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We report a simple and efficient all-optical polarization scrambler 

based on the nonlinear interaction in an optical fiber between a 

signal beam and its backward replica which is generated and 

amplified by a reflective loop. When the amplification factor 

exceeds a certain threshold, the system exhibits a chaotic regime 

in which the evolution of the output polarization state of the signal 

becomes temporally chaotic and scrambled all over the surface of 

the Poincaré sphere. We numerically derive some design rules for 

the scrambling performances of our device which are well 

confirmed by the experimental results. The polarization scrambler 

has been successfully tested on a 10-Gbit/s On/Off Keying Telecom 

signal, reaching scrambling speeds up to 500-krad/s, as well as in 

a wavelength division multiplexing configuration. A different 

configuration based on a following cascade of polarization 

scramblers is also discussed numerically, which leads to an 

increase of the scrambling performances. 

 

I. INTRODUCTION 

The ability to randomly scramble the state-of-polarization 

(SOP) of a light beam is an important issue that encounters 

numerous applications in photonics. Polarization scrambling is 

indeed mainly implemented to ensure polarization diversity in 

optical telecommunication systems so as to combat deleterious 

polarization effects and provide mitigation of polarization mode 

dispersion (PMD) and polarization dependent loss or gain [1]. 

For instance, polarization scrambling has been exploited to 

avoid polarization hole burning in Erbium doped fiber 

amplifiers (EDFA) [2], and has allowed washing out PMD-

induced error bursts within forward error correction frames [3]. 

Furthermore, polarization scrambling is a mandatory procedure 

when testing the performances of polarization-sensitive fiber 

systems or optical components. For that purpose, the SOP 

changing rate (i.e. the scrambling speed) induced by the 

scrambler device should be as high as some hundreds of Krad/s 

in order to match the scale of fast polarization changes 

encountered in high-speed fiber optic systems [4].  

Traditionally, polarization scrambler technologies are 

based on the cascade of fiber resonant coils, of rotating half and 

quarter alternated wave-plates, or of fiber squeezers as well as 

opto-electronic elements [5-14]. In most of these devices an 

external voltage is applied: it drives the rotation of the wave-

plates, the squeezing of the fiber as well as the expansion of the 

piezo-electric coils, so that the scrambling performances are 

directly controlled by means of this driving voltage. These 

opto-electronic technologies have been successfully 

implemented into commercially available devices capable to 

provide records of scrambling speeds, reaching several of 

Mrad/s [10-13] with moderate costs and lower power 

consumptions. 

 On the other hand, new techniques have emerged in the 

last few years exploring the possibility to all-optically 

randomize the polarization state of an incident signal [14-17]. 

The present work has been carried out in this context of 

fundamental research and aims to explore an alternative and 

complementary approach to current opto-electronic solutions. 

More precisely, here we report a numerical and experimental 

description of an all-optical polarization scrambler based on the 

nonlinear Kerr effect occurring in optical fibers. This device 

exhibits a chaotic dynamics, which could open the way towards 

a chaos-based scrambling technology in optical fibers not yet 

explored. Furthermore, the present device could be qualified as 

“home-made” since it is essentially based on standard 

components usually available in any Labs working in the field 

of nonlinear optics and optical communications. 

The basic principle of this device was first established in refs. 

[16] and [17], where it has been exploited in order to 

demonstrate a transparent method of temporal spying and 

concealing process for optical communications. Basically, it 

consists in an additional operating mode, namely the chaotic 

mode, of the device called Omnipolarizer, originally conceived 

to operate as an all-optical polarization attractor and beam 

splitter [18, 19].  

In this paper we gain a deeper insight into the physics of this 

all-optical polarization scrambler. We go significantly beyond 

our previous works reported in refs. [16, 17], especially by 

deriving numerically some design rules for the scrambling 

performances as well as testing our system in a wavelength 

division multiplexing (WDM) transmission and proposing a 

new configuration, based on a cascade of scramblers, which 

could greatly improve the scrambling performances. 
The paper is organized as follows. First of all in section II, 

we introduce the principle of operation of our polarization 
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scrambler. Then in section III we describe the experimental 

setup. In section IV we model and discuss the dynamics of our 

device and derive expressions for two important threshold 

parameters, which allow us to carefully discuss the transition of 

the system from a polarization attraction regime to the chaotic 

scrambling regime. In section V we report our experimental 

results in the CW regime and for a 10-Gbit/s On/Off keying 

(OOK) Telecom signal. Then, in section VI, we find an 

estimation of the scrambling performances as a function of the 

system parameters, and in section VII we numerically discuss 

the efficiency improvement provided by a cascade of 

scramblers. In section VIII we provide experimental evidences 

of the compatibility of our all-optical scrambler for WDM 

applications and finally in the last section, we summarize our 

work and outline some possible ways of improvement. 

II. PRINCIPLE OF OPERATION 

The principle of operation of the all-optical scrambler is 

schematically displayed in Fig. 1. It basically consists in a 

nonlinear Kerr medium, here an optical fiber, in which an initial 

forward signal S with a fixed polarization-state interacts 

nonlinearly due to a cross-polarization interaction with its own 

backward replica J generated at the fiber end by means of an 

amplified reflective loop. A strong power imbalance between 

the two beams is applied, which can actually lead to a chaotic 

polarization dynamics for both the forward and backward 

output fields [20, 21]. 

 

 
Fig. 1. Principle of operation. 

 

In some of our previous works [18, 19, 22, 23] we have 

already identified some particular regimes associated to this 

kind of counter-propagative cross-polarization interaction. For 

example, we have put in evidence that typically for nearly equal 

forward and backward beam powers, the stable stationary 

singular states of the system play the role of natural polarization 

attractors for the output signals. Generally these stationary 

states Sstat and Jstat can be computed as a function of the system 

parameters, such as the forward and backward powers as well 

as the fiber length L. 

In order to illustrate that point, panels (a-c) of Fig. 2 display 

the attraction process undergone by an input signal towards a 

stable stationary state for nearly equal counter-propagative 

beam powers. For clearness, only a single Stokes component of 

S and J is represented,  let us say S1 and J1 (solid line), as well 

as for Sstat and Jstat, let us say S1,stat and J1,stat (in circles). We can 

then observe the spatial evolutions of S1 and J1 along the fiber 

length for 3 consecutive times tA < tB < tC. In the time slot 

0 < t < L/c, where c is the speed of light in the fiber, the signal 

S propagates unaffected by nonlinear effects, since J has not yet 

been generated at the opposite end of the fiber. For illustration 

purpose, panel (a) shows the corresponding spatial profile of S1 

at instant tA slightly larger than L/c: the backward replica J1 has 

just been reflected and starts to counter-propagate. Afterward, 

(panel (b)), the cross-polarization interaction between S and J 

makes them to gradually converge towards the stable stationary 

states of the system. Finally, at the instant tC (panel (c)) the 

spatial profiles of S and J almost perfectly match the stationary 

solutions and do not evolve substantially in the subsequent 

instants. Therefore, in this instance the stable stationary states 

act as asymptotic attractors [19]. 

On the contrary, for large power unbalances between 

counter-propagating fields, the stationary states become 

unstable. As depicted by panels (d-f) the forward and backward 

beams are then no longer attracted towards a stationary state 

solution: both beams oscillate in time without reaching a fixed 

state. We will see in the following that the forward polarization 

at the exit of the fiber varies endlessly in time and becomes 

temporally scrambled as a result of a chaotic dynamics all over 

the surface of the Poincaré sphere. This constitutes the basic 

principle of our all-optical polarization scrambler. 

III. EXPERIMENTAL IMPLEMENTATION 

The experimental implementation of the proposed scrambler 

is schematically displayed in Fig. 3.  

For fundamental studies, the initial signal consists in a fully 

polarized 100-GHz-bandwidth partially incoherent wave, 

centered at 1550 nm. This incident signal is generated from an 

Erbium-based amplified spontaneous noise source (ASE) 

filtered in the spectral domain by means of a wavelength-

demultiplexer followed by an inline polarizer. This large 

bandwidth input signal is used to avoid any impairment due to 

the stimulated Brillouin backscattering occurring in the fiber 

under-test.  

 
Fig. 2. Spatial evolution along the fiber length of the Stokes components S1 

(blue solid lines)  and J1 (red solid lines)  at 3 consecutive instants tA (a-d), 
tB (b-e) and tC (c-f). Corresponding stationary solutions S1,stat and J1,stat are 

represented in circles. In the case of panels (a-c) the counter-propagating 

waves have almost the same power so that the stationary solutions are stable. 
Consequently S1 and J1 gradually converge in time towards S1,stat and J1,stat 

respectively. Conversely, in the case depicted by panels (d-f) the stationary 

solutions are unstable and therefore no attraction process occurs. 
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In a second step, in order to evaluate the performance of this 

all-optical scrambler for Telecom applications, the incoherent 

wave is replaced by a 10-Gbit/s OOK signal at 1550 nm. This 

return-to-zero (RZ) optical signal is generated from a 10-GHz 

mode-locked fiber laser delivering 2.5-ps pulses at 1550 nm. 

The spectrum of this initial pulse train is shaped thanks to a 

liquid-crystal based optical filter to temporally broad the pulses 

to 20 ps. The resulting 10-GHz pulse train is intensity 

modulated thanks to a LiNbO3 Mach-Zehnder modulator driven 

by a high-speed RF pattern generator. The input signal is then 

amplified by means of an Erbium doped fiber amplifier (EDFA-

1) before injection into the fiber under-test thanks to an optical 

circulator. Note that this optical circulator is mainly used so as 

to suppress the residual counter-propagating signal replica. 

In order to characterize the dynamics of our polarization 

scrambler, two fibers were tested. Fiber-1 corresponds to a 5.3-

km long non-zero dispersion shifted fiber (NZ-DSF) 

characterized by a chromatic dispersion of  -1 ps/nm/km at 1550 

nm, linear losses 0.24 dB/km and a nonlinear coefficient  = 1.7 

W-1km-1. Fibre-2 is a reduced slope telecom fiber (OFS-TW-

SRS) characterized by L = 10 km, a chromatic dispersion of -

2.8 ps/nm/km,  = 1.7 W-1km-1 and losses of 0.2 dB/km. 

The reflective-loop setup which enables to produce the 

backward replica at the fiber end consists in an optical circulator 

followed by a polarization controller (PC) as well as a second 

Erbium amplifier (EDFA-2). Note that the EDFA-2 provides 

the gain of the backward wave, which allows us to finely adjust 

the power imbalance with respect to the forward signal. A 90/10 

coupler is also inserted into the loop to send the resulting 

scrambled signal for analysis. The forward output signal is 

optically filtered at λOBPF-2 = 1550 nm (OBPF-2, bandwidth 

100-GHz) to remove the excess of amplified spontaneous noise 

emission outside the signal bandwidth. The state-of-

polarization of the output signal is finally characterized by 

means of a standard commercial polarimeter.  

IV. SYSTEM DYNAMICS 

In the following, we indicate with S = [S1, S2, S3] and 

J = [J1, J2, J3] the Stokes vectors for the forward and backward 

beams, respectively. Consequently, the normalized unitary 

vectors s = S/|S| and j = J/|J| indicate the corresponding SOP.  

The dynamics of the system is mainly driven by the 

amplification factor g of the loop defined by the power ratio 

between the backward and forward signals at the fiber output: 

g = |J(z=L,t)| / |S(z=L,t)|, where z indicates the propagation 

length along the fiber. In practice, the coefficient g can be 

directly adjusted by means of the EDFA-2. Furthermore, in ref. 

[17], we have pointed out the existence of two threshold values 

for the parameter g, defined as gA and gC, that allow us to 

distinguish three different operating regimes, namely the 

attraction regime (g < gA), the transient regime (gA < g < gC) 

and the chaotic regime (g > gC). 

The evolutions of S and J along the fiber length are governed 

by the following coupled equations [24]:  
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where D = ∙diag(-8/9,8/9,-8/9) is a diagonal matrix,  and α are 

the nonlinear Kerr coefficient and the propagation losses of the 

fiber, respectively, and c is the speed of light in the fiber. 

According to Eqs.(1) the average powers PS(z) = ⟨|S(z,t)|⟩ and 

PJ(z) = ⟨|J(z,t)|⟩  (the brackets ⟨⟩ denote a temporal averaging) 

are individually conserved except for the propagation losses, 

indeed PS(z) = PS(0)exp(-αz) and PJ(z) = PJ(L)exp(α(z-L)). 

In our numerical simulations we solve Eqs.(1) subject to the 

boundary condition J(z=L,t) = gRS(z=L,t), in which R is a 3x3 

matrix modeling the polarization rotation in the reflective-loop, 

which is imposed by the circulator and adjusted by means of the 

polarization controller (PC).  

In the configuration under-study, the dynamics of S and J are 

related to the stability of the stationary states of the system, 

which are the solutions of Eqs.(1) in the CW limit, i.e. when 

dropping the time derivatives.  

In the limit where losses are neglected the stationary states of 

Eqs.(1) read as [25]: 
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where • indicates the scalar product and Ω=S-DJ is an invariant 

throughout the fiber. In [25] the following relation is reported 

which ties the input polarization alignment  

μ = K ─ 1[ - DJ(L)]•S(0) and the output polarization alignment 

η = K ─ 1[ - DJ(L)]•S(L), being K = |DJ||S| a system invariant: 
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Here we underline that, since |DJ| ≡ (8/9)|J| ≡ (8/9)|gRS| 

 
Fig. 3 Experimental setup of the chaotic polarization scrambler under study. PC: Polarization Controller, OBPF: Optical bandpass filter. The two Poincaré spheres 

illustrate the distribution of the Stokes vector of the forward beam at the input (fully polarized) and at the output (scrambled over the sphere), respectively.  
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≡ (8/9)g|S|, then in the limit g>>1, Eqs.(3) gives μ ≃ η, which 

gives: 

 

  (L) D(0) =(L) D(L) ssss RR   (4) 

 

The whole of the output stationary SOPs s(L) solving Eq.(4) 

describes a closed line over the Poincaré sphere, which we call 

here Line of Stationary Output SOPs (LSOS) and whose shape 

depends both on the input s(0) and on the rotation matrix R.  

In ref. [22] a general rule was reported dealing with the 

stability of these stationary solutions and stating that a 

stationary solution is stable if it exhibits a non-oscillatory 

evolution along the whole fiber length. We point out that the 

vector S(z) given by Eq.(2) is formed by the three orthogonal 

components Ω•S(0) Ω / |Ω|2 , [ S(0) ─ Ω•S(0) Ω / |Ω|2 ] cos(|Ω|z 

) and [Ω ×S(0) / |Ω|] sin(|Ω|z) that are all monotonic in z if 

|Ω|L < π/2. Considering that if g >> 1 then |Ω| ≡ |S - DJ| ≃ |DJ| 

≡ γ(8/9)g|S|, we obtain that a stationary state is stable only if 

the condition g|S|L<9π/16 is satisfied. We remind that this 

condition holds as long as fiber losses can be neglected. Note 

however that our numerical simulations confirm that this 

condition still holds in presence of weak fiber losses (typically 

0.2 dB/km) after substitution of |S| for |S(L)| ≡ PS(L). Actually 

if γgPS(L)L < 9π/16, or equivalently g<9π/(16∙L∙Ps(L)∙γ), then 

the stationary states belonging to the LSOS are stable and 

represent an attraction point on the Poincaré sphere. We thus 

confirm the existence of an attraction regime that, as already 

observed in ref. [17], is characterized by an upper threshold gA 

here estimated by the relation gA = 9π / (16∙L∙Ps(L)∙). In this 

regime, if a CW SOP s(0,t) = s(0) is injected into the fiber, then 

the corresponding output SOP s(L,t) always converges in time 

towards a fixed point belonging to the LSOS, which is 

analogous to the attraction process experienced by S1(L,t) in 

Fig.2(a-c). 

The position of the point on the LSOS depends on |Ω|L, and 

thus on the product gPS(L). This means that, by adjusting the 

value of the amplification factor g, different points on the LSOS 

can be reached. 

On the other hand, when g > gA the system no longer operates 

in the attraction regime. More precisely, a threshold gC is found 

such that, if gA < g < gC the system operates in a transition 

regime for which the output SOP could reach a constant-in-time 

value, as well as a periodic, or even a chaotic temporal 

trajectory. The dynamics of the system is found to depend on 

both the particular input SOP and the rotation matrix R. Finally, 

when g > gC, a chaotic regime is reached for which the output 

SOP trajectory is aperiodic irrespective of the input SOP and 

the rotation matrix R. This aperiodic behavior favors the 

coverage of the whole Poincaré sphere and therefore leads to an 

efficient scrambling of the output SOP. The basic principle of 

the present polarization scrambling device relies on this 

particular operating regime. Note that, as will be discussed 

later, this chaotic dynamics is characterized by the presence of 

a positive Lyapunov coefficient [17]. 

Our numerical simulations show that the threshold gain gC 

beyond which a chaotic regime occurs is typically in the range 

of [5-10] gA. Both gA and gC are thus  (L∙Ps(L))-1≡ 

(L∙Ps(0)∙exp(-αL))-1, therefore for typical propagation losses of 

about 0.2 dB/km (α = 0.046 km-1) and a fiber length L < 20 km 

these thresholds can be reduced by increasing the fiber length. 

Let us now illustrate the general system dynamics by 

considering numerical simulations including the experimental 

parameters of Fiber-1. These results are reported in Figs. 4 

when a PS(0) = 15 dBm CW forward signal is injected into the 

system.  

 

 
 

Fig.4 Numerical output distribution of the SOP s(L,t) over the Poincaré sphere 

for increasing values of the reflective coefficient g . Input power is 

PS(0) = 15 dBm; fiber is Fiber-1 (L = 5.3 km; losses 0.24 dB/km;  = 1.7 W-

1km-1 ). Panel (a): fixed stable points reached by s(L,t) when g = 2 (black dot), 

g = 4 (red dot), g = 6 (green dot) and g = 8 (cyan dot). Panels (b) and (c): 
periodic trajectories corresponding to g = 12 and g = 16, respectively. Panel (d): 

fixed unstable point reached by s(L,t) when g = 25. Panel (e): semi-chaotic 

trajectory corresponding to g=28. Panel (f): chaotic trajectory corresponding to 
g = 50. The closed curves in panels (a, d) form the Line of Stationary Output 

SOPs (LSOS), which is defined by the equations {2 s1s2 

+s3
2 = s2 ; s1

2+s2
2+s3

2 = 1}. The black solid line corresponds to the stable part of 
the LSOS, composed by the stable stationary states; the blue dotted line 

corresponds to the unstable part, composed by the unstable stationary states. 

For this configuration, PS(L) = 13.8 dBm, and we can thus 

estimate gA = 9π/(16∙L∙Ps(L)∙) ≃ 8 as well as gC ≃ 5gA ≡ 40. 

For this series of simulations, the SOP of the input signal is 

aligned with the x-axis of the Poincaré sphere, that is to say 

s(0,t) = s(0) = (1,0,0) and R = [(0,1,0); (-1,0,0); (0,0,1)]. In this 

case, Eq.(4) reads as 2 sL1 sL2 + sL3
2 = sL2, where sL1,2,3 are the 

components of s(L) and are subject to the constraint 

|s|2 ≡ sL1
2+sL2

2+sL3
2 = 1. The corresponding LSOS, formed by 

two closed and distinct curves over the Poincaré sphere, are 

plotted in Fig. 4a, where both the stable (black solid line) and 

the unstable part (blue dashed line) of the LSOS are put in 

evidence.  

Fig. 4a illustrates the attraction regime, i.e. when g<gA. It 

displays the fixed points that are reached by the output SOP 

when g = 2 (black dot), g = 4 (red dot), g = 6 (green dot) and 

g = 8 (cyan dot), respectively. As predicted theoretically, a 

unique deterministic point is reached for each value of g and 

more importantly, this point lies on the stable part of the LSOS. 

Figures 4(b-e) illustrate the transition regime, that is to say 

when gA < g < gC. As previously mentioned, more or less 

complex periodic trajectories can be observed in this regime, 

for instance in panel (b) for g = 12 and in panel (c) for g = 16, 



  

5 

 

as well as fixed unstable points (panel (d), g = 25). Indeed, our 

numerical simulations reveal that if a fixed point is reached in 

the transition regime, then it always belongs to the unstable part 

of the LSOS. For this reason, even a small perturbation of the 

system parameters, for example of the coefficient g or of the 

rotation matrix R, leads to a dramatic change in the output 

dynamics of s(L,t), which can evolve towards a complex 

periodic or semi-chaotic trajectory. This feature is clearly 

visualized in panels (d) and (e), corresponding to a variation of 

the amplification factor from g = 25 to g = 28.  

The semi-chaotic trajectory in Fig. 4(e) is the signature of the 

transition from the transient regime to the chaotic regime: the 

path of s(L,t) over the Poincaré sphere exhibits an apparent 

random motion, although it only fills a part of the surface of the 

Poincaré sphere. In the chaotic regime (g > gC, panel (f)) the 

trajectory is well distributed all over the surface of the Poincaré 

sphere, so that an efficient and nondeterministic polarization 

scrambling of the output signal is achieved, in agreement with 

our predictions. Obviously, this is the ideal operating regime for 

the present all-optical polarization scrambler. 

V. EXPERIMENTAL RESULTS 

In order to confirm our numerical predictions, a series of 

experiments have been carried out by means of Fiber-1. To this 

aim, a 100-GHz incoherent signal was injected into the system 

with a fixed and arbitrary polarization state as well as a constant 

average power PS(0) = 15 dBm. 
 

  
 

Fig. 5 DOP (a) and Lyapunov coefficient (b) of the output signal as a function 

of the reflective coefficient g. The input power is PS(0)=15 dBm; fiber is Fiber-

1 (L=5.3 km; losses 0.24 dB/km; =1.7 W-1km-1 ).The blue circles correspond 

to the experimental measurements. The DOP close to the unity around g=20 

corresponds to the attraction towards an unstable stationary states in the 

transient regime. Color solid lines display the results of numerical simulations 

for 3 particular rotation matrices R and 3 different input conditions of the SOP. 
 

The performance of our all-optical polarization scrambler was 

first experimentally characterized by evaluating the degree of 

polarization (DOP) as a function of the backward power, i.e. the 

amplification coefficient g. The DOP is classically defined as 

DOP = (⟨sL1⟩2 
+ ⟨sL2⟩2 

+ ⟨sL3⟩2)1/2 and is used to quantify the 

scrambling efficiency of the output SOP s(L,t) over the 

Poincaré sphere. As it can be seen in Fig. 5a (blue circles), the 

DOP of the output signal has initially a value close to unity, 

which is related to the constant-in-time output SOP that 

characterizes the attraction regime. 

The DOP starts to decrease beyond the amplification threshold 

g ≃ 8, in perfect agreement with our prediction of gA. When 

g > 8, the system enters in the transient regime. In such a regime 

small variations of the amplification g could give rise to 

different temporal trajectories of the output SOP that cover only 

partially (see Fig. 4b) or almost entirely (see Fig. 4e) the 

Poincaré sphere. For this reason some fluctuations can be 

observed in the DOP evolution.  

Finally, for high values of g, typically above gc = 5gA = 40, 

the system enters into the chaotic scrambling regime. The 

experimental DOP remains lower than 0.3, which corresponds 

to an efficient scrambling of the output SOP all over the 

Poincaré sphere. In particular, each sequence of S1, S2 and S3 is 

characterized by autocorrelations that rapidly tend to zero, 

indicating that they don’t exhibit deterministic repetitive 

patterns, in agreement with our numerical predictions. We 

stress here the fact that in this regime the Lyapunov coefficient 

λ(z = L) is always positive (Fig. 5b), which provides a key 

signature of the chaotic nature of the dynamics of the output 

SOP. 

Moreover, it is important to note that, contrary to the 

transition regime, in the chaotic regime the output SOP 

dynamics is almost independent of the input SOP or rotation 

matrix R. Indeed a variation of these two parameters simply 

produces a different aperiodic trajectory of the output SOP. For 

this reason in Fig. 5 when g > gC , no major difference between 

the 3 solid curves can be observed, that refer to the numerical 

solutions of Eqs. 1 with 3 different input SOPs and matrix R 

randomly chosen. The system also becomes independent of the 

input power, but in practice we have observed that the more the 

input power is, the easier the system enters into the chaotic 

regime. In fact, when the device operates with moderate 

powers, an adjustment of the polarization controller PC is 

needed in order to force the system to evolve into an unstable 

chaotic region.  

In addition we have also checked that, for typical values of 

power used in these experiments, no polarization scrambling 

occurs if the counter-propagating beam is an external wave 

generated independently of the forward wave [26, 27]. This 

 

Fig. 6 (a) Experimental RF spectrum of the output component S1 as a function 

of the amplification factor g.  The input power is PS(0) = 15 dBm; fiber is 

Fiber-1 (L = 5.3 km; losses 0.24 dB/km;  = 1.7 W-1km-1 ).The inset shows a 

magnification of the spectrum between gA et gC. Snapshots (b), (c) and (d) 

illustrate the spectrum of S1 and the output SOP distribution on the Poincaré 

sphere when the backward power is 20 dBm (g = 4), 25 dBm (g = 12) and 

33 dBm (g = 80), respectively. 

(b)                            (c)                             (d)

(a)
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clearly indicates that the instability of the system is in fact 

fundamentally related to the feedback effect imposed by the 

reflected loop setup.  

The dynamics of the system is even more striking when 

characterized in the spectral domain. For that purpose, we have 

measured the RF spectrum of the output Stokes component S1. 

These measurements were achieved by recording the electrical 

RF spectrum of the temporal intensity profile detected behind 

an optical polarizer.  

Fig. 6a displays the evolution of the output RF spectrum as a 

function of the backward power PJ(L) = gPS(L) and the 

corresponding g parameter. The 3 regimes previously discussed 

are distinctly visible: 

- When PJ (L) < 23 dBm (g < gA = 8), the system is in the 

attraction regime: the spectrum always exhibits a single narrow 

peak centered in f = 0 Hz, which corresponds to a constant-in-

time value in the temporal domain and thus a constant output 

SOP. 

- When 23 dBm <PJ (L) < 30 dBm (8 < g <40), the transition 

regime is reached, and as previously mentioned the system can 

exhibit 3 different dynamics: either an attraction towards an 

unstable stationary point, which corresponds to a DOP close to 

the unity (see in Fig. 5 the experimental results for g ≃ 20) and 

to a narrow peak in the RF spectrum; either a periodic 

trajectory, which corresponds to equally spaced narrow peaks 

in the RF spectrum; or a semi-chaotic trajectory for which the 

RF spectrum begins to broaden. 

- Finally in the chaotic regime, for PJ (L) > 30 dBm (g > 40) 

the spectrum evolves in a much broader continuum of 

frequencies without showing any discrete component, which 

corresponds to an increasing scrambling speed and true chaotic 

behavior of the output polarization. 

 The snapshots (b-d) in Fig. 6 and corresponding Poincaré 

spheres illustrate the 3 typical regimes of our scrambler. 

Snapshot (b) for PJ (L) = 20 dBm (g=4) depicts the attraction 

regime, characterized by a single peak centered in f = 0 Hz in 

the RF spectrum of S1. For PJ (L) = 25 dBm (g = 12), the 

snapshot (c) shows the transient regime: discrete frequency 

harmonic components in the RF spectrum are localized at 

n13 kHz, corresponding to a closed and periodic trajectory on 

the Poincaré sphere. Finally, snapshot (d) reports an example of 

the chaotic regime for PJ (L) = 33 dBm (g = 80 > gc); we can 

clearly see a continuum of frequencies in the RF spectrum, 

corresponding to an almost uniform coverage of the Poincaré 

sphere and thus an efficient polarization scrambling of the 

output signal. 

Note in this respect that a theoretical description of the spectral 

dynamics of the Stokes components in this chaotic regime of 

the polarization scrambler is in progress by making use of the 

wave turbulence theory [28]. 

Furthermore, as shown in Fig.7, in the chaotic regime all the 

normalized Stokes parameters exhibit a nearly uniform 

probability density function, which provides further evidence 

of the polarization randomization. Note that a perfectly uniform 

density function of the Stokes components would correspond to 

a DOP close to 0, whereas in our case the non-perfect 

uniformity entails a DOP > 0, but always lower than 0.2 for 

large values of g (see Fig.5a). 

 

 
Fig. 7 :Experimental probability histogram ([%]) of the 3 normalized Stokes 

parameters s1, s2 and s3. The input power is PS(0) = 15 dBm; the backward power 
is PJ(L) = 33dBm; the fiber under test is Fiber-1 (L = 5.3 km; losses 0.24 dB/km; 

 = 1.7 W-1km-1). The corresponding Poincaré sphere is represented in Fig. 6(d). 

 Our home-made polarization scrambler was also tested for 

Telecom applications. In particular, we have characterized the 

signal degradation due to the nonlinear regime occurring during 

the propagation. The initial incoherent signal was thus replaced 

by a 10-Gbit/s OOK signal centered at 1550-nm. The input SOP 

was kept constant and the injected power in Fiber-1 was fixed 

to Ps(0) = 15 dBm. Figure 8a displays the output Poincaré 

sphere of the 10-Gbit/s signal for a backward power of 30 dBm 

(g ≃ 40). It corresponds to an experimental scrambling speed of 

107 krad/s and thus confirms that an efficient scrambling 

process can be achieved, even with high-repetition rate 

modulated signals. Moreover, Fig. 8b shows that the shape of 

the pulses is also remarkably preserved with a wide-open output 

eye-diagram, which validates the applicability of our 

polarization scrambler for RZ modulated signals. 

 

 
 

Fig. 8 Poincaré sphere (a) and eye-diagram (b) of the 10-Gbit/s signal recorded at the output 

of Fiber-1 (L = 5.3 km; losses 0.24 dB/km;  = 1.7 W-1km-1) for an input average power of 

15 dBm and a backward power of 30 dBm. Panel (c): output eye-diagram for a backward 

power of 35 dBm. 

 

Finally, due to its intrinsic principle, the main limitation of 

our system is the strong Rayleigh back-scattering generated 

from the high power counter-propagating replica. In fact, the 

Rayleigh emission is coupled to the scrambled signal through 

the output circulator, which induces a non-negligible amount of 

noise at the signal frequency. This phenomenon is well 

illustrated in Fig. 8c, where the backward power is increased up 

to 35 dBm (g ≃ 120). The corresponding output eye-diagram 

turns dramatically closed with a high level of amplitude jitter. 

As a consequence, this deleterious effect limits the maximum 

backward power that can be re-injected into the fiber and thus 

the scrambling speed that can be achieved. A practical solution 

to limit this drawback would be to use a frequency offset pump 

channel which first copropagates with the initial signal but still 
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remains the only back-reflected beam. This technique has been 

implemented in the last section of the paper for the WDM 

configuration. 

VI. SCRAMBLING PERFORMANCES 

In this section we analyze the performances of our device in 

terms of scrambling speed and coherence time. The scrambling 

speed v represents the average angle covered by s in 1 second 

over the Poincaré sphere: 

 

 t/0   stLimv  (5) 

 

where, in the limit ∂t → 0, the dimensionless quantity 

|∂s| = |s(t+∂t) -s(t)| represents the angle between the two vectors 

s(t+∂t) and s(t) over the unitary Poincaré sphere and can 

therefore be expressed in dimensionless units of radians. 

Consequently, we will indicate the speed in units of rad/s. 

The output coherence time is defined as Tcoh = (tc1+tc2+tc3)/3, 

being tci (i={1,2,3}) the coherence time related to the 

component sLi, that is the area of the associated auto-correlation 

function [29]: 

 

 






τ
LiLi (t)sτ)(tscit    (6) 

 

This parameter reveals how fast the polarization fluctuations 

of the output SOP become uncorrelated, and is thus an 

important quantitative index to evaluate how quickly the 

depolarization process occurs. 

In order to derive a design rule of the output scrambling 

speed as a function of the system parameters, we have fitted our 

previous numerical results by means of a least-square 

interpolation, using as model function vm = k1γgPS(0)exp(-

k2αL). The best fit to the numerical data is provided by 

k1 = 4c0/9, where c0 is the speed of light in the vacuum, and 

k2 = 5/3. Furthermore, we found that the output coherence time 

is well interpolated by 1/v, which leads to the estimations: 

 

)3/5exp()0(Pgγc)9/4( S0 zv   

  )3/5exp()0(Pγc)4/9(T
1

S0coh zα


 g  

 

The validity of these estimations is illustrated in Fig. 9, where 

the scrambling speed and the coherence time calculated by 

means of Eqs. (7-8) are in excellent agreement with the 

experimental measurements obtained thanks to the 100-GHz 

incoherent signal and both Fiber-1 and Fiber-2. Eqs. (7-8) and 

results reported in Fig. 9 confirm the tendency previously 

observed in ref. [17], that is to say that in the chaotic regime the 

scrambling speed grows up linearly with g. This confirms that 

g is the key parameter to control the temporal fluctuations of 

the output polarization. The scrambling speed reaches some 

hundreds of krad/s. Although this value is smaller than those of 

commercially available devices, it makes our chaotic scrambler 

of practical interest for the testing of real fiber optic systems. 

Note also that by increasing the fiber length, one can reduce the 

thresholds gA and gC. However, the drawback is that this 

solution increases the total propagation losses, which degrades 

the scrambling performances and sets therefore a limit on the 

maximum fiber length L. 

VII. CASCADE OF SCRAMBLERS 

In order to overcome the limits imposed on the fiber length 

and on the backward power, discussed in the previous sections, 

we may take advantage of higher Kerr nonlinearities, e.g., in 

bismuth, tellurite, chalcogenide fibers, or more generally in 

soft-glass fibers [30, 31, 32], so as to make our polarization 

scrambler faster and compact. A different approach consists in 

implementing a cascade of scramblers where the forward beam 

S exiting the nth-scrambler is amplified at its original power and 

then injected in the (n+1)th-scrambler as illustrated in Fig. 10. 

Such a configuration is more complex and expensive than the 

single scrambler and other cascade systems already proposed in 

literature [33]. On the other hand, it would allow limiting both 

the fiber length and the backward power at each stage, in such 

a way that propagation losses and back Rayleigh scattering 

remain negligible. On the other hand, the complexity of the 

cascade setup is proportional to the number of scramblers, 

which practically puts a limit on the maximum number of 

stages. However, contrary to a concatenation of classical linear 

polarization manipulations with well-defined eigenstates, 

which usually impose a succession of deterministic rotations 

and thus are enable to produce highly chaotic depolarized light, 

here we exploit a nonlinear process between counter-

propagating waves, which is known to induce high polarization 

instabilities [20-21]. More precisely, the principle of operation 

of our cascade of scramblers relies on the fact that, as any 

chaotic system, a small perturbation of the input parameters will 

induce a dramatic change in output. This butterfly effect, 

 
 

Fig. 9 Experimental measurements (blue circles) and analytical estimations 

by means of Eqs.(7-8) (red solid line) of the scrambling speed and coherence 

time (in logarithmic scale). Fibers under test are Fiber-1 (L = 5.3 km; losses 

0.24 dB/km , i.e. α = 0.055 km-1;  = 1.7 W-1km-1) and Fiber-2(L = 10 km; 

losses 0.2 dB/km, i.e. α = 0.046 km-1;  = 1.7 W-1km-1). 

Two different input powers Ps(0) have been used: 15 dBm and 22 dBm. 

Panels (a,d): case of Fiber-1 and input power 15 dBm (for which gC ≃ 40) ; 

panels (b,e): case of Fiber-1 and input power 22 dBm (gC ≃ 8); panels  (c,f): 

case of Fiber-2 and input power 22 dBm (gC ≃ 6). 

 

(7) 

(8) 
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intrinsic to the Omnipolarizer, will manifest here as a 

completely different trajectory on the output Poincaré sphere. 

The cascade of scramblers exploits this property that the more 

unstable in time the input SOP is, the more efficient our 

polarization scrambler is with moderate powers. Consequently, 

the first polarization scrambler of the cascade will induce a 

periodic or quasi-periodic perturbation of the input SOP, while 

the following scramblers will extend the genuine nature of the 

output SOP, then characterized by an increasing Lyapunov 

coefficient. 

 
Fig. 10 Representation of the sequential cascade of 8 scramblers. See text for details on 

system parameters. The cyan numbered boxes identify the scramblers in the cascade; the 

black triangles indicate the re-amplification of the forward signal between two consecutive 

scramblers. The output SOP at the exit of the scramblers in the cascade is plotted over the 

Poincaré sphere when the amplification is set to g = 12 in each scrambler. 

 

Indeed, we can notice that if the input SOP to a single scrambler 

is not constant-in-time (CIT), then its chaotic amplification 

threshold is reduced, i.e. we have a new threshold gC’ < gC, 

being gC the threshold in presence of a CIT input SOP. 

Furthermore, we observe that the higher the scrambling speed 

of the input SOP, the lower this new threshold gC’ is, and that 

the scrambling speed of the output SOP is larger than the speed 

related to the input SOP.  

Let us now consider a cascade of N stages where each 

scrambler is characterized by an amplification g > gA and where 

the input SOP at the 1st scrambler is CIT. Being g > gA , the 

SOP at the output of the 1st scrambler typically follows a 

periodic or aperiodic trajectory, thus it is non-CIT. As a 

consequence of the aforementioned observation, the threshold 

gC
(2) related to the 2nd scrambler will be lowered, i.e. gC

(2)<gC, 

and the scrambling speed at the output of the 2nd scrambler will 

be larger than the speed at the output of the 1st scrambler. 

Extending this reasoning to the whole cascade, we find that 

the scrambling speed is improved at the output of each stage, 

whereas the chaotic threshold is reduced. If the threshold gC
(N) 

related to the last scrambler of the cascade is gC
(N) < g, then we 

observe a chaotic SOP at the output of the cascade, and thus an 

efficient scrambling over the Poincaré sphere. Being that the 

chaotic threshold is reduced at each stage, in a cascade with lots 

of scramblers the condition gC
(N) < g can be reached even when 

the amplification g is only slightly larger than gA. Therefore, 

when plotting the output DOP as function of g, we envisage a 

sharp cut-off in proximity of gA: indeed whenever g > gA the 

SOP at the exit of the cascade will be chaotic and well 

scrambled (i.e. DOP ≈ 0). On the contrary, when g < gA each 

scrambler of the cascade works in the attraction regime, so that 

the corresponding output SOP, after a short transient time, is 

attracted towards the LSOS. As a consequence, the DOP at the 

output of the cascade is nearly unitary. 

In Fig. 10 the distribution over the Poincaré sphere of the 

SOP s at the output of the stages in a cascade of 8 scramblers is 

displayed. The fiber implemented in each scrambler is Fiber-1 

(L = 5.3 km), thus the total length of the cascade system is 

Lcascade = 42.4 km. The power Ps(0) injected in the cascade is 

15 dBm, and is kept constant at the input of each stage thanks 

to the re-amplification of the forward signal between two 

consecutive scramblers. Therefore gA ≃ 8 for any scrambler of 

the cascade. The amplification gain g is set to 12 at each stage. 

In this configuration the SOP s, which follows a simple periodic 

trajectory at the output of the first scrambler (Out 1 in Fig. 10), 

becomes more and more scrambled and chaotic at the output of 

the following scramblers. 

It is important to highlight that if a unique scrambler with a 

fiber length Lcascade were employed then the scrambling 

performances would be completely degraded by losses (see Eqs 

(7,8)). Despite losses, the implementation of the cascade 

process enable to achieve much faster polarization fluctuations. 

In Fig. 11, for the cascade depicted in Fig. 10, we show the 

numerical calculation of both the DOP and the scrambling 

speed at the output of consecutive stages as a function of the 

amplification g. 

    
Fig. 11 Degree of polarization (DOP) and scrambling speed v of the output SOP 

at the exit of the 1st scrambler (blue line), 2nd scrambler (red line) and 8th 

scrambler of the cascade that is represented in Fig.9. The amplification g is the 

same at each stage. The black dotted vertical line indicates the cut-off gA for the 

DOP at the exit of cascade. 

 

We note that the scrambling speed is strongly improved at each 

stage, and that at the exit of the 8th stage the speed is increased 

up to three times with respect to the output of the 1st scrambler. 

Furthermore, the DOP becomes lower at each stage, which 

indicates a uniform coverage of the whole Poincaré sphere at 

the exit of the cascade even with a low amplification gain g. 

Moreover, our numerical results reveal that this scrambling 

process is accompanied by an increase of the Lyapunov 

coefficient at each stage of the cascade. Indeed, starting close 

to zero at the output of the 1st scrambler, the Lyapunov 

coefficient always remains positive and largely increases with 

the number of scramblers N, which proves the chaotic nature of 

this process. In addition, a sharp cut-off in proximity of gA is 

observed in the DOP function related to the exit of the last 

scrambler (see black line in Fig. 11a), so that if g < gA then the 

DOP is close to unity, while if g > gA then the DOP is close to 

zero. This suggests that in a cascade configuration where lots of 

scramblers are implemented, the chaotic threshold is reduced 

down to nearly gA, that is to say gC,cascade ≃ gA.. Finally, the 

cascade allows for a considerable increment of the scrambling 

speed: we expect that by implementing a cascade of scramblers 

with highly-nonlinear fibers, e.g.  > 10 W-1km-1), a speed of 

some Mrad/s could be reached. 

Out 1

input

1 2 3 8

Out 2 Out 3 Out 8
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VIII. WDM CAPABILITIES 

In this section we experimentally characterize the behavior 

of our all-optical scrambler in the context of a WDM 

transmission. To this aim, we have implemented the 

experimental setup depicted in Fig.12. 

 
The initial signal first consists in a train of 10-GHz pulses 

generated from a mode-locked fiber laser (MLFL) at 1551 nm 

with 2-ps full width at half maximum (FWHM). The pulses are 

encoded at 10 Gbit/s in the OOK modulation format using a 231-

1 pseudo-random binary sequence (PRBS). The resulting data 

signal is then amplified to 30 dBm by means of an EDFA and 

injected into a 500-m long dispersion-flattened highly non-

linear fiber (DF-HNLF from ofs) in order to broaden the 

spectrum thanks to self-phase modulation and associated wave-

breaking phenomenon [34]. The DF-HNLF is characterized by 

a chromatic dispersion of –1 ps/nm/km at 1550 nm, a dispersion 

slope of 0.006 ps²/nm/km, fiber losses of 0.6 dB/km and a 

nonlinear Kerr coefficient of 10.5 W-1.km-1. The resulting 

continuum is then sliced into five 10-Gbit/s OOK WDM 

channels and an additional pump channel by means of a 

programmable optical filter (Waveshaper WS). As illustrated in 

Fig. 13, which shows the experimental continuum recorded at 

the output of the HNLF and the resulting spectral grid, our final 

WDM signal consists in 5, 10-Gbit/s, 100-GHz spaced, 12-GHz 

bandwidth channels centered respectively at 1540.2 (C1), 1542 

(C2), 1543.45 (C3), 1545(C4) and 1546.2 nm (C5), as well as a 

pump channel centered at 1550 nm.  

All the WDM channels are then decorrelated in time and 

polarization domains thanks to a combination of two optical 

demultiplexer/multiplexer with different delay-lines and 

polarization rotations for each channel before injection into our 

optical scrambler. As in the single-channel experiment 

described above, the 10-Gbit/s WDM signals are then injected 

into the system with a constant total average power of 15 dBm 

(7 dBm/channel). It is here important to notice that a 100 GHz 

optical bandpass filter was added into the reflective-loop so as 

to only keep the pump channel at 1550 nm for the backward 

signal, whilst the 5 other WDM channels are characterized at 

output of the device. The role of this spectral manipulation is 

twofold: on the one hand, it ensures a unique state-of-

polarization for the counter-propagating signal in order to 

maximize the efficiency of the scrambling process for all the 

transmitted channels. On the other hand it limits the deleterious 

impact of back Rayleigh scattering on the 5 other transmitted 

channels. At the output of the system, the 5 WDM channels 

were demultiplexed and individually characterized in 

polarization as well as in the temporal domain by means of eye-

diagram monitoring and bit-error-rate measurements. 

 

 
Figures 14(a-c) display the Poincaré spheres of the different 

WDM channels recorded at the output of the all-optical 

scrambler. To not overload the paper, we report only 3 (among 

5) Poincaré spheres, which correspond to C1: 1540.2 nm, C3: 

1543.45 nm and C5: 1546.2 nm WDM channels, respectively; 

the 2 other channels exhibit similar performances. For this 

series of measurements, the total input power is kept constant 

to 15 dBm while only the 1550-nm pump channel is reflected 

and amplified in the backward direction with an average power 

of 29 dBm. 

Quite remarkably, we can first notice that despite the 5 input 

channels are initially uncorrelated in such a way that each of 

them enters into the system with a different and unique SOP, 

the device is able to scramble the whole WDM grid. Indeed, in 

Fig.14 each individual channel covers the whole surface of the 

Poincaré sphere and is characterized by a low value of its DOP, 

close to 0.2 for each channel. 

 

 
Fig. 14 (a-c) Output Poincaré spheres for WDM channels C1, C3 and C5, 

respectively. The input power is fixed to 15 dBm while the reflected 1550-nm 

pump channel is amplified to 29 dBm. (d) Intensity of the 3 output channels C1, 

C3 and C5 recorded behind a polarizer by means of a low bandwidth 

photodetector and oscilloscope. 

 

It is also interesting to note that, at the output of the device, 

all the random SOP trajectories undergone by the 5 different 

WDM channels are in fact correlated in time and are 

characterized by the same scrambling speed, close to 

130 krad/s, see Table 1, in good agreement with numerical 

 
 

Fig. 12 Experimental setup for testing the chaotic polarization scrambler 

in WDM configuration. WS: Waveshaper. 

 

 
Fig. 13. Experimental continuum recorded at the output of the DF-HNLF 

for an input power of 30 dBm (red). 10-Gbit/s WDM grid obtained by 

spectral slicing (black solid line). 
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simulations. It is also important to notice that the scrambling 

speeds raised by all the WDM channels are roughly the same 

than the one measured in the previous single channel 

experiment. Indeed, this all-optical scrambler is mainly 

sensitive to the average power of the counter-propagative beam. 

Table 1:    Scrambling speed (krad/s) 

Channels 

(nm) 

C1 

1540.2 

C2 

1542 

C3 

1543.45 

C4 

1545 

C5 

1546.2 

Experiments 156 120 132 112 114 

Numerics 143 142 139 143 144 

 

The time-correlation of the channels SOPs is also highlighted 

in Fig. 14d in which the intensity profiles of the 3 demultiplexed 

output WDM channels C1, C3 and C5 are synchronously 

recorded behind a polarizer by means of a low bandwidth 

photodetector and an oscilloscope. One can clearly notice the 

temporal correlation of polarization fluctuations between the 

different channels. This unexpected behavior can be intuitively 

interpreted considering the fact that only one pump channel is 

back reflected. Therefore, this pump channel imposes the 

polarization random walk over the Poincaré sphere for all the 

other channels, as well as their scrambling speed. 

The impact of the nonlinear polarization scrambling process 

on the 10-Gbit/s temporal profiles is illustrated in Fig. 15 for 

the WDM channels C1, C3 and C5. The two other channels 

have similar behavior. The upper row of insets underlines the 

high quality of the transmitted eye-diagrams obtained at the 

output of the fiber in passive configuration, i.e. when the 

backward 1550-nm pump channel is switched off. Note that in 

the WDM configuration the scrambling speeds are comparable 

with those of the single-channel configuration, but without 

increasing the total injected power at the input of the system. 

This fact allows limiting the deleterious impacts of both self-

phase and cross-phase modulation. The bottom row shows the 

corresponding eye-diagrams when the backward pump channel 

is now switched on at an average power of 29 dBm, so that the 

scrambling process now operates efficiently.  

 

 
 

Fig. 15 (a-c) Output eye-diagrams in passive configuration (pump off) for 

WDM channels C1, C3 and C5, respectively; the input power is fixed to 

15 dBm. (d-f) Corresponding eye-diagrams when the backward 1550-nm pump 

channel is amplified to 29 dBm.  

 

Despite the high quality and wide-open eye-diagrams recorded 

after the scrambling process, one can however observe a slight 

degradation of the temporal profiles with an increase of the 

amount of amplitude jitter. We attribute these impairments to 

the Rayleigh back-scattering provided by the spectrally 

broadened backward pump channel as well as a weak Raman 

depletion effect induced by the pump on the signal. The 

impairments induced by the scrambling process over the 

5 WDM 10-Gbit/s channels have then been quantified by means 

of systematic bit-error-rate measurements (BER) as a function 

of the received power in passive (pump OFF) and active (pump 

ON) configurations, respectively. Note that in the present 

context, especially to better quantify the impairments induced 

by back-Rayleigh-scattering over the transmitted signal, BER 

measurements as a function of optical-signal-to-noise ratio 

would have been more rigorous than versus received optical 

power. Especially, because the spectrum of the WDM grid is 

spread over 6 nm, the amount of noise introduced by the high-

power EDFA is not equal for each channel and thus participates 

differently in each channel penalties. Nonetheless, these proof-

of-principle measurements provide a clear signature that our 

all-optical scrambler does not significantly impair the 

transmitted signal. Results for the 5 WDM channels are 

summarized in Fig. 16 and show that a very weak power penalty 

is provided by the nonlinear scrambling process when 

comparing Pump ON/Pump OFF configurations. More 

precisely, a power penalty of 0.2 dB for the whole channels has 

been measured in average at the BER value of 10-9. 
 

 
Fig. 16 Bit-error-rate measurements for the 5 WDM 10-Gbit/s channels 

recorded at the output of the nonlinear scrambler in passive configuration 

(pump off, solid lines) and in scrambling regime (pump on, circles). The input 

power is fixed to 15 dBm and the backward pump channel is set to 29 dBm. 

DISCUSSION AND CONCLUSIONS 

In this work we have reported a numerical and experimental 

description of an all-optical, fully chaotic nonlinear polarization 

scrambler. The basic principle of this device was initially 

proposed in ref. [17]. It is based on the nonlinear cross-

polarization interaction in a standard optical fiber between a 

forward signal and its high-power counter-propagating replica, 

generated and amplified by a factor g at fiber end by means of 

a reflective loop setup. This system is in fact an extension of the 

device called Omnipolarizer [18] to a new chaotic operating 

regime. We gain here a deeper understanding of the physics 

underlying this all-optical scrambler. Indeed, based on 

numerical simulations, we derive some useful expressions for 

both the thresholds gA and gC that rule the transition between the 

different operating regimes of the device, as well as a direct 

estimation of the scrambling speed and the coherence time of 

the output polarization evolution. These estimations are fully 

confirmed by experimental results, which draw the attention to 
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the main factors that limit the scrambling performances. 

 In particular, experimental results obtained on a 10-Gbit/s 

OOK signal show that in a Telecom context our device is 

mainly limited by propagation losses and the detrimental 

Rayleigh back-scattering when large amplification factors g are 

implemented. These deleterious effects thus limit the 

scrambling speed of our system around 500 krad/s.  

However, to overcome these drawbacks, another scenario 

has been also proposed and numerically studied which is based 

on a cascade of chaotic scramblers. This cascade of fibered 

scramblers allows to obtain an effective scrambling of the 

polarization even in presence of a relatively small amplification 

gain g, and could noticeably increase the output scrambling 

speed up to some Mrad/s but unfortunately, at the expense of 

the global complexity and cost efficiency. 

Finally this nonlinear polarization scrambler has been also 

successfully tested in a 10-Gbit/s OOK WDM configuration. In 

particular, we have experimentally shown that this device is 

able to simultaneously scramble the polarization of 5 WDM 

channels and more surprisingly, despite its chaotic nature, it can 

impose a time-correlated random walk over the Poincaré sphere 

for each individual channel at an average speed close to 

130 krad/s.  

Despite the fact that it appears difficult to compare the 

performances of well-established commercially available 

solutions and the present results obtained in the initial stage of 

a fundamental research, here we think interesting to highlight 

the main advantages and drawbacks of our all-optical scrambler 

over existing solutions as well as to highlight some possible 

ways of improvement. 

First of all, if we take into account the whole experimental 

setup involved to achieve an efficient and fast scrambling 

process, namely two high-power amplifiers, a few-km long 

fiber spool, a band-pass filter and optical circulators, clearly 

commercial units are less expensive and benefit from a 

significantly lower power consumption (typically 10 W 

compare to 25 W for the present solution, respectively).  

Moreover, the behavior of opto-electronic devices is 

deterministic, which means that the degree of depolarization as 

well as the statistical distribution of the output polarization state 

can be simply controlled and adjusted by applying an 

appropriate driving current (even chaotic), which allows 

generating higher scrambling speeds as well as lower values of 

DOP, see refs [11-13]. In the present solution, the scrambling 

process is chaotic and only the scrambling speed can be 

adjusted by means of the backward power. Furthermore, the 

device is mainly limited by the inherent back-Rayleigh-

scattering generated from the counter-propagating pump beam 

over the output signal. Indeed, even if we have proposed an 

efficient strategy to overcome and mitigate this drawback by 

implementing an offset filtering pump channel, the back-

Rayleigh-scattering clearly limits the scrambling speed which 

can be achieved by our device. 

Nevertheless, this first fundamental demonstration has the 

benefit to propose an alternative approach, entirely based on a 

light-by-light interaction, which could be of a high interest for 

the development of all-optical technologies in view of future 

transparent networks. 

Moreover, the scrambling speed as well as the power 

consumption and compactness could be greatly improved by 

implementing this technology in ultra-high nonlinear materials 

and high-confinement waveguides such as microstructured 

soft-glass optical fibers (chalcogenide or tellurite) [30-32] or 

silicon waveguide integrated on a CMOS compatible chip [35, 

36].  

To conclude, this home-made device, essentially based on 

standard components usually available in many Labs working 

in the field of nonlinear optics and optical communications, 

opens the path to the concept of fast and truly chaotic all-optical 

scrambling devices. 
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