
HAL Id: hal-01291120
https://hal.science/hal-01291120v1

Submitted on 20 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software is Not Fragile
William B. Langdon, Justyna Petke

To cite this version:
William B. Langdon, Justyna Petke. Software is Not Fragile. CS-DC’15 World e-conference, Sep 2015,
Tempe, United States. �hal-01291120�

https://hal.science/hal-01291120v1
https://hal.archives-ouvertes.fr

Software is Not Fragile

William B. Langdon and Justyna Petke,

CREST, Department of Computer Science,
University College London Gower Street, London WC1E 6BT, UK

Abstract. Trying all simple changes (first order mutations) to executed
C, C++ and CUDA source code shows software engineering artefacts are
more robust than is often assumed. Of those that compile, up to 89% run
without error. Indeed a few mutants are improvements. Program fitness
landscapes are smoother. Analysis of these programs, a parallel nVidia
GPGPU kernel, all CUDA samples and the GNU C library shows many
lines of code and integer values are repeated and may follow Zipf’s law.

no change
 1

 10
 100

 1000
 10000

 100000
 1e+06

 1

 10

 100 2000

 4000

 8000

 10000

 11115

count

14,173 BWA compiles and no abort

Faster

Slower

Error

Increase in time (1% bins)

count

Fig. 1. Impact of all possible executable changes to example program (Sec-
tion 2.1). Of the 23% which compile and run normally 89% produce the same
answer as the original code (“no change”). Indeed 3 of them are faster (×).

1 Introduction

It is often assumed that computer programs are fragile and any single change will
destroy them totally. Figures 1, 2, and 3 show this is not true. We automatically
make changes like those a human programmer might make. I.e. delete a line of a
program, replace a line with another and insert a copy of a line. Figure 1 shows
the impact of all possible changes to the part of the program which is used.
63% do not compile and 14% abort when run. However, most of the modified
programs which compile and run normally produce exactly the same result as
the original program source code. Indeed a few produce identical answers but
are slightly faster. We suggest often wholesome changes can be quickly found.

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/J.Petke/
http://crest.cs.ucl.ac.uk/

Software engineering continues to produce some of the most complex human
artefacts on the planet. Mostly it has succeeded in its goal of describing in com-
plete detail the computer systems people create, maintain and use. Nonetheless,
despite extensive tools, large software systems are beyond comprehension. They
cannot be fully understood by anyone no matter how clever, nor can they be
understood by groups of people, not even the team of experts who may have
been working on them for years. Nonetheless they continue to yield enormous
economic advantage which has lead to the world economy being addicted to
software.

Genetic Improvement (GI) [1,2,3] applies search-based optimisation tech-
niques (SBSE) [4], such as genetic algorithms (GA) [5], genetic programming
(GP) [6] and hill climbing to make measurable improvement in existing human
written code. Although GAs [7] and GP [8] have been analysed for sometime,
very little theory is available which can predict how the performance of real soft-
ware systems will change in response to changes to their source code. In SBSE
this is known as the fitness landscape, which depends both on the program and
the mechanisms available to change it.

Section 3 shows software, like other human endeavours, can, both in terms
of source code [9] and numeric values, follow Zipf’s law [10]. But we start in
Section 2 with two leading open source Bioinformatics tools (one in C, the other
in C++) and an open source parallel CUDA GPGPU kernel and show, for these
examples, software is not as fragile as is often assumed. For these diverse source
code examples, we start to map their software fitness landscapes. This initial
mapping suggests that software is much more resilient than is commonly as-
sumed. This in turn supports the idea of artificial evolution of programs via
mutating existing code (GI).

2 Mutating Useful Software

The following three subsections describe the impact of making simple changes
(of the 3 types described at the start of Section 1) to three programs written in
C, C++ and CUDA. We call these changes mutations. We only make one change
at a time and so these are known as first order mutations. Multiple changes are
known as higher order mutants [11]. In Figures 1, 2, and 3 we report the change
in output (excluding logging information) and the change in run-time. In each
case the mutations target code which is used by the test case and yet many
mutations do not change the output at all (cf. equivalent mutants [12]).

2.1 BWA

BWA [13] is a leading open source Bioinformatics tool written in the C pro-
gramming language for matching short next generation DNA sequences to the
human genome. It comprises 33 .c and 20 .h files containing 13 000 lines of code.
We down-loaded the complete installation kit (version 0.7.12) from GitHub and
automatically converted all the .c C source files into a specialised BNF grammar

https://github.com/lh3/bwa

of 18 621 rules. As with our earlier work [14], we use the grammar to control the
mutations [11]. It ensures all mutations are syntactically correct (in that brack-
ets match, there are semi-colons where required, etc.) however, due to variable
out-of-scope and other errors, it need not ensure a mutant compiles.

We also obtained a test sequence from http://fg.cns.utexas.edu/fg/course note
book chapter seventeen.html. We used the GNU gcov test analysis tool to dis-
cover all the lines of C source code executed. (gcov shows 532 lines of the BWA
program are used by this test case.)

We use the three types of mutation: delete a line of source code, replace it
with a copy of another line of code and insert a copy of another line of code.
As with our previous work [14], we restrict replacements and inserts to be of
the same type and from the same .c source file. Notice mutations are limited
to re-using existing source code. They do not create new code from scratch. To
ensure all mutations are executed, all mutations either: delete or replace a line
which is executed or insert a source line immediately before it. There are 61 775
possible mutations of BWA. We generate and test them all (see Figure 1).

To catch indefinite loops, we impose a CPU limit. The limit is about 40
times longer than normal operation. We also automatically remove computer
jobs (known as processes to the Unix operating system) which failed to terminate
normally. Our zombie.awk killer removed nine such zombies.

2.2 Stereo Pair CUDA Image Processing

StereoCamera is open source CUDA code written by nVidia’s vision processing
expert [15]. It takes two stereo images and from the parallax differences be-
tween them it infers distances between objects in the images and the camera.
We had previously used our BNF grammar approach to automatically evolve
considerable speedups [16]. Here we reuse our automatically generated grammar
to start to map the fitness landscape for CUDA software. As a test case we use
a stereo image pair taken inside a typical modern office (provided by Microsoft’s
I2I database). In order to get a somewhat different example, we concentrate on
the parallel CUDA code written for the graphics card, (known as a GPU kernel)
and ignore the program code which runs on a normal personal computer. The
kernel contains 276 lines of CUDA code.

The StereoCamera GPGPU [17] kernel is more constrained than normal C
program code. 1) all of it will be used, 2) we can readily force indefinite loops to
stop running and 3) (excluding a compiler bug) the grammar will ensure mutants
always compile.

We deliberately exclude changes to tuning parameters, CUDA specific pragma
and kernel parameter changes (which were used in [16]) as by design they cannot
break the existing CUDA kernel.

We tried all possible single change mutants (i.e. first order mutants). Figure 2
shows that about 5 in 8 source code mutations do not change the kernel’s output
on the randomly chosen test image pair.

http://fg.cns.utexas.edu/fg/course_notebook_chapter_seventeen.html
http://fg.cns.utexas.edu/fg/course_notebook_chapter_seventeen.html

no change
 0.001

 0.01
 0.1

 1
 10

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

count

Faster

Slower

Increase in error

Increase in time (1% bins)

count

Fig. 2. Impact of all (7079) one change mutations on StereoCamera kernel [16]
running on an nVidia GeForce GT 730 graphics card. Nine mutants failed to
compile due to a bug in the nVidia CUDA 6.0.1 compiler (fixed in CUDA 7.0).
16 caused infinite loops, 318 others failed at run-time. 4400 (62%) mutants do not
change the output at all (“no change”), indeed at least 41 of them are faster (×).

2.3 Bowtie2

Bowtie2 [18], like BWA, is a state-of-the-art next generation DNA analysis pro-
gram. We made random source code mutations to Bowtie2 and measured their
impact on random test cases, see Figure 3. Although many mutations cause
Bowtie2 to fail (not plotted) and others cause it to produce very poor solutions
(e.g. reducing quality by 36, left) others have less dramatic impact. Some slow
down Bowtie2 and others make it faster. However, many changes have no im-
pact on quality (although they may change Bowtie2’s speed, plotted along x=0).
Indeed a large number do not change its speed either (note spike at the origin).
There are even a few mutations which give better quality solutions and even 139
which are both better on a random test and faster (plotted in Figure 3 with +).
It is from these a seventy fold speed up can be evolved [14].

3 Zipfs Law

George Zipf (USA, 1902–1950) proposed a “universal” law of human behaviour [10]
in which the frequency of repeated items is inversely proportional to their rank
(or order). Thus when plotted on log-log scale we get an inverse power law with
a slope of -1. This has been shown to hold for the frequency with which words
in many languages are used, the population of cities and many other human
endeavours, including software engineering [9].

-36
-30

-24
-18

-12
-6

 0
 6

-10
6
-10

4
-10

2
0

10
2

10
4

10
6

10
8

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Count

 Better
Worse

Faster

Slower

Change in Quality

Change in Instructions

Count

Fig. 3. Impact of single mutations to Bowtie2 [14]. Non-linear scales [19].

Using the grammars described in Section 2, Figure 4 shows the distribu-
tions of exactly repeated BWA C and Bowtie2 C++ lines of source code both
approximately follow Zipf’s law.

3.1 What’s my favourite number?

The GNU C library, version 2.22 released 14 August 2015 (excluding its test
suite), contains 845,360 lines of C code, which contain in total 1 203 104 inte-
ger constants (see Figure 5). Many glibc integers are associated with mapping
non-ASCII character sets, e.g. Chinese.

nVidia’s CUDA 7.0 comes with an extensive set of examples (including test
code) totalling 85 711 lines of C++ or CUDA code. These contain 73 620 integer
constants (see Figure 6). Many numbers in the CUDA 7.0 samples are taken from
the OpenGL package. For example, the OpenGL source code includes integers
for use as bit masks which are used to turn on image effects, such as stippling.
Nevertheless we do not see pronounced clustering around the powers of 2, visible
in our earlier work on CUDA 5.0 samples which included macro expansion.

In both the GNU C library and nVidia’s samples, as with the whole lines of
source code in Section 3, numeric values approximately follow Zipf’s law.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

N
u

m
b
e

r
o

f
e

x
a
c
t

re
p
e
a

ts

Rank

BWA repeated lines
Zipf’s Law

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Rank

bowtie2 repeated lines
Zipf’s Law

Fig. 4. Distribution of exactly repeated BWA C program source code (left) and
Bowtie2 C++ source code (after macro expansion) [14, Fig. 5] (right). Zipf’s
law [10] predicts a straight line with slope of -1.

 1

 10

 100

 1000

 10000

 100000

0 1 256 65536 16M 4G 1024G 256T 64Peta 16Exa

0 1 1000 1e6 1e9 1e12 1e15 1e18

c
o
u

n
t

number

0 positive 1031122
negative 29823

 1 10 100 1000 10000 100000

0

Rank

glibc repeated integers
Zipf’s Law

Fig. 5. Distribution of integer constants in GNU C library. Zero is the most
common number, occurring in various formats a total of 142 159 times, followed
by 1 (18 642) and -1 (6 907). Every integer between -28 and 40 957 occurs at least
once. There are 116 685 distinct integer constants.

 1

 10

 100

 1000

0 1 256 65536 16M 4G 1024G 256T 64Peta 16Exa

0 1 1000 1e6 1e9 1e12 1e15 1e18
c
o

u
n

t

number

0
positive 69518
negative 134

 1 10 100 1000

0

Rank

CUDA repeated integers
Zipf’s Law

Fig. 6. Distribution of integer constants in CUDA 7.0 sample source code. Zero
is again the most common number, occurring in various formats 3968 times. Sur-
prisingly the second most popular number is 32 (3962), which probably reflects
the nVidia GPU architecture. There are even fewer negative numbers than in
the GNU C library (Figure 5). Every integer between -2 and 60 occurs at least
once. There are 3490 distinct integer constants.

4 Conclusions

The existence of power laws in software has been previously reported. E.g. Louri-
das et al. [9] reported power laws in both the patterns with which functions or
classes are used and in the frequency with which machine code instructions are
used. Nevertheless the prevalence of Zipf’s law in human-written program code
does appear to be under-appreciated. Although Louridas et al. caution against
getting carried away with the supposed universality of power-laws, it is tempting
to suggest that the Zipf law we see with numbers might make it a good candi-
date for either numeric values to be used when creating test suites. Or indeed
(although this is not yet done) numbers to be embedded into GI-created code
might be drawn from a Zipfian distribution. Actual numerical values (see left
hand sides of Figures 5 and 6) might be drawn with a preference for low entropy
decimal, hexadecimal or octal strings. (In genetic programming [20,6] floating
point numbers, some-times known as ephemeral random constants, ERCs, are
typically drawn uniformly from a small range [21], although we have had good
results from a tangent distribution [22].)

In Section 2 we saw in three different (albeit similar) industrial strength
programming languages examples of high quality software (including serial and
parallel programs) written by experts where it was comparatively easy to find
simple source code changes which on a random test make no external difference.
Indeed, if the new program code can avoid the trap of introducing variable

out-of-scope errors (i.e. avoid compiler errors) most mutants will not break the
program immediately. (In a few cases [23,16,24,25,26] we have set up the GI
system to carefully track the scope of variables and thereby avoided compilation
errors.) Of course other programming languages are much more forgiving and
will assume newly introduced variables should have been declared and will do
this automatically for the lazy programmer.

It may be countered that we have not tested the changes sufficiently. This is
deliberate. We know how much we have tested each change (exactly once). This
gives us a solid benchmark from which to do comparisons. In real GI work, post
evolution code, maybe subjected to much more rigorous validation. (In [23] in
addition to manual validation, we tested the new code back-to-back with the old
more than a million times. No difference was ever found.) Although great strides
have been made with automatic testing [27], it remains true that devising tests
to execute newly written program code is difficult. Indeed one often gets the
impression that simply running the new code is considered sufficient, without
caring if indeed it calculated the right answer. We have set up our experiment so
that we know our mutated program code is executed. We can tell if it calculated
the right answer, or at least we can tell if it calculated the same answer as the
human-written program.

Our purpose is to put to bed the myth that any random change will destroy
human-written programs. Instead we have given persuasive evidence that whilst
a random changes might be bad, if you are prepared to try multiple times, per-
haps adapting a population approach, you can quickly find equivalent mutants
and you may, if guided by a suitable fitness function, find improvements to your
software.

References

1. Langdon, W.B.: Genetically improved software. In Gandomi, A.H., Alavi, A.H.,
Ryan, C., eds.: Handbook of Genetic Programming Applications. (Springer) Forth-
coming.

2. Langdon, W.B.: Genetic improvement of software for multiple objectives. In
Labiche, Y., Barros, M., eds.: SSBSE. Volume 9275 of LNCS., Bergamo, Italy,
Springer (2015) 12–28 Invited keynote.

3. Langdon, W.B., Petke, J., White, D.R.: Genetic improvement 2015 chairs’ wel-
come. In Langdon, W.B., Petke, J., White, D.R., eds.: Genetic Improvement 2015
Workshop, Madrid, ACM (2015) 791–792

4. Harman, M., Jones, B.F.: Search based software engineering. Information and
Software Technology 43(14) (2001) 833–839

5. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press (1992) First Published by University of Michigan Press 1975.

6. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (2008) (With contributions by J. R. Koza).

7. Beyer, H.G., Langdon, W., eds.: Foundations of Genetic Algorithms, Schwarzen-
berg, Austria, ACM (2011)

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_hbgpa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi.html
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://portal.acm.org/citation.cfm?id=1967654&picked=prox

8. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer-Verlag
(2002)

9. Louridas, P., Spinellis, D., Vlachos, V.: Power laws in software. ACM Trans. Softw.
Eng. Methodol. 18(1) (2008) 2:1–2:26

10. Zipf, G.K.: Human Behavior and the Principle of Least Effort: An Introduction to
Human Ecology. Addison-Wesley Press Inc., Cambridge 42, MA, USA (1949)

11. Langdon, W.B., Harman, M., Jia, Y.: Efficient multi-objective higher order muta-
tion testing with genetic programming. Journal of Systems and Software 83(12)
(2010) 2416–2430

12. Yao, X., Harman, M., Jia, Y.: A study of equivalent and stubborn mutation opera-
tors using human analysis of equivalence. In: Proceedings of the 36th International
Conference on Software Engineering. ICSE 2014, Hyderabad, India, ACM (2014)
919–930

13. Li, H., Durbin, R.: Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics 26(5) (2010) 589–595

14. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Transactions on Evolutionary Computation 19(1) (2015) 118–135

15. Stam, J.: Stereo imaging with CUDA. Technical report, nVidia (2008)
16. Langdon, W.B., Harman, M.: Genetically improved CUDA C++ software. In

Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M., Garcia-Sanchez, P., Merelo,
J.J., Rivas Santos, V.M., Sim, K., eds.: 17th European Conference on Genetic
Programming. Volume 8599 of LNCS., Granada, Spain, Springer (2014) 87–99

17. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU
computing. Proceedings of the IEEE 96(5) (2008) 879–899 Invited paper.

18. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nature
Methods 9(4) (2012) 357–359

19. Langdon, W.B.: Genetic improvement of programs. In Winkler, F., Negru, V., Ida,
T., Jebelean, T., Petcu, D., Watt, S., Zaharie, D., eds.: 16th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC
2014), Timisoara, IEEE (2014) 14–19 Keynote.

20. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT press (1992)

21. Daida, J.M., Bertram, R.R., Stanhope, S.A., Khoo, J.C., Chaudhary, S.A.,
Chaudhri, O.A., Polito II, J.A.: What makes a problem GP-hard? analysis of
a tunably difficult problem in genetic programming. Genetic Programming and
Evolvable Machines 2(2) (2001) 165–191

22. Langdon, W.B.: Genetic Programming and Data Structures: Genetic Programming
+ Data Structures = Automatic Programming! Volume 1 of Genetic Programming.
Kluwer, Boston (1998)

23. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In Sobrevilla, P., ed.: 2010 IEEE World Congress on Computational Intelligence,
Barcelona, IEEE (2010) 2376–2383

24. Langdon, W.B., Modat, M., Petke, J., Harman, M.: Improving 3D medical image
registration CUDA software with genetic programming. In Igel, C., Arnold, D.V.,
Gagne, C., Popovici, E., Auger, A., Bacardit, J., Brockhoff, D., Cagnoni, S., Deb,
K., Doerr, B., Foster, J., Glasmachers, T., Hart, E., Heywood, M.I., Iba, H., Jacob,
C., Jansen, T., Jin, Y., Kessentini, M., Knowles, J.D., Langdon, W.B., Larranaga,
P., Luke, S., Luque, G., McCall, J.A.W., Montes de Oca, M.A., Motsinger-Reif, A.,
Ong, Y.S., Palmer, M., Parsopoulos, K.E., Raidl, G., Risi, S., Ruhe, G., Schaul,
T., Schmickl, T., Sendhoff, B., Stanley, K.O., Stuetzle, T., Thierens, D., Togelius,

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_fogp.html
http://dx.doi.org/10.1145/1391984.1391986
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html
http://dx.doi.org/10.1145/2568225.2568265
http://dx.doi.org/10.1093/bioinformatics/btp698
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1038/nmeth.1923
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_synasc.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/daida_2001_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2014_GECCO.html

J., Witt, C., Zarges, C., eds.: GECCO ’14: Proceeding of the sixteenth annual
conference on genetic and evolutionary computation conference, Vancouver, BC,
Canada, ACM (2014) 951–958

25. Langdon, W.B., Lam, B.Y.H., Petke, J., Harman, M.: Improving CUDA DNA
analysis software with genetic programming. In Silva, S., Esparcia-Alcazar, A.I.,
Lopez-Ibanez, M., Mostaghim, S., Timmis, J., Zarges, C., Correia, L., Soule, T., Gi-
acobini, M., Urbanowicz, R., Akimoto, Y., Glasmachers, T., Fernandez de Vega, F.,
Hoover, A., Larranaga, P., Soto, M., Cotta, C., Pereira, F.B., Handl, J., Koutnik,
J., Gaspar-Cunha, A., Trautmann, H., Mouret, J.B., Risi, S., Costa, E., Schuetze,
O., Krawiec, K., Moraglio, A., Miller, J.F., Widera, P., Cagnoni, S., Merelo, J.,
Hart, E., Trujillo, L., Kessentini, M., Ochoa, G., Chicano, F., Doerr, C., eds.:
GECCO ’15: Proceedings of the 2015 on Genetic and Evolutionary Computation
Conference, Madrid, ACM (2015) 1063–1070

26. Langdon, W.B., Harman, M.: Grow and graft a better CUDA pknotsRG for RNA
pseudoknot free energy calculation. In Langdon, W.B., Petke, J., White, D.R.,
eds.: Genetic Improvement 2015 Workshop, Madrid, ACM (2015) 805–810

27. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: 8th European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (ESEC/FSE ’11),
ACM (2011) 416–419

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
http://dx.doi.org/10.1145/2025113.2025179

	Software is Not Fragile

