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II.-Genesis

The genesis of our work lies in the attempt to obtain a more efficient combustion of wateroil emulsified fuels. This kind of fuel experiences the process of "microexplosions" of the sprayed droplets when enter a combustion chamber, as illustrated in the photo of figure 1.

When trying to reproduce this phenomenon, we wanted to find the droplet size distribution function better to say "fragment size distribution function" (fsdf) to evaluate how good is the improvement of combustion in presence of microexplosions. The results in detail are in [START_REF] Sotolongo | Criticallity in droplet fragmentation[END_REF]. One important result is that for the case of microexplosions the fsdf is found as a power law distribution of sizes. Besides, we studied fsdf for the rupture of mercury drops when falling from a given height. In this case the scaling is not always present, but only when the height is large enough, i.e., when the energy of the fragmentation process is large enough. (Fig. 2) Figure 1.-record of the process of microexplosion of a drop of water-oil emulsion in a combustion chamber. When entering a region of high temperature, a process of bubble nucleation that leads to the explosion of the drop occurs, producing many smaller droplets which present a larger area to combustion, improving the burning process and reducing waste of unburned fuel and contamination. If we try to find the reason for this behavior, note that, as fragmentation is a long range phenomenon its description in terms of first principles must be made with Tsallis entropy. Boltzmann´s entropy is inadequate for this.

Then, let´s use Tsallis entropy:
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, where () pv is the probability density of finding a drop of volume v . Let us extremize the entropy subjected to the known conditions:

(a) Normalization:
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q vp v dv   Then the obtained fsdf in terms of the droplet radius is:
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where , C  are fitting constants. The asymptotic result when 1 q  gives the well known ( for engineers) Rossin-Ramler distribution function. For larger fragment sizes scaling is present. These are good results, since for the first time this transition is obtained as a result of first principles of physics.

III.-Earthquakes

Once obtained these results, we found an inspiring paper from De Rubeis et al. [10] that leaded us to think about the influence of fragments in the occurrence of earthquakes. The model [10], as illustrated in figure 3, includes the simulation of the interaction of two profiles representing tectonic plates, with asperities with sizes determined by a gaussian law.

(a) (b) gaussianly distributed. When a teeth is broken an earthquake is triggered whose energy is proportional to the area of the fragment. (b) Our model. Interaction mediated by hindering fragments. When a fragment is released the energy of the earthquake is, as before, proportional to the area of the fragment, but now the fsdf is the one given by the extremization of the Tsallis entropy by the method previously explained.

When one of the asperities casually breaks, the corresponding energy of the earthquake is proportional to the size of the "broken tooth". The simulation gave a power law distribution of the earthquake energy, i.e., the Gutenberg Richter law, which has a limited range of application, as will be seen.

Our variation was to introduce the fragments between the two plates. The fragments are able to facilitate the slip of the plates but also to hinder their displacement. Then, the stresses accumulate until the hindering fragment is somehow released. (We call it fragmentasperity interaction). Then applying Tsallis entropy extremization [START_REF] Sotolongo-Costa | A fragment-asperity interaction model for earthquakes[END_REF] in the same way as previously explained to find fsdf, it was possible to find the area distribution of fragments.

Besides, assuming proportionality of energy and area as in [10], we found the energy distribution of earthquakes. Expressed in terms of the magnitude "m" of the seism is:
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It describes the dependence of the excedence (fraction of earthquakes of magnitude larger than m) with m. Figure 4 shows a fitting in the whole range of magnitudes with catalogs of earthquakes from Cuba and Almeria. The good agreement shown has also been found with more catalogs like California, Iberian Peninsula [START_REF] Sotolongo-Costa | A fragment-asperity interaction model for earthquakes[END_REF] and others. This formula has a clear advantage over the Gutenberg-Richter (GR) law, since GR is an empirical law and fits well only in the region of "intermediate" magnitudes but not in the whole range. This highlights the active role of fragments in the very nature of earthquakes. So, our model improves the hypothesis of slipping of tectonic plates without intermediate agents.

So, if fragments play such an important role in seismic activity, we could judge about a possible relationship between fracking in shale gas exploitation and the triggering of the seismic activity in those areas where fracking wells has grown rapidly.

As is known, fracking consists in the perforation of a well of several kilometers deep and, once the shale layer is reached, the perforation continues some more kilometers. Then underground layers are subjected to a forced breaking which produces cracks through which shale gas or oil can be extracted. Of course, the propagation of these cracks generates fragments.

As far as we know, there is no official recognition of any relation between fracking and earthquakes despite the amazing coincidence of the rhytm of growth of seismic activity and that of fracking wells.

If it were possible to demonstrate that the energy distribution of the earthquakes in the lands characterized by fracking activity coincides with that produced by the frackingasperity interaction, it would be a reason for establish a link between both processes and would lead to suspect about a close relationship fracking-earthquakes.

Figure 5 shows the result of fitting equation ( 1) with a catalog of earthquakes of Oklahoma in 2013. This gives a good fitting. Fracking, then, is likely a cause of seismicity in fracking regions. The earthquakes entering the catalogs we have found are generally of magnitude smaller than 4, i.e., those are earthquakes of relatively small magnitude. But cracks propagate and the formation of larger fragments is to be expected. Consequently, an increase in the magnitude of earthquakes is also to be expected if fracking continues.

IV.-Tumors and radiobiology.

Another important application of this viewpoint is the interaction of radiation with living tissues, what is one of the more used ways to fight tumors, specially cancer tumors.

The interaction of radiation with living tissues is a very open, difficult and, in spite of many efforts, an almost unexplored theoretical problem. This is understandable considering the huge difficulties involved in the description of the system and of the interactions.

Then, a description in terms of general laws of physics, applicable in many different systems, is desirable. Here is, where, similar to the problem of fragmentation, Tsallis entropy is a tool to be applied.

Empirically, it has been found that the survival probability F depends exponentially with a variable called "tissue effect", E , which, in the linear-quadratic (LQ) model depends of the applied dose D in a quadratic way,
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, being  and  adjustment constants. For a description of all magnitudes involved in radiobiology see [START_REF] Tubiana | Introduction to Radiobiology[END_REF].

Let us build the entropy with the probability density () pE of kill a cell (tissue) with a radiation of tissue effect .

E Then:
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and extremize it with the constraints:
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The last condition demands the existence of a finite value for the q-mean value.

Let us add the fact that beyond a given level of radiation dose 0 D traduced in a value of the tissue effect 0 E beyond which no cell survives. The survival probability, in terms of the dose, is:
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The formula (2) involves two factors:  , which which in the analysis of experimental data results to depend only of the tissue, and 0 D determined mainly by the radiation.

To compare our model with experiments a collection of diverse data was taken. The fitting of data using ( 2) is in figure 6 (see [START_REF] Sotolongo-Costa | Behavior of tumors under non stationary therapy[END_REF]). A surprising collapse of all the data, irrespective of the tissue and the radiation is seen, as predicted by [START_REF] Sotolongo-Costa | Tsallis Entropy and thetransition to scaling in fragmentation[END_REF]. In other words, a universal behavior is revealed.

Another result of this formulation is that, if the parameters are determined both for healthy and cancerous cells, as both are bombarded by the same radiation, it can be derived the most efficient and less harmful treatment van be selected so that the treatment kills the most of the cancerous cells and the less of healthy cells. In other words this permits in principle to choose the radiation, dose and periodicity of treatment that minimize the damage on the patient, or even to decide an alternate treatment. This is of crucial importance in radiotherapy.

Conclusions

Not all the results have been exposed. Of course, this viewpoint has opened many new perpectives in the fields we exposed and there are open questions on which work is in progress. But some results are mandatory to be mentioned to sum up.

Particularly, we have seen that fragment-asperity model describes earthquake magnitude distribution in fracking zones, not only in well established seismic zones, so that the relation fracking-seisms can not be excluded. Besides, if the model is correct, an increase of seismic magnitudes is to be expected.

The Tsallis formalism gives a UNIVERSAL way to find the survival fraction after radiation sessions. Also, If the characteristic coefficients are known for the tumor and the surrounding tissue, (this demands a lot of experimental work), then some hints can be given to choose the less harmful treatment to apply.
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 2 Figure 2.-Experimental results of the cumulative number of droplets (in 10% and log scale) vs log( r )log(<r>), where <r>l is the geometrical mean of the droplet radii. The falling heights are 0.5 m (circles), 1 m (squares), and 5 m (diamonds). Note that, to clarify the plot, we have shifted one unit to the left of the results for h = 0.5 m and one unit to the right of the results for h = 5 m. Solid lines represent the theoretical prediction (related to the error function) assuming log-normal distributions. Transition to a scaling law when falling height is increased is evident.
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 3 Figure 3.-(a) Model of De Rubeis et al. Interaction of two profiles (Tectonic plates) with asperities (teeth)gaussianly distributed. When a teeth is broken an earthquake is triggered whose energy is proportional to the area of the fragment. (b) Our model. Interaction mediated by hindering fragments. When a fragment is released the energy of the earthquake is, as before, proportional to the area of the fragment, but now the fsdf is the one given by the extremization of the Tsallis entropy by the method previously explained.

Figure 4 .

 4 Figure 4.-Fitting of formula (1) with catalogs from Cuba and Almeria. The ordinate is in linear scale to highlight the good fitting.

Figure 5 .

 5 Figure 5.-Fitting of formula 1 with the catalog of earthquakes of Oklahoma in 2013.

Figure 6 .-fitting of the survival probability 1 F.

 61 Figure 6.-fitting of the survival probability