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The present paper is devoted to the computation of single phase or two phase ows using the single-uid approach. Governing equations rely on Euler equations which may be supplemented by conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of pressure, density and additional variables are exhibited. It is shown rst that standard conservative formulation of above mentionned schemes enables to predict \perfectly" unsteady contact discontinuities on coarse meshes, when the EOS belongs to the rst class. On the basis of previous work issuing from literature, an almost conservative though modi ed version of the scheme is proposed to deal with EOS in the second or third class. Numerical evidence shows that the accuracy of approximations of discontinuous solutions of standard Riemann problems is strenghtened on coarse meshes, but that convergence towards the right shock solution may be lost in some cases involving complex EOS in the third class. Hence, a blend scheme is eventually proposed to bene t from both properties (\perfect" representation of contact discontinuities on coarse meshes, and correct convergence on ner meshes). Computational results based on an approximate Godunov scheme are provided and discussed.

instance 27], using the single pressure or the two pressure approach 47], 41], 21]. These a fortiori require better understanding of physical process involved but also urge the development of stable and highly accurate algorithms, due to the occurence of many di erent time scales, and to other speci c problems including presence of rst order non conservative terms and of sti source terms, conditional hyperbolicity when retaining the single pressure approach, ... Actually similar (and even more complex) problems arise which con rm the need for accurate prediction of contact discontinuities.

Restricting here our attention to the frame of the single uid approach and Euler type systems, it is now well known that great di culties in computations arise when attempting at computing shock tube test cases with high pressure ratio and distinct phases on each side of the initial membrane. Part of the di culty is connected with the need to compute the contact discontinuity with su cient accuracy. This has already been pointed out in the literature by di erent workers including Karni 29], 30], Abgrall 1] for instance. It clearly appears in preliminary computations that fully conservative schemes such as Godunov scheme provide rather poor accuracy around contact discontinuities, when the EOS is not the basic single component perfect gas EOS, when examinating coarse meshes. This is a particularly annoying point when one aims at providing an a posteriori computation of a discrete gradient of the ratio T = P= , which of course requires su cient accuracy close to the contact discontinuity. Another point which urges for a global e ort in this direction is connected with the very small rate of convergence of variables governed by pure advection, say: @g @t + U @g @x = 0;

(1.1) the measure of which is provided for instance in 18], and is approximately 1 2 for so called rst-order schemes, and 2 3 for so called second-order schemes, when the initial data is discontinuous. Figure 1.1 provides a measure of the error in L 1 norm when computing a pure contact discontinuity of the Euler system of gas dynamics with perfect gas state law.
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Rho (order 1) slope=0.49918 Rho (order 2) slope=0.65325 Fig. 1.1. L1 norm of the error. Moving contact discontinuity in Euler system (perfect gas EOS) Actually, several ways to tackle with the problem of moving contact discontinuities have been suggested by Karni 29], 30], Abgrall 1], Karni and Abgrall 31], Fedkiw, Aslam , Merriman and Osher 17], Sethian 43], Saurel and Abgrall 42], and other workers Shyue 44], Allaire, Clerc and Kokh 3], 4], 33], Lagouti ere 34], Barberon, Helluy and Rouy 5],..... We note anyway that focus has actually been given on speci c EOS such as mixture of perfect gases, or equivalently to sti ened gas EOS. More recently Van der Waals EOS has been investigated by Shyue [START_REF] Sethian | Level set methods[END_REF]). In the latter case, the di erence between the physical model, namely the set of PDE with adequate initial and boundary conditions, and the number of discrete equations which is computed, is not totally clear. More precisely, the exact amount of redundent discrete information, and the speci cities due to particular choice of EOS, or of basic ux schemes in the fully conservative schemes, do not clearly arise. In the approach proposed below, it will be seen for instance that the choice of sti ened gas EOS is quite di erent from the choice of Van der Waals EOS.

The purpose of the present paper is thus the following. It is intended to provide some generic way to compute accurately Euler type systems on coarse meshes and on ne meshes with help of Godunov scheme at least, and if possible with cheaper algorithms in order to cope with the broadest frame of equations of state. Since no theoretical result on convergence is reachable, it seems also of great interest to:

1. provide numerical evidence that the basic Godunov scheme and a su ciently broad class of approximate Godunov schemes converge for any EOS towards the right solution, 2. examine whether modi ed \Godunov" schemes converge towards the right solution.

The presently proposed strategy enables to deal with any EOS, in such a way that schemes remain fully conservative (in terms of mass, momentum and total energy) for a basic class of EOS including the perfect gas EOS for single component ows. For complex EOS, it only requires computing one (or two) extra equations (indeed redundent discrete information), depending on the speci c form of the EOS. From a practical point of view, one only needs to decompose the EOS in order to distinguish contributions pertaining to three distinct classes. The rst class is perfectly accounted for by standard schemes, when de ning discrete pressure as the analytical value of pressure P( ; e; C; ) in terms of conservative variables only, using standard de nitions:

U n i = Q n i = n i (Q = U is the momentum), e n i = (E n i 1 2 n i U n i U n i )= n i , C n i = ( C) n i = n i
and either n i when the colour function is computed with a non conservative equation, or its counterpart n i = ( ) n i = n i in the conservative case. The second class contains EOS such as the mixture of perfect gases, the sti ened gas EOS, and similar laws, and the third one the remaining. If an extra equation needs to be computed, it is only used to express the discrete value of the pressure at the end of any time step in terms of conservative variables, and additional redundent information, in order to compute the Riemann problems on cell interfaces at the beginning of the time step. Throughout the paper we shall call p n i the pressure on cell i at time n t which is used to compute local one dimensional Riemann problem at each interface, and:

P n i = P( n i ; e n i ; C n i ; n i ) (1.2)
the pressure given by the EOS (thus given by a analytic or tabulated law). The paper will be organised as follows. We will rst brie y recall the governing set of equations of the single-phase or two-phase model assuming equal velocities within each phase. Closure laws to express internal energy in terms of pressure, density and (possibly) complementary variables including concentrations of species will be detailed, and three distinct classes of EOS will be exhibited. Restricting then to the exact Godunov scheme to deal with conservation laws, or in an alternative way to an approximate Godunov scheme called VFRoe-ncv which is based on velocity and pressure variables ( 11], 18], 20]), a modi ed version of the basic fully conservative scheme is proposed in order to improve accuracy of computations on coarse meshes (a short presentation of VFRoe-ncv schemes is provided in appendix). We emphasize that an important ingredient in the method proposed below is that the interface Riemann solver perfectly preserves unsteady contact discontinuities. As a result, we will focus on either the exact Godunov solver, or on approximate Godunov solvers such as those described in 11], 18], 20]. Results obtained when computing a single component perfect gas state law, a mixture of perfect gases, Van der Waals EOS are discussed rst. The latter three belong to the three distinct classes. Numerical techniques have already been proposed in the literature to give accurate representation of unsteady contact discontinuities on coarse meshes, and it will be shown that the whole approach exactly corresponds the one previously proposed by Abgrall, Karni, Saurel and Shyue. Other computations including EOS with Chemkin database, and any tabulated EOS will be eventually discussed, which again will con rm that accurate approximations of solutions of shock tube experiments may be obtained with any kind of EOS, even when these have some non negligible contribution in the thrid class.

We emphasize that though somewhat similar, the present approach should not be confused with the e cient energy relaxation method proposed by Coquel and Perthame (see 15] and also 26], 25]).

2. Governing equations. The governing set of equations takes the form:

( @W @t + @F(W) @x = 0; W(0; x) = W 0 (x);

(2.1) with W , F(W) with values in R 5 . The conservative variable W and convective ux F(W ) read: W t = ( ; C; U; E; ); F(W) t = ( U; CU; U 2 + P; U(E + P); U);

(2.2)

The total energy is written in terms of the kinetic energy plus the internal energy e which depends on density and pressure P, but may also depend on concentration C and colour function . Thus:

E = U 2 2 + e(P; ; C; ) (2.3)
The governing equation for the colour function is more commonly written in non conservative form @ t + U@ x = 0. We nonetheless will priviledge the conservative form in order to remove any ambiguity concerning formulation of jump conditions. This equation on colour function is useful in some cases, for instance when modeling stiened gas EOS. The whole must be complemented with a physically relevant entropy inequality: @ @t + @F @x 0 (2.4)

We introduce the speed of density waves c following: c 2 = (P= @e=@ )(@e=@P) 1 (recall that e is a function of P, , C, ). We assume that ĝammaP = c 2 is positive.

Thus the system is hyperbolic. It has real eigenvalues and associated right eigenvectors span the whole space R 5 . Eigenvalues are:

1 = U c; 2 = 3 = 4 = U; 5 = U + c (2.5)
The speci c entropy s complies with ^ P @s(P; ; C; ) @P + @s(P; ; C; ) @ = 0. The 1 and 5-elds are Genuinely Non Linear 45], and the 2 3 4-eld is Linearly Degenerated, since: r W 2 (W):r 2 (W) = r W 3 (W):r 3 (W) = r W 4 (W):r 4 (W) = 0 (2.6) Whatever the EOS is, both the pressure and the velocity are Riemann invariants in the three Linearly Degenerate elds. Jump conditions simply write ( stands for the speed of the discontinuity): W] + F(W)] = 0 (2.7) Using some basic algebra, one gets the following counterpart:

v = U v v] + P] = 0 v] = 0 v (e + P + v 2 2 )] = 0 v C] = 0 v ] = 0 (2.8)
We also brie y recall the list of Riemann invariants in the 1-rarefaction wave (respectively the 5-rarefaction wave) are I 1 = fs; U+ 3. Equation Of State. The next sections are dedicated to EOS which are such that the internal energy may be expressed in terms of some analytic function of the unknowns. The speci c case where thermodynamical coe cients issue from tabulated laws will be discussed in a next section.

We now introduce three distinct classes of EOS. The rst one, which is noted T 1 , contains EOS which agree with: e = 1 (P; ; C; ) = (a 1 (P) + b 1 (P)C + c 1 (P) ) + d 1 (P) (3.1) The second class contains EOS which do not lie in T 1 but nevertheless agree with: e = 2 (P; C; ) = f 2 (C; )h 2 (P) + g 2 (C; ) (3.2)

where both f 2 and g 2 should di er from constants. The third class T 3 contains the remaining.

Note rst that for given pressure P = P ref , the function 1 (P ref ; ; C; ) is linear w.r.t. unknowns , C and . This has important consequences as will be discussed later. Note for instance that Tamman EOS, single component perfect gas EOS belong to the rst class. It also includes EOS such as Tait EOS for solid material (see for instance 28]).

The second class contains laws such as the sti ened gas EOS ( 42], 41], 40]): e = P P 1 ( ) ( ) 1 and the mixture of perfect gases ( 1]): e = P (C) 1 : Note of course that Van der Waals EOS 35]: e = C v T a( ) 2 ; (P + a( ) 2 )(1 b ) = RT does not belong to the latter two, nor does Mie-Gruneisen EOS (unless of course in some degenerated cases where they identify with previous mentionned laws, given speci c (say null) values of constants imbeded). Obviously complex laws such as those described in 37], 32] are in T 3 .

4. Properties of Godunov type schemes with any EOS. All results in the present section are independent of the kind of EOS application. Let be a regular function from R 5 to R 5 and its inverse (we use the notation Y = (W)). Schemes used herein take the form:

h i (W n+1 i W n i ) + t(F( (Y i+1=2 )) F( (Y i 1=2
))) = 0 (4.1) where h i and t respectively denote the mesh size and the time step chosen in agreement with a CFL condition, W n i stands for the mean value of conservative variable W over cell i at time t n , and Y i+1=2 is the exact (or approximate) value of the associated Riemann problem at the interface between two neighbouring cells with associated cell values (W n i ) and (W n i+1 ). This provides updated value of conservative variable W n+1 i , which enables to get the natural \obvious" de nition of e n i :

n i e n i = E n i 1 2 n i U n i U n i (4.2)
and standard de nitions: U n i = Q n i = n i , C n i = ( C) n i = n i , (and if required n i = ( ) n i = n i ). Hence, one may then extract P n i as the value of the function P (given by the EOS) for given arguments n i , e n i , C n i (and if required n i ), and we set here: p n i = P n i (4.3) where P n i issues from (1.2). It is emphasized here that this \natural" de nition of p n i will be modi ed in the next sections which deal with EOS in T 2 T 3 .We recall that due to the speci c form of the governing equations, both C and are Riemann invariants through the 1 -eld and the 5 -eld. Evenmore, assuming that these Genuinely Non Linear elds contain some discontinuity, we still have: C] = ] = 0. Now: Property 4.1. Assume that we use either the exact Godunov scheme or some approximate Godunov scheme such as VFRoe-ncv scheme (see appendix, or 11], 18], 20]) in terms of Y t = (U; P; g( ; s); C; ). Intermediate states indexed Y l and Y r agree with:

C L = C l ; C r = C R ; L = l ; r = R ; U l = U r ; P l = P r ;
given left and right initial states Y L = (W L ) and Y R = (W R ).

For practical applications, we either use function g( ; s) = 1= (see 10], 11]), or g( ; s) = { in that case, the scheme is close to PVRS scheme proposed by Toro 46] { , or g( ; s) = s in order to cope with vacuum ( 20]). Recall that variable Y t = (U; P; s; C; ) enables to symmetrize the system. A detailed comparison of performances of VFRoe-ncv scheme with other well-known schemes is available in 18]. The proof is straightforward for Godunov scheme, and very easy for VFRoencv scheme (see 18]). On this basis, we also obviously check that for both solvers mentionned above, the following holds: Property 4.2. Assume that the initial condition of a Riemann problem ful lls: U L = U R and P L = P R , then, intermediate states in Godunov scheme and VFRoe-ncv scheme agree with:

U((x x LR )=t = 0) = U l = U r = U L = U R P((x x LR )=t = 0) = P l = P r = P L = P R (4.4)
where x LR stands for the position of the initial interface between cells L; R. The proof is well known for Godunov scheme, and straightforward for the VFRoencv scheme.

Property 4.3. For given initial data in agreement with: U n k = U 0 and p n k = P 0 with k = i 1; i; i + 1, both schemes ensure that: U n+1 i = U 0 .

Behaviour of Godunov type schemes with EOS in T 1 . In addition to property 4.3, we have:

Property 5.1. For given EOS in T 1 , and for given initial data in agreement with: U n k = U 0 and p n k = P 0 with k = i 1; i; i + 1, above mentionned schemes also ensure that:

p n+1 i = P( n+1 i ; e n+1 i ; C n+1 i ; n+1 i ) = P 0 (5.1)
Thus these schemes perfectly preserve unsteady contact discontinuities when restricting to EOS in T 1 . , where P n+1 i = P( n+1 i ; e n+1 i ; C n+1 i ; n+1 i ), as de ned in (1.2), property 5.1 mentionned above is violated here. We rst give here some results obtained using EOS in T 2 as follows: e = P=( (C) 1) where (C) = 1; 4C+5; 5(1 C). This corresponds to some sti ened gas EOS (with P 1 = 0). Initial conditions are such that both U and P should remain constant w.r.t. time and space. Results presented below (Figures 6.1, 6.2) correspond to standard \ rst-order" VFRoe-ncv scheme, using CFL number 0:5, and regular meshes containing 400 nodes (coarse mesh though \ ne" industrial mesh when considering the \3-D counterpart") and 40000 nodes ( ne mesh). Note that the relative error in L 1 norm is approximately around 30 % on the coarse mesh. The latter diminishes when re ning the mesh, and is about 5 % on the nest mesh. The numerical method nevertheless converges (in L 1 norm) towards the right solution when the mesh size is re ned.

We turn now to EOS in T 3 , focusing on Van der Waals EOS. Once more, property 5.1 mentionned above is violated when using P n i to initialize interface Riemann problems. We still emphasize that the basic rst order conservative numerical method (exact Godunov or) VFRoe-ncv nonetheless provides convergent approximations of The rate of convergence is clearly 1 2 as expected (since contact discontinuities are not perfectly preserved). However the very poor accuracy on coarse meshes is not appealing for industrial purposes. The decomposition should be achieved in order to \minimize" contributions in T 2 T 3 . Hence, we de ne a 1 (P), b 1 (P), c 1 (P), d 1 (P) rst, and then introduce f 2 (C; ), g 2 (C; ) and h 2 (P) in order to \minimize" the residual part 3 (P; ; C; ). This is achieved in practice in a natural way when focusing on analytic laws such as those imbeded in mixture of perfect gases, sti ened gas EOS, Van der Waals EOS, Chemkin database, Tamman EOS and many other laws such as those used to construct thermodynamical tables. For given value of constant P ref , we also introduce the function:

g 0 (C; ) = f 2 (C; )h 2 (P ref ) + g 2 (C; ) (7.
2) The latter quantity is governed by the following redundent equation when no discontinuity is present in the eld: @g 0 (C; ) @t + U @g 0 (C; ) @x = 0 (7.3) or alternatively by: @ g 0 (C; ) @t + @( g 0 (C; ))U @x = 0 (7.4)

We note that this conservative formulation is \valid" if additional jump relations provided by the latter are ful lled by natural jump relations recalled above. We note that the associated suggested jump relation is: g 0 (C; )] + g 0 (C; )U] = 0 (7.5)

When combined with (true) jump relation associated with mass conservation this provides:

v g 0 (C; )] = 0 and v = U (7.6)

When v is null (contact discontinuity), the latter is ensured of course. Besides, in Genuinely Non Linear 1 and 5 elds, v is non zero but g 0 (C; ) is constant, hence the assertion holds. We underline that this \true" conservative form is speci c to EOS in T 2 . We emphasize anyway that we will not use the "conservation law" for g 0 (C; ), since the latter does not correspond to any physically conserved quantity. Moreover, Abgrall analysis has con rmed that this quantity is not the adequate variable to propagate.

For regular solutions of the basic ve equation model, the redundent governing equation for 3 is simply: @ @t 3 (P; ; C; ) + U @ @x 3 (P; ; C; ) + ^ P @ 3 @P + @ 3 @ @U @x = 0 (7.7)

which of course may degenerate if 3 = 0. Unlike when dealing with EOS in T 2 , one cannot provide a conservative re-formulation of the latter which enables to retrieve the true jump conditions. We may thus expect some greater di culties when attempting to compute the extra non conservative governing equation for 3 24]. Focus for instance on Van der Waals EOS, then:

8 > > > < > > > :
e = 1 (P; ; C; ) + 2 (P; C; ) + 3 (P; ; C; ); 1 (P; ; C; ) = (1 b )P 1 ; 2 (P; C; ) = 0; 3 (P; ; C; ) = a 2 ( b 1 + 2 1 ): Obviously in this particular case, the function g 0 is null. 7.2. Numerical scheme. The basic scheme is the following for any EOS:

8 > > > < > > > : h i W n+1 i W n i + t F( (Y i+1=2 )) F( (Y i 1=2 )) = 0; h i (g 0 ) n+1 i (g 0 ) n i + t Ûi (g 0 ) i+1=2 (g 0 ) i 1=2 = 0; h i ( 3 ) n+1 i ( 3 ) n i + t Ûi ( 3 ) i+1=2 ( 3 ) i 1=2 + t Ĥi U i+1=2 U i 1=2 = 0;
with 2 Ûi = U i+1=2 + U i 1=2 ; 2 Ĥi = (^ P @ 3 @P + @ 3 @ ) i 1=2 + (^ P @ 3 @P + @ 3 @ ) i+1=2 : The de nition of the numerical ux is now the following: F(W ) = U ; U C ; U U + P ; U ( (U ) 2 2 + P ) + U ( e) ; U where ( e) = 1 (P ; ; C ; ) + 2 (P ; C ; ) + 3 (P ; ; C ; ), W = (Y ) and (g 0 ) = g 0 (C ; ). The series (f 2 ) k i (respectively (g 2 ) k i ) issues from computation of g 0 setting h 2 (P ref ) = 0 (respectively h 2 (P ref ) = 1), and should not be confused with f 2 (C k i ; k i ) (or g 2 (C k i ; k i ) respectively). The cell pressure used to compute the local Riemann problems at the beginning of the next time step namely: Remark. When considering the speci c case of sti ened gas EOS, it is emphasized that the proposed scheme identi es with Abgrall and Saurel proposal 42], by setting h 2 (P) = P in 2 (P; C; ).

p n+1 i = P n+1 i is obtained by inverting: Find Pn+1 i solution of n+1 i e n+1 i ((g 2 ) n+1 i + ( 3 ) n+1 i ) = (f 2 ) n+1 i h 2 ( Pn+1 i ) + 1 ( Pn+1 i ; n+1 i ; C n+1 i ; n+1 i ) where n+1 i e n+1 i = E n+1 i ((Q n+1 i ) 2 )=(2 n+1 i )
Remark. Actually, there is no proof whether the hybrid scheme converges, and assuming it does, there is little evidence that it converges towards the right weak solution (which is perfectly and uniquely de ned) when discontinuities are present in the computational eld, owing to the non conservative form of the whole scheme. This will be discussed further on.

Remark. We rst note that the frame of EOS which lie exactly in T 1 is contained in the global formulation above since in that case, both 2 and 3 are null, and as a result P n+1 i ; C n+1 i ; n+1 i ) and one retrieves the fully -standard-conservative scheme.

Remark. We have implicitely assumed that all EOS will have some non zero contribution in at least one class among T 1 or T 2 . Otherwise updating the cell pressure through relation described above would be no longer feasable, and should be replaced by:

Find P n+1 i solution of ( 3 ) n+1 i = 3 ( Pn+1 i ; n+1 i ; C n+1 i ; n+1 i ):
This frame is very unlikely to happen in practice, and all EOS considered herein which arise from the literature do have some contribution in T 1 T 2 . This academic case will nonetheless be examined in the last section.

Remark. We also obviously note that formally, both second and third non conservative discrete equations in (7.2) might be put together. This is due to the fact that: ^ P @g 0 @P + @g 0 @ = 0 and to the use of the superposition principle. We nonetheless will still distinguish both for at least two reasons. First, we have noted that EOS in T 2 is actually a speci c case of EOS in the sense that \exact" conservative formulation of the governing equation of g 0 is available unlike with EOS with contributions in T 3 . Second, we note that doing so (i.e. gathering both contributions) would result in an illposedness of value of P n+1 i when precisely focusing on EOS in T 2 . Last but not least, we will check that accuracy on very ne meshes may be slowed down when doing so (see section about the in uence of the decomposition).

Remark. It must be underlined too that values of (f 2 ) n i might be updated at the beginning of each time step using the computed values of C and , that is f 2 (C n i ; n i ). This seems appealing but it would result in a non conservative scheme for the governing equation of the total energy, if one still aims at perfectly preserving moving contact discontinuities. This alternative is thus disregarded hereafter.

Remark. From a numerical point of view, it is also necessary to point out that the numerical scheme which is used to compute governing equation of 3 is consistent with conservative equations for total mass and mass species. This means that for given laws of the form:

3 (P; ; C; ) = 0 + 1 C + 2 :
The discrete equation of 3 is exactly the counterpart of the linear combination of discrete equations of and C. Though it would correspond to some \wrong" decomposition of the EOS -all these contributions should have been set in T 1 -, one nonetheless needs to examine this \virtual" case. Thus, in that particular case, it may be not only be rewritten in the form: @ 3 (P; ; C; ) @t + @U 3 (P; ; C; ) @x = 0 from a continuous point of view, but one notices that the discrete governing equation of 3 is also a linear combination of discrete equations of ; C; , and thus retrieves the correct conservative form:

h i (( 3 ) n+1 i ( 3 ) n i ) + t((U 3 ) i+1=2 (U 3 ) i 1=2 )) = 0:
The latter remark no longer holds when de ning for instance ( Ĥ) i = H n i . Even more some counterpart of this discretization has been experienced before to provide loss of stability in other computations (computation of Reynolds stress closures in compressible turbulent ows).

>From an industrial point of view, it does not seem compulsory to get the right ( Ĥ) i , more precisely the one which yields correct jump conditions. This will be checked a posteriori when computing Van der Waals EOS which is a good example where contribution in T 3 is not negligible when compared with contribution in T 1 . It nonetheless seems appealing from an academic point of view, but it must be underlined that feasability in a one dimensional framework does not imply the counterpart in a three dimensional case.

8. Numerical results. 8.1. Sti ened gas EOS. Numerical results below are dedicated to simpli ed sti ened gas EOS in T 2 (since (P 1 ) 1 = (P 1 ) 2 = 0) as follows: e(P; ; C; ) = P ( ) 1

where ( ) = 1; 667 + 1; 4(1 ). The decomposition is thus the following: Results presented below ( gure 8.1) correspond to standard \ rst-order" VFRoe-ncv scheme, using CFL number 0:5, and regular meshes containing 100 nodes (coarsened mesh), and 40000 nodes ( ne mesh). Results obtained with the hybrid version of the approximate Godunov scheme apparently converges towards the same solution when the mesh is re ned. Nonetheless, the approximate solution on coarse mesh is indeed nicer when using the hybrid version described below.

We turn now to a simpler set of IC, as follows:

U L = (( 1 R 1 
2 )(P L P R )) 0:5 ; P L = P R Rz 1 R z ; L = 4:0; L = 1; U R = 0; P R = 100000; R = 1:0; R = 0; where R = 2+1 2 1 , and z = 2 R with 2 = 2. This clearly results in a pure right going 3 shock. This Riemann problem is close to the previous one, since the di erence lies in the ghost 1-wave here, which turned to be a rarefaction wave before. However, one may clearly expect that this regular wave cannot inhibit the convergence towards the right solution. In addition, present case enables to get rid of the compulsory error in the prediction of the regular 1-rarefaction wave, which might hide some de ciency of the hybrid scheme. In practice, the present IC require that the hybrid scheme manages computing the exact intermediate state of density on the right side of the -moving-contact discontinuity, which is not obvious at all. We have plot below the error using L 1 norm. Uniform meshes contain from 100 up to 160000 cells. The CFL number still equals 0:5. The error obviously vanishes as the mesh size tends towards zero (see gure 8.2). The rate of convergence for density is slightly greater than 1 2 , and the rate of convergence for U and P variables is 1. We emphasize that the rate is 1 2 for ; U; P when using basic conservative scheme ( gure 8.2). 8.2. Van der Waals EOS. Note that when restricting to Van der Waals EOS, there is no need to compute redundent information for (null) function g 0 . We will indeed compute \twice" an approximation of the density when focusing on Van 8.4 refer to the comparison of both approximations provided by the basic fully conservative scheme and the hybrid scheme when computing a shock tube case on di erent meshes. Results are obviously more appealing on the latter when using hybrid version of the scheme. The L 1 error norm associated to the hybrid scheme is given on the last gure 8.5 of this series, as a function of the mesh size. We note that on the nest mesh, which is clearly out of reach of present computers for 3D calculations, the decrease of error slows down.

For seak of completeness, we now examine the remaining two con gurations of the basic 1D Riemann problem, which either involve two shock waves or two rarefactions waves. The time step is still in agreement with CFL condition CFL = 0:5. The mesh is composed of 200 regular cells. The rst order version of the scheme has been used here (see gure 8.6-left). Note that the small glitch on the density at the initial position of the membrane is already present when using the standard Godunov scheme or VFRoe-ncv scheme in a fully conservative form. One might expect a rather nice behaviour of the scheme here since the exact solution contains no shock wave. The CFL number is the same as above. The mesh still contains two hundred nodes (see gure 8.6-right).

8.2.4. 3-shock waves. We eventually investigate some 3-shock waves. Recall that one advantage here is that the 1-wave will be a \ghost" wave, and therefore will generate a much smaller amount of error, which might hide de ciencies occuring in shock waves when focusing on the standard shock tube apparatus. Hence, we rst introduce IC as follows: with P R = 100000, 2 = 2 and P L > P R solution of: 2 2 R (e(P L ; 2 ) e(P R ; R )) = (P L + P R )( 2 R ): Intermediate states indexed 1; 2 agree with U L = U 1 = U 2 , P L = P 1 = P 2 , L = 1 .

U L = U R + (( 1 R 1 2 )(P L P R )) 0:5 ; L = 4:0; C L = L = 1; U R = 0; R = 1:0; C R = R = 1;
The L 1 error norm is given on gure 8.7. The smaller mesh contains 160000 nodes and the coarser mesh 100 cells. For the whole range, the error norm of the density tends to 0 as h 1=2 . We notice anyway, that the rate of convergence for both velocity and pressure is approximately 1 for meshes with 100 up to 10000 cells, but the error remains stationary (w.r.t. mesh size) for meshes containing more than ten thousand nodes. This obviously means that some -indeed small value-O(1) error is present in the solution close to the 3-shock wave. An ambiguous point is that it may only be exhibited when using mesh re nement which involves much more cells than one may a ord in practice, and which is also seldomly investigated by developers. The counterpart in a 3D framework would require more than 10 12 cells. This implies in practice that the hybrid scheme should not be disregarded. We will come back to similar comments in a section below.

We turn now to di erent IC where densities and pressures are much higher:

U L = U R + (( 1 R 1 
2 )(P L P R )) 0:5 ; L = 320:0; C L = L = 1; U R = 0; R = 80:0; C R = R = 1; with P R = 8000000, 2 = 160 and P L > P R solution of: 2 2 R (e(P L ; 2 ) e(P R ; R )) = (P L + P R )( 2 R ): We have plot here the L 1 error norm on gure 8.8. Similar comments as previous ones still hold here, and the rate of convergence for the conservative scheme is clearly 1 2 for the density, the pressure and the velocity. This is due to the fact that the local amount of error around the contact discontinuity for pressure and velocity is so high that it inhibits rate 1 to be set. Once again, the error with the modi ed scheme becomes stationnary when meshes involve more than 10 4 cells.

Remark. In any case, it con rms that EOS in T 2 and EOS in T 3 should not be confused, at least from a theoretical point of view. The occurence of a true non conservative product H(W)@ x U in the governing equation of 3 inhibits the convergence towards the right solution on very ne meshes. These results are in agreement with scalar results obtained by Hou and Le Floch 24]. Remark. Note that unlike when using the basic Godunov or VFRoe-ncv schemes, this only requires an algebraic manipulation and does not require any Newton procedure to compute P n+1 i in each cell as a solution of:

( e)(P n+1 i ; n+1 i ) = E n+1 i Q n+1 i Q n+1 i (2 ) n+1 i
which results in a great decrease of the computational CPU time. We refer to 11] which provides data of IC used herein. The latter computations ( gure 8.9) have been obtained using present approximate Godunov scheme VFRoe-ncv with ( ; U; P) variable. Other computations with help of Roe approximate Riemann solver are given in 12]. Details concerning entropy are brie y recalled in appendix B of 19]. on gure 8.10. While linear rate of convergence is achieved when using the correct decomposition (velocity (squares), pressure (triangles up), density (circles)), and thus the fully unmodi ed conservative scheme (see also 18]), the measured error associated to the hybrid scheme (velocity (diamonds), pressure ( triangles down), density (stars)) diminishes much slower on ner meshes. Actually, detailed qualitative investigation around the numerical shock locations shows that both are separated by an O(1) length, which can hardly be seen unless the mesh contains more than 10000 nodes, which is seldomly examined in pratice of course. This result con rms investigation of EOS in T 3 (Van der Waals) described previously. This is also con rmed in a \continuous" way by the next numerical experiment. 1 = 0 and 3 = P 1 1 : Updating the cell pressure at the end of the time step is performed through:

P n+1 i = ( 1 1)( 3 ) n+1
i : We provide below some comparison of both approximations, using a coarse mesh with two hundred nodes and a ne mesh with 10000 nodes. It obviously appears that the hybrid scheme no longer converges towards the correct solution. Actually zooming the approximate solution provided by schemes with 5000 and 10000 cells enables to check that the number of nodes between the two locations of 3 shock waves doubles when re ning the mesh by two. This is con rmed by computations on ner meshes. Of course the error still seems to be negligible on coarse meshes ! Results are here in agreement with 24]. 9. A blend scheme. We eventually propose the following overall strategy, which relies on tuning of both the original conservative scheme to deal with ne meshes, and the above mentionned scheme to bene t from pure representation of moving contact discontinuities on coarse meshes. It simply requires some parametric function in order to switch from one scheme to the other when the mesh is re ned, and of course when complex EOS are considered. Thus, the cell pressure which will be used in practice where Pn i is given in a previous section, and h stands for the mean mesh size. For given EOS which do not have a contribution in T 3 , (h) = 1 for EOS in T 1 , and (h) = 0 if the contribution in T 2 is non vanishing. Otherwise, if the EOS is not in T 1 T 2 , (h) should comply with:

(h) = 1 if h h 0 ;

(h) = 0 if h h 1 ; for given mesh sizes h 0 < h 1 provided by user.

In practice, standard conservative schemes correspond to the formal choice h 0 = h 1 = +1, whereas the so-called hybrid scheme corresponds to h 0 = h 1 = 0. Numerical tests reported above suggest some pratical values. The above blended scheme seems to represent some useful compromise in order to satisfy both mathematicians and those involved in solving industrial problems. 10. Conclusion. This paper was devoted to the computation of Euler type schemes with arbitrary equation of state, assuming the internal energy depends on pressure and density variables, but also on concentrations of some species and a colour function. It has been shown that when focusing on exact or adequate approximate Godunov solvers, one needs to distinguish three di erent classes of EOS. One thus needs to compute some redundent information (from a continuous point) in order to cope with second and third classes. Actually, one needs rst to decompose the internal energy in three terms which respectively belong to the latter three classes. Afterwards, one needs to compute an extra (respectively two) equation(s) when some contribution occurs in the second or third class (respectively in both second and third class) in the decomposition.

Some schemes have been proposed to compute the latter non conservative governing equations in addition to the rst ve conservative equations associated with total mass, mass of species, total momentum, total energy and colour function. Thus pure unsteady contact discontinuities are very well predicted on coarse meshes when using the so called hybrid scheme. Numerical results seem to con rm that the hybrid scheme permits more accurate computations on coarse meshes of shock tube experiments involving sharp contact discontinuities when focusing on a mixture of perfect gases, sti ened gas EOS or Van der Waals EOS. This is true for the vicinity of the contact discontinuity, but also around the connection of the end of the 1-rarefaction wave and the beginning of the 5-rarefaction wave. Discrete L 1 measure of convergence con rms convergence towards the right solution in some speci c cases when the EOS has no contribution in T 3 . Actually measurement of rate of convergence exhibits that both U; P converge as h towards the right solution, while concentration or density converge as h 1 2 . Nonetheless, when re ning much meshes, it clearly appears in some cases involving contribution of the EOS in the third class T 3 , that, as might have been expected 24], the measure of convergence towards the correct solution is no longer in favour of the hybrid scheme when shocks are involved in computations. Numerical evidence shows that U; P still converge as h towards the right solution on coarse meshes (involving from 100 up to 20000 cells), but that the error then becomes stationary with respect to mesh size. This motivates the use of the blend scheme which bene ts from nice approximations on coarse meshes of the hybrid scheme, and still inherits the property of convergence towards the right solution on ner meshes. In practice, this will in fact correspond to the use of the hybrid scheme since very few meshes contain more than (10 2 ) 3 cells in an industrial computation and none contains more than (2:10 4 ) 3 cells! The hybrid scheme is thus appealing for industrial purposes since it not only enables to increase accuracy on given (coarse) mesh size, but also enables to reduce CPU time due to the fact that computation of pressure is usually much faster when computing modi ed pressure P rather than standard value P( n i ; e n i ; C n i ; n i ). This is actually the case when applying Chemkin database, which only requires an algebraic calculus instead of a Newton procedure to compute cell pressure at the end of time step, but also when dealing with more complex EOS or tabulated EOS as suggested. It is emphasised that this remark takes into account the fact that two additional discrete equations for redundent information must be computed ; note that all interface information has already been prepared in the initial version of the algorithm, which obviously explains that the balance in CPU time is favourable to the hybrid scheme. Eventually, it seems to us that this work is not only useful in the framework of two-phase ow modelling with help of single uid models of the Euler type, but also when retaining the two-uid two-pressure approach.
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Appendix. VFRoe-ncv schemes for systems of conservation laws. This appendix presents the construction a VFRoe-ncv schemes, focusing on systems of conservation laws. We reduce to the one dimensional case, with regular meshes (the extension to the multidimensional case and to unstructured meshes is classical). Following notations introduced in the body of the present paper, we denote W: R + R! R n the exact solution of the non degenerate hyperbolic system:

( @W @t + @F(W) @x = 0; W(0; x) = W 0 (x):

Let be a regular invertible function from R n to R n and its inverse. If W is a regular solution of the above system, then Y = (W) is solution of @Y @t + B(Y ) @Y @x = 0 where B(Y ) = (D (Y )) 1 (DF( (Y )))(D (Y )).

As mentionned above, VFRoe-ncv schemes are approximate Godunov schemes. Hence, they may be written under the form h i (W n+1 i W n i ) + t(F( (Y i+1=2 )) F( (Y i 1=2 ))) = 0: We describe now the computation of Y i+1=2 . The state Y i+1=2 corresponds to the exact solution Y at x = 0 of the linearized hyperbolic system: 

  ( ; s; C; )= )d ; ; Cg). Details on computation of speci c entropy are recalled in appendix B of 19]. Note also that: I 2;3;4 = fP; Ug.

  Fig. 6.1. Moving contact discontinuity on coarse mesh

  Fig. 6.3. L1 error norm 7. Hybrid version of Godunov-type schemes applied to T 2 T 3 . 7.1. Basic idea. We now decompose any EOS in terms of EOS in T 1 T 2 and the remaining part, thus: 3 (P; ; C; ) = e 1 (P; ; C; ) 2 (P; C; ) 1 (P; ; C; ) = (a 1 (P) + b 1 (P)C + c 1 (P) ) + d 1 (P) 2 (P; C; ) = f 2 (C; )h 2 (P) + g 2 (C; )

7. 3 .

 3 scheme ensures that:

  P; ; C; ) = 3 (P; ; C; ) = 0): A rst series of results corresponds to initial conditions proposed by Sandra Rouy 40]: U L = 0; P L = 120000; L = 0:192; L = 1; U R = 0; P R = 100000; R = 1:156; R = 0:

  Fig. 8.1. Shock tube with EOS in T 2 -coarse mesh (left), ne mesh (right)

  Figures 8.3, 8.4 refer to the comparison of both approximations provided by the basic fully conservative scheme and the hybrid scheme when computing a shock tube case on di erent meshes. Results are obviously more appealing on the latter when using hybrid version of the scheme. The L 1 error norm associated to the hybrid scheme is given on the last gure 8.5 of this series, as a function of the mesh size. We note that on the nest mesh, which is clearly out of reach of present computers for 3D calculations, the decrease of error slows down.For seak of completeness, we now examine the remaining two con gurations of the basic 1D Riemann problem, which either involve two shock waves or two rarefactions waves.

  Fig. 8.3. Shock tube with EOS in T 3 -coarse mesh

  Fig. 8.4. Shock tube with EOS in T 3 -nest mesh

Fig. 8 . 6 .

 86 Fig. 8.6. Double rarefaction wave (left) and double shock wave (right) with EOS in T 3

  Fig. 8.7. L1 error norm for hybrid scheme

Fig. 8 .

 8 Fig. 8.10. Perfect gas EOS: approximate decomposition

  Fig. 8.11. Perfect gas EOS: correct and wrong decomposition -coarse (left) and ne mesh (right)

  x) = Y L = (W n i ) if x < 0; Y R = (W n i+1 ) if x > 0; where Ŷ = (Y L + Y R )=2.Since Y is the solution of a linear system, its computation is classical: f k and e r k , k = 1; :::; n, are respectively left eigenvectors, eigenvalues and right eigenvectors of matrix B( Ŷ ). Thus, we have Y i+1=2 = Y (0; Y L ; Y R ):
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Velocity, density (circles), pressure (squares) Fig. 8.9. Shock tube using Chemkin database -coarse mesh 8.4. Tabulated EOS. For arbitrary non analytic EOS, we now de ne the decomposition of the EOS in the class T 1 and T 3 . This may be achieved de ning some function d 1 (P) = P 1 1 , which is close enough to the real state law. The constant 1 is computed introducing some least square minimization process. 1 ( ; P; C; ) = P 1 1 ; 2 ( ; C; ) = 0; 3 ( ; P; C; ) = e P 1 1 : Thus the redundent equation which is computed reads: @ @t 3 (P; ; C; ) + U @ @x 3 (P; ; C; ) + e + P P 1 1 @U @x = 0: 8.4.1. In uence of decomposition. We examine very brie y below whether some discrepancy in the decomposition implies some loss of accuracy, or in other words try to evaluate the stability of the overall method w.r.t. to the choice of the decomposition. Assume for instance that the real EOS reads: ( e) = P 1 1 . Imagine that some -on purpose-error occurs in the process in such a way that the decomposition yields: 8 < : 1 ( ; P; C; ) = P 2 1 ; 2 ( ; C; ) = 0; 3 ( ; P; C; ) = P( 1 1 1 1 2 1 ); where of course both constants are distinct. Despite from its simplicity, we rst note that the resulting hybrid scheme does not compute the same approximation of the internal energy than the fully conservative scheme. 8.4.2. Approximate decomposition. We set here = 0:1 and:

( 1 ( ; P; C; ) = (1 ) P 1 1 ; 3 ( ; P; C; ) = P 1 1 : When focusing on the standard Sod shock tube problem which involves one 3-shock wave, and using meshes with up to 40000 nodes, the L 1 error norm has been plotted