the minimum or the maximum of the approximative solution would not be preserved
anymore. Preliminary results showed that the linear interpolation could lead to instabilities when
the tK � Ldidn’t satisfied the inequality 0 � tK � L � 1, which is rather frequent in 3D.

3.9 Discrete approximation of the gradient

Since our approximation functions are constant by control volume, the gradient of a function can-
not be directly computed (its value being zero over all control volumes). The gradient � ∇φ � K of φ
over the volume K is assumed to be constant in all directions. Let � ∇φ � σk � L be the normal gradient
to the interface σK � L (it being a known quantity), we suppose that the projection of � ∇φ � K over
σK � L should be closed to � ∇φ � σk � L :

� ∇φ � K � nσk � L � � ∇φ � σk � L (11)

� ∇φ � σk � L � τσ
m � σ � � φL � φK � (12)

This equation is then applied to all interfaces which belong to K:��
� nσ1

...
nσn

���
� �∇φK � �

��
� � ∇φ � σ1

...� ∇φ � σn

���
�

or, in a more compact way:
N � ∇φ � K � � ∇φ � σ � (13)

In general, this over-constraint system of equations is not compatible. The “best” solution is ap-
proximated with a least square method, the linear system

Nt N � ∇φ � K � Nt � ∇φ � σ (14)

being solved. It is worth to mention that this approximation is used to calculate the pressure
gradient in the momentum equations.

3.10 Discrete Equations, convection-diffusion operator C V
In this section, we discretize the following equation on the domain Ω:

φ � � φn

δt
� ∇ �	� v � tn � 1 � 
 φ � � � ∇ � α∇φ � ��� sn (15)

where



� φ can be any scalar variable or the components of the velocity vector (vx � vy � vz);

� sn is a source term;

� v � tn � 1 � is an approximation of v at time t � tn � 1, it is such that ∇ � v � tn � 1 �
� 0.

The discrete equations are obtained by integrating (15) over each control volume K and applying
the Gauss theorem: �

K

φ � � φn

δt
dV

� �
∂K

� v � tn � 1 � 
 φ � � � ndS

� �
∂K

∇ � α∇φ � � � ndS � �
K

sn dV (16)

The quantities φ � , φn and sn are assumed constant over any given volume K. When both the
convective and the diffusive schemes are applied to the surface integrals, the discrete equation for
K is given by this expression:

m � K � φ �K � φn
K

δt
� ∑

σ � EK

m � σ � vσφ �σ � �
� ∑

σ � EK

αστσ � φL � φK ��� m � K � sn
K (17)

where EK is the set of interfaces which belong to the boundary of volume K. The system (17) is
linear but not symmetric. The associated matrix is a diagonal dominant M-matrix.

After, the system (17) is solved for all components of the velocity vector, the solution v � is not
divergence free. A projection has then to be made.

3.11 Projection

Since the flow is incompressible, the continuity equation has to satisfied at all time. In order to
compute a velocity field that fulfills this constraint, a projection has to be made. This projection is
a combination of two operators: the extension operator E and the projection operator P .

3.11.1 Extension operator E

This operator is applied on each interfaces of the control volumes to compute an intermediate

velocity vn � 1 � 2
K � L :

E :
�
vn � 1 � 2

K � vn
K � vn � 1 � 2

L � vn
L
���� �

vn � 1 � 2
K � L

�



To define this operator, we make the assumption that the evolution of this intermediate velocity
must agree with the evolution of the velocity computed in the predictor step. Once again, a geo-
metrical average is used:

vn � 1 � 2
K � L � vn

K � L
� �m � K � δvK

�
m � L � δvL � � nK � L

m � K � � m � L � (18)

δv � vn � 1 � 2 � vn

When σ lies on the domain boundary, the intermediate normal velocity is computed with this
expression:

vn � 1 � 2
σ � vn

K
�

m � K � δvK (19)

It is worth to mention that the boundary condition for the normal velocity must not be considered at
this stage. If it were so, it would be possible to construct a non-constant velocity field for which the
discrete divergence aprroximation would be zero. In this case, the solution would exibit spurious
pressure oscillations that have no physical meaning (false pressure modes).

3.11.2 Projection operator P

This operator applies to both the pressure and the velocity:

P :
�
Pn

K � vn � 1 � 2
σ

� �� � Pn � 1
K � vn � 1

K
�

This operation is carried out in two steps. The equation (5) is first written under this form:

vn � 1 � δt
β

∇ � δPn � 1 � � vn � 1 � 2 � (20)

This expression is then substitute into the continuity equation which is then discretized:

δt
β ∑

σ � EK

m � σ � � ∇δPn � 1 �
σ � ∑

σ � EK

m � σ � vn � 1 � 2
σ (21)

The equation(21) enables us to correct the pressure field. After applying equation (20) to all
interfaces, the equation

∑
σ � EK

m � σ � vn � 1
σ � 0 (22)

is satisfied for all control volumes. Nervertheless, before solving (21), appropriate boundary con-
ditions have to be given. When the normal velocity vσ is imposed (at an inlet, a wall or on a
symetrie plane), the following Neumann boundary condition holds:

δt
β

∇ � δPn � 1 � � n � vn � 1 � 2
σ � vσ

�



The only other case considered is an imposed pressure (such as at an outlet). In this case, the
boundary condition for the pressure correction Dirichlet boundary condition:

δPn � 1
σ � g � xσ � tn � 1 � � g � xσ � tn �

where g � xσ � tn � 1 � is the given pressure at time t � tn � 1 at the position xσ.
After updating the velocity at all intefaces, a velocity correction is also made on the cells. This

last correction has to be compatible with the velocity update that has been made on the interfaces:�
vn � 1

K � vn � 1 � 2
K

� � nσ � �
vn � 1

σ � vn � 1 � 2
σ

� (23)

Let, Wσ be a parameter such that

Wσ � � big number : � i � e � 106 � σ 
 wall
1 otherwise

�
Consider a generic control volume K, a linear system of equations is built by applying (23) to
all interfaces which belong to EK . This linear system can be inconsistent, its solution is always
approximated with a least square method. The parameter W has to be introduced in order that the
fluid doesn’t leave nor enter the domain when a control volume is adjacent to a wall.

Both the velocity-pressure formulation and projection operator fall into the same class than the
operators presented in [3]. Hence, the prove of the unicity of the solution for the pressure given in
[3] also aplies to this scheme.

3.12 The complete algorithm
� Given the initial solution v � 1

K � 0 � v � 1 � 2
K � P � 1

K and φ0
K , apply the extension and the projection

operators:

� P0
K � v0

K
� � P

�
P � 1

K � v � 1 � 2
σ

�
�
v � 1 � 2

σ
� � E

�
v � 1

K � v1 � 2
K � v � 1

L � v1 � 2
L

�
� Given a solution vn � Pn and φn,

1. apply the convection-diffusion operator to the velocity field:

vn � 1 � 2
K � CD � vn

K �
2. apply the extension and the projection operators:�

vn � 1 � 2
σ

� � E
�
vn � 1 � 2

K � vn
K � vn � 1 � 2

L � vn
L
�

� Pn � 1
K � vn � 1

K
� � P

�
Pn

K � vn � 1 � 2
σ

�
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FIG. 4 – Geometry, Poiseuille flow between two parallel planes

3. apply the convection-diffusion operator to all scalar quantities:

φn � 1
K � CD � φn

K �
4 Numerical results

In this section, we present some of numerical tests that were conducted to validate this numerical
scheme. All computations were carried out in a three dimensional domains, even for the 2D flows.

4.1 Poiseuille flow

This is an incompressible flow between two parallel planes with a velocity profil developed at the
inlet. The outlet is free and flow in bounded by two walls. The x axes is a symetry plane. The
mesh is composed 7200 elements. Which, when combined together give 1200 hexaedras. The
initial solutioin and the boundary conditions are the following:

Domain: � 0 � 0 � 0 � 1 � ��� 0 � 0 � 1 � 0 � � � 0 � 0 � 0 � 2 � �
Boundary conditions:

Inlet:

v � y � 0 � z � � 100z � h � z � � w � y � 0 � z � � 0 �
Outlet:

∂v
∂n

����
y � L

� 0 � w � x � y � L � z � � 0 � P � x � y � L � z �
� 0 �



Walls:

v � n � z � 0 � z � h � 0 � v � τ � z � 0 � z � h � 0 �
Initial solution

v � x � � 0 � P � x ��� 0 �
Physical properties and dimensions:

Re � ρvmaxL
µ

� 100 � ρ � 1 � 0 � vmax � 1 � L � 1 � 0 � µ � 0 � 01 �
Time step:

δt � 0 � 1 �
Convergence critera: �� vn � 1 � vn

��
∞ � 2 � 10 � 5 �

The analytical solution to this problem is well known and can be stated as follow:

v � y � z � � 100z � h � z � �
P � y � z � � P

�
y � L � ∂P

∂y
� y � L � �

∂P
∂y

� � 2 �
Since the exact solution for this problem can be easily computed, we compared our numerical

solution with the true solution. The figure 7 shows the maximum norm between the numerical
results and the exact solution for the horizontal components of the velocity vector, the horizontal
component of the pressure gradient and the pressure. This figure shows that the convergence
criteria was satisfied quickly (15 iterations) and that the numerical solution is converging towards
the true solution. In order to allow comparaisons, the figure 5 shows the numerical solution near
the outlet (y � 0 � 98) and the pressure at the center of the duct (z � 0 � 1) is shown on figure 6.

4.2 Lid-driven cavity flow

This problem deals with a confined flow in a square cavity. The flow is driven by the constant
displacement of the upper wall where the tangent velocity is imposed. The settings for this problem
are the following:
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Domain:

� 0 � 0 � 0 � 1 � ��� 0 � 0 � 1 � 0 � � � 0 � 0 � 1 � 0 � �
Boundary conditions:

v � n � ∂Ω � 0 � v � τ ��� 1 z � L
0 elsewhere

�
Initial solution:

v � x � � 0 � P � x ��� 0 �
Physical properties:

Re � ρvmaxL
µ

� 1000 � ρ � 1 � 0 � vmax � 1 � L � 1 � 0 � µ � 0 � 001 �
Time step:

δt � 0 � 1 �



Figure 8: Coarsest mesh for computation of the lid-driven cavity flow (2220 cells)

Convergence critera:�� vn � 1 � vn
��
∞ � 2 � 10 � 5 and

��wn � 1 � wn
��
∞ � 2 � 10 � 5 �

This problem has been studied in details by Ghia and al.[9] for different Reynolds numbers.
Hence, our results could be compared to those obtain by others with 2 second order discretization
scherme. This problem was solved with three different unstructured meshes made of 2220, 3982
and 6178 control volumes (a plane cut of the coarsest mesh is shown in figure 8). Furthermore, two
simulations were carried out for each meshes: one with the power-law scheme, the other without
a correction of the diffusion coefficent. The velocity components on the mid-planes were given in
[9] and some local characteristics of the flow are presented in table 1. In this table, we show the
maximas of the velocity components and locations at which they occur. These results show two
things:

1. with mesh refinement, out solution convergs towards the benchmark solution;

2. the quality of the results are improved with the power-law scheme.

In figure 9, we show both the benchmark solution and our numerical solution obtain with with the
finest mesh and the power-law scheme.

4.3 Transient 2D flow around a disc

This problems deals with an internal flow between two parallel planes. A disc is present near the
outlet. The center of the disc is slightly above the mid-section. Hence, the flow is not symmetric



Mesh Power-law scheme Min. v (z � ) Min. w (y � ) Max. w (y � )

2220 volumes no � 0 � 299 � �
0 � 233 � � 0 � 432 � �

0 � 883 � 0 � 286 � �
0 � 184 �

2220 volumes yes � 0 � 341 � �
0 � 234 � � 0 � 481 � �

0 � 883 � 0 � 325 � �
0 � 184 �

3982 volumes no � 0 � 321 � �
0 � 233 � � 0 � 448 � �

0 � 885 � 0 � 304 � �
0 � 184 �

3982 volumes yes � 0 � 359 � �
0 � 202 � � 0 � 492 � �

0 � 895 � 0 � 347 � �
0 � 158 �

6178 volumes no � 0 � 351 � �
0 � 224 � � 0 � 481 � �

0 � 886 � 0 � 337 � �
0 � 184 �

6178 volumes yes � 0 � 387 � �
0 � 199 � � 0 � 519 � �

0 � 886 � 0 � 373 � �
0 � 167 �

Ghia et al.10000 nodes —- � 0 � 383 � �
0 � 172 � � 0 � 516 � �

0 � 906 � 0 � 371 � �
0 � 156 �

TAB. 1 – Comparative results for three meshes
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FIG. 11 – Geometry, 2D flow around a disc



and lift is produced. For this Reynolds number (Re � 100), the flow is periodic due to vortex
shedding. The settings for this problem are the following:

Domain: See Figure 11.

Boudary conditions:

Inlet:

v � x � y � 0 � z � � 4 � vmoy �	� H � z �
H2 � w � x � y � 0 � z � � 0 �

Outlet:

∂v
∂n

����
y � 2 � 2 � 0 � w � x � y � 2 � 2 � z � � 0 � P � x � y � 2 � 2 � z � � 0 �

Walls:

v � n � 0 � v � τ � 0 �
Initial solution:

v � x � � 0 � P � x ��� 0 �
Physical properties:

Re � ρvaD
µ

� 100 � ρ � 1 � 0 � va � 1 � 0 � D � 0 � 1 � µ � 0 � 001 �
Time steps:

δt ��� 0 � 008 � 0 � 004 � 0 � 002 � 0 � 001 �
For this problem, we compare our results to benchmark quantities published by Turek and al.(see
[13]). In this report, the drag, lift, difference of pressure and Strouhal number are presented. Let
t0 be the time when the maximum value of lift is reached and f the frequency of vortex shedding,
the following qantities are provided:

1. drag coeffcient:

CD � t0 � � 2 � FD � t0 �
ρ � v2

a � D � H � L �
FD � t0 � � �

∂S

�
0 � µ∂vτ

∂n
� P � � τdA ;



2. lift coefficient:

CL � t0 ��� 2 � FL � t0 �
ρ � v2

a � D � H � L �
FL � t0 � � � �

∂S

�
0 � µ∂vτ

∂n
� P � � ndA ;

3. pressure difference:

∆P

�
t0
� 1

2 f
� � P � 0 � 0 � 15 � 0 � 2 � � P � 0 � 0 � 25 � 0 � 2 � ;

4. Strouhal number:

St � D f
vmoy

where:

� L � 0 � 10 is the depth in the 3rd dimension (the flow being resolved in a 3D domain);

� τ is a tangent vector to the cylinder surface;

� vτ � v � τ is the tangential speed at the cylinder surface;

� n is the unit normal vector to the surface cylinder;

� ∂S est la surface du disque.

In order to show that we able to obtain a solution independant from the grid size and the time
step, computations were carried out on three different meshes and four different time steps. The
benchmark quantities provided by Turek and al[13] and our results are presented in table 2.

4.4 3D flow around a cylinder

This flow is similar to the previous one. It is a 3D stationary flow around a cylinder confined in a
square duct (see figure 12). Once again, we present a complete description of the datas needed to
setp-up this problem.

Boudary conditions:

Inlet:

v � y � 0 � z � � 16 � vm �	� H � y � � H � z � � H4 � u � y � 0 � z �
� w � y � 0 � z ��� 0 �



δt Cells CD CL St � D � f
vm

∆P
t � t0 t � t0 t � t0

� 1
2 f

0 � 008 22188 3.254 0.973 0.278 2.448
0 � 004 22188 3.217 0.942 0.281 2.426
0 � 002 22188 3.203 0.924 0.284 2.416
0 � 001 22188 3.200 0.919 0.283 2.419

0 � 008 32110 3.268 1.018 0.284 2.494
0 � 004 32110 3.226 0.987 0.287 2.476
0 � 002 32110 3.212 0.962 0.287 2.474
0 � 001 32110 3.206 0.952 0.287 2.476

0 � 008 46259 3.278 1.028 0.297 2.502
0 � 004 46259 3.243 1.025 0.294 2.487
0 � 002 46259 3.230 1.009 0.292 2.485
0 � 001 46259 3.228 1.006 0.292 2.495

Benchmark quantities 3.22–3.24 0.99–1.01 0.295–0.305 2.46–2.50

TAB. 2 – Maximum drag, lift and other comparative results
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Figure 12: Geometry, 3D flow past a cylinder



Outlet:

∂v
∂n

����
y � 2 � 5 � 0 � w � y � 2 � 5 � z � � 0 � P � y � 2 � 5 � z ��� 0 �

Walls:

v � n � 0 � v � τ � 0 �
Initial solution:

v � x � � 0 � P � x ��� 0 �
Physical properties and dimensions:

Re � ρvmD
µ

� 20 � ρ � 1 � 0 � vm � 0 � 45 � D � 0 � 10 � µ � 0 � 001 � H � 0 � 41 �
Time step:

δt � 0 � 1
Convergence critera:�� un � 1 � un

��
∞ � 1 � 10 � 4 � �� vn � 1 � vn

��
∞ � 1 � 10 � 4 and

��wn � 1 � wn
��
∞ � 1 � 10 � 4 �

As for the previous flow, this problem is part of the bechmark problems presented in [13]. As for
the transient flow, the solutions were not provided. Instead, the lift coefficient, the drag coefficients
and the pressure variation between two points were. These quantities can be computed with these
expressions:

FD � �
∂S

�
µ

∂vτ
∂n

nz � Pny � dS

FL � � �
∂S

�
µ

∂vτ
∂n

ny
�

Pnz � dS

CD � 2FD

ρv2
moyDH

� CL � 2FL

ρv2
moyDH

∆P � P � 0 � 45 � 0 � 20 � 0 � 205 � � P � 0 � 55 � 0 � 20 � 0 � 205 �
S is the surface of the cylinder, n the normal unit vector on S and vτ the tangent speed at the surface
of the cylinder.



Figure 13: Mesh at the inlet

Figure 14: Mesh around the cylinder



Unknowns CL CD ∆P

Mesh 1 646000 0.0115 6.201 0.170
Mesh 2 794000 0.0105 6.186 0.170
Mesh 3 1069000 0.00824 6.180 0.170

Benchmark 753664 to 0.008 to 6.05 to 0.165 to
quantities 12582912 0.010 6.25 0.175

TAB. 3 – Lift, drag for 3D flow around a cylinder
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FIG. 15 – Convergence : the graph on the left shows the norms of the variations �� φ
n � 1 � φn �� ∞, the

norms
�� φn � 1 � φn

��
L2 of the residuals are shown on the right

In order to make a thoughfull validation, three computations were carried out on different
meshes. The 3D meshes were built by translating a 2D mesh composed of cut-quadrangles and tri-
angles. We may recall that, locally, semi-structed meshes fall into M3 and M4 category of meshes.
Hence, in this regions, the mesh used for the computations is composed of hexaedras (the tetra-
hedras being combined together). At the inlet, around the cylinder and at the outlet, the grid is a
semi-structured mesh and the control volumes are hexahedras. Further from the cylinder, the mesh
is completly unstructured. Parts of the 2D mesh used to built the second 3D mesh are shown on
figures 13 and 14.

In table 3, the references quantities obtain with our scheme are compared to those presented
by Turek[13] . Our results are in very good agreement with the benchmark solutions. As for the
other permanent flow problems, we show both the convergence curves for the residuals and the
variations of all variables.



4.5 3D thermal flow in a cylinder

This probem deals with a forced thermal flow in a cylinder where the temperature is imposed both
at the inlet and on the cylinder’s surface. The flow is not developped at the inlet, a constant velocity
being imposed at this location. All the datas needed to solve this problem are presented below.

Domain:

∂Ω �
��

x � θ �
y � θ �

z

��
�

��
0 � 05 � cos � θ �
0 � 05 � sin � θ �

z

��
� 0 � θ � π � 2 � 0 � z � 1 � 5 �

Boundary conditions:

Inlet:

u � x � y � z � 0 ��� 0 � v � x � y � z � 0 � � 0 � w � x � y � z � 0 � � 1 �
T � x � y � z � 0 � � 1 �

Outlet:

u � x � y � z � 1 � 5 � � 0 � v � x � y � z � 1 � 5 � � 0 � ∂w
∂n

����
z � 1 � 5 � 0 �

P � x � y � z � 1 � 5 � � 0 � ∂T
∂n

����
z � 1 � 5 � 0 �

Walls:

v � n � 0 � v � τ � 0 � T � 0 �
Initial solution:

v � x ��� 0 � P � x ��� 0 � T � x � � 0 �
Physical properties and dimensions:

ReD � ρwmD
µ

� 100 � wa � 1 � 0 � ρ � 1 � 0 �
Pr � µcp

k
� 2 � 0 � D � 0 � 1 � cp � 1 � 0 �



Time step:

δt � 0 � 1 �
Convergence critera: ��wn � 1 � wn

��
∞ � 2 � 10 � 5 �

wa is the average of the speed for a section of the duct and D the diameter of the duct. This flow
being symetric, the computations were only carried out on one quarter of the domain. The 3D
mesh was built using the extrusion of a 2D mesh composed of triangles. The 3D mesh was made
of 45920 cells divided in 40 sections.

For this problem, there is an analytical solution in the region of the domain where the flow is
fully developed. For a laminar flow, (ReD � 2300), the length at which the flow is fully developed
is given by this expression: �

L
D
�

lam
� 0 � 05ReD

�
In this region, the velocity component w and the pressure gradient can be computed from these
equations:

w
�
r � �

x2 � y2 � � � 1
4µ

∂P
∂z

�
D
2
� 2 �

1 � � r
D � 2 � 2 � � (24)

∂P
∂z

� � 8 � µ � wm� D � 2 � 2 � (25)

As for the temperature, the length at which the flow is thermally developed is given by this expres-
sion: �

L
D
�

lam � T
� 0 � 05ReD � Pr �

In this region, we don’t have an algebraic expression for the temperature. Nevertheless, in this
region, the is no variation along the cylinder of the dimensionless temperature:

∂
∂z

�
Ts � T � x �
Ts � Tm � z � � � 0 �

Tm � z � being the mean axial temperature in a given section.
In figures 16 to 17 we show some of the results. In figure ??, we show that there is no signif-

icant difference between the computed velocity component w and the analytical solution given by
equation 24. The figure 17 compares the pressure gradient component ∂P � ∂z to the exact solution
given by equation 25. It is obvious that, in the fully developed flow region, the pressure gradient
behaves according to the exact solution: it is constant both in the axial and longitudinal directions
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FIG. 16 – Velocity profile near the outlet

and its value is very close to the exact value � 3 � 2. The figure 18 gives a general idea of the adimen-
sional temperature behavior. Near the center of the duct (r � 0 � 4 � , the adimensional temperature
still show slight variations. As for the other stationary flows, we show the convergence curves in
figure 19.

5 Conclusion

A solver for the Navier-Stokes equations has been proposed to solve incompressible viscous flows
and the convection-diffusion of scalar quantities. This solver is based upon a fractional step scheme
and the finite volume method on unstructured meshes. This solver is one a the few which allow the
local conservation of mass and scalar quantities and the numerical preservation of the maximum
principal for scalar quantities.

The convection-diffusion scheme is very robust and easy to implement. Nevertheless, being of
order one, it is a low order scheme. The convection scheme accuracy’s could be improved with a
more sophisticated method such as MUSCL.

Numerical solutions for laminar stationary and non-stationary flows were presented. For all
cases, the solutions computed with this scheme were in good agreement with those presented by
other researchers or exact solutions. For all stationary flows, we showed the convergence curves
for both the variations and the residuals. This scheme is under active development, numerical
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FIG. 17 – Pressure gradient along the duct, component ∂P � ∂z

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0.2 0.4 0.6 0.8 1 1.2 1.4

A
di

m
en

si
on

al
 T

em
pe

ra
tu

re

Position z

Our Solution r=0.05
Our solution r=0.2
Our Solution r=0.4

FIG. 18 – Adimensional temperature profile along the cylinder



1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

10 20 30 40 50 60 70 80 90

V
ar

ia
tio

ns

Time steps

w
P
T

1e-05

0.0001

0.001

0.01

0.1

1

10

10 20 30 40 50 60 70 80 90

R
es

id
ua

ls

Time steps

w
P
T

FIG. 19 – Convergence : the graph on the left shows the norms of the variations
�� φn � 1 � φn

��
∞, the

norms �� φn � 1 � φn �� L2 of the residuals are shown on the right

results for a turbulent flow using the k � ε model have already been presented in [4, 12]. Further
developments of the scheme include: a second order approximation of the convection scheme,
more exhaustive computations of turbulent flows with heat transfer and extension to compressible
flows.
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