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A HYBRID SCHEME TO COMPUTE CONTACT DISCONTINUITIES
IN EULER SYSTEMS

THIERRY GALLOUET*, JEAN-MARC HERARD*!, AND NICOLAS SEGUIN*!

Abstract. The present paper is devoted to the computation of single phase or two phase flows
using the single-fluid approach. Governing equations rely on Euler equations which may be supple-
mented by conservation laws for mass species. Emphasis is given on numerical modelling with help
of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity
and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of
pressure, density and additional variables are exhibited. It is shown first that standard conservative
formulation of above mentionned schemes enables to predict “perfectly” unsteady contact disconti-
nuities on coarse meshes, when the EOS belongs to the first class. On the basis of previous work
issuing from literature, an almost conservative though modified version of the scheme is proposed to
deal with EOS in the second or third class. Numerical evidence shows that the accuracy of approxi-
mations of discontinuous solutions of standard Riemann problems is strenghtened on coarse meshes,
but that convergence towards the right shock solution may be lost in some cases involving complex
EOS in the third class. Hence, a blend scheme is eventually proposed to benefit from both properties
(“perfect” representation of contact discontinuities on coarse meshes, and correct convergence on
finer meshes). Computational results based on an approximate Godunov scheme are provided and
discussed.

Key words. Godunov scheme, Euler system, contact discontinuities, thermodynamics, conser-
vative schemes

1. Introduction. Computation of gas-liquid flows is of great importance in sev-
eral industrial fields. For instance, when focusing on nuclear safety problems, two
great problems arise. The first one is known as the LOCA (Loss Of Coolant Accident)
problem. It corresponds to the unsteady flow of highly pressurised water entering an
open domain initially occupied by still air at atmospheric pressure. The resulting
flow contains a mixture of water and air, and the thermodynamical behaviour of the
medium is quite uneasy to describe and therefore to compute. Another problem cor-
responds to the ebullition crisis, due to sudden heating of coolant in reactor. The flow
suddenly becomes highly unsteady and contains two phases (liquid water for instance
and saturated vapour). The dynamics of the whole is not very well understood up to
now, both from a dynamical point of view and thermodynamical aspect.

Simple models may be proposed in order to try to account for the physics involved
in these problems. The most well known is the Homogeneous Equilibrium Model. It
only () requires to give a suitable EOS. This one may be very simple or much
more complex and tabulated [38]. Tt nonetheless requires Euler type solvers which
enable computing strong rarefaction waves, shocks and contact discontinuities. Many
schemes have been proposed to deal with that kind of system with reasonable success
[6], [16], [13], [47], [14], which rely on “standard” upwinding techniques such as those
developed to cope with aerodynamics [22], [46], [39], [23], [45], [36], ... Another
physically relevant approach relies on the Homogeneous Relaxation Model, which in
addition requires computing an extra mass balance equation including (stiff) source
terms in order to account for mass transfer terms between phases (see for instance
the work of Bilicki and co-workers [9], [8], [7]). More complex models may also be
suggested to predict two phase flow patterns on the basis of the two fluid approach for
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instance [27], using the single pressure or the two pressure approach [47], [41], [21].
These a fortior: require better understanding of physical process involved but also
urge the development of stable and highly accurate algorithms, due to the occurence
of many different time scales, and to other specific problems including presence of
first order non conservative terms and of stiff source terms, conditional hyperbolicity
when retaining the single pressure approach, ... Actually similar (and even more
complex) problems arise which confirm the need for accurate prediction of contact
discontinuities.

Restricting here our attention to the frame of the single fluid approach and Euler
type systems, 1t is now well known that great difficulties in computations arise when
attempting at computing shock tube test cases with high pressure ratio and distinct
phases on each side of the initial membrane. Part of the difficulty is connected with
the need to compute the contact discontinuity with sufficient accuracy. This has
already been pointed out in the literature by different workers including Karni [29],
[30], Abgrall [1] for instance. It clearly appears in preliminary computations that fully
conservative schemes such as Godunov scheme provide rather poor accuracy around
contact discontinuities, when the EOS is not the basic single component perfect gas
EOS, when examinating coarse meshes. This is a particularly annoying point when one
aims at providing an a postertori computation of a discrete gradient of the ratio T' =
P/p, which of course requires sufficient accuracy close to the contact discontinuity.
Another point which urges for a global effort in this direction is connected with the
very small rate of convergence of variables governed by pure advection, say:

o FUs- =0, (1.1)

the measure of which is provided for instance in [18], and is approximately % for so
called first-order schemes, and % for so called second-order schemes, when the initial
data is discontinuous. Figure 1.1 provides a measure of the error in L' norm when
computing a pure contact discontinuity of the Euler system of gas dynamics with

perfect gas state law.
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FiG. 1.1. L1 norm of the error. Moving contact discontinuity in Euler system (perfect gas EOS)

Actually, several ways to tackle with the problem of moving contact discontinuities
have been suggested by Karni [29], [30], Abgrall [1], Karni and Abgrall [31], Fedkiw,
Aslam , Merriman and Osher [17], Sethian [43], Saurel and Abgrall [42], and other
workers Shyue [44], Allaire, Clerc and Kokh [3], [4], [33], Lagoutiére [34], Barberon,
Helluy and Rouy [5],.....
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We note anyway that focus has actually been given on specific EOS such as mix-
ture of perfect gases, or equivalently to stiffened gas EOS. More recently Van der
Waals EOS has been investigated by Shyue ([44]). In the latter case, the difference
between the physical model, namely the set of PDE with adequate initial and bound-
ary conditions, and the number of discrete equations which is computed, is not totally
clear. More precisely, the exact amount of redundent discrete information, and the
specificities due to particular choice of EOS, or of basic flux schemes in the fully con-
servative schemes, do not clearly arise. In the approach proposed below, it will be
seen for instance that the choice of stiffened gas EOS is quite different from the choice
of Van der Waals EOS.

The purpose of the present paper is thus the following. It is intended to provide
some generic way to compute accurately Euler type systems on coarse meshes and
on fine meshes with help of Godunov scheme at least, and if possible with cheaper
algorithms in order to cope with the broadest frame of equations of state. Since no
theoretical result on convergence is reachable, it seems also of great interest to:

1. provide numerical evidence that the basic Godunov scheme and a sufficiently
broad class of approximate Godunov schemes converge for any EOS towards
the right solution,

2. examine whether modified “Godunov” schemes converge towards the right
solution.

The presently proposed strategy enables to deal with any EOS| in such a way that
schemes remain fully conservative (in terms of mass, momentum and total energy)
for a basic class of EOS including the perfect gas EOS for single component flows.
For complex EOS, it only requires computing one (or two) extra equations (indeed
redundent discrete information), depending on the specific form of the EOS. From
a practical point of view, one only needs to decompose the EOS in order to distin-
guish contributions pertaining to three distinct classes. The first class is perfectly
accounted for by standard schemes, when defining discrete pressure as the analytical
value of pressure P(p, e, C, ) in terms of conservative variables only, using standard
definitions: U = Q7 /pi' (Q = pU is the momentum), el = (EI' — $pr UPU) /PP,
CP = (pC)? /p? and either ¥ when the colour function is computed with a non con-
servative equation, or its counterpart ¥ = (py)?/pl in the conservative case. The
second class contains EOS such as the mixture of perfect gases, the stiffened gas EOS,
and similar laws, and the third one the remaining. If an extra equation needs to be
computed, it is only used to express the discrete value of the pressure at the end of any
time step in terms of conservative variables, and additional redundent information,
wn order to compute the Riemann problems on cell interfaces at the beginning of the
time step. Throughout the paper we shall call p* the pressure on cell ¢ at time nAt
which is used to compute local one dimensional Riemann problem at each interface,
and:

PZ»”IP(p?,e?,CZ»n,l/)?) (12)
the pressure given by the EOS (thus given by a analytic or tabulated law).

The paper will be organised as follows. We will first briefly recall the govern-
ing set of equations of the single-phase or two-phase model assuming equal velocities
within each phase. Closure laws to express internal energy in terms of pressure, den-
sity and (possibly) complementary variables including concentrations of species will
be detailed, and three distinct classes of EOS will be exhibited. Restricting then to
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the exact Godunov scheme to deal with conservation laws, or in an alternative way to
an approximate Godunov scheme called VFRoe-ncv which is based on velocity and
pressure variables ([11], [18], [20]), a modified version of the basic fully conservative
scheme is proposed in order to improve accuracy of computations on coarse meshes
(a short presentation of VFRoe-ncv schemes is provided in appendix). We empha-
size that an important ingredient in the method proposed below is that the nterface
Riemann solver perfectly preserves unsteady contact discontinuities. As a result, we
will focus on either the exact Godunov solver, or on approximate Godunov solvers
such as those described in [11], [18], [20]. Results obtained when computing a single
component perfect gas state law, a mixture of perfect gases, Van der Waals EOS are
discussed first. The latter three belong to the three distinct classes. Numerical tech-
niques have already been proposed in the literature to give accurate representation
of unsteady contact discontinuities on coarse meshes, and it will be shown that the
whole approach exactly corresponds the one previously proposed by Abgrall, Karni,
Saurel and Shyue. Other computations including EOS with Chemkin database, and
any tabulated EOS will be eventually discussed, which again will confirm that accu-
rate approximations of solutions of shock tube experiments may be obtained with any
kind of EOS, even when these have some non negligible contribution in the thrid class.

We emphasize that though somewhat similar, the present approach should not
be confused with the efficient energy relaxation method proposed by Coquel and
Perthame (see [15] and also [26], [25]).

2. Governing equations. The governing set of equations takes the form:

{ oW OF(W) _,
ot e 7 (2.1)
W(O,l‘) = Wo(l‘),

with W, F(W) with values in R®. The conservative variable W and convective flux

F(W) read:

W= (p,pC, pU, E, pib),

F(W) = (pU, pCU, pU* + P,U(E + P), pyU), (2.2)

The total energy is written in terms of the kinetic energy plus the internal energy pe
which depends on density p and pressure P, but may also depend on concentration
C' and colour function ¢. Thus:

U2
The governing equation for the colour function is more commonly written in non con-
servative form 0y¢p + Ud;4¥ = 0. We nonetheless will priviledge the conservative form
in order to remove any ambiguity concerning formulation of jump conditions. This
equation on colour function is useful in some cases, for instance when modeling stiff-
ened gas EOS. The whole must be complemented with a physically relevant entropy
inequality:

dn = OF,

MLl AP 2.4

ot + Jx — (24)
We introduce the speed of density waves ¢ following: pc? = (P/p— pde/dp)(e/OP) ™1
(recall that e is a function of P, p, C, ¥). We assume that gammaP = pc? is positive.
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Thus the system is hyperbolic. It has real eigenvalues and associated right eigenvectors
span the whole space R°. Eigenvalues are:

AlIU_C’AzzASIAAl:U,As:U—i—C (25)

ds(P, p, C, ds(P, p, C,
(P Co) | Os(P Cov) _
opP Jp
The 1 and 5-fields are Genuinely Non Linear [45], and the 2 — 3 — 4-field is Linearly
Degenerated, since:

The specific entropy s complies with 4P

VW/\Q(W)TQ(W) = VW/\g(W)Tg(W) = VW/\4(W)7°4(W) =0 (26)

Whatever the EOS is, both the pressure and the velocity are Riemann invariants in
the three Linearly Degenerate fields. Jump conditions simply write (o stands for the
speed of the discontinuity):

—o[W]+[F(W)] =0 (2.7)
Using some basic algebra, one gets the following counterpart:

v=U-—-o0
pvlv] +[P] =0
[v] =0
pv[(e—I—%-i—%)]:O
pv[C1 =0
v[y] =0

We also briefly recall the list of Riemann invariants in the 1-rarefaction wave (respec-
tively the 5-rarefaction wave) are I; = {s, U—|—f0p(c(p, s, Cy)/p)dp, ¥, C'} (respectively
Is = {s,U — fop(c(p, s, Cy)/p)dp, ¥, C}). Details on computation of specific entropy
are recalled in appendix B of [19]. Note also that: Iy 34 = {P,U}.

[}

(2.8)

e

3. Equation Of State. The next sections are dedicated to EOS which are such
that the internal energy may be exrpressed in terms of some analytic function of the
unknowns. The specific case where thermodynamical coefficients issue from tabulated
laws will be discussed in a next section.

We now introduce three distinct classes of EOS. The first one, which is noted 77,
contains EOS which agree with:

pe = 61(P,p, O ¢) = plar(P) + b1(P)C + er (P)¢) + di (P) (3.1)

The second class contains EOS which do not lie in T7 but nevertheless agree with:

pe = ¢2(P’ C, 1/)) = fZ(C’ 1/))h2(P) +92(Ca 1/)) (32)

where both fo and gs should differ from constants. The third class T3 contains the
remaining.

Note first that for given pressure P = P,.¢, the function ¢1(Prey, p, C, ¥) is linear
w.r.t. unknowns p, pC and py. This has important consequences as will be discussed
later. Note for instance that Tamman EOS, single component perfect gas EOS belong
to the first class. Tt also includes EOS such as Tait EOS for solid material (see for
instance [28]).
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The second class contains laws such as the stiffened gas EOS ([42], [41], [40]):

P Pa()
() =1
and the mixture of perfect gases ([1]):
_ P
ST

Note of course that Van der Waals EOS [35]:

pe = pC,T — a(p)?,
(P +a(p)®)(1 = bp) = pRT

does not belong to the latter two, nor does Mie-Gruneisen EOS (unless of course
in some degenerated cases where they identify with previous mentionned laws, given
specific (say null) values of constants imbeded). Obviously complex laws such as those

described in [37], [32] are in T5.

4. Properties of Godunov type schemes with any EOS. All results in the
present section are independent of the kind of EOS application. Let @ be a regular
function from R® to RS and W its inverse (we use the notation Y = ®(W)). Schemes
used herein take the form:

hi(WI = W) + 6U(F (¥ (Y4 2) = F(E(Y,L, ) =0 (4.1)

where h; and 6t respectively denote the mesh size and the time step chosen in agree-
ment with a CFL condition, W," stands for the mean value of conservative variable W
over cell 7 at time t,,, and Ylj_l , is the exact (or approximate) value of the associated
Riemann problem at the interface between two neighbouring cells with associated cell
values (W) and ®(W/, ). This provides updated value of conservative variable
VVZ»"‘H, which enables to get the natural “obvious” definition of ef:

1
prer = B — S Uruy (4.2)

and standard definitions: U = Q% /pl, C* = (pC)?/p?, (and if required ¢? =

K3 K3

(p)? /p?). Hence, one may then extract P as the value of the function P (given by

K3

the EOS) for given arguments p?, e, C7 (and if required ¢7), and we set here:
pi =B’ (4.3)

where P issues from (1.2). Tt is emphasized here that this “natural” definition of pJ
will be modified in the next sections which deal with EOS in T5UT5.We recall that due
to the specific form of the governing equations, both C and ¢ are Riemann invariants
through the 1 -field and the 5 -field. Evenmore, assuming that these Genuinely Non
Linear fields contain some discontinuity, we still have: [C] = [¢] = 0. Now:
PROPERTY 4.1. Assume that we use either the exact Godunov scheme or some
approzimate Godunov scheme such as VFRoe-ncv scheme (see appendiz, or [11], [18],
[20]) in terms of Y = (U, P,g(p,s),C,v). Intermediate states indexed Y; and Y,

agree with:

Cp =0y, C, = Cg,

v, =y, Y, = g,
Ul:UTa Pl:PTa
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given left and right initial states Y = ®(Wr) and Yr = ®(Wg).

For practical applications, we either use function g(p,s) = 1/p (see [10], [11]),
or g(p,s) = p — in that case, the scheme is close to PVRS scheme proposed by Toro
[46] — , or g(p,s) = s in order to cope with vacuum ([20]). Recall that variable
Yt = (U, P,s,C,¢) enables to symmetrize the system. A detailed comparison of
performances of VFRoe-ncv scheme with other well-known schemes is available in
[18]. The proof is straightforward for Godunov scheme, and very easy for VFRoe-
ncv scheme (see [18]). On this basis, we also obviously check that for both solvers
mentionned above, the following holds:

PROPERTY 4.2. Assume that the initial condition of a Riemann problem fulfills:
Ur = Ugr and P;, = Pg, then, intermediate states in Godunov scheme and VFRoe-ncv
scheme agree with:

U((l‘— l‘LR)/t = 0) = Ul

U.=Ur=Ur (4.4)
P((l‘—l‘LR)/tIO)IPl Pr PL PR ’

where g stands for the position of the initial interface between cells L, R.

The proof is well known for Godunov scheme, and straightforward for the VFRoe-
ncv scheme.

PROPERTY 4.3. For gwen wnitial data in agreement with: Ul = Uy and p} = P
with k =i —1,7,14+ 1, both schemes ensure that: UZ»"‘I'1 =Up.

5. Behaviour of Godunov type schemes with EOS in 73. In addition to
property 4.3, we have:

PrOPERTY 5.1. For given EOS wn Ty, and for given wnitial data in agreement
with: Ul = Uy and pp = Py with k =1 — 1,4, 4+ 1, above mentionned schemes also
ensure that:

P = P Ot = By 5-1)

K3

Thus these schemes perfectly preserve unsteady contact discontinuities when re-
stricting to EOS wn Ty.

6. Behaviour of Godunov type schemes with EOS in 75 or T3. If we
still use previous definition pP' ™' = P*T! where Pt = P(pit! ettt gttty
as defined in (1.2), property 5.1 mentionned above is violated here. We first give
here some results obtained using EOS in T3 as follows: pe = P/(y(C) — 1) where
¥(C) = 1,4C+5,5(1—C"). This corresponds to some stiffened gas EOS (with P, = 0).
Initial conditions are such that both U/ and P should remain constant w.r.t. time and
space. Results presented below (Figures 6.1, 6.2) correspond to standard “first-order”
VFRoe-ncv scheme, using CFL number 0.5, and regular meshes containing 400 nodes
(coarse mesh though “fine” industrial mesh when considering the “3-D counterpart”)
and 40000 nodes (fine mesh). Note that the relative error in L norm is approximately
around 30 % on the coarse mesh. The latter diminishes when refining the mesh, and
is about 5 % on the finest mesh. The numerical method nevertheless converges (in
L' norm) towards the right solution when the mesh size is refined.

We turn now to EOS in T3, focusing on Van der Waals EOS. Once more, prop-
erty 5.1 mentionned above is violated when using P to initialize interface Riemann
problems. We still emphasize that the basic first order conservative numerical method
(exact Godunov or) VFRoe-ncv nonetheless provides convergent approximations of



8 T. GALLOUET, J-M. HERARD AND N. SEGUIN
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Fi1G. 6.2. Moving contact discontinuity on fine mesh

the solution. Figure 6.3 shows the behaviour of the L' error norm for both pres-
sure and velocity variables, considering the first order scheme, with CFL = 0.5, and
uniform meshes with 200 cells up to 20000 cells. Initial conditions are simply:

ULIURIIOO, pLIIOO, CLICRII,
P, =Pr=10°% pgp =200, ¢p=vr=1.

The rate of convergence is clearly % as expected (since contact discontinuities are
not perfectly preserved). However the very poor accuracy on coarse meshes is not
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appealing for industrial purposes.

Unsteady contact discontinuity (Van der Waals)
Pressure (circles) and velocity (squares)
T T

-7 L

Log (error)

Log (h)

Fi1Gc. 6.3. L1 error norm

7. Hybrid version of Godunov-type schemes applied to 75 U T5.

7.1. Basic idea. We now decompose any EOS in terms of EOS in 77 U 75 and
the remaining part, thus:

¢3(P,p,C, ) = pe — ¢1(P, p, C ) — ¢2( P, C, 1))
o1(P,p, C,¥) = plar(P) + b1 (P)C + e1 (P)y) + di (P) (7.1)
¢2(P,C 1) = f2(C ) ha(P) + g2(C,¢)

The decomposition should be achieved in order to “minimize” contributions in T5UT5.
Hence, we define ay(P), b1(P), c1(P), di(P) first, and then introduce f2(C,¢),
g2(C,¢) and hy(P) in order to “minimize” the residual part ¢s(P,p, C ). This
is achieved in practice in a natural way when focusing on analytic laws such as those
imbeded in mixture of perfect gases, stiffened gas EOS, Van der Waals EOS, Chemkin
database, Tamman EOS and many other laws such as those used to construct ther-
modynamical tables. For given value of constant P,..f, we also introduce the function:

90(C,¥) = f2(C ) ha(Prep) + 92(C, 1) (7.2)

The latter quantity is governed by the following redundent equation when no discon-
tinuity is present in the field:

agO(Ca 1/)) agO(Ca 1/)) _
T +U o =0 (7.3)
or alternatively by:
a1 + o =0 (7.4)

We note that this conservative formulation is “valid” if additional jump relations
provided by the latter are fulfilled by natural jump relations recalled above. We note
that the associated suggested jump relation is:

—alpgo(C, )] + [pgo(C,¥)UT = 0 (7.5)
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When combined with (true) jump relation associated with mass conservation this
provides:

lgo(C, )] =0 and v=U-—¢ (7.6)

When v is null (contact discontinuity), the latter is ensured of course. Besides, in
Genuinely Non Linear 1 and 5 fields, pv is non zero but ¢o(C, ) is constant, hence
the assertion holds. We underline that this “true” conservative form is specific to
EOS in 7. We emphasize anyway that we will not use the ”conservation law” for
pg0(C, ), since the latter does not correspond to any physically conserved quantity.
Moreover, Abgrall analysis has confirmed that this quantity is not the adequate vari-
able to propagate.

For regular solutions of the basic five equation model, the redundent governing
equation for ¢3 is simply:

0 0 0 0
O 65(P.p,C )+ Us-g5(P,p, )+ (1P 522 4 50

ap "o, ) 9z =0 (77

which of course may degenerate if ¢3 = 0. Unlike when dealing with EOS in 7%, one
cannot provide a conservative re-formulation of the latter which enables to retrieve the
true jump conditions. We may thus expect some greater difficulties when attempting
to compute the extra non conservative governing equation for ¢3 [24].

Focus for instance on Van der Waals EOS, then:

pe = ¢1(Papa Ca 1/)) +¢2(Pa Ca 1/)) +¢3(Papa Ca 1/))a
¢1(Papa Ca 1/)) = (1;%)13’

¢2(Pa Ca 1/)) = Oa

63(P,p, C, ) = ap®(325 + 2=7).

Obviously in this particular case, the function gy is null.

7.2. Numerical scheme. The basic scheme is the following for any FOS:

\Ij( z+1/2)) F(\II(YZ* 1/2))) =0,
9o) z-|—1/2 (90);_ 1/2) =0,

hi (W — W) + Jt(F(
(
<<¢3 i+1/2 ¢3)z 1/2)

hi ((go)n-H (90); ) + 515[?
hi((¢3)7 T = (3)F) + 8tU;
H;

+ 4t z*-|—1/2 i— 1/2) =0,
with
. 093 2U3;53U il 16241;3 O¢3
2H; = (¥ P@P +p 8 = icipt (WP o5 ap +P6—p)?+1/2~

The definition of the numerical flux is now the following:

* K pTk KTk vk K TTERTTH * **U*z * * *  kprHk [k
F(W):<PU’PUC,PUU +P,U(p(2) +P)+U(pe),pU1/))

where (pe)* = ¢1(P*, p*, C*, ) + ¢2(P*, C*, ¢*) + ¢3(P*, p*, C* ™), W* = ¥(Y™)
and (g0)* = go(C*,¢™). The series (f2)F (respectively (g2)F) issues from computation
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of go settmg ho(Pref) = 0 (respectively ho(Prer) = 1), and should not be confused
with fo(CF ) (or g2(CF, ¥F) respectively).

The cell pressure used to compute the local Riemann problems at the beginning
of the next time step namely:

p?+1 — pin+1
is obtained by inverting:

Find ﬁ""’l solution of )
pitte 7“ ((g2)7 + (83)i ) = (fa)i T ha( PP
oL (PP pi L OpF gt

where pitlel Tt = EPFL _ ((QPTY)2) /(297 1) and with given values EPT! QPt
Pt ot 1/)"+1 prov1ded by discrete conservative equations, and (fz)”+1, (g2)" 1,

((bg)?"'l provided by discrete non-conservative equations.

7.3. Main property and remarks. We now have the main property:

PrROPERTY 7.1. For any FOS in Ty U Ty UTs, and for gwen wnitial data in
agreement with: Ul = Uy and pp = Py with k =1 —1,¢,¢+ 1, the above mentionned
scheme ensures that:

pf"'l Py and UZ»"'H:UO.

Remark. When considering the specific case of stiffened gas EOS, it is emphasized
that the proposed scheme identifies with Abgrall and Saurel proposal [42], by setting
ha(P) = P in 6 (P, C’ ).

Remark. Actually, there is no proof whether the hybrid scheme converges, and
assuming it does, there is little evidence that it converges towards the right weak
solution (which is perfectly and uniquely defined) when discontinuities are present
in the computational field, owing to the non conservative form of the whole scheme.
This will be discussed further on.

Remark. We first note that the frame of EOS which lie exactly in 7} is contained
in the global formulation above since in that case, both ¢, and ¢3 are null, and as a
result P/'T! is computed as (¢1 = pe):

Find P”"’1 solution of
n+1 n+1 ¢1(Pin+1 n+1 Cz'n-l—la’l/)?-l—l)

Pi s P
and one retrieves the fully -standard- conservative scheme.
Remark. We have implicitely assumed that all EOS will have some non zero
contribution in at least one class among T3 or Ty. Otherwise updating the cell pressure
through relation described above would be no longer feasable, and should be replaced

by:

H Find P”"’1 solution of

n+1 — ¢ (Pln+1’pzl+1 Cin-l—la’l/)?-l—l)'
This frame is very unlikely to happen in practice, and all EOS considered herein which
arise from the literature do have some contribution in 77 U 7%. This academic case
will nonetheless be examined in the last section.



12 T. GALLOUET, J-M. HERARD AND N. SEGUIN

Remark. We also obviously note that formally, both second and third non con-
servative discrete equations in (7.2) might be put together. This is due to the fact
that:

and to the use of the superposition principle. We nonetheless will still distinguish both
for at least two reasons. First, we have noted that EOS in 7% is actually a specific case
of EOS in the sense that “exact” conservative formulation of the governing equation
of gg i1s available unlike with EOS with contributions in 75. Second, we note that
doing so (i.e. gathering both contributions) would result in an illposedness of value
of PZ»”‘I'1 when precisely focusing on EOS in 75. Last but not least, we will check that
accuracy on very fine meshes may be slowed down when doing so (see section about
the influence of the decomposition).

Remark. Tt must be underlined too that values of (f2)? might be updated at the
beginning of each time step using the computed values of C' and ¥, that is fo(CP, ¥P).
This seems appealing but it would result in a non conservative scheme for the gov-
erning equation of the total energy, if one still aims at perfectly preserving moving
contact discontinuities. This alternative 1s thus disregarded hereafter.

Remark. From a numerical point of view, it 1s also necessary to point out that
the numerical scheme which is used to compute governing equation of ¢3 is consistent
with conservative equations for total mass and mass species. This means that for
given laws of the form:

¢3(P, p, C, ) = pop + pu1pC + popif.

The discrete equation of ¢z 1s exactly the counterpart of the linear combination of
discrete equations of p and pC'. Though it would correspond to some “wrong” de-
composition of the EOS - all these contributions should have been set in 77 -, one
nonetheless needs to examine this “virtual” case. Thus, in that particular case, it
may be not only be rewritten in the form:

a¢3(P’pa Ca 1/)) + 8U¢3(P’pa Ca 1/))
ot Ox

from a continuous point of view, but one notices that the discrete governing equation
of ¢3 is also a linear combination of discrete equations of p, pC| p¥, and thus retrieves
the correct conservative form:

hi((¢3)7 T = (83)7) + 3t ((Uda)iy1/2 — (Uda)i_1/2)) = 0.

=0

The latter remark no longer holds when defining for instance (H)Z = H?. Even
more some counterpart of this discretization has been experienced before to provide
loss of stability in other computations (computation of Reynolds stress closures in
compressible turbulent flows).

. From an industrial point of view, it does not seem compulsory to get the right
(H)Z, more precisely the one which yields correct jump conditions. This will be
checked a posteriori when computing Van der Waals EOS which is a good example
where contribution in 73 1s not negligible when compared with contribution in 77. It
nonetheless seems appealing from an academic point of view, but it must be underlined
that feasability in a one dimensional framework does not imply the counterpart in a
three dimensional case.
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8. Numerical results.

8.1. Stiffened gas EOS. Numerical results below are dedicated to simplified
stiffened gas EOS in T3 (since (Puoo)1 = (Pso)2 = 0) as follows:

P
v(¥) -1

where y(¢) = 1,667¢ + 1,4(1 — ¢). The decomposition is thus the following:

pe(P, p, C,ib) =

pe = ¢2(Pa Ca 1/)) = fZ(Ca 1/))h2(P) +g2(ca 1/))
ha(P) = P, fo(C,¥) = sph=r, 92(C,0) = 315,
(¢1(Papa Ca 1/)) = ¢3(Papa C’ 1/)) = 0)

A first series of results corresponds to initial conditions proposed by Sandra Rouy

[40]:

Up =0, P,=120000, pp=0.192, v, =1,
Ur =0, Pgr=100000, pr=1.156, ¢g =0.

Results presented below (figure 8.1) correspond to standard “first-order” VFRoe-ncv
scheme, using CFL number 0.5, and regular meshes containing 100 nodes (coarsened
mesh), and 40000 nodes (fine mesh). Results obtained with the hybrid version of the
approximate Godunov scheme apparently converges towards the same solution when
the mesh is refined. Nonetheless, the approximate solution on coarse mesh is indeed
nicer when using the hybrid version described below.

We turn now to a simpler set of IC, as follows:

Up = ((- — L)(PL— Pr))®®, Pp=Prlr=l pp =40, ¢ =1,

PR P2 Br—z "
Ur =0, Pr = 100000, pr =10, ¢Yr =0,
where G = szi, and z = p—; with p; = 2. This clearly results in a pure right going

3 shock. This Riemann problem is close to the previous one, since the difference lies
in the ghost 1-wave here, which turned to be a rarefaction wave before. However, one
may clearly expect that this regular wave cannot inhibit the convergence towards the
right solution. In addition, present case enables to get rid of the compulsory error in
the prediction of the regular 1- rarefaction wave, which might hide some defficiency
of the hybrid scheme. In practice, the present IC require that the hybrid scheme
manages computing the exact intermediate state of density on the right side of the
-moving- contact discontinuity, which is not obvious at all. We have plot below the
error using L! norm. Uniform meshes contain from 100 up to 160000 cells. The CFL
number still equals 0.5. The error obviously vanishes as the mesh size tends towards
zero (see figure 8.2). The rate of convergence for density is slightly greater than %,
and the rate of convergence for U and P variables is 1. We emphasize that the rate is
% for p, U, P when using basic conservative scheme (figure 8.2).

8.2. Van der Waals EOS. Note that when restricting to Van der Waals EOS,
there is no need to compute redundent information for (null) function gg. We will
indeed compute “twice” an approximation of the density when focusing on Van der

Waals EOS. Constants used in the EOS are: a = 1684.54, b = 0.001692, R = 461.5,
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Fi1G. 8.2. Pure unsteady 8-shock with EOS in Ty - L1 error norm

Cy = 1401.88. We recall below the decomposition:

pe = ¢1(Papa Ca 1/))+¢2(Pa Ca 1/))+¢3(Papa Ca 1/))a
¢1(Papaca1/)) = M

¢2(Pa Ca 1/)) = Oa

y=1 7

¢3(P’pa Ca 1/)) = apz(’Y—qu + rZY_T’Y)

40000.0
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8.2.1. Shock tube case. We focus here on test case proposed by Letellier and
Forestier [35]. Initial data is given by [35]:

Up =0, P,=37T311358, p, =333, (=1,
Up =0, Pp=21T70768, pr =111, Cgr=1.

Figures 8.3, 8.4 refer to the comparison of both approximations provided by the basic
fully conservative scheme and the hybrid scheme when computing a shock tube case
on different meshes. Results are obviously more appealing on the latter when using
hybrid version of the scheme. The L' error norm associated to the hybrid scheme
is given on the last figure 8.5 of this series, as a function of the mesh size. We note
that on the finest mesh, which is clearly out of reach of present computers for 3D
calculations, the decrease of error slows down.

For seak of completeness, we now examine the remaining two configurations of the
basic 1D Riemann problem, which either involve two shock waves or two rarefactions
waves.

Shock tube - Pressure Shock tube - Density

VFRoe-ncv (u,P,C,tho) and modified scheme (---) VFRoe-ncv (u,P,C,tho) and modified scheme (---)

4e+07 T T T T 400 T T T T

3.5e+07 -

3e+07

2.5e+07

20407 : : : :
0

15000

10000 r

5000 |

0

-2 : ‘ : ‘ ~5000 ‘ ‘ ‘ ‘
0 2 40 60 8 100 0 2 ) 60 8 100

Fi1c. 8.3. Shock tube with EOS in T3 - coarse mesh

8.2.2. Double rarefaction wave. We now examine some symmetrical double
rarefaction wave. This enables to predict the behaviour of the scheme close to the wall
boundary behind some bluff body, when applying for the mirror technique. Initial
conditions are now:

Uy =—100, P; =107, pr =111, Cp =4 =1,
Up =100, Pr=10", pr=111, Cr=1vr=1.

The time step is still in agreement with CFL condition C'FL = 0.5. The mesh
is composed of 200 regular cells. The first order version of the scheme has been
used here (see figure 8.6-left). Note that the small glitch on the density at the initial
position of the membrane is already present when using the standard Godunov scheme
or VFRoe-ncv scheme in a fully conservative form. One might expect a rather nice
behaviour of the scheme here since the exact solution contains no shock wave.
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Shock tube - Pressure (Van der Waals) Shock tube - Density (Van der Waals)
VFRoe-ncv and modified scheme (-—-) VFRoe-ncv (u,P,C,rho) and modified scheme (---)
4e+07 T T T 400 T T T
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2e+07 L L L 100 L L
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Fi1Gc. 8.4. Shock tube with EOS in Ts - finest mesh

Shock tube (Van der Waals) CFL=0.5
Density (circles) , velocity (squares), pressure (triangles up)
T T

-4 T
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FiG. 8.5. L1 error norm for hybrid scheme

8.2.3. Double shock wave. Before going further on, we examine some sym-
metrical double shock wave. This provides an initial guess of what happens when the
flow is impinging the wall boundary. Initial conditions are:

Ur = 100, P; =107, pr =111, Cp =4 =1,
Ur =-100, Pr= pr =111, Cr=vr=1.

[
—_
o

- -~

The CFL number is the same as above. The mesh still contains two hundred nodes

(see figure 8.6-right).

8.2.4. 3-shock waves. We eventually investigate some 3-shock waves. Recall
that one advantage here is that the 1-wave will be a “ghost” wave, and therefore will
generate a much smaller amount of error;, which might hide deficiencies occuring in
shock waves when focusing on the standard shock tube apparatus. Hence, we first
introduce IC as follows:

UL =Ur+((= — =)(PL— Pr)*®, pr=40, Cp=vr=1,

PR P2

URIO, pRII.O, CRzl/)R:l,
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Double rarefaction wave (Van der Waals)

Double shock wave (Van der Waals)
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F1G. 8.6. Double rarefaction wave (left) and double shock wave (right) with EOS in Ts

with Pr = 100000, p = 2 and P > Pg solution of:

2papr(e(PL, p2) — e(Pr, pr)) = (PL + Pr)(p2 — pR).

Intermediate states indexed 1,2 agree with Uy = Uy = Us, P = Py = Ps, pr = p1.

The L! error norm is given on figure 8.7. The smaller mesh contains 160000 nodes
and the coarser mesh 100 cells. For the whole range, the error norm of the density
tends to 0 as h'/2. We notice anyway, that the rate of convergence for both velocity
and pressure is approximately 1 for meshes with 100 up to 10000 cells, but the error
remains stationary (w.r.t. mesh size) for meshes containing more than ten thousand
nodes. This obviously means that some -indeed small value- O(1) error is present
in the solution close to the 3-shock wave. An ambiguous point is that it may only
be exhibited when using mesh refinement which involves much more cells than one
may afford in practice, and which is also seldomly investigated by developers. The
counterpart in a 3D framework would require more than 10'? cells. This implies in
practice that the hybrid scheme should not be disregarded. We will come back to
similar comments in a section below.

We turn now to different IC where densities and pressures are much higher:

Up=Ur+ (5 = 5)(PL = Pr))™® pr=3200, Cp=v¢r=1,

PR P2

Ur =0, pr=280.0, Cr=vr=1,
with Pgr = 8000000, p» = 160 and P > Pg solution of:

2papr(e(PL, p2) — e(Pr, pr)) = (PL + Pr)(p2 — pR).

We have plot here the L' error norm on figure 8.8. Similar comments as previous
ones still hold here, and the rate of convergence for the conservative scheme 1s clearly
% for the density, the pressure and the velocity. This is due to the fact that the local
amount of error around the contact discontinuity for pressure and velocity is so high
that it inhibits rate 1 to be set. Once again, the error with the modified scheme
becomes stationnary when meshes involve more than 10* cells.

Remark. In any case, it confirms that EOS in 75 and EOS in 75 should not be
confused, at least from a theoretical point of view. The occurence of a true non con-
servative product H(W)J,U in the governing equation of ¢3 inhibits the convergence
towards the right solution on very fine meshes. These results are in agreement with
scalar results obtained by Hou and Le Floch [24].
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Modified scheme with Van der Waals EOS : 3-shock wave (CFL=0.5) Van der Waals. Modified scheme: density (circles), velocity (squares), presure (triangles up)
Velocity (squares), density (circles). pressure (riangles up) 3 Basic conservafive scheme : density (stars), velocity (diamonds), pressure (trangles down)
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and hybrid scheme

8.3. Chemkin database. We focus here on EOS provided in [32] and investi-
gated in [10],[11]. The internal energy is a polynomial function in terms of the local
temperature T.

n

pe =rpop + (1 — )P + 3 0k bn rpya=r
P =rpT.
Straightforward decomposition yields:
pe = ¢1(pa Pa Ca 1/)) + ¢2(Pa Ca 1/)) + ¢3(pa Pa Ca 1/))a
¢1(pa Pa Ca 1/)) = Top + (/'Ll - 1)Pa
¢2(Paca1/)):0a "
¢3(pa Pa Ca 1/)) = Z2Snsk Hn (rp};ﬁ

We may simply compute the speed of acoustic waves as:
2o P Pt Zagnsk npn T
p pr =14 2 acncr a7

The whole algorithm only requires updating the cell pressure p?"'l = pi"‘l'l at the end
of the time step as follows:

(pe)i ™+ = por(p)i ™ — (63)7
pr—1 .

Remark. Note that unlike when using the basic Godunov or VFRoe-ncv schemes,
this only requires an algebraic manipulation and does not require any Newton proce-
dure to compute PZ»”‘I'1 in each cell as a solution of:

n+1lyn+1
ey gty = =

7

Hpn+l
Pt =

which results in a great decrease of the computational CPU time.

We refer to [11] which provides data of IC used herein. The latter computa-
tions (figure 8.9) have been obtained using present approximate Godunov scheme
VFRoe-ncv with (7, U, P) variable. Other computations with help of Roe approxi-
mate Riemann solver are given in [12]. Details concerning entropy are briefly recalled
in appendix B of [19].
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Shock tube (Chemkin database) - CFL =0.5
Velocity, density (circles), pressure (squares)
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Fi1Gc. 8.9. Shock tube using Chemkin database - coarse mesh

8.4. Tabulated EOS. For arbitrary non analytic EOS, we now define the de-
composition of the EOS in the class 77 and T3. This may be achieved defining some
function dy(P) = %P;_l, which is close enough to the real state law. The constant v,
1s computed introducing some least square minimization process.

¢1(pa Pa Ca 1/)) = ML_la
¢2(pa Ca 1/)) = Oa
¢3(pa Pa Ca 1/)) = pe — ’Yl}il'

Thus the redundent equation which is computed reads:

Gy0al P o)+ Uoa(Pp €+ (et P = 20) 50 =

8.4.1. Influence of decomposition. We examine very briefly below whether
some discrepancy in the decomposition implies some loss of accuracy, or in other
words try to evaluate the stability of the overall method w.r.t. to the choice of
the decomposition. Assume for instance that the real EOS reads: (pe) = %P_1.
Imagine that some -on purpose- error occurs in the process in such a way that the
decomposition yields:

¢1(paPaCa1/)) = P

2—17
¢2(paca1/)):0a !
¢3(papaca¢)zp( Lot )a

=1 72—l

where of course both constants are distinct. Despite from its simplicity, we first note
that the resulting hybrid scheme does not compute the same approximation of the
internal energy than the fully conservative scheme.

8.4.2. Approximate decomposition. We set here ¢ = 0.1 and:

QSS(P’PaCJ/)):E £

y1—-1°

{ ¢1(paPaCa1/)) = (1 - E)’Ylp_la

When focusing on the standard Sod shock tube problem which involves one 3-shock
wave, and using meshes with up to 40000 nodes, the L! error norm has been plotted
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on figure 8.10. While linear rate of convergence is achieved when using the correct
decomposition (velocity (squares), pressure (triangles up), density (circles)), and thus
the fully unmodified conservative scheme (see also [18]), the measured error associated
to the hybrid scheme (velocity (diamonds), pressure ( triangles down), density (stars))
diminishes much slower on finer meshes. Actually, detailed qualitative investigation
around the numerical shock locations shows that both are separated by an O(1) length,
which can hardly be seen unless the mesh contains more than 10000 nodes, which is
seldomly examined in pratice of course. This result confirms investigation of EOS in
T5 (Van der Waals) described previously. This is also confirmed in a “continuous”
way by the next numerical experiment.
Basic scheme amd modified scheme with perfect gas EOS

Velocity (square,diamond), density (circle,star), pressure (triangle up, triangle down, dashed)
- T T T T

-6 |

Log(error)
4

-8 |

1 1 1 1
-11 -10 -9 -8 -7 -6

Fi1Gc. 8.10. Perfect gas EOS: approzimate decomposition

8.4.3. Wrong decomposition. We set here ¢ = 1, thus:

P
-1

¢1=0 and ¢3=

Updating the cell pressure at the end of the time step is performed through:
P = (1 = 1) (4a)7

We provide below some comparison of both approximations, using a coarse mesh with
two hundred nodes and a fine mesh with 10000 nodes. It obviously appears that the
hybrid scheme no longer converges towards the correct solution. Actually zooming
the approximate solution provided by schemes with 5000 and 10000 cells enables to
check that the number of nodes between the two locations of 3 shock waves doubles
when refining the mesh by two. This is confirmed by computations on finer meshes.
Of course the error still seems to be negligible on coarse meshes ! Results are here in
agreement with [24].

9. A blend scheme. We eventually propose the following overall strategy, which
relies on tuning of both the original conservative scheme to deal with fine meshes, and
the above mentionned scheme to benefit from pure representation of moving contact
discontinuities on coarse meshes. It simply requires some parametric function in order
to switch from one scheme to the other when the mesh 1s refined, and of course when
complex EOS are considered. Thus, the cell pressure which will be used in practice
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F1G. 8.11. Perfect gas EOS: correct and wrong decomposition - coarse (left) and fine mesh (right)

40000 T T

Shock tube with perfect gas EOS (zoom)

Basic VFRoe-ncv and modified scheme (-—-) : pressure

30000 =

20000 -

10000

300

I I I
6920 6940 6960

I I I
6980 7000 7020

Velocity (CFL=0.5)

I I
7040 7060

I
7080 7100

-100
6900

1 1
6950 7050 7100

F1G. 8.12. Perfect gas EOS: correct and wrong decomposition - finer mesh (zoom)

will be p?"'l:

P.n+1 = P(pn-l'l eT.H'l C.n+1 1/;@"'1)
Pt = a(h) PP 4 (1—a(h) B

where ]52” is given in a previous section, and h stands for the mean mesh size. For
given EOS which do not have a contribution in 75, a(h) = 1 for EOS in T3, and
a(h) = 0 if the contribution in T3 is non vanishing. Otherwise, if the EOS is not in
Ty U T, a(h) should comply with:

a(h) = 1if h < ho,
alh)=0if h > hy,

for given mesh sizes hy < hy provided by user.

In practice, standard conservative schemes correspond to the formal choice hg =
h1 = +0o0, whereas the so-called hybrid scheme corresponds to hg = h; = 0. Nu-
merical tests reported above suggest some pratical values. The above blended scheme
seems to represent some useful compromise in order to satisfy both mathematicians
and those involved in solving industrial problems.

10. Conclusion. This paper was devoted to the computation of Euler type
schemes with arbitrary equation of state, assuming the internal energy depends on
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pressure and density variables, but also on concentrations of some species and a colour
function. It has been shown that when focusing on exact or adequate approximate
Godunov solvers, one needs to distinguish three different classes of EOS. One thus
needs to compute some redundent information (from a continuous point) in order
to cope with second and third classes. Actually, one needs first to decompose the
internal energy in three terms which respectively belong to the latter three classes.
Afterwards, one needs to compute an extra (respectively two) equation(s) when some
contribution occurs in the second or third class (respectively in both second and third
class) in the decomposition.

Some schemes have been proposed to compute the latter non conservative gov-
erning equations in addition to the first five conservative equations associated with
total mass, mass of species, total momentum, total energy and colour function. Thus
pure unsteady contact discontinuities are very well predicted on coarse meshes when
using the so called hybrid scheme. Numerical results seem to confirm that the hybrid
scheme permits more accurate computations on coarse meshes of shock tube experi-
ments involving sharp contact discontinuities when focusing on a mixture of perfect
gases, stiffened gas EOS or Van der Waals EOS. This is true for the vicinity of the
contact discontinuity, but also around the connection of the end of the 1-rarefaction
wave and the beginning of the 5-rarefaction wave. Discrete L' measure of conver-
gence confirms convergence towards the right solution in some specific cases when
the EOS has no contribution in 75. Actually measurement of rate of convergence ex-
hibits that both U, P converge as h towards the right solution, while concentration or
density converge as h=. Nonetheless, when refining much meshes, it clearly appears
in some cases tnvolving contribution of the EOS wn the third class T, that, as might
have been expected [24], the measure of convergence towards the correct solution is
no longer in favour of the hybrid scheme when shocks are involved in computations.
Numerical evidence shows that U, P still converge as h towards the right solution on
coarse meshes (involving from 100 up to 20000 cells), but that the error then becomes
stationary with respect to mesh size. This motivates the use of the blend scheme
which benefits from nice approximations on coarse meshes of the hybrid scheme, and
still inherits the property of convergence towards the right solution on finer meshes.
In practice, this will in fact correspond to the use of the hybrid scheme since very
few meshes contain more than (10?)2 cells in an industrial computation and none
contains more than (2.10%)3 cells! The hybrid scheme is thus appealing for industrial
purposes since it not only enables to increase accuracy on given (coarse) mesh size,
but also enables to reduce CPU time due to the fact that computation of pressure is
usually much faster when computing modified pressure P rather than standard value
P(plr, e?, CT, ¢7). This is actually the case when applying Chemkin database, which
only requires an algebraic calculus instead of a Newton procedure to compute cell
pressure at the end of time step, but also when dealing with more complex EOS or
tabulated EOS as suggested. It is emphasised that this remark takes into account the
fact that two additional discrete equations for redundent information must be com-
puted ; note that all interface information has already been prepared in the initial
version of the algorithm, which obviously explains that the balance in CPU time is
favourable to the hybrid scheme. Eventually, it seems to us that this work is not only
useful in the framework of two-phase flow modelling with help of single fluid models
of the Euler type, but also when retaining the two-fluid two-pressure approach.
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Appendix. VFRoe-ncv schemes for systems of conservation laws. This
appendix presents the construction a VFRoe-ncv schemes, focusing on systems of con-
servation laws. We reduce to the one dimensional case, with regular meshes (the exten-
sion to the multidimensional case and to unstructured meshes is classical). Following
notations introduced in the body of the present paper, we denote W: Ry x R — R”
the exact solution of the non degenerate hyperbolic system:

oW __AFW) _
{ ot + g

Let @ be a regular invertible function from R™ to R™ and ¥ its inverse. If W is a
regular solution of the above system, then Y = ®(1) is solution of

ay ay
rr + B(Y)ﬁ_x =

where B(Y) = (DU(Y))"Y(DF(¥(Y)))(D¥(Y)).
As mentionned above, VFRoe-ncv schemes are approximate Godunov schemes.
Hence, they may be written under the form

0

hi( W = W)+ (P (Y1) — FE(Y)0)) = 0.
We describe now the computation of Y/, ,,. The state Yi:—l/Z corresponds to the

exact solution Y* at = 0 of the linearized hyperbolic system:

ay=
ot

N

B(Y)——=0,
) [ Yo =®Wr)  ifz <0,

Y (O’x)—{ Yr = ®(Wr,) ife>0,

K3

where ¥ = (Yz 4+ YRr)/2. Since Y* is the solution of a linear system, its computation
is classical:

Y™ (?;YLaYR) =Vet 3 (O = Y0)r,

5%
=Yp — Z ("li.(Yr — YL))7%,
<
where l~k, :\; and 7, k = 1,...,n, are respectively left eigenvectors, eigenvalues and

right eigenvectors of matrix B(Y). Thus, we have

172 = Y7 (0; Y, YR).
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