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Software is Not Fragile

William B. Langdon and Justyna Petke,

CREST, Department of Computer Science,
University College London Gower Street, London WC1E 6BT, UK

Abstract. Trying all simple changes (first order mutations) to executed
C, C++ and CUDA source code shows software engineering artefacts are
more robust than is often assumed. Of those that compile, up to 89% run
without error. Indeed a few mutants are improvements. Program fitness
landscapes are smoother. Analysis of these programs, a parallel nVidia
GPGPU kernel, all CUDA samples and the GNU C library shows many
lines of code and integer values are repeated and may follow Zipf’s law.
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Fig. 1. Impact of all possible executable changes to example program (Sec-
tion 2.1). Of the 23% which compile and run normally 89% produce the same
answer as the original code (“no change”). Indeed 3 of them are faster (×).

1 Introduction

It is often assumed that computer programs are fragile and any single change will
destroy them totally. Figures 1, 2, and 3 show this is not true. We automatically
make changes like those a human programmer might make. I.e. delete a line of a
program, replace a line with another and insert a copy of a line. Figure 1 shows
the impact of all possible changes to the part of the program which is used.
63% do not compile and 14% abort when run. However, most of the modified
programs which compile and run normally produce exactly the same result as
the original program source code. Indeed a few produce identical answers but
are slightly faster. We suggest often wholesome changes can be quickly found.
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Software engineering continues to produce some of the most complex human
artefacts on the planet. Mostly it has succeeded in its goal of describing in com-
plete detail the computer systems people create, maintain and use. Nonetheless,
despite extensive tools, large software systems are beyond comprehension. They
cannot be fully understood by anyone no matter how clever, nor can they be
understood by groups of people, not even the team of experts who may have
been working on them for years. Nonetheless they continue to yield enormous
economic advantage which has lead to the world economy being addicted to
software.

Genetic Improvement (GI) [1,2,3] applies search-based optimisation tech-
niques (SBSE) [4], such as genetic algorithms (GA) [5], genetic programming
(GP) [6] and hill climbing to make measurable improvement in existing human
written code. Although GAs [7] and GP [8] have been analysed for sometime,
very little theory is available which can predict how the performance of real soft-
ware systems will change in response to changes to their source code. In SBSE
this is known as the fitness landscape, which depends both on the program and
the mechanisms available to change it.

Section 3 shows software, like other human endeavours, can, both in terms
of source code [9] and numeric values, follow Zipf’s law [10]. But we start in
Section 2 with two leading open source Bioinformatics tools (one in C, the other
in C++) and an open source parallel CUDA GPGPU kernel and show, for these
examples, software is not as fragile as is often assumed. For these diverse source
code examples, we start to map their software fitness landscapes. This initial
mapping suggests that software is much more resilient than is commonly as-
sumed. This in turn supports the idea of artificial evolution of programs via
mutating existing code (GI).

2 Mutating Useful Software

The following three subsections describe the impact of making simple changes
(of the 3 types described at the start of Section 1) to three programs written in
C, C++ and CUDA. We call these changes mutations. We only make one change
at a time and so these are known as first order mutations. Multiple changes are
known as higher order mutants [11]. In Figures 1, 2, and 3 we report the change
in output (excluding logging information) and the change in run-time. In each
case the mutations target code which is used by the test case and yet many
mutations do not change the output at all (cf. equivalent mutants [12]).

2.1 BWA

BWA [13] is a leading open source Bioinformatics tool written in the C pro-
gramming language for matching short next generation DNA sequences to the
human genome. It comprises 33 .c and 20 .h files containing 13 000 lines of code.
We down-loaded the complete installation kit (version 0.7.12) from GitHub and
automatically converted all the .c C source files into a specialised BNF grammar

https://github.com/lh3/bwa


of 18 621 rules. As with our earlier work [14], we use the grammar to control the
mutations [11]. It ensures all mutations are syntactically correct (in that brack-
ets match, there are semi-colons where required, etc.) however, due to variable
out-of-scope and other errors, it need not ensure a mutant compiles.

We also obtained a test sequence from http://fg.cns.utexas.edu/fg/course note
book chapter seventeen.html. We used the GNU gcov test analysis tool to dis-
cover all the lines of C source code executed. (gcov shows 532 lines of the BWA
program are used by this test case.)

We use the three types of mutation: delete a line of source code, replace it
with a copy of another line of code and insert a copy of another line of code.
As with our previous work [14], we restrict replacements and inserts to be of
the same type and from the same .c source file. Notice mutations are limited
to re-using existing source code. They do not create new code from scratch. To
ensure all mutations are executed, all mutations either: delete or replace a line
which is executed or insert a source line immediately before it. There are 61 775
possible mutations of BWA. We generate and test them all (see Figure 1).

To catch indefinite loops, we impose a CPU limit. The limit is about 40
times longer than normal operation. We also automatically remove computer
jobs (known as processes to the Unix operating system) which failed to terminate
normally. Our zombie.awk killer removed nine such zombies.

2.2 Stereo Pair CUDA Image Processing

StereoCamera is open source CUDA code written by nVidia’s vision processing
expert [15]. It takes two stereo images and from the parallax differences be-
tween them it infers distances between objects in the images and the camera.
We had previously used our BNF grammar approach to automatically evolve
considerable speedups [16]. Here we reuse our automatically generated grammar
to start to map the fitness landscape for CUDA software. As a test case we use
a stereo image pair taken inside a typical modern office (provided by Microsoft’s
I2I database). In order to get a somewhat different example, we concentrate on
the parallel CUDA code written for the graphics card, (known as a GPU kernel)
and ignore the program code which runs on a normal personal computer. The
kernel contains 276 lines of CUDA code.

The StereoCamera GPGPU [17] kernel is more constrained than normal C
program code. 1) all of it will be used, 2) we can readily force indefinite loops to
stop running and 3) (excluding a compiler bug) the grammar will ensure mutants
always compile.

We deliberately exclude changes to tuning parameters, CUDA specific pragma
and kernel parameter changes (which were used in [16]) as by design they cannot
break the existing CUDA kernel.

We tried all possible single change mutants (i.e. first order mutants). Figure 2
shows that about 5 in 8 source code mutations do not change the kernel’s output
on the randomly chosen test image pair.
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Fig. 2. Impact of all (7079) one change mutations on StereoCamera kernel [16]
running on an nVidia GeForce GT 730 graphics card. Nine mutants failed to
compile due to a bug in the nVidia CUDA 6.0.1 compiler (fixed in CUDA 7.0).
16 caused infinite loops, 318 others failed at run-time. 4400 (62%) mutants do not
change the output at all (“no change”), indeed at least 41 of them are faster (×).

2.3 Bowtie2

Bowtie2 [18], like BWA, is a state-of-the-art next generation DNA analysis pro-
gram. We made random source code mutations to Bowtie2 and measured their
impact on random test cases, see Figure 3. Although many mutations cause
Bowtie2 to fail (not plotted) and others cause it to produce very poor solutions
(e.g. reducing quality by 36, left) others have less dramatic impact. Some slow
down Bowtie2 and others make it faster. However, many changes have no im-
pact on quality (although they may change Bowtie2’s speed, plotted along x=0).
Indeed a large number do not change its speed either (note spike at the origin).
There are even a few mutations which give better quality solutions and even 139
which are both better on a random test and faster (plotted in Figure 3 with +).
It is from these a seventy fold speed up can be evolved [14].

3 Zipfs Law

George Zipf (USA, 1902–1950) proposed a “universal” law of human behaviour [10]
in which the frequency of repeated items is inversely proportional to their rank
(or order). Thus when plotted on log-log scale we get an inverse power law with
a slope of -1. This has been shown to hold for the frequency with which words
in many languages are used, the population of cities and many other human
endeavours, including software engineering [9].
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Fig. 3. Impact of single mutations to Bowtie2 [14]. Non-linear scales [19].

Using the grammars described in Section 2, Figure 4 shows the distribu-
tions of exactly repeated BWA C and Bowtie2 C++ lines of source code both
approximately follow Zipf’s law.

3.1 What’s my favourite number?

The GNU C library, version 2.22 released 14 August 2015 (excluding its test
suite), contains 845,360 lines of C code, which contain in total 1 203 104 inte-
ger constants (see Figure 5). Many glibc integers are associated with mapping
non-ASCII character sets, e.g. Chinese.

nVidia’s CUDA 7.0 comes with an extensive set of examples (including test
code) totalling 85 711 lines of C++ or CUDA code. These contain 73 620 integer
constants (see Figure 6). Many numbers in the CUDA 7.0 samples are taken from
the OpenGL package. For example, the OpenGL source code includes integers
for use as bit masks which are used to turn on image effects, such as stippling.
Nevertheless we do not see pronounced clustering around the powers of 2, visible
in our earlier work on CUDA 5.0 samples which included macro expansion.

In both the GNU C library and nVidia’s samples, as with the whole lines of
source code in Section 3, numeric values approximately follow Zipf’s law.
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Fig. 4. Distribution of exactly repeated BWA C program source code (left) and
Bowtie2 C++ source code (after macro expansion) [14, Fig. 5] (right). Zipf’s
law [10] predicts a straight line with slope of -1.
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Fig. 5. Distribution of integer constants in GNU C library. Zero is the most
common number, occurring in various formats a total of 142 159 times, followed
by 1 (18 642) and -1 (6 907). Every integer between -28 and 40 957 occurs at least
once. There are 116 685 distinct integer constants.
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Fig. 6. Distribution of integer constants in CUDA 7.0 sample source code. Zero
is again the most common number, occurring in various formats 3968 times. Sur-
prisingly the second most popular number is 32 (3962), which probably reflects
the nVidia GPU architecture. There are even fewer negative numbers than in
the GNU C library (Figure 5). Every integer between -2 and 60 occurs at least
once. There are 3490 distinct integer constants.

4 Conclusions

The existence of power laws in software has been previously reported. E.g. Louri-
das et al. [9] reported power laws in both the patterns with which functions or
classes are used and in the frequency with which machine code instructions are
used. Nevertheless the prevalence of Zipf’s law in human-written program code
does appear to be under-appreciated. Although Louridas et al. caution against
getting carried away with the supposed universality of power-laws, it is tempting
to suggest that the Zipf law we see with numbers might make it a good candi-
date for either numeric values to be used when creating test suites. Or indeed
(although this is not yet done) numbers to be embedded into GI-created code
might be drawn from a Zipfian distribution. Actual numerical values (see left
hand sides of Figures 5 and 6) might be drawn with a preference for low entropy
decimal, hexadecimal or octal strings. (In genetic programming [20,6] floating
point numbers, some-times known as ephemeral random constants, ERCs, are
typically drawn uniformly from a small range [21], although we have had good
results from a tangent distribution [22].)

In Section 2 we saw in three different (albeit similar) industrial strength
programming languages examples of high quality software (including serial and
parallel programs) written by experts where it was comparatively easy to find
simple source code changes which on a random test make no external difference.
Indeed, if the new program code can avoid the trap of introducing variable



out-of-scope errors (i.e. avoid compiler errors) most mutants will not break the
program immediately. (In a few cases [23,16,24,25,26] we have set up the GI
system to carefully track the scope of variables and thereby avoided compilation
errors.) Of course other programming languages are much more forgiving and
will assume newly introduced variables should have been declared and will do
this automatically for the lazy programmer.

It may be countered that we have not tested the changes sufficiently. This is
deliberate. We know how much we have tested each change (exactly once). This
gives us a solid benchmark from which to do comparisons. In real GI work, post
evolution code, maybe subjected to much more rigorous validation. (In [23] in
addition to manual validation, we tested the new code back-to-back with the old
more than a million times. No difference was ever found.) Although great strides
have been made with automatic testing [27], it remains true that devising tests
to execute newly written program code is difficult. Indeed one often gets the
impression that simply running the new code is considered sufficient, without
caring if indeed it calculated the right answer. We have set up our experiment so
that we know our mutated program code is executed. We can tell if it calculated
the right answer, or at least we can tell if it calculated the same answer as the
human-written program.

Our purpose is to put to bed the myth that any random change will destroy
human-written programs. Instead we have given persuasive evidence that whilst
a random changes might be bad, if you are prepared to try multiple times, per-
haps adapting a population approach, you can quickly find equivalent mutants
and you may, if guided by a suitable fitness function, find improvements to your
software.
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