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Viscosity scaling in hydrodynamic instabilities in porous media

The importance of viscosity scaling in the context of viscous fingering in a finite slice with viscosity dependent diffusivity is investigated theoretically. Choosing the characteristic viscosity classically as either the displacing or displaced fluid viscosity for both more and less viscous slice leads to inappropriate theoretical predictions, which do not support the physics. With an appropriate choice of the characteristic viscosity, we show that the onset of instability and the initial dynamics of the finger patterns are the same for both more and less viscous slices. Our analysis will be helpful in the theoretical understanding of buoyancydriven convection in a variable viscosity layer in vertical porous media or VF with non-monotonic viscosity profiles.

Introduction

Viscous fingering (VF) in various fluid flow problems of industrial and environmental interest, such as oil recovery [START_REF] Homsy | Viscous fingering in porous media[END_REF], pollution remediation [START_REF] Welty | Stochastic analysis of transverse dispersion in density-coupled transport in aquifers[END_REF], CO 2 sequestration [START_REF] Huppert | The fluid mechanics of carbon dioxide sequestration[END_REF], chromatography separation [START_REF] De Wit | Viscous fingering of miscible slices[END_REF][START_REF] Mishra | Influence of miscible viscous fingering of finite slices on an adsorbed solute dynamics[END_REF][START_REF] Rana | Combined influences of viscous fingering and solvent effect on the distribution of adsorbed solutes in porous media[END_REF][START_REF] Rana | Fingering dynamics on the adsorbed solute with influence of less viscous and strong sample solvent[END_REF], etc. have drawn attention of many researchers over many decades. This hydrodynamic instability is featured when a less viscous fluid displaces a more viscous and hence less mobile one in porous media [START_REF] Homsy | Viscous fingering in porous media[END_REF]. Based on the geometry of the interface featuring the instability in the form of finger-like structure, VF problems can be broadly classified into two categories. The first one being the classical Saffman-Taylor instability in two semi-infinite fluids separated by a flat interface [START_REF] Homsy | Viscous fingering in porous media[END_REF], while the other is the displacement of a finite sample, typically in chromatography column [START_REF] De Wit | Viscous fingering of miscible slices[END_REF]. In the latter case, the sample is confined in a rectangular region that can feature VF either at the frontal or rear interface depending on the viscosity contrast in the downstream direction. The influence of positive and negative log-mobility ratio was investigated in the context of solute adsorption on porous matrix [START_REF] Mishra | Influence of miscible viscous fingering with negative log-mobility ratio on spreading of adsorbed analytes[END_REF]. In the absence of adsorption and for constant diffusivity of the solute concentration, Mishra et al. showed that the onset of instability and the subsequent dynamics of the fingers are identical for more and less viscous slices [START_REF] Mishra | Differences in miscible viscous fingering of finite width slices with positive or negative log mobility ratio[END_REF]. Pramanik and Mishra [START_REF] Pramanik | Viscosity scaling of fingering instability in finite slices with Korteweg stress[END_REF] showed that in the presence of the Korteweg stress [START_REF] Pojman | Evidence of an effective interfacial tension between miscible fluids: Isobutyric acid-water and 1-butanol-water in a spinning drop tensiometer[END_REF][START_REF] Chen | Miscible droplets in a porous medium and the effects of Korteweg stresses[END_REF] the fingering dynamics of a miscible slice of more viscosity are identical to that of a less viscosity. This was achieved with an appropriate scaling. In this paper, we are interested to explore whether such dynamics are also possible with concentration dependent diffusivity in absence of the Korteweg stress effect. In this context, we propose a modified viscosity scaling that helps to answer this question when the diffusivity is inversely proportional to the viscosity of the fluid. We structure this paper as follows. Mathematical formulation and numerical solution of the present problem is discussed in Sect. 2, followed by result discussion and conclusion in Sects. 3 and 4, respectively.

Mathematical formulation and numerical solution of the problem

Consider a rectilinear displacement of a finite sample of viscosity µ 2 by another fluid of viscosity µ 1 at a uniform velocity U e x , where e x is the unit vector in the x-increasing direction. The displacing fluid consists of the same sample solvent having no solute concentration in it, i.e. c = 0, while the finite sample has solute concentration c = c 2 . We assume the variation of the diffusion coefficient with concentration is governed by the generalized Stokes-Einstein relation [START_REF] Probstein | Physicochemical hydrodynamics[END_REF][START_REF] Sahu | Double diffusive effects on pressure-driven miscible channel flow: Influence of variable diffusivity[END_REF],

D(c) • µ(c) = constant, (1) 
so that D(c) = D 0 /µ(c), where D 0 denotes the diffusion coefficient of an infinitesimally small amount of the displaced fluid in the displacing fluid. Fluids are assumed to be incompressible, miscible and neutrally buoyant. For nondimensionalization we choose D 0 /U, D 0 /U 2 , U, µ ch D 0 /κ, µ l , c 2 as the characteristic length, time, velocity, pressure, viscosity, and concentration, respectively [START_REF] Pramanik | Viscosity scaling of fingering instability in finite slices with Korteweg stress[END_REF].

Here µ l = min{µ 1 , µ 2 }, κ is the permeability of the porous media, and D 0 represents a reference diffusivity. The related dimensionless equations in a frame of reference moving with the velocity U e x can be written as [START_REF] Homsy | Viscous fingering in porous media[END_REF],

∇ • u = 0, ∇p = -µ(c)(u + e x ), ∂c ∂t + u • ∇c = ∇ • (D(c)∇c) , (2) 
where D(c) represents concentration dependent dispersion. The viscosity of the fluids depends exponentially on the solute concentration, i.e., µ(c) = e Rf (c) , where R = ln(µ m /µ l ) is the log-mobility ratio and f (c) is c (more viscous slice) or 1 -c (less viscous slice), and µ m = max{µ 1 , µ 2 }. Therefore, the dimensionless form of the concentration dependent viscosity becomes D(c) = 1/µ(c). For two dimensional incompressible flow we define the stream-function ψ(x, y, t), such that u = ψ y , v = -ψ x are the longitudinal and transverse component of the Darcy velocity u. Therefore, we can write (2) as,

∂c ∂t + J(x, y, t) = 0, ∇ 2 ψ = -Rf (c)N (x, y, t). (3) 
The nonlinear terms J(x, y, t) and N (x, y, t) in (3) are defined as,

J(x, y, t) = ψ y c x -ψ x c y -e -Rf (c) ∇ 2 c -Rf (c)|∇c| 2 , (4) 
N (x, y, t) = (∇ψ + e y ) • ∇c,

where e y is the unit vector in y-direction. Equations (3) are solved using a Fourier pseudo-spectral method [START_REF] Tan | Simulation of non-linear viscous fingering in miscible displacement[END_REF][START_REF] De Wit | Viscous fingering of miscible slices[END_REF] to analyze the influence of variable diffusivity on VF of more and less viscous miscible slices. We apply Discrete Fourier transform (DFT) to c(x, y, t), ψ(x, y, t), J(x, y, t) and N (x, y, t) that converts (3) into differential algebraic equations,

dĉ m,n (t) dt + Ĵm,n (t) = 0, ψm,n (t) = Nm,n (t)/(k 2 m + k 2 n ), (6) 
where k m = 2πm/L x , k n = 2πn/L y , m, n = 0, 1, 2 . . ., L x and L y being the dimensionless length and width of the computational domain, respectively. Equation ( 6) is solved using Adams-Bashforth predictor and trapezoidal corrector method in the Fourier space to obtain the Fourier modes at next time step t + ∆t. Inverse DFT has been performed for ĉm,n and ψm,n to update the concentration and stream function at time t + ∆t, c(x, y, t + ∆t), ψ(x, y, t + ∆t). Details of the numerical method used can be found in the paper of Tan and Homsy [START_REF] Tan | Simulation of non-linear viscous fingering in miscible displacement[END_REF]. 

Results and discussion

First we investigate the influence of variable diffusivity on miscible VF in a finite slice. The spatial structure of a more viscous slice of dimensionless width l = 256 is presented for variable diffusivity (Fig. 1a) and constant diffusivity (Fig. 1b) with R = 2. Figure 1 depicts that the fingering dynamics become more complex for variable diffusivity as compared to constant diffusivity case. In the former case the wavelength of the fingers becomes shorter and the fingers propagate faster, which is readily evident from an early interaction of the fingers with the frontal interface.

Figure 2 shows the spatio-temporal evolution of the solute concentration of more and less viscous slice for R = 2, l = 256 with concentration dependent diffusivity. This figure depicts that, before interacting with the stable interface the fingering dynamics in more and less viscous slices are identical. We also perform simulations for a less viscous slice by considering µ ch = µ 1 [START_REF] Mishra | Differences in miscible viscous fingering of finite width slices with positive or negative log mobility ratio[END_REF], such that µ = e -2c . It is observed that the finger patterns differ significantly in this case (for brevity not shown) as compared to that shown in Fig. 2b. In particular, the onset of instability delays when choosing µ = e -2c , which is attributed to the fast diffusion of the solute concentration as compared to µ = e 2(1-c) . Thus we conclude, in order to compare between two similar flows one should be careful about the choice of the dimensionless values in such a way that they represent the same dimensional values. With the prescribed scaling of the viscosity of the fluids this has been achieved in the case of variable diffusivity VF in finite slice.

The temporal evolution of degree of mixing χ(t) [START_REF] Jha | Fluid mixing from viscous fingering[END_REF] has been investigated for both more and less viscous finite sample of width l = 256. We mentioned in §2 that the displacement of a more or less viscous finite sample is represented by µ(c) = e Rc or µ(c) = e R(1-c) , respectively, where the log-mobility ratio R > 0. Figure 3 depicts that the temporal evolution of the degree of mixing, χ(t), for these two cases are almost identical, even after the interaction of the fingers with the respective stable interface. The displacement of a less viscous finite sample can alternatively be represented by µ(c) = e Rc , R < 0 [START_REF] Mishra | Differences in miscible viscous fingering of finite width slices with positive or negative log mobility ratio[END_REF]. It is shown that at early times, say at t = 500 in Fig. 3, mixing due to diffusion for R < 0 is more than the mixing due to VF for R > 0. However, at later times, for example at t = 1500, VF enhances the fluid-fluid interface and hence the degree of mixing becomes larger for R > 0 than its R < 0 counterpart. This is due to the fact that the dimensionless diffusion coefficient, which depends on the local solute concentration, c. For R = 2, the dimensionless diffusion coefficient is e -2(1-c) , while for R = -2, the dimensionless diffusion coefficient is e 2c . Therefore, when the displacement of a less viscous finite sample is represented by µ(c) = e -2c , the finite slice diffuses faster than that when the displacement is represented by µ(c) = e R (1-c) . This leads to a faster diffusive mixing for µ(c) = e -2c than that for µ(c) = e 2c .

Conclusion

The influence of viscosity scaling on miscible VF in a finite slice with viscosity dependent diffusivity is investigated through numerical simulations. Choosing an appropriate characteristic viscosity we show that the fingering dynamics of a more viscous slice is identical to that of a less viscous one. We believe, the present scaling analysis shall be important to investigate the stability of a variable viscosity buoyantly unstable layer in vertical porous media [START_REF] Manickam | Fingering instabilities in vertical miscible displacement flow in porous media[END_REF] or miscible VF with non-monotonic viscosity profiles [START_REF] Manickam | Stability of miscible displacements in porous media with nonmonotonic viscosity profiles[END_REF], and pave new way to understand fluid mixing in porous media.

Acknowledgement

Author is also grateful to Manoranjan Mishra for fruitful discussion and careful reading of the manuscript. Author gratefully acknowledges the financial support from the National Board for Higher Mathematics, Department of Atomic Energy, Government of India through a Ph.D. fellowship.

Scientific validation

This paper has been unanimously validated in a collaborative review mode with the following reviewers:

-Aǵota Tóth, University of Szeged, -Sarah Klein, Université Paris-Sud.

Fig. 1 .

 1 Fig. 1. Spatial structure of the solute concentration at t = 800 in the moving frame of reference for R = 2, l = 256: (a) variable diffusivity and (b) constant diffusivity.

Fig. 2 .

 2 Fig. 2. Spatial structure of the solute concentration at successive times in the moving frame of reference for l = 256: (a) µ(c) = e 2c and (b) µ(c) = e 2(1-c) .

Fig. 3 .

 3 Fig.3. Temporal evolution of the degree of mixing for l = 256 with µ(c) = e 2c (dashdotted line), µ(c) = e 2(1-c) (continuous line) and µ(c) = e -2c (dashed line). Inset images show the concentration distribution for the last two cases at t = 500 and 1500.