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Introduction 1.Open Complex Systems and One-time-only Events

Complex systems science has been applied in various domains where theory and experiment meets with a medium of computation (e.g., [START_REF] Funabashi | Dynamical System and Information Geometry -A Complementary Approach to Complex Systems[END_REF]). Complex systems science with external observation drastically advanced laboratory measurements, and in some conned conditions succeeded to analyze the living phenomena as an augmented phenomenology, without reducing the whole process into the parts (e.g. [START_REF] Olivier | Cell lineage reconstruction of early zebrash embryos using labelfree nonlinear microscopy[END_REF]).

On the other hand, complex systems in real world cannot be fully simulated when the observation is limited from inside of the systems. When the system scale is larger than a controlled laboratory , when the sensor resolution is not sucient to reconstruct a predictable model, and when inherent dynamics such as chaos produces principal unpredictability, we are forced to handle internal observation (e.g., [START_REF] Lorenz | Deterministic Nonperiodic Flow[END_REF][4] [START_REF] Kaneko | Complex Systems: Chaos and Beyond, A Constructive Approach with Applications in Life Sciences[END_REF] [START_REF] Funabashi | Synthetic Modeling of Autonomous Learning with a Chaotic Neural Network[END_REF]). Internal observation is not only a compromise of conventional scientic methodology but a subjective strategy to yield an eective description of the system in dynamical functioning, where characteristic measures can only be dened on the transient conguration of many-to-many bodies systems [START_REF] Kaneko | Constructive complexity and articial reality: an introduction[END_REF]. This working hypothesis becomes especially informative when a system is open to external environment. In open complex systems(open systems in short), we cannot fully dene a system's boundary as it interacts with external environment through time line. The conguration of subsystems is also fuzzy and change temporally. The systems may not be possible to model with parent-slave relation in closed environment. The systems are basically unpredictable in a long term by internal observers, uncontrollable depending on the fragility to external disturbance and complexity of interactions, and manifest one-time-only events that are neither fully predictable by modelling nor reproducible by the real phenomenon itself [START_REF] Tokoro | What is Open Systems Science?[END_REF] [START_REF] Tokoro | A New Method for New Challenges[END_REF]. Whether it be technological innovation, social order reformation, natural disasters, etc., transition of history in open systems has been always triggered by a new event of unpredictable scale [START_REF] Taleb | The Black Swan: The Impact of the Highly Improbable[END_REF] [START_REF] Diamond | Germs, and Steel: The Fates of Human Societies[END_REF] [START_REF] Kurzweil | The Singularity Is Near: When Humans Transcend Biology[END_REF].

In such open systems lie greatest challenges of complex systems science, especially those concerned with the sustainability of our civilization, that is left behind as negative legacies of the modern scientic achievement. For examples, environmental problems, epidemic outbreak, life-course chronic diseases, technology-inherent breakdown of social infrastructure, climate change and associated social-ecological transitions are predominant examples of one-time-only events that requires open systems approach [START_REF] Barnosky | Approaching a state shift in Earth's biosphere[END_REF][14] [START_REF] Ben-Shlomo | A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives[END_REF][16] [START_REF] Petherick | The ten countries most vulnerable to climate change and their corruption rating[END_REF]. These tasks require the application of eective measure by internal observers during the operation, as it cannot be halted, analyzed, experimented separately from the real world.

In coping with the needs of such global agenda, we need to explore novel scientic methodologies that can be applied in open complex systems. Based on the past achievement of rigorous science with external observation, we need further extend the eectiveness of internal observers' science in an open environment, where real-world problems remain untouched. In contrast to the perfection myth of science seeking the control of the system as a dominant objective, we rather need to struggle in the real-world operation where the prediction and control is not always valid. How much can we attain with incomplete observation, heterogenous database, in unpredictable environment, with lots of new events that have never happened, but with the aid of ne mathematical theory, ubiquitous sensors, social networks of citizens, and massive computation power? What should we explore during the time-limited operation of open complex systems, in order to survive and create sustainability options in various forms?

In this article, we investigate a conceptual framework of scientic exploration in open complex systems and develop a framework of exploration interfaces taking an example in ecosystems management. 

Open Systems and Closed Systems Approximation

Open Systems with respect to Dynamical Systems

Dynamical systems modelling is one of the primary methods in complex systems science [START_REF] Strogatz | Nonlinear Dynamics and Chaos: With Applications to Physics[END_REF]. Table 1 and gures 1 compare open systems with closed systems approximation in dynamical systems perspective. Dynamical systems, when used in closed systems application, usually treat isolated systems with nite boundary conditions, in which control of reproducible events with a feedback to a desired state is the object of analysis. For such purpose, high-resolution modelling and simulation with external observation is ecient, and controlling the phenomena requires the information quantity in terms of information theory dened on a closed environment without the dynamic exchange of components with external environment.

On the other hand, open systems as it is in real world contain important dynamics in one-time-only events. Such phenomena cannot be externally controlled nor can be nely predicted from past data. Instead, we need to cope with the emerging phenomena and seek for an active transition to an alternative state with strategic adaptation that resolves the conict. This is not a resilient feedback with a xed denition of systems, but rather an expansion of the systems including outer environment that leads to the redenition of the boundary with transition phenomena, in which eective information measures should be redened. This process is associated with both the exploration and management from inside of the systems that precede modelling and simulation. The importance of exploration is not to gain the information quantity with a xed framework of observation, but to explore the extended denition of the systems that can encapsulate necessary information for the management as a result. We call this process of extending the systems denition and evaluate the information within to cope with irreproducible events as information generation.

Open Systems with respect to Machine Learning

Machine learning incorporates a wide forms of statistical modelling in complex systems [START_REF] Murphy | Machine Learning: A Probabilistic Perspective[END_REF]. Theoretically, non-linear statistical measures can classify any kind of statistical dependency within the eective dimensions of feature space [START_REF] Funabashi | Network Decomposition and Complexity Measures: An Information Geometrical Approach[END_REF].

Closed Systems Approximation

Open 

Towards Dynamical Assessment of Ecosystems

Ecosystems functions and the services they provide is a major source of socialecological sustainability [START_REF]Ecosystems and Human Well-being: Biodiversity Synthesis[END_REF]. Although an increasing number of literatures reveal general positive relation between biodiversity and ecosystems functions, local assessment and its utilization depend highly on local initiative and industrial inertia that devoid of appropriate scientic support [START_REF] Yeo-Chang | Value of Traditional Knowledge in Forest Policy Process[END_REF]. We try to convert the conventional environment assessment protocol with the use of open systems science methodology in order to achieve a dynamical assessment of ecosystems.

Figures 3 and table 3 shows the comparison between typical environmental

assessment and possible open systems extension. Usually, environmental assessment is performed on a basis of static, xed scoring framework that is derived from past empirical studies [24][25]. Current environmental studies are based on sensing parameters and index species whose score in relation to environmental quality is dened with past experience [START_REF] Jensen | A Guidebook for Integrated Ecological Assessment[END_REF]. There is however few consideration of possible future change of base-line ecosystems, especially regime shifts in response to climate change and human perturbation in a global scale [START_REF] Biggs | Turning back from the brink: Detecting an impending regime shift in time to avert it[END_REF]. The number of index species are pre-dened and limited. Observation methods are specied that often require training by professional to assure the quality of data.

By respecting the quality of reproducible observation based on the past statistics, therefore limiting the target systems in space and time, conventional assessment lacks in some aspects the accessibility to a wide public and adaptability to abrupt environmental changes where redenition of the systems, descriptive index, and future insight should be renewed on time.

To cope with an ever-changing open systems that lies in the nature of ecosystems and associated human activities, we need to extend assessment protocols to an interactive and dynamical interface that can treat on-the-y modication of the protocol itself. The acceleration of information sharing, processing, and augmentation of interactivity can further modify the way of environmental assessment, and contribute to the readiness of the management. Information communication technology(ICT) is expected to bring more dynamic and reexive dimension in citizen science, allowing to ll the gap between crude, diverse data and rened governance on multifunctional ecosystems [START_REF]French Roadmap for Complex Systems[END_REF]. Since model-based prediction from physical to biological diversity still confronts complexity of ecological response [START_REF] Xu | Temperature and vegetation seasonality diminishment over northern lands[END_REF], direct biodiversity measurement with human observation still plays an essential role. The distributed measurement of biodiversity with interactive ICT has a potential to shift the modality of indexing and scoring of species, from stable, qualitative description to dynamic, quantitative data-driven assessment in real time. This approach will expand current assessment in its observation network, data quantity, and analytic tools, on an integrated design of distributed ICT. By means of the on-the-y observation, reexive redenition of index species and its environmental score is possible. Such dynamic reconguration of assessment criteria would introduce more exibility for rapidly adapting to changing situation. For that purpose, we propose an iterative framework that comprises database, models, and observation that can modify its relationship according to the actual change of situation.

Observation of multi-scale systems such as society and ecosystems is internal observation in principle. We cannot rely on empirical external measurement in terms of data eciency and analytical predictability [START_REF] Xu | Temperature and vegetation seasonality diminishment over northern lands[END_REF]. Rather, we need to assure a diversity of strategies to allow multiple actors to explore possible scenarios that are rich enough to mitigate unpredictable change. Open systems exploration in ecosystems management may not realize the reproducibility or predictability on what will happen, but should seek for the capacity of exploration on what could happen for a exible planning of strategy portfolio. This is a common principle in ICT-mediated citizen science in the roadmap of complex systems science [START_REF]French Roadmap for Complex Systems[END_REF].

With this respect, structural design of exploratory simulation tools should have emphasis on the diversity of the models, their parameters, and reexive evaluation of substantive variables for dynamic adaptability. For example, data-driven assessment of biodiversity and associated environmental quality can be realized with this framework. Taking environmental variables and biodiversity as a database, a wide range of possible denitions of index species and their environmental scores can be generated from simulators, which will be selected to extract high-resolution assessment scheme as actual measurement continues. Steep change of biodiversity, environment and observation network can be immediately reected to the assessment protocol by producing new possibilities of scoring system with new inputs. We develop basic interfaces and models of such protocol in the next chapters. 

Example of Suggestion Tool : Integration of Environmental and Biodiversity Data with Symbolic Dynamics Analysis

Integration of biodiversity and sensor data is a fundamental task in data-driven environmental management. While current studies try to integrate biodiversity records with remote sensing databases [START_REF] Homan | Improved access to integrated biodiversity data for science, practice, and policy -the European Biodiversity Observation Network (EU BON)[END_REF][32], little has been investigated on a local scale under direct eect of management. For example in agricultural land, sensor-based measurement and control of precision agriculture [START_REF] Gebbers | Precision agriculture and food security[END_REF] is not connected with local biodiversity observation. Natural farming practices based on local biodiversity, on the other hand, rely merely on human observation and have little introduced sensor technology [34] [START_REF] Fujita | Nature Farming Practices for Apple Production in Japan[END_REF]. In actual management of farmland with both yield and biodiversity promotion, one needs to consider the integrated aspects of biodiversity and environmental conditions [START_REF] Seifert | Comparing the yields of organic and conventional agriculture[END_REF][37] [START_REF] Bengtsson | The eects of organic agriculture on biodiversity and abundance: a meta-analysis[END_REF].

We propose a general framework to integrate biodiversity data based on human observation and sensor data in general with the use of symbolic dynamics in dynamical systems [START_REF] Douglas | An introduction to symbolic dynamics and coding[END_REF]. Biodiversity data is a list of species names and related taxonomy in correspondence to its meta data such as observation place and time. This is a symbolic data that refers to the quality of the taxonomic prole of observed biota. In contrast, sensor data are the numerical values of physical characteristics measured on the environment with the meta data. This is in general represented with a real data type that refers to the quantity of each measurement item. The integration of biodiversity and sensor data can be generalised into the following problem: What is the characteristics of the symbolic dynamics of a measured ecosystem, in which sensor data is the estimate of underlying dynamical system and biodiversity data as the symbols that represent the states of the systems?

The reconstruction of symbolic dynamics with given biodiversity and sensor data of an ecosystem is possible by matching the meta data such as place and time between them. As a concrete example, we employ Voronoi diagram [START_REF] Atsuyuki Okabe | Spatial Tessellations -Concepts and Applications of Voronoi Diagrams[END_REF] to segment sensor data phase space with biodiversity symbols. Figures 5 show the it is possible to estimate its niche boundary by an interpolation. Signicant correlation between estimated niches(e.g. order-wise correlation [START_REF] Funabashi | Order-Wise Correlation Dynamics in Text Data[END_REF]) can provide suggestions that there might be underlying ecological dependence between those species.

Theoretically, innite sequence of nite biodiversity symbols can specify any arbitrary trajectory of meteorological data with real-value precision, if the system is deterministic and the partition is generating in terms of symbolic dynamics [START_REF] Hirata | Estimating a generating partition from observed time series: Symbolic shadowing[END_REF]. To enrich the suggestion based on the spatio-temporal structure, this model is further accessible to mathematical analysis of symbolic dynamics that can treat complex trajectories in dynamical systems including chaos.

Example of Model Selection: Seasonal Segmentation and Prediction of Biodiversity Observation

Besides the data interface and integration model that can provide interactive suggestions to the observation, we further consider how to select a better predictive model in a changing situation. We take an example of biodiversity prediction combined with meteorological data in time development. This is again a prototypical model for the integration of sensor and biodiversity data, but with consideration to the renement of real-time feedback on observation based on the model selection.

We employ hidden Markov model(HMM) as a primitive example of seasonal segmentation of meteorological data [START_REF] Baum | Statistical Inference for Probabilistic Functions of Finite State Markov Chains[END_REF]. We applied the standard forwardbackward algorithm for the inference of hidden states from the past AMeDAS data, and the Viterbi algorithm to inversely infer hidden states with new data for each observation. 4. Achievement of basic system properties of 3 example models, multi-partite graph(MPG), symbolic dynamics model(SDM), and hidden Markov model(HMM), for the integration in dynamical assessment.

The correspondences between the processes in the gure 3 (Right) of dynamical assessment and the utilisation of each example model are summarised in the table 5.

The information generation proposed as the essential dynamics of open systems exploration in table 1 can further be explored in the following contexts: Multi-partite graph: Exploration of links and validation by observation The table 7 gives the list of observed species in the table 6. As an example of scoring system generation, the environmental score of these species are calculated from the number of edible species observed in the same date and place as an indicator of the productivity. The environmental score of each species was calculated as follows:

1. Calculate the observation-wise environmental score of each species as the number of edible species for each observation.

2. Take mean value of all observation to obtain the overall environmental score of each species.

These environmental scores will evolve as the observation continues and can serve as a data-driven predictor of edible species diversity. Although the scores

are not yet ne-grained due to the one-year time scale limit, future observations 6. Numbers of generative candidates of index species extracted from dynamical assessment in Synecoculture project. The numbers indicate the number of species that were suggested from the prototypical models, observed on eld, and classied as consistent/past/novelty index species according to the inclusion and exclusion relationships between suggestion and observation: Consistent index species commonly appeared in both suggestion and observation, while past and novelty index species only appeared in either suggestion or observation, respectively. can be evaluated using the generated scoring systems of index species and further rene and expand the list. The time scale of the database that generates a better scoring system can then be selected to optimise the predictability. The scoring systems can also enrich exploration process as species with similar scores are susceptible of ecient exploration to entail more comprehensive observation.

When sucient diversity of observation is assured in the loop of dynamical assessment, the scoring systems are expected to yield an eective measure with available means, timely reecting ever-changing conditions of open systems. Information generation, a crucial requirement for open systems exploration, can therefore be evaluated by the dynamical reconguration of the generative index species scoring system in response to environmental change. The author acknowledges Hidemori Yazaki, Kousaku Ohta, Tatsuya Kawaoka, Kazuhiro Takimoto, and Shuntaro Aotake who worked as research assistant.
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  Most of the natural systems can be described as open systems, and open systems science includes a proto-scientic description ranging between phenomenology and science. In a broad term, conventional science, or closed systems science is an approximation of originally open systems with an articial boundary denition that prohibits open interaction with further external environment. We need however clarify what is common with conventional scientic methodology and what is new or explorable with the conception of open systems. For that purpose, we formalise the comparison between open systems and its closed systems approximation that already has specied examples in conventional science.

Fig. 1 .

 1 Fig. 1. Conception of open systems in contrast to closed systems approximation in dynamical systems. Left: Resilient feedback to controlled state in closed systems approximation. Right: Active transition to alternative state in open systems. Blue lines indicate the potential of the environment, in which systems depicted with orange circles are controlled and managed with red trajectories.

Fig. 2 .

 2 Fig. 2. Conception of open systems in contrast to closed systems approximation in machine learning. Left: Single algorithm optimization on a xed database framework in closed systems approximation. Right: Exploration and optimization with a workow of algorithms in open systems. Blue rectangles correspond to the framework of databases or observation, in which algorithmic optimisations are performed with information criteria depicted as orange distributions.

  Fig. 3. Environmental assessment protocols in closed systems approximation and open systems exploration. Left: Typical conventional protocol with closed systems perspective (based on [24][25][26]). To ensure the objectivity and reproducibility of observation, violet processes are usually xed based on the past assessment data. Orange processes need to respect pre-dened methods that usually call for training by professionals. Right: Dynamical assessment as a process of open systems exploration applied in ecosystems management. Hence the right protocol can include the left one by xing the corresponding parameters.

  agement: Distributed measurements including the sensing of ecosystem agents collect massive data with multiple and uctuating criteria. A copious combination of analytical and numerical simulators produce possible predictions in the background, which are given feedback by the on-going measurement to evaluate the ecacy of each model and weight the data variable in a reexive workow with multiple timescale. Not only the eect of single variable but synergetic effects between variables can be explored with a variety of model functions. The observation network should be recongured according to the eciency of the actual management, in order to assure sucient diversity of substantive variables by eliminating useless ones and investing for novel exploration. Here, the frame problem of determining suciently diverse and eective subset of variables is a consistent task to resolve. Cloud computing resource and parallel-processed simulators would play essential role for the on-site implementation.

3. 2

 2 Example of Data Interface: Multi-Partite Graph Exploration We develop prototypical interfaces for open systems exploration applied in ecosystems management. As a testbed we use an ecological database developed in Synecoculture project [29]. The database comprises biodiversity observation in various Synecoculture farms and surrounding environment in Japan. To assess these environment in open systems perspective, one needs to diversify the observation until it can attain the saturation of the biodiversity measures related to the management principles. For this purpose, extensive link of data and related information is useful as an initial hands-on interface. Figures 4 show a multi-partite graph visualisation of biodiversity records. The observation of plants and insects species are linked according to the geographical cooccurrence with taxonomical relationships and observation places. The users can explore on this graph to seek concurrent and/or allied species, that could extend their observation activity and learn related ecological information. This model can support extensive search for data registration within the framework of cumulative past experience. It represents a simplest model for prediction in which all past cooccurrences are superimposed. Management requires wider choice in response to a change. Ecosystems dynamics under human perturbation is especially irregular and dicult to harness [30]. By combining further information source such as climate data and ecological literature, multi-partite links can provide wider choice triggered by actual observation when a new data is recorded and connected in the web of multipartite relations. The real-time development of complex network of observation with automated link to relevant information is a primary interface that complex systems science can oer to open systems exploration. The evolution of complex network autonomously combines observation and related knowledge, and extends the framework of possible observation to provide collective suggestion between users.

Fig. 4 .

 4 Fig.4. Snapshots of multi-partite graph between plants(green), insects(magenta), biological taxonomy(orange), and observation place(yellow). The links represent the total co-occurrence in the database (Synecoculture CMS[START_REF] Funabashi | IT-Mediated Development of Sustainable Agriculture Systems Toward a Data-Driven Citizen Science[END_REF]).

  symbolic dynamics analysis of the Synecoculture biodiversity database during April 2011 -March 2013 by matching with the corresponding meteorological data from Automated Meteorological Data Acquisition System(AMeDAS) provided by Japan Meteorological Agency [41]. We rst performed principal component analysis to choose the linear combinations of the most distinctive 2-dimensional feature space of meteorological parameters (gure 5 Top Left). Based on the rst 2 principal components space(PC1-PC2), 30 previous days mean of AMeDAS data is segmented with Voroni diagram for each observation date recorded in Synecoculture database. Analysis of observable species diversity(gure 5 Top Right), niche estimation of particular species (gures 5 Bottom Left and Right) are possible on this model. For example, when the meteorological sensor data of a new day are obtained, the model can indicate what is the list of observed species in the past, and whether the observation in the corresponding partition is already rich or poor. The segmentation can further augment resolution as the observation cumulates. When the distribution of a species is conned in a subspace of the Voronoi diagram,

Figure 6 Fig. 5 .

 65 Fig. 5. Example of symbolic dynamics analysis of biodiversity and meteorological data. Top Left: Factor loading of principal components analysis(PC1 and PC2) of 11 daily meteorological parameters(mean/maximum/minimum temperature, daily precipitation, day length, global solar radiation, mean wind speed, mean vapour pressure, mean atmospheric pressure, mean humidity, mean cloud cover, snow depth) in AMeDAS data. Top Right: Voronoi segmentation of AMeDAS data PC1-PC2 space with Synecoculture biodiversity database for each 30 days mean. The colour represents the number of species observed in the same partition. Bottom Left: Example of niche estimation of Parnara guttata guttata (Bremer et Grey, 1852) (in picture) on the symbolic dynamics analysis. Bottom Right: Example of niche estimation of Sonchus asper (L.) Hill (in picture) on the symbolic dynamics analysis. Partitions where the species appeared are lled with red.

Fig. 6 .

 6 Fig. 6. Example of model selection on an integrated model of biodiversity and sensor data with hidden Markov model(HMM). Top: Example of seasonal segmentation of AMeDAS daily mean temperature data with 3 hidden states. Estimated probability of each state is plotted with corresponding colour. Middle: Numerical experiment of model selection based on the likelihood of HMMs with hidden states 2 to 10, for each 30 observations mean. Likelihood of each HMM is depicted as dots with colours that corresponds to the number of hidden states. Bottom: Time development of new species appearance rate for each 30 observations and number of hidden states of selected HMM giving maximum likelihood for prediction. Dynamic trend of model selection and learning occurs with the real-time feedback of observation.

Table 1 .

 1 Conception of open systems in contrast to closed systems approximation in dynamical systems.

	Systems

Table 2

 2 

	and gures 2 compare open systems with closed systems approxima-
	tion in machine learning perspective. While standard closed systems approaches
	dene the format of database and observation methods, open systems reality
	do not always guarantee the continuity both in the denition of data items and
	its quality. Ubiquitous sensor network and citizen observation, for example, in-
	evitably contain biases in various scales. This situation has a common challenge
	with the frame problem in articial intelligence [21]. In the open systems reality
	where we do not suciently know how to assume the eective boundary of the
	systems, evaluation with a single algorithm can be a blind measure with respect
	to the global management goal including future utility. We need to prepare a
	portfolio of various evaluations within available resources, with respect to a con-
	ceivable range of future scenarios, in order to set up a try-and-error workow
	that can maximally avoid the operation to fail. This process is not a mere eval-
	uation with an external algorithmic measure, but a creation of novel suitable
	measures for future transition, in which sense we call it ontogenesis associated
	with information generation.

Table 2 .

 2 Conception of open systems in contrast to closed systems approximation in machine learning.

Table 3 .

 3 Characteristics of environmental assessment protocols in closed systems approximation(Current environmental assessment) and open systems exploration(Dynamical assessment).

		Current environmental assessment	Dynamical assessment
	Interface	Static, xed scoring framework	Interactive, dynamical, on-the-y ICT
	Index	Pre-dened and limited	Can be expanded and renewed by observation
	Observation method	Fixed	Can be modied, various
	Accessibility	Mainly for trained professionals	Open to wide public without training
	Evaluation	Based on the past experience	By renewal of the observation scheme
			according to the focused change

Table 5 .

 5 Correspondence between dynamical assessment process in gure 3 (Right) and multi-partite graph(MPG), symbolic dynamics model(SDM), and hidden Markov model(HMM).

	Process in gure 3 (Right)	Process in example models
	Input	AMeDAS and Synecoculture database
	Prediction	Links in MPG
		Suggestion from SDM
		Prediction with HMM
	Feedback	Selection of eective information in MPG
		Selection of time window in SDM
		Parameters selection in HMM
	Selection	Selection of AMeDAS variables in SDM and HMM
	Geographical and time window selection of Synecoculture database
	Registration	Modication of actual observation
		Introduction of new observation method
		Setting of new sensors
	Symbolic dynamics model: Field exploration of suggested species diversity,
	niche condition, and its validation
	Hidden Markov model: Exploration of wider parameter spaces, model selec-
	tion with a real-time observation likelihood during operation
	4.2 Example of Assessment Result: Generative Index Species
	Scoring Systems	
	By gradually introducing the suggestion from prototypical models, environmen-
	tal assessment in Synecoculture project started to operate the initial steps of
	dynamical assessment. Data-driven lists of index species candidates are obtained
	from the eld practice between August 2014 -July 2015 as in the table 6. These
	generative index species, when connected with other database that refers to the
	quality of environment such as yield, will serve as timely recongurable mea-
	sures of environmental quality in an ever-changing open systems surrounding
	the practice and management.	

Table 7 :

 7 List of observed species and its environmental score based on the edible species diversity during the observations between Au-

	gust 2014 -July 2015.	
	Academic name	Score
	Morella rubra Lour.	37
	Ficus carica L.	37
	Zanthoxylum ailanthoides Siebold et Zucc.	

Table 7 :

 7 List of observed species and its environmental score based on the edible species diversity during the observations between August 2014 -July 2015.

	Academic name	Score
	Glycine max (L.) Merr. subsp. max	16.5
	Rubus tridus Thunb.	16.5
	Capsicum annuum 'grossum'	16.5
	Nerium oleander L. var. indicum (Mill.) O.Deg. et Greenwell	16.33333333
	Aedes (Stegomyia) albopictus (Skuse, 1894)	16
	Apis mellifera Linnaeus, 1758	16
	Armeniaca mume (Siebold et Zucc.) de Vriese	16
	Promachus yesonicus Bigot, 1887	16
	Setaria viridis (L.) P.Beauv.	16
	Atractomorpha lata (Motschulsky, 1866)	15.75
	Cynara scolymus L.	15.66666667
	Papilio machaon hippocrates C. et R.Felder, 1864	15.66666667
	Dolycoris baccalum (Linnaeus, 1758)	15.66666667
	A. ocinalis	15.6
	Aphididae	15.5
	Polistes jadwigae jadwigae Dalla Torre, 1904	15.5
	Mentha suaveolens	15.5
	Cornus controversa Hemsl. ex Prain	15.5
	Akebia quinata (Houtt.) Decne.	15.5
	Solanum nigrum L.	15.33333333
	Rutaceae	15.33333333
	Mentha canadensis L. var. piperascens (Malinv. ex Holmes) H.Hara	15.2
	Helianthus annuus L.	15
	Capsicum annuum L.	15
	Petroselinum neapolitanum	15
	Brassica oleracea L. var. italica Plenck	15
	Solanum melongena L.	15
	Nephotettix cincticeps (Uhler, 1896)	15
	Lavandula ocinalis Chaix.	15
	Colias erate poliographus Motschulsky, 1860	15
	Melissa ocinalis	15
	M. pumila	14.75
	Nysius plebejus Distant, 1883	14.66666667
	Rosmarinus ocinalis	14.66666667
	Pisum sativum L.	14.6
	Zingiber mioga (Thunb.) Roscoe	14.5
	Raphanus sativus L.	14
	Aphis craccivora craccivora Koch, 1854	14
	Vicia faba L.	14
	Dolerus similis japonicus Kirby, l882	14
	Coccinellidae	14

Table 7 :

 7 List of observed species and its environmental score based on the edible species diversity during the observations between August 2014 -July 2015.

	Academic name	Score
	Fabaceae	14
	Canna	14
	Phytomyza horticola (Goureau, 1851)	13.66666667
	Eruca vesicaria	13.5
	Aulacophora femoralis (Motschulsky, 1857)	13
	Nephila clavata	13
	Gryllidae	13
	Xanthophthalmum coronarium (L.) P.D.Sell	13
	Diospyros kaki Thunb.	13
	Brassica rapa L. var. perviridis L.H.Bailey	13
	Illeis koebelei koebeleiTimberlake, 1943	13
	Veronica persica Poir.	12
	Takydromus tachydromoides ( Schlegel, 1838)	12
	Armadillidium vulgare	10
	Cycas revoluta Thunb.	10
	Camellia japonica	10
	Citrus japonica Thunb.	10
	5 Acknowledgement	

Mimela splendens(Gyllenhal, 1817)