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The dynamical behaviour of nonlinear elastic spherical shells 

CARMEN CALDERER 

Heriot- Watt University, Department of Mathematics, Edinburgh EH12 4AS, Scotland, U.K. 
University of Maryland, Department of Mathematics, College Park, MD 20742, U.S.A. 

Introduction 

We consider the problem of the radial motion of a thick spherical shell under a constant 
pressure difference between the inner and the outer surfaces, and under zero body forces. 
We assume that the material of the shell is homogeneous, isotropic, hyperelastic and incom­
pressible. 

The problem of inflation under pressure of an arbitrary (i.e. nonspherical) compressible 
hyperelastic body has been studied by Ball [14]. He applied the concavity method of 
Knops, Levine and Payne [ 15] to show that weak solutions to the equations of motion with 
appropriate initial data do not exist for all positive time. The method of proof suggests, but 
does not establish, that the mechanism for non-existence is blow-up of the displacement in 
finite time. However, it seems that this method does not apply if the material is almost 
incompressible. This is related to the fact that the concavity hypothesis made on the strain­
energy function W(F) in [14] cannot hold if the material is almost incompressible. Also the 
set of initial data corresponding to non-existence is not easy to characterize. In this paper we 
show that for the radial motion of an incompressible spherical or cylindrical shell the special 
geometry enables us to determine completely the behaviour of all solutions, and in particular 
to describe exactly for which initial data the solution exists for all time, and for which the 
solution becomes unbounded in finite time. This description is possible because the equation 
of motion reduces to a conservative autonomous ordinary differential equation in the plane. 

The constitutive properties of the material enter the differential equation through a 
function g(x 3

, c5) of the tangential strain x and a parameter c5 giving the thickness of the 
shell in reference configuration. The strain-energy function W(x 3 ) enters into the expression 
for g(x 3

, 8) in a complicated way. 
The phase-plane analysis is carried out initially under assumptions on the function g(x3 , 

8), rather than W(x 3
). We make hypotheses on the growth of this function for large and 



small values of x, on its sign, on the number of its critical points, and on the number of roots 
x > 1 of the equation g(x 3 , 5) = P for a given P > 0. 

The growth conditions on g are related to the growth properties of W( F) for large F. The 
importance of such growth conditions in nonlinear elasticity was first emphasized by 
Antman [16] . In [14] Ball interprets the concavity inequality in terms of the slow growth 
of W( F) as some norm of the deformation gradient F tends to infmity, this condition being 
appropriate for a "weak material". This slow growth of W(F) is responsible for the global 
non-existence of solutions. Following this idea, this paper shows that for "strong materials", 
those for which g(x 3 , 5) grows faster than certain powers of x for small and large x, all 
solutions exist and remain bounded for all time, while "weak" materials have unbounded 
solutions that blow up in finite time, for some boundary pressures and some initial data. (As 
an example of these growth conditions, let us consider the isotropic strain energy function 
a(A1 , X2 , X3 ) = xr + X~ + X~, where X1 , X:z. X3 describe the principal stretches, and a> 0. 
For the radial deformation under study, X1 = X, X2 = X - 112 = X3 and x = X -vz, where X is 
the radial stretch. Then the material is weak for x large, if a< 3, and strong if a> 3, and it 
is strong for x small for all a> 0). 

Since the dynamical description is given in terms of g(x 3
, 5), in Section 3 we consider the 

problem of determining for 5 > 0 a strain energy function corresponding to a given g(x 3
, 5). 

Using finite difference equation methods, we find a unique solution given by an infinite series. 
The hypothesis on the sign of g(x 3

, 5) are interpreted in terms of constitutive restrictions 
on the strain-energy function. 

Critical situations arise for some particular values of the external pressure P crit at which 
the number of equilibrium solutions decreases by two asP passes through P crit· Under some 
hypotheses on g(x 3

, 5), we, in Section 4, use invariant manifolds to determine when P = 
P crit and the behaviour of the solutions in the neighbourhood of the relevant equilibrium 
point. 

In Section 5 we consider the dynamical equations of a membrane, for which it is possible 
to carry out the same analysis. We show that the solutions of the equation of motion are the 
uniform limit on finite time intervals of the solutions for the thick shell as 5 tends to zero. 
In this case we construct some examples to show that some of the phase-plane results 
obtained in Section 2 can occur under constitutive hypotheses on the strain-energy function 
such as convexity of W(F). (For incompressible materials this is not an unreasonable 
assumption). 

In Section 6 we summarise the corresponding results for a cylindrical shell. 

Section 1 

We consider a Cartesian system and a set of spherical coordinates (R, e, ~)in IR 3
. 

Let the reference configuration of the shell be the domain n c IR 3
, 

n = {(R, e, ~), R1 <R <Rz}, (1.1) 

where R 1 , R 2 denote the radii of the inner and the outer surfaces of the shell, respectively. 



Let the position (r(t), 8(t), <fJ(t)) at timet of the particle labelled by (R, e, cl>) in the 
reference configuration be given by 

r 3 (t) = R 3 + ,f(t)-RL 
O(t) = e, 

<P(t) = cl>. 

(1.2) 

(We refer to [2] for the following elements in continuum mechanics). The physical compo­
nents of the deformation gradient matrix are 

[
R

2 

r '] F = diag 7, R.' R , 

J = det F = I. 

In spherical components the right and left Cauchy-Green tensor C, B are given by 

The principal stretches A1 , A2 , A3 of the deformation (1.2) are 

The principal invariants of (1.4) are 

2 
I = A2 +-· 

t A' 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

We assume that the solid is hyperelastic and isotropic, i.e. the strain energy function depends 
on F through the invariants of B, or equivalently, it can be expressed as a symmetric 
function of the principal stretches Aj, 

(1.7) 

Because the solid is incompressible, the Cauchy stress tensor has the form 

(1.8) 

where 

(1.9) 

and 

p = p(x, t) 

is an arbitrary hydrostatic pressure. 
In particular, forB given by (1.4), (1.8) becomes 



( 
R4 r4 rl Rl rl Rl) 

T = diag -p+l/lt4+1/l-t4,-p+l/Jt2+1/l-tl"'-p+l/JtR2 +1/1-tl" · r R R r r 

(1.10) 

The spherical components of the acceleration a for the motion (1.2) are 

(1.11) 

The balance laws of linear and angular momentum, with zero body force, are given in point­
wise form by 

div T(x, t) = pa(x, t), 

T = TT. 

The stress vector t measured per unit area of the deformed configuration is 

t = Tfi, 

(1.12) 

(1.13) 

where fi denotes the unit outward normal to the boundary of n. We follow the work of 
Knowles and J acu b [ 23] to deduce the differential equation of the motion of the spherical 
shell. We write the field equations (1.12) in spherical coordinates [2], [3], forT, a given by 
(1.10), (1.11), respectively, 

a 2 
-a Trr +- [Trr- Too] 

r r 

ap ap 
a8 = 0 = a¢>· 

From the two last equations we can assert that pis independent of 8 and 1/>, i.e., 

p = p(r, t). 

Differentiating with respect to tin (1.2), we deduce that 

.. a§ 
r = -­

ar' 

where 

§ = ,- 1 (2r1 r~ + r~i\)-!r-1 r1r~. 

is the acceleration potential. 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

We assume that the outer surface is free of traction and the inner one is subjected to a 
constant pressure p > 0 measured per unit area in the present configuration, 



T(x,,t)fi(x, t) = -pfi(x, t), 

= 0, 
where 

Hence, 

x(r,O,cp) = x(r1 ,0,cp) 

x(r,O,cp) = x(r2 ,0,cp), 
(1.18) 

(1.19) 

We integrate (1.14) with respect tor using (1.16) and (1.17). Then, we can write (1.19) as 

- p(§ 1 - §2) + 2 (' (~
2

2- ~:) (\V1 - ~
2

2 \V-1) ~ = - p, 

where 

§1 =r1r1 +~;L 

§ 
1 ( "2 2·· ) 1 -4 4 "2 

2 = - 2r1r1 + '1'1 - ?J2 '1'1· '2 
Next we set 

x(t) = '~~) > 0, 
R~ 

8 = R~ -1 >O. 

Then 

R3 
HR, t) = 1 + R! (x3 

- 1), 

and 

A = ~-213. 

Substituting (1.21), (1.22), (1.23) in (1.20), we finally get 

[ ( 
8 )-1/3] [ ( 8 )-1/3 

2xx 1 - 1 + x 3 + x2 3 - 3 1 + x 3 

2 
P=-p 

R 2 ' p 1 

x>O, 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

(1.25) 



We consider the density p as a constant. 

or 

It is important to notice that since Pis constant (I .24) is autonomous. 
We introduce the one-dimensional strain energy function W(~), 

a(A.) = W(HA.)). 

Differentiating (1.26) and using (1.9), we can write (1.25) as 

3 2 •X
3 W'(~) 

g(x , o) = R2 J6+x' ~- 1 d~. 
p 1 1+6 .. 

We seek the solutions of equation (1.24) satisfying the initial conditions 

x(O) = x 0 , 

x(O) = x 0 , 

for(x0 ,x 0 )E-~=(O,oo)x R 

(1.26) 

(1.27) 

(1.28) 

We consider equation (1.24) for a given g(x 3
, o), o > 0 fixed. We regard g(x3

, o) as a 
function of X only, 0 being a parameter. We make the following hypotheses on g(x 3

, o) 
(1.29): 

(A) g E C2 (0, oo). 

(B) g(x3 ,o)>O x>1; g(x3 ,o)<O x<I. 

(C) There exist D ~ C> 0 and 0: > 0, for X large, such that cxa-J .s;;g(x3 , o) .s;;nxa-3
• 

We consider the three cases 

(1) o:>3, 

(2) 0: < 3, 

(3) 0: = 3. 

(D) There exist M~N>O, and {3>0, for x small, such that-Mx-p .s;;g(x3 ,8).s;;-
Nx-P. . 

We consider the two cases 

(1) {3~3, 

(2) {3 < 3. 

Remark. In some examples the exponents o: and {3 may be related. See the examples in 
Section 5. 

Moreover, we will make further assumptions later on 

(a) The number of non degenerate critical points with respect to ~ of g(~, o ). 
(b) The number of roots x > 1 of the equation g(x3

, o) = P, for P > 0 a given constant. 

Since we want to analyse equation (1.24) in the phase-plane, it is useful to consider the 
equivalent first order system of two equations 



(1.30) 

where 

X = (::)' 

(1.31) 

(1.32) 

and (1.28), 

x(O) = C:)· (1.33) 

It is easy to check that hypothesis (A) on g(x3 , o) and the smoothness of the functions 
involved in (1.32) imply that h( •, •) E (C2 (9))2 , and, therefore his Lipschitz in 9 [4], [5]. 

Proposition: 

Let (x 0 ,x0 ) E9. 

The initial boundary value problem (1.30)-(1.33) has a unique maximally defined C2 

solution x(t) on [0, tmax), 0 < tmax o;;;;;oo, satisfyingx 1 (0) =x0 ,x2 (0) =x0 . 

Moreover if tmax < 00, then 

lx(t)l + lx(t)l ~ oo as t ~ tmax· 

Proof: Local existence and uniqueness of the solution through an initial data point (x 0 , 

x0 ), follow from standard results in ordinary differential equations. 
The last statement will be proved in Section 2, using the energy equation. In particular, 

we will show that if 

lim x(t) = 0, then lim x(t) = - oo. 
t-.tmax t-+tmax 

Therefore, the solution cannot reach a point (0, b) of the boundary of the domain in a finite 
time. 

Energy Equation 

Next we want to find the energy equation. We multiply (1.24) by x 2x and integrate respect 
to t obtaining 



[1 - (1 + : 3) -
113

] x 3x2 + G(x3
, 8)- i Px3 

= E, 

where 

1 f x3 
G(x3 , 8) = - g(A, 8)dA. 

3 1 

E is the total energy, which depends on (x0 , x0 ). We defme the potential energy 

V(x,8) = G(x3 ,8)-!Px3
. 

(1.34) 

(1.35) 

(1.36) 

Next we want to characterise the equilibrium solutions of the initial boundary value problem 
( 1.30)-(1.33). We consider a boundary pressure P > 0. We state the following. 

Proposition ( 1.1) 

Let P > 0, R 1 > 0, p > 0, 8 > 0, be given constants. We write 

I d 
g(t8) = d~g(t8). 

Then: 

(i) The equlibrium solutionsx 1(t) =x,x2 (t) = 0, tE [0, oo) of(1.30) are the roots of 

g(x3
, 8) = P, (1.37) 

and they satisfy x> 1. 
(ii) If g'(x3 , 8) > 0 then (.X, 0) is a centre and V(x, 8) is a relative minimum. 

(iii) If g'(x3
, 8) < 0 then (.X, 0) is a saddle point and V(x, 8) is a relative maximum. 

Proof. 

(i) This follows from hypothesis (B). 
(ii), (iii) We consider the eigenvalues of the linearised equation about (.X, 0) of (1.31), 

A= -J..L = 
- 3xg'(x3, 8) lvz 

2 r1- (1 + :3r
113

J 
(1.38) 

Standard results on 0 DE [4], [5] imply that the equilibrium solution (.X, 0) is a centre of 
the eigenvalues of the linearised equation are pure imaginary, equal, with opposite sign. This 
result applies in case (ii). 

If g' < 0 then the eigenvalues are real with the same absolute value and opposite sign. By 
the same results (.X, 0) is a saddle point. This applies in case (iii). 

The results on V(x, 8) follow using (1.36) and its derivatives. o 

Remark: If g'(x3
, 8) = 0, then A= 0 = J.1 and the linearisation method fails. In Section 4 

we consider this case under further hypotheses on g(.X3
, 8). 



In order to study continuation of the solution of (1.24) for given initial data, we will use the 
energy equation (1.34). The behaviour of the potential energy V(x, o) for large and small 

values of x is a basic ingredient in obtaining such results. Therefore, we are going to study 
the asymptotic growth of V(x, o) for large and small values ofx, for all the cases included in 
(C) and (D). 

Proposition (1.2) 

The asymptotic behaviour of V(x, o), for X large, is as follows: 

(l) If(C1)holds,then,forxlarge, 

.£xQ ~ V(x,o) ~(D + 1) xQ. 
2a a 

(2) If (C3) holds, then, for x large, and a given P > 0, 

!(C-P)x3 ~ V(x,o)<(D-P)x 3 • 

(3) If (C2) holds, then 

lim V(x, o) = -1. 
x-+oo P 

3 -x 
3 

Proof: 

(l) For a sufficiently large ftxed a> 0 and for sufficiently large x, we can write 

Using (1.35), (1.36), we have 

(D + 1) P 
V(x o)~ ---xQ --x3 

' a 3 · 

Therefore, for a> 3, 

.E...xQ ~ V(x,o)~(D+ 1) xQ. 
2a a 

(2) and (3) follow similarly. 

Proposition (1.3) 

The asymptotic behaviour of V(x, o), for x > 0 small, is as follows: 

(1.39) 

(1.40) 

(1.41) 



(1) If (Dl) holds, then, 

M+ 1 1 N 1 
for {3 > 3, {3- 3 xfl_ 3 ;;a.V(x,8);;a. 2({3- 3)xfl- 3 >0, 

for {3 = 3, lim V(x, 8) = 1. 
x-+0+ -logx 

(1.42) 

(2) If (D2) holds, then 

V0 = lim V(x, 8) 
x-+0+ 

(1.43) 

exists, is finite and positive. 

Proof. 

We consider a sufficiently small fixed a> 0. For a sufficiently small x > 0, we can apply (D) 
to the following inequality 

x3 a3 x3 a3 f g(t 8)d~ = f g(~, 8)d~ + f g(t 8)d~ ;;a. f g(~, 8)d~ 
1 1 a 3 1 

(1.44) 

Using (1.35), (1.36), we see that (1.42) follows for {3 =I= 3 and x small. It follows from (1.44) 
and (B) that 

co> J:-g(~,8)d~>O. 

Then (2) follows immediately. (1), for {3 = 3, follows similarly. 

Section 2 

Now we analyse the initial-boundary-value problem in the phase-plane under the hypotheses 
on g(x 3 , 8) previously given. Moreover, we assume 

(1) The number of critical points of g(x 3
, 8) is finite. 

(2) If g(x3 , 8) = c, for x E (a, b), where b >a> I, c > 0, are some given constants, then 
the boundary pressure P=F c. (The case P = c, can be treated similarly.) 

We need the following notation. 

Let (x0 ,x0 )E,~, and E = E(x0 ,x0 ). 

We let 

Q = {yER:V(y,8) = £}. 

It is obvious from Proposition (1.1) under the previous assumptions on g(x3
, 8), that n is 

a finite set. We let 



n = {y 1 , .•. ,Yn}, with, Yi- 1 .r;;;.yi, for j.;;;;,n 

We state the following proposition. 

Proposition 2.1 

Let (x0 ,x0 )E.9J, E = E(xo,Xo). 

(1) If (C1) and (D1) hold, then 

(a) n = {y,, ... ,Y:zr},r~ 1, 
(b) x 0 E [ y 28 - 1 , y 28 ] , for some s .;;;;;. r, 
(c) V(x,o).r;;;.EforallxE [Y:z8 - 1,Y:z.]. 

(2) If (C2) and (Dl) hold, then 

(a) n = {y4, ... ,Y:zr-d,r~ 1, 
(b)xo ~ y,. 

The intergers r, s are determined by V(x, o), (x0 , x0 ) and E(x 0 , x0 ). 

Proof. 

1 (a) and 2(a) follow from Propositions (1.2) and (1.3). 

1(b) We prove first thatx0 E fY1 ,Y:zrl. 

Let us assume that x 0 fl. [y1 , Y:zrl, then V(x 0 , o) > E, which is impossible by the energy 
equation. In particular x 0 E [Y:za- 1 ,y28 ] for a integers.;;;;;, r, which is determined by V( •, o), 
(x 0 ,x0 ) and E. 

1 (c) follows by similar arguments. 0 

Remark (2.1) 

(A) If (C3) and (D 1) or (D3) hold, then if P ~ D the results (2) hold, while if P.;;;;;. C then the 
results (1) hold. 

(B) If (C2) and (D2) hold, there exist some values of E such that n = 1/>. 

Related to the the above proposition we introduce the following notation: 

(i) v. = min V(x, o). 

xE [Ys-1•Ya] 

(ti) 2 1 

Vs = Y-t---, [-1---( 1-+-Y-o.-r-1'-l [ E- V,] . 

Defmition. 

(i) The positive orbit of the solution x( ·)is the set c+(x( ·))given by 

(2.1) 

(2.2) 



c+ = Ux(t). 

tE [0, tmax) 

Now we are going to state the results of the phase-plane analysis of the initial-boundary­
value problem. We fix 8 > 0 and P > 0. Several examples are shown at the end to illustrate 
some of the different cases that may occur. 

Proposition 2.2 

We suppose that 

(i) (C1) and (Dl) hold, 
(ii) g(x3

, 8) has 2n critical points, 
(iii) the roots of g(x3

, 8) =Pare 

{.X1 EIR+, 1...:i...:2k+ I, k...:n}. 

Then, any initial data (x 0 , x0 ) E 9 satisfies one of the following possibilities. 

(a) If (x 0 , x0 ) is such that E =I= V(x28 ), j = I, ... , k, the solution is periodic, with 
period T given by 

{ 
[ ( 

8 )-1/3] }112 x 3 1- I+-
y28 x3 

T = 2 dx, JY28 • 1 E-V(x,8) 
for some s ;;;a. I. (2.3) 

(b) For (x0 , x 0 ) such that E = V(x28 ) for somes E {1, 2, ... , k}, x 28 is a saddle point, 
and, 

_(1) Ifx0 ...:x28 then 

x(t)E[y28- 1 ,x2.) and lx(t)l...:v. for tE[O,co). 

Moreover, 

lim x(t) = x25 and lim x(t) = 0. 
t-+oo t-+oo 

(2) Ify2(s+l) >x0 >x28 , then 

x(t)E(x2s•Y2<s+o1 and lx(t)l...:v., tE [0, 00). 

Also 

lim x(t) = x 28 and lim x(t) = 0. 
t-+oo t-+oo 

(3) If x 0 does not belong to any of the above intervals then the solution is periodic. 

Proof. 

(a) We consider Y2s- 1 ,Y28 such that x 0 E [y2.- 1 , y 28 ]. Then, the solution (x(t),x(t)) 
starting at (x0 , x0 ) at t = 0 is such that 



V(x, o) 

1. 2 . 

. 
X 

3. 
1. g(x 3

, 6) satisfying hypotheses (Cl), (Dl). 2. V(x, 6) for a given P > 0. 3. Phase-plane diagram. 

x(t) E [Y28 -1 .Y2sJ for all t E (0, tmax), 

for otherwise the energy equation would be contradicted. Also 

0,..;; x2 (t) < v1, t E (0, tmax). 

Hence, the orbit c+ through (x0 , x0 ) is bounded. Moreover, (y2.-1 , 0), (y2,, 0) are 
not equilibrium points by the choice of E. Therefore, the orbit is periodic. 

(b) This follows by similar arguments and the fact that (x2i> 0) is a saddle point. 

Propostion (2.3) 

We supppse that 

(i) (Cl) and (D2) hold, 
(ii) and (iii) are as in Proposition (2.2). 

Then, any initial data (x 0 , x0 ) E 9 satisfies one of the following possibilities: 

(a) If E < V0 all solutions are bounded. 
(b) If E ";;> V0 , then solutions with initial data x 0 > y 1 remain bounded, and solutions 

with x 0 <y1 blow up in finite time. In this case 

lim (x(t), x(t)) = (0,- oo). 
t-+tmax 



Moreover, if x 0 is sufficiently small, we have the following estimate for tmax 

tmax = !(£- Vor1
'
2xg12 + e(xo), 

where 

and M, N, {3 are given in hypotheses {02). 

Proof. 

(2.4) 

(2.5) 

(a) By the choice of E this case is included in Proposition {2.2). The same occurs in {b) for 

Xo > Yt· 
{b) If x 0 <y1 , then x(t) <;y1 , t E [0, tmax), by defmition of y 1 • This implies that 

E- V(x(t), c5)'> 0 for t E [0, tmax)· 

Therefore, if we suppose that Xo < 0, then x(t) < 0, t E [0, tmax), i.e., x(t) <; Xo is monot­
onically decreasing. 

Since 

X~~+ x 3 [1- (1 + : 3 r/3

] 

then 

lim 
[E-V(x,c5)] 

lim x2 = 
x-+0+ x-+ O+ [ ( <') )-113] 

x 3 1- 1 +­x3 

By energy equation {1.34), it can not occur that 

lim (x(t), x(t)) = (0, C), for some constant C. 
t-+tmax 

Hence, 

lim x(t) = o+ and lim x(t) = - oo. 
t-+tmax t-+tmax 

{2.6) 

= oo. {2.7) 

Now we are going to prove that tmax < 00• Suppose tmax = 00• From (1.34) we can write 

( ( 1 ds }112 = - J: dt. 

·'(t-(I+,~r·) (E-V(s.6)] 

{2.8) 

{The minus sign is because x(t) < 0). 



V(x, o) 

1. 2 . 

. 
X 

X 

3. 

I. g(x', cS) satisfying hypotheses (Cl), (D2). 2. V(x, c5) for a givenP > 0. 3. Phase-plane diagram. 

By the previous statements, it follows that the left integral remains bounded and the right 
one is unbounded, as t-+ 00• This contradication shows that tmax < 00• 

To obtain estimates for tmax• we consider x 0 sufficiently small and apply (1.44) to the 
left integral (2.8). We thus get upper and lower bounds for this integral. Retaining the higher 
order terms in x 0 , using (2.6) and integrating the remaining expression, we see that (2.4) and 
(2.5) follow immediately. 

We have assumed that x0 < 0. The same conclusions hold in the case x0 > 0, since this 
case reduces to the previous one once x becomes negative for x = y 1 • o 

Proposition (2.4) 

We suppose that 

(i) (C2) and (D1) hold, 
(ii) g(x 3

, 6) has 2n + 1 critical points, n;;;;, u, 
(iii) the roots of g(x3 , 6) =Pare 

{.Xi>1, 1 E;;;iE;;;2k+2, kE;;;n}. 

Then, any initial data (x 0 ,x0 ) E 9satisfies one of the following possibilities: 

(a) For (x 0 ,x0 ) such that E> V=Max {V(xi), i= 1, ... , 2(k+ 1)}, the solution blows 
up in finite time. 



(b) For (x 0 ,x0 ) such that E < V(xzk+z) the solution blows up in finite time if x 0 > x2k+Z, 
and remains bounded if x 0 < x zk + 2 • 

(c) For (x0 , x0 ) such that V>E> V(xzk+z), then if x 0 >x the solution blows up in 
fmite time and if x 0 < x it remains bounded for all time, where 

x = max {x E IR+, V(x, 8) = £}. 

If V= V(xzk+z), case (c) is included in (b). 
(d) ForEE {V(x21 ),j = 1, ... k + 1}, ifx ~x21 then V(x21) > V(x, 8)}, and 

(1) Ifxo >x21 and.X0 < 0, or x 0 <x2J, then 

lim x(t) = x21 and lim x(t) = 0, 
f...,...oo t-+-oo 

(2) If x 0 > x 21 ,x0 > 0 the solution blows up in fmite time. Whenever the solution blows up 
in finite time, we have the following estimate for !max, provided x 0 is sufficiently large: 

!max = If+ ~(xo) {2.14) 

where 

3C {!__1_ 1 E;;~(xo)E;;3(D+ 1),)!_1_ 1 . 
2P ..j P 7 - 2o: X o ~ - 0: P P 7 - 2o: X o ~ - 0: 

(2.15) 

Proof. 

(a) We consider.X0 >O. Also n= {yt}, and by Proposition (2.1)y 1 E;;x0 • Then£- V(x, 
8) > 0 and x(t) > 0, t E [0, !max). 

Hence, x(t) increases monotonically. Also 

lim x 3 1 - 1 + - = - . 
[ ( 

8 )-
113

] 8 
x~oo x 3 3 

(2.16) 

We consider (2.8) with positive sign on the right integral. By the previous statements, it 
follows that the left integral remains bounded and the right one is unbounded, as t _. 00• 

This contradiction shows that !max < 00• 

To estimate tmax we choose x 0 sufficiently large in the previous integral to apply 
Proposition (1.2). Using (2.16), taking the higher order terms in x 0 in the remaining ex­
pression and integrating, we obtain (2.14) and (2.15). 

For any x 0 >x1 , we can proceed similarly. 
If Xo < 0 the arne arguments can be applied after x(t) changes sign in X= Yt. 
The first case in (b) and (c) and (d.2) correspond to Proposition {2.1). The second case in 

(b) and (c) and (d.2) correspond to case (a) in the present Proposition. o 

Remark (2.3) 

We suppose that (C2) and (D2) hold, and (ii) and (iii) are as in (2.4). Then, any (xo, x0 ) E!» 
corresponds to one of the following situations: 



V(x. o) 

p 

1. 2. 

• X 

3. 
I. q (x', 6), satisfying hypotheses (C2), (Dl). 2. V(x, 6) for a givenP > 0. 3. Phase-plane diagram. 

For V0 < V, 

(a) If E < V0 , the conclusions of Proposition (2.4) hold. 
(b) If V>E> V0 ,either 

(1) x 0 <y1 , then, the conclusions of Proposition (2.3) hold, or 
(2)x0 > y 1 , then, the conclusions of Proposition (2.4) hold. 

(c) E > V, the solutions are unbounded and blow up in fmite time. 

If V0 > V, then the conclusions of Proposition 2.4 hold forE< V0 and (c) forE> V0 • 

Remark (2.4) 

We suppose that (C3) and (Dl) hold. Then 

(i) If P E;; C, the conclusions of Proposition (2.2) hold, 
(ii) If P ;;;a. D, the conclusions of Proposition (2.4) hold, where C and Dare given in (1.29). 

Section 3 

The constitutive properties of the material enter the differential equation through the 
function g(x 3

, S). 
Motivated by this fact we want to find which strain-energy function W(x3

) corresponds 
to a given g(x3

, S) for S > 0 and W(1) fixed, i.e., we look for a solution of equation (1.27) 
under our previous hypotheses. 

It is interesting to notice, however, that in the derivation of the differential equation 



(1.24) and its energy integral (1.34), it is not essential to require the material to be hyper­
elastic [ 6] , (7] . 

We construct a solution to (1.27) via a finite difference equation [I3] as follows. 
We introduce new variables, 

x 3 = I +eY, yE(-oo,oo), 

w(y) = W'(I + eY). 

2' = log (I +IS)> 0, 

pRt 
'Y =-2 . 

(3.I) 

(3.2) 

We differentiate equation (1.27) with respect to x 3
• Using (3.I), (3.2), we obtain the finite 

difference equation 

w(y)-w(y-2') = 'YeYg'(I +e:ll), 

w(-oo) = f.J.. 
(3.3) 

(In this section we suppress the dependence of g on 8.) A solution of (3.3) is obtained as 
follows: 

(1) We find a solution WN = wN(y), y E R, for N> I with the following boundary con­
ditions 

wN(Y) = f.l., yE(-N,-N+.'?). 

We can write from equation (3.3) that 

r 
wN(Y + r£1 = wN(Y) + 'Y L .e>'+i£g'(I + eY•I£) 

j=t 

and 
r-1 

wN(y-r.Y") = wN(y)-'Y L e>'-i£g'(I + ey-Jt), 
j=O 

where r is a postitive integer. 
Now we consider (3.5). We let z = y + r2.'Then 

r 
WN(z) = wN(z -r ) + 'Y L ez+(i-r>tg'(l + ez+(J-r>t). 

If we take 

z-;;:,.-N+!?' 

and 

i=l 

I 
r = y [z + N] , (the brackets mean the integer part) 

then- N.;;;;z -r Sf'.;;;;- N + !?. 

(3.4) 

(3.5) 

(3.6) 

(3.7) 



Therefore with (3.4), {3.7) becomes 

r 
WN(z) = IJ. + 'Y L ez+(j-r)tg'(1 + ez+(j-r)t), 

j=l 

z";;t:-N+Y. 

Similarly, for (3.6) using z = y- r 2", we obtain 

r-1 
wN(z) = JJ.-'Y L ez+.t(r-i>g'(l +ez+.t(r-J>), z<:.-N 

i=O 
and 

r = [-~(N+z)+1]. 
{3.8) and {3.9) give the solution (3.3) satisfying (3.4) for z E R. 

{2) We take limits in (3.4) as N-+ oo: 

IJ. = w(-oo); 

.. 
w(z) = 1J. + 'Y L ez-KJ:g' {1 + ez=-K.t),, z E (- oo, oo). 

K=O 

Letting N-+ oo in (3 .9), we again get (3 .1 0). 

(3.9) 

{3.10) 

(3.11) 

It is easy to check that w given by (3.11) is the unique solution of {3.3). With the original 
variables, {3.11) becomes 

{3.12) 

Now we want to prove uniform covergence of this series in order to integrate it term by 
term, following classical results in analysis. 

Let us consider N ";;!: 1 and ME R large enough, and a flxed x <:. M. Using the mean value 
theorem we fmd that, for a flxed j 

(3.13) 

where 

We let 

K = K(x 3 ,N) = Suplg"(~)l {3.14) 

~E [1, (;~~;N] 



and 

K = sup K(x 3
, N) = K(N). 

x<;M 

Forj~N. 

lg"WI<.K 

and 

(3.16) 

We let 

Now, for n ~N, 

IW'( 3) ·W'( 3) ~r(x3 -1)[ g'(1) + (x
3

-1)K ] 
X - n X j..,. 5 (1 + 5)N-1 (5 + 2)(1 + 5)2N-2 

(3.17) 

~ r(M3 
- 1) r g'(1) K(M3 -1) ] 

.... 5 (1 + 5)N-1 + (5 + 2)(1 + 5)2N-2 

= e(N), 

i.e., given e > 0 there exists anN such that the above difference is less thane for n ~ N. o 
Hence integrating (3.12) for x <.M, we get 

(3.18) 

We have thus proved the following: 

Proposition (3.1) 

For a given g(x 3
, 5) satisfying hypotheses (A), (B) and for ftxed constants 5 > 0, IJ. E R, the 

integral equation 

2 rx• W'(~) 
g(x3

, 5) = R 2 J~3 +o 1: _
1
· d~, W(1) = 1J. 

p 1 1 +li ,. 
(3.19) 

has a unique C2 solution wm, given by (3.18). 

Next we want to find what asymptotic growth of W(x 3 ) is implied by hypotheses (C) and 
(D) ong(x3

, 5). 



Proposition (3.2) 

The asymptotic growth of W(x3) for x large, is as follows: 

(I) Ifhypotheses(C1)holds, then 

(I + 6)<a- 3>13 ( 3C) I (I + 6)<a- 3
>

13 ( 3D) 
xa (I + 6)<a- 3)13 _ I D--;; ;> -:y W(x

3
) ;>xa (I + 6)<a-3>13 _I C--;- . {3.20) 

(2) If {C2) holds, then 

I ( 3D) {1 +liP -a.)(N+l)/3 - 1 J.L 
-:y W(x3);>xa C--; (I +6)<3-a.)/3 -I +-:yx3 

{3.2I) 

where 

(x3 - I)2 
e = e(x3, N) = kl (x3' N) 6{1 + 6)N-l 

and 

k 1(x3 ,N) = sup ig'(~)l 

~E [I, I+ (;3

+~;N]· 
(3) If {C3) holds, then 

J.l. I J.l. 
-x3 +(D-C)x3 ;>- W(x3);>(C-D)x3 +-x3 
r r r 

(3.22) 

Proof. 

{1), (3) follow from (3.I8) using (CI), (C3), respectively. (2) We approximate the terms with 
j ;> N, in (3.I8) for aN sufficiently large by e(x3, N), and we use (C2). It is important to 
notice that k 1 tends tog'(I) asNtends to oo. o 

Similarly, we can state, for x small, the following. 

Proposition (3.3) 

We suppose that hypothes (D) hold. Then the asymptotic growth of W(x3 ), for x small is 

~ x-(J .;;;;~ W(x 3 ).;;;;(I +M)x-fJ, 

where M, N, (j are given in hypotheses (D). 

(3.23) 



Now we want to discuss the meaning of hypotheses (B) in terms of constitutive restrictions 
on the strain-energy function. Such restrictions have been widely studied [6], [7], [8], [9], 
[10]' [17]. 

Strong ellipticity or Hadamard's condition [9] for the stability of equilibrium solutions is 
in some cases physically reasonable. Necessary and sufficient conditions on the isotropic 
strain-energy function for strong ellipticity to hold are known [ 12] in two dimensions but 
not in three, and this makes difficult the application of such a condition in specific 
problems. 

It is well known [6], [8], [17], that a convexity of W(F) is not physically reasonable in 
compressible elasticity because it implies the uniqueness of equilibrium solutions to mixed 
boundary-value problems. It is, however, a good condition in incompressible elasticity; the 
strain energy function for a Neo-Neokean material, W( F) = tr( FFT), is convex. 

It is easy to check that strong ellipticity applied to our problem implies that a'(A.) > 0 for 
A.> 1 and a' (A.)< 0 for A.< 1. From this, (B) follows. 

We also can state the following. 

Proposition (3.4) 

We suppose that W( F) is convex for FE M 3 x 3 such that det F = 1. 
If a(A.1, A.2, A.3 ) is the corresponding isotropic strain-energy function, then 

a(A.) = a(A., A. - 112 , A. - 112 ) is convex on IR+. 

Proof. 

It follows from [8] that W( F) convex on M 3 x 3 implies that the isotropic strain-energy 
function of the principal stretches a(A.1, A.2, A.3 ) = W(F) is convex and non-decreasing in 
each variable. Therefore, 

a(o:A.+(1-o:)s.t) = a(o:A.+(1-o:)s.t, (o:A.+(l-o:)s.tF112, (o:s.t+(1-o:)s.tF1'2) 

~o:a(A., x-1/2' x-1/2) + (1-o:)a(s.t,s.t-1/2 ,s.t-1'2) 

= o:a(A.) + (1 - o:) a(s.t). 

So, a(A.) is convex. o 
Later, we are going to produce specific examples to show that some of the phase-plane 

results obtained in Section 2 can occur under convexity of a(A.). 

Section 4 

The purpose of this section is to study the stability properties of the equilibrium solutions in 
critical cases. We consider ax> 1 and P > 0 such that 

g(x3
' o) = p and g'(x3

' o) = 0. 



The eigenvalues of the linearised equation are A= 0 = -IJ., and therefore, the arguments 
used in Proposition (1.1) do not hold. Following [18], [19] we will compute local invariant 
manifolds through the equilibrium point. 

These values P crtt of P are called "critical pressures" or "bifurcating pressures". Under 
certain conditions the number of equilibrium solutions decreases by two asP passes through 
P crit. This problem has been previously studied mainly from a static point of view, cf. [ 11] . 

We want to show the existence of an invariant manifold through (x, 0) and also that this 
manifold can be computed to any degree of accuracy given hypotheses of smoothness on 
g(x3, c5). 

Deimition: A set S C IR 2 is an invariant manifold for (1.31) if for any (x 0 , x0 ) E S the 
solution (x(t), x(t)) of (1.31) starting at (x0 ,x0 ) is such that (x(t),x(t))ES, tE [0, T] 
for some T > 0 sufficiently small. 

Proposition ( 4.1) 

For a givenP>O, let x> 1 be a solution ofg(x3 , c5) =Psuch thatg'(x3 , c5) = 0 andg"(x3 , 

c5) * 0, g smooth. Then, there exists an invariant manifold, x 2 = h(xd through (x, 0) 
defmed for x 1 E [x, x +a), if ..2"(x) ;;a. 0 for x E [x, x +a), for a given a> 0, and for x 1 E 
(x- b,X], if Sf(x)..;; 0 for x E (x -b,X], for a given b >O. 

In this case, 

(4.1) 

where 

[ 
c5 ( c5 )-413 ( c5 )-1/3 ] 

r(x) = _[ ____ c5 __ -1,-3-] x3 1 + x3 +3 1 + x3 -3 ' 

x 1- (1 + x3 ) 
(4.2) 

1 3 . 2'(x) =+-(I+ :,)'"(-g(x ,6)]. 

Proof. 

Let x 2 = h(xd be an invariant manifold for equation (1.30). Then 

. '( ) . , 1 d 2 x 2 = h x1 x 1 = h(x!)h (xi) = -- (h (xi)), 
2 dxl 

(4.3) 

d 
dx

1 
(h2(x!)] = ..2"(xd + r(xi)h2 (xi). (4.4) 



We Iety(xd = h 2 (x!). 
Then, we can write the previous equation as 

d 
dx/(xd == r(xt)y(xt) = ..2"(xt) 

and (4.5) 

Y(X) = 0. 

Using the variation of constants formulae, we can write the solution of the above equation as 

X (X 1 3 

Y(xt) = efx'r(x)dx '_ efxr(u)du.f£'(s)ds. 
• X 

(4.6) 

The conclusion follows by considering the sign of y( x t). 

Proposition ( 4.2) 

Let the above hypotheses hold. Let e > 0 be a given constant. The invariant manifold 
through (x, 0) is given locally as follows: 

{1) If g"(x3 , cS) < 0, then h±(x1) is defmed for x 1 such that 0 E;;;x 1 - x <e. 
{2) lfg"(x3 ,cS)>Othenh±(x1)isdefinedforx1 suchthatOE;;;x-x 1 <e. 

In both cases 

h±(xd = C(x)lx1 -xl 3
'
2 + O(e3

'
2

), 

where 

lg"(x3, <5)1112 
c( x) = v'f x3' 2 -....:..::...~-'----'-'----

[ ( 

c5 )1/3] 1/2 . 

Proof. 

I- I +-=3 
X 

(4.7) 

(4.8) 

We consider ( 4.6) for x 1 such that lx 1 - x 0 I <e. We compute all the integrals involved in 
( 4.6) developing (s) in a power series about x 1 = x. The result follows by considering both 
possible signs for g"(?, cS) and using Proposition (4.1). o 

Proposition ( 4.3) 

Let the previous hypotheses hold. Then (x, 0) is unstable. 

Proof. 

This follows by energy arguments, considering a solution corresponding to E = V(x, l>) 
starting near (x, 0), taking x0 > 0 and x0 < 0 successively, and considering both possible 
signs of g"(x3 , c5). o 



To get a more specific idea of the asymptotic behaviour of the solutions in the invariant 
manifold, we consider the following initial value problems: 

(a) x1 = h+(x 1 ), 

(b) x1 = h-(x.), 

x1 (0) = h+(uo), 

x1 (0) = h-(vo) 

for given u0 , v0 such that lu0 -xi< e, and lvo -xi< e. 
The solution of ( 4.9) for lx 1 -xi < e is as follows. 

(I) Ifg"(x3 ,o)<O,then: 

In case (a), 

+ - _2_ [ 1 - 1 ] + 0( 1/2) 
t - C(x) (uo -x)1t2 (x1 -x)1'2 e 

and lim X1 =x+. 
t-+-oo 

In case (b), 

- - -- - + 1/2 2 [ 1 1 ] 
t - C(x) (vo -x)112 (x. -x)1t2 O(e ) 

and lim x. =x+. 
t-+oo 

(2) If g"(x3 , o) > 0, then: 

In case (a), 

---- + + 1/2 2 [ 1 1 ] 
t - C(x) (x -uo)1/2 (x -x.)1/2 O(e ) 

and lim x. = x-. 
t-++ 00 

In case (b), 

- t = -- - + + 0 €1/2 2 [ 1 1 J 
C(x) (x-v0 ) 112 (x-x 1 ) 112 ( ) 

and lim x. =x. 
t-+-00 

SectionS 

The membrane approximation. 

(4.9) 

The differential equation describing the radial motion of a membrane is given by [3), [6], 
[7]' [21]' [22]. 

(5.1) 



This equation is obtained by approximating (1.24) up to the first order in 6 [(1.22)]. For 
the thin shell, 6 is proportional to the thickness e of the shell: 6 = 3 (e/R d. 

The same equation is obtained using a membrane approximation up to the first order in 6 
[ 11] . In this case x is the average of the tangential stretch divided by the initial thickness of 
the shell. The energy equation is 

x2 + V(x) = E, 

where 

2 
V(x) =- W(x 3 )-px3 

pRj 

is the potential energy. 
The equilibrium solutions of(5.1) are the roots of the equation 

2 , 3 

R 2 W(x) = p. 
p 1 

(5.2) 

(5.3) 

(5.4) 

Results similar to Proposition (2.2), (2.3), (2.4) can be obtained by exactly the same method 
under suitable assumptions on W'(x 3

). In (5.4)p is measured per unit of thickness. 
Next we show that in the neighbourhood of an equilibrium solution for the membrane we 

can fmd equilibrium solutions for sufficiently thin shells, and also that dynamic solutions for 
the membrane are the uniform limits of solutions for the thick shell as 6 tends to zero. 

Proposition (S.l) 

We suppose that: 

(i) x 0 > 1 is a solution of (5.4) for a given p > 0, 
(ii) W"(x~) =I= 0, 
(iii) Hypotheses (A) and (B) hold for W' (x 3 ). 

Then, there exists an interval (0, 6 I) and a function x = x(6) E C2 (0, 6 d the values of 
which give equilibrium solutions for a shell with thickness parameter 6 corresponding to an 
external pressure P = 6p. 

Proof. 

We are going to apply the implicit function theorem to 

h(y, 6) = g(~, 6) 0 

Lety =x3
• From 

h( 0) = lim g(y, 6) = ~ W'( ) 
y, 6-+o 6 pRj y ' 

(5.5) 

and with (i), it follows that 



h(x~, 0)-p = 0. 

It is easy to check that 

d 2 , 
lim -h(y, 6) = - 2 yW (y). 
6-.o dy pR 1 

In particular, 

d 3 . d 2 3 , 3) 

dx3 h(x0 ,0} = hm -h(y,6)i:v=x3 = R 2 x 0 W (x 0 =I= 0. 
6-.o dy • p 1 

By the implict function theorem, there exists a 6 1 > 0 and a X E C2 [0, 61) such that 

x(O) = x 0 , x(6) > 1 

and 

(5.6) 

(5.7) 

Hence, x =x(6) is an equilibrium solution for a shell of thickness parameter 6 andP = p6. 

Remark. The interval (0, 6 d can be extended up to a 6max• 

If W"(x~) = 0, the previous result for this x 0 cannot be guaranteed. 

Proposition (5.2) 

Let£, x 0 > 0, 6 > 0, p :> 0, T> 0 be fixed constants, and let x = x(t, 6) be the solution of 
(1.34) for 0 ~ t ~ Twith energy 6£/3, andx(O, 6) =x0 • Then 

lim x(t, 6) = x(t), t < T, 
6-.o 

where x(t) is the solution of (5.2) with x(O} = x 0 and energy E. 

Proof. 

Let x0 > 0. We consider t1 < T such that E- V(x(tt)) = 0. Then£- V(x) >O fort< t 1 • 

The result for x(t), tE [0, tt],x(t, 6), tE [0, t 1 -e] e>O follows by considering (5.2}, 
{5.3}, (1.34}, (1.36} and also that 

3 
lim ~ V(x, 6) = V(x). 
6-.o u 

For t > t 1, we consider the minus sign in the square root of (1.34) and (5.2). If there exists 



t2 such that E- V(x(t2 ))=0, then the result follows by the same arguments for x(t), 
t E [t1 , t2] and x(t, 8), t E [t1 + e, t2 - e]. We proceed similarly up tot= T. This also 
holds for x0 < 0. o 

Remark. It follows from (5.4) that a necessary condition for the existence of more than 
one equilibrium solution for appropriate values of p is that 

W"(x 3 ) = 0 (5.9) 

for at least one x > 1. 
In terms of a(>..) the above condition says that 

II 10 1 
a (>..) = - - a (>..) 

4>.. 
(5.10) 

must have a least one solution for >.. < 1. It is interesting to note that the assumption of 
convexity of a(>..) does not contradict (5.10). 

We are going to give examples for a class of materials studied by Ogden [20] satisfying 
a" > 0. Moreover, by choosing the appropriate growth conditions we can obtain two of the 
cases studied in Section 2. 

The materials studied by Ogden have the following isotropic stored energy function 

N 
a(>..t, >..2, >..3) = L o: 1 (X~i + >..~1 + M'- 3) 

i•l 

M 

+ L 131 ((>.., >..2)111 +(At >..3)"1 + (>..2>..3)"1- 3). 
/=1 

For the radial deformation under study, 

M 
a(>..) = a(>..,>.. - 112 , >.. - 112 ) = L o:1 (X~-'i + 2>.. -~-'il2 - 3) 

1•1 

N 
+ L 131 (2>.."112 + A -IIJ- 3). 

i•l 

Hypotheses (Cl) and (Dl) for W'(~): 

(I) N = 1, M = 0 

0: = 1' ll = 3/2 

A root of (5.10) in (0, 1) is>..= 1/256119
• 

(2) N = 3, M = 0 

O:t = 0.153, 0:2 = -0.092, 0:3 = 0.5 

Ill = 2.8, ll2 = 2.5, ll3 = 2.0 

Two of the roots of (5.10) for>..< 1 are >.. 1 = 0.5, >..2 = 0.45. 



Hypotheses (Dl) and (C2) for W'(~): 

(1) N = 1, M = 0 

Q = 1, p. = ! 
A root of (5.10) in (0, I) is X= 1/256119

• 

(2) N = 1, M = 1 

Q = 1, p. = i 
(3 = 1, v = 1 

There is one root of (5.10) in (0, 1). 

Remark: For this class of materials hypothesis (D2) cannot be satisfied. 

Section 6 

The differential equation describing the radial motion of the cylindrical shell is 

x log ( 1 + : 2 ) x + [log (1 + : 2)- 5 : x2 ] x2 + [(x 2
, 5) = P, 

where 

1 JX2 W'(~) dl: 
f(x2' 5) = R2 x>+6 1:- 1 '>· 

p I 1+6 'i 

and 

R~ 
5 = Rj -1 >O. 

The energy equation is 

!x2 log (1 + : 2 )x2 +F(x2 ,5)-!Px2 = E 

where 

•x> 
F(x 2

, 5) = ! I [(X, 5)dA. 
• I 

The hypotheses for f(x 2, 5) are the same as (1.29) except that x 2 replaces x 3. 
The phase·plane analysis yields similar results to the spherical shell with the exception 

that under conditions (C2) and (Dl) for f(x 2, 5) and the other usual hypotheses, the 
solutions exist for all time and are of the following type: 

( 1) Periodic solutions under the same kind of initial data as in the spherical shell. 



(2) Unbounded solutions, with exponential growth for large values of t, under the anal­
ogous class of initial data that give blow-up for the spherical shell. 

The remaining results are similar with the number 2 in this case playing the same role as 3 
for the spherical shell. 
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