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1 Introduction

The main goal of national forest programs is to lead and steer
forest policy development and implementation processes in an
inter-sectoral way (FAO 2006). National forest monitoring sys-
tems contribute to forest programs through monitoring forest
changes and forest services over time (FAO 2013). To do so,
they generally collect and analyze forest-related data and pro-
vide knowledge and recommendations at regular intervals. The
collection of forest-related data and their analyses have contin-
ually evolved with technological and computational advances
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(Kleinn 2002). For instance, ground measurements, such as
diameter or height measurements, which were typically mea-
sured with measuring tape or forest compasses and relascopes,
are now enhanced with new technologies, such as laser range
finders. Furthermore, remote sensing is being increasingly
used to improve ground sampling strategies (Maniatis and
Mollicone 2010), to calculate forested land area and area
changes (INPE 2006; INPE 2008; Hansen et al. 2013), and
to detect many variables of interest such as forest fires, pest
outbreaks, or trees outside forests (Barducci et al. 2002). The
use of remotely sensed data together with ground-based obser-
vations has gained a lot of attention for estimating greenhouse
gas emissions and removals associated with forests, particular-
ly in the context of REDD+ (GOFC-GOLD 2010; GFOI
2014). During the last decades, the amount of information
collected during forest inventories has thus grown rapidly
and has, in turn, improved our ability to survey and manage
many services such as biodiversity, carbon sequestration, or
recreation. However, national forest monitoring approaches
remain very heterogeneous from one country to another, and
many national systems have still not taken the full advantage of
newly operational technologies, despite an increasing avail-
ability of free, or at least less costly, data. This is probably
because the use of these technologies to assess forest structural
properties is, for the most part, used by only a few specialists

and is largely confined to the research sector. The objective of
this paper is to raise awareness by presenting, in a comprehen-
sible way, some existing and promising technologies for
supporting national forest monitoring.

The number of approaches to estimating forest-related var-
iables from field data, from remote sensing, or from a combi-
nation of the two is striking. A good illustration of the variety
of the approaches is the Food and Agriculture Organization of
the United Nations (UN-FAO) Forest Resources Assessment
(FAO 2010) that report 90 variables in all types of forests
occurring in 233 countries, with region- or country-specific
approaches, variables, and efforts. The data compilation by
the UN-FAO thus constitutes a challenge, as it should follow
a standardized format and methodology. To overcome this
obstacle, the UN-FAO recently used a systematic sample of
the free Landsat satellite imagery to report estimates of forest
land area and area changes for forest, other wooded land and
other land for the period 1990–2005 (FAO and JRC 2012).
This approach has the merit of providing critical information
about land use changes in a globally standardized way but
overlooks the continuous and intrinsic variability of forest
structure within strata (Réjou-Méchain et al. 2014). To ac-
count for such variability, recent works have relied on remote
sensing signals to model in a continuous way the spatial and
temporal variation of forest cover or forest carbon stocks
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(Asner et al. 2010; Saatchi et al. 2011; Baccini et al. 2012;
Hansen et al. 2013; Achard et al. 2014). However, huge dis-
crepancies have been shown both between these different
maps (Mitchard et al. 2013) and between these maps and the
national estimates (Achard et al. 2014). Such discrepancies
may be explained by differences in the definitions of forests,
in the forest and land classification systems, in the approaches
used to analyze the satellite imagery, or by the field inventory
data used, e.g., Hansen et al. (2013) focused on tree cover
canopy, while FAO and JRC (2012) focused on forest land
use and change. A clear challenge to improve estimates of
forest cover, carbon stocks, and dynamics is thus to effectively
combine different top-down and ground-up approaches, a rec-
ommendation made by the United Nations Framework on
Climate Change Convention in the context of reducing emis-
sions from deforestation and forest degradation (REDD+)
(UNFCCC 2009). However, the combination of field and re-
mote sensing information requires an appropriate use of defi-
nitions and descriptors at all levels. Countries themselves de-
cide what level of detail or classification scheme they wish to
use, leading to the abovementioned huge heterogeneity
among national forest systems. Using the FAO Land Cover
Classification System (Di Gregorio and Jansen 2005) to label
the various identified land cover classes is suggested byGlobal
Forest Observations Initiative (2014) as a promising option
ensuring homogeneity between different country-specific leg-
ends and maps.

This article introduces some newly operational technological
tools and approaches that may considerably improve national
forest monitoring systems. This overview of forestry technolo-
gies and methods is the result of an extensive literature survey
andwas initiated by discussions held during the “Regional Tech-
nical Workshop on Tree Volume and Biomass Allometric Equa-
tions in South and Central America” in Costa Rica, onMay 21–
24, 2013. We firstly introduce some useful technologies in the
context of forest monitoring and then discuss how these new
technologies can be integratedwhenmonitoring national forests.

2 Technologies to improve forest biomass assessment

An exhaustive list of technologies in the context of forest
survey and monitoring is very difficult. Below, we thus decid-
ed to focus on a subset of technologies that have been
highlighted in our discussion as the most important ones.

2.1 Light detection and ranging systems

Light Detection and Ranging (LiDAR) is a remote sensing
technology measuring the distances between the sensor and
target through the emission of laser pulses (Baltsavias 1999).
LiDAR systems thus generate precise and three-dimensional
information about the shape and the surface characteristics of

an object. Over the past few years, there have been consider-
able advances in LiDAR systems that have resulted in im-
proved LiDAR positional accuracy and increased surface
point density. By the same time, both the cost and applicability
of LiDAR systems have gained terrain (Mascaro et al. 2014).
LiDAR technology refers to a high number of laser measuring
systems of which three general approaches are of particular
interest for sensing forest structure: terrestrial, airborne, and
spaceborne approaches.

Terrestrial laser scanning (TLS), or terrestrial-LiDAR (T-
LiDAR), is a LiDAR system used from the ground (Fig. 1a).
Generally, such an approach generates a high number of
points and is thus able to describe with a very high accuracy
the understory of the forest (Radtke and Bolstad 2001;
Loudermilk et al. 2007; Yao et al. 2011). Because of its high
level of detail and accuracy, TLS has the potential to estimate
in a standardized and automatic way tree diameters, tree
height, tree volume, and thus tree biomass (Barbier et al.
2012; Hosoi et al. 2013). This technology may constitute a
great alternative to biomass destructive measurements and
may improve considerably the local biomass estimates
(Calders et al. 2014). The analysis of such three-dimensional
large datasets is still in progress, but several ongoing method-
ological developments should make this technology useful
soon. For instance, the use of mobile laser scanning, such as
personal laser scanning systems (Bauwens et al. 2014; Liang
et al. 2014) or unmanned aerial vehicle-LiDAR systems
(Wallace et al. 2012; Chisholm et al. 2013) is a promising
easy-to-use way to survey forests and has the potential to
constitute an intermediate approach between “classical” ter-
restrial LiDAR approaches and airborne LiDAR systems.

Airborne LiDAR approaches, relying on manned aerial
vehicles, provide a flexible data collection system. Such an
approach has the potential to become used in a systematic way
to monitor forests at coarse spatial scales (Mascaro et al.
2014). This technology produces three-dimensional measures
of forest structure at a centimeter resolution over large spatial
scales (Fig. 1b). From the point cloud data generated using
LiDAR, a digital elevation model (DEM) may be generated
from the points that reached the ground, and a canopy height
model can be generated from those that were intercepted by
the top of the canopy. It is worth noting that the quality of the
DEM strongly depends on the point density, especially in
closed-canopy forests (Reutebuch et al. 2003). The flexibility
of airborne LiDAR, coupled with a high level of positional
accuracy and point density, makes airborne LiDAR systems
an attractive data acquisition tool for estimating a wide range
of tree and forest parameters (Laes et al. 2011) such as tree
height (Andersen et al. 2006; Detto et al. 2013), stem volume
(Heurich and Thoma 2008), tree biomass (Li et al. 2008), and
leaf area index (Morsdorf et al. 2006). The use of airborne
LiDAR for estimating forest inventory parameters and struc-
tural characteristics is reviewed by van Leeuwen and
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Nieuwenhuis (2010), and a meta-analysis of 70 articles has
been conducted by Zolkos et al. (2013). Airborne LiDAR is
already being used to support the national carbon stock esti-
mates, such as in New Zealand (Stephens et al. 2012) or in
Panama (Asner et al. 2013).

Data from spaceborne LiDAR opens up the possibility to
map forest vertical structure globally, e.g., using the Geosci-
ence Laser Altimeter System (GLAS) (Simard et al. 2011).
GLAS was a large footprint (~65 m) spaceborne LiDAR with
the main objective to measure ice sheet elevations and chang-
es in elevation through time, while the measurement of vege-
tation cover was only a secondary objective (Abdalati et al.
2010). Forest canopy metrics can be generated from the
GLAS waveforms (Lefsky et al. 2005; Simard et al. 2011;

Xing et al. 2010), and these metrics can, in turn, be used to
generate estimates of aboveground biomass or carbon
(Baccini et al. 2008; Boudreau et al. 2008; Saatchi et al.
2011). A similar sensor, ICESat2, is planned for launch in
2018 with a GLAS instrument having a smaller footprint
than the preceding one. However, this new instrument
will have a blue-green wavelength system that is opti-
mized for ice sheets, not for forest, and will thus only
be able to map canopy heights in forests with cover that
does not exceed ~70 % (Goetz and Dubayah 2011). At
last, the Global Ecosystem Dynamics Investigation
(GEDI) mission aim at using a LiDAR-based instrument
embarked on the International Space Station to make
high-resolution observations of forest vertical structure

Fig. 1 Illustration of four promising technologies in the context of forest
monitoring at different spatial scales. a Three-dimensional reconstruction
of a Cameroonian tree from terrestrial LiDAR data (Nicolas Barbier, Jules
Morel, and Pierre Ploton). b Three-dimensional reconstruction of a
French Guianan landscape from aerial LiDAR data in the Nouragues

reserve (Maxime Réjou-Méchain). c Very high resolution optical
imagery from a Cameroonian landscape showing contrasted spectral
signature and texture from different forest types (Nicolas Barbier). d
Image derived from ALOS L-Band Radar data showing a Cameroonian
forest-savanna mosaic at 12.5-m resolution (Stéphane Mermoz)
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at the global scale (http://science.nasa.gov/missions/gedi/).
This system, scheduled to be completed in 2018, is expected
to generate more than 16 billion LiDAR observations with
footprints of 25 m over a single year. One of the expected
resulting products is a 500-m resolution aboveground carbon
map at the global scale. This system will be probably highly
complementary with the soon coming BIOMASS mission
(see below).

2.2 Radio detection and ranging technology

Radar technology is an active sensor (as LiDAR) that sends
and receives electromagnetic pulses that allow imaging at any
time of day or night, whatever weather conditions (contrary to
LiDAR). To achieve a high spatial resolution from radar, a
method known as Synthetic Aperture Radar (SAR) is used
to improve the resolution beyond the limitation of physical
antenna aperture. Basically, the ability of a SAR system to
detect structures of different sizes depends on its frequency
(i.e., its wavelength). Lower frequencies (longer wavelength)
are sensitive to coarser structures and are thus less likely to
saturate in high forest biomass conditions (Dobson et al. 1992;
Le Toan et al. 1992). For instance, a C-band SAR signal is
known to saturate rapidly with forest biomass because its
wavelength is small (5–6 cm). However, using a hyper-
temporal series of C-band images, Santoro et al. (2011) and
Thurner et al.(2014) were able to estimate the biomass of
boreal and temperate forests. As part of the Copernicus mis-
sion from the European Space Agency (ESA), Sentinel-1A
with C-band radar was successfully launched in April 2014
and will soon provide C-band imagery.

Using longer wavelengths, radar observations are ex-
pected to be sensitive to the forest structure and, therefore
indirectly, forest biomass and volume (Dobson et al. 1992;
Le Toan et al. 1992). Some studies have shown that L-
band (~25 cm) signal (Fig. 1d) can be used to accurately
map biomass in savannas (Mermoz et al. 2014). However,
many studies have also observed a loss of sensitivity at
biomass values larger than 100 to 150 Mg ha−1, often
interpreted as signal saturation (Woodhouse et al. 2012).
However, Mermoz et al. (2015) have recently shown that,
above this biomass threshold, L-band backscatters tend to
attenuate, instead of saturate, potentially leading to new
opportunities in L-band SAR mapping. The L-band ALOS
PALSAR is currently the single spaceborne radar sensor
operating at long wavelengths suited to monitoring forest
structure; and its sequel, ALOS2, was launched in 2014.
With an even longer wavelength, such as the P-band
(~70 cm), radar backscatters may be used for a larger
range of forest types (Le Toan et al. 1992), including dense
tropical forests (Dinh Ho Tong et al. 2014). The first P-
band satellite, BIOMASS (Le Toan et al. 2011), will be
launched in 2020.

Belowground woody biomass or volume is often an
overlooked component in forest assessment, despite its funda-
mental variation across biomes and forest types (Mokany et al.
2006). Ground Penetrating Radar (GPR) is a nondestructive
geophysical technique widely used in locating underground
objects (e.g., restrictive soil horizons, stone lines, bedrock,
water tables, buried artifacts, pipes, and cables). Applying
GPR for coarse root quantification has shown interesting po-
tential in determining coarse root-related parameters (Bassuk
et al. 2011; Caldwell 2014) and may soon constitute an
efficient way to monitor the belowground component of
forest structure. Guo et al. (2013) review the state of knowl-
edge of coarse root detection and quantification using GPR
and discusses its potentials, constraints, possible solutions,
and future outlooks.

2.3 Stereoscopy and photogrammetry

Stereoscopy (also called three-dimensional imaging) is a tech-
nique for creating or enhancing the illusion of depth in an
image by means of stereopsis for binocular vision. Stereosco-
py has a long history and has been evolving since the early use
of aerial photographs (Spurr 1948; Avery 1996) to more fre-
quent data acquisition techniques (Straub et al. 2013). This
approach is often used with aerial photography for land use
surveys, including forest monitoring or species identification
(Trichon 2001). Vegetation maps can relatively easily and
accurately be prepared from photographs. Units of vegetation
and of land use can be delineated, and their areas determined
much faster and better than is possible in the field. Recent
progress have been made in digital stereo-photogrammetry
technology (St-Onge et al. 2004). Such an approach can be a
much cheaper alternative to airborne laser scanning data for
modeling key forest attributes, such as tree or forest canopy
height (Straub et al. 2013). However, up to now, stereo-
photogrammetry is often used in combination with airborne
laser scanning measurements as it relies on LiDAR-based dig-
ital elevation models (St-Onge et al. 2008; Hernández-
Clemente et al. 2014). Finally, stereoscopy can also be used
to estimate difficult-to-measure variables such as course and
fine woody debris (Ottmar et al. 1990) and has been shown to
be useful to assess forest biomass even in tropical areas
(Ottmar et al. 2001; Alvarado-Celestino et al. 2008).

2.4 Very high-resolution optical imagery

The pace of development in the field of high-resolution optical
imagery is truly impressive. Very high-resolution optical im-
agery, which may refer to spatial, spectral or both resolutions,
has developed extensively in recent years. Here, we describe
some recent initiatives, using either the high spatial or spectral
resolution, to improve the characterization of forest structure
and/or composition.
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Very high spatial resolution imagery (≤2-m resolution) is
now available from many satellite sensors, such as Cartosat,
GEOEYE, IKONOS, Quickbird, and WORLDVIEW satel-
lites (e.g., Fig. 1c). Even if such data are generally costly, they
provide long-term and repetitive observations at a high spatial
resolution over large areas. Several works have aimed at
extracting quantitative information on canopy structure from
such imagery (Asner et al. 2002; Barbier et al. 2012;Malhi and
Román-Cuesta 2008). In particular, the development of textur-
al approaches to very high spatial resolution imageries has led
to an accurate retrieval of forest structural parameters
(Couteron et al. 2005; Barbier et al. 2012) and has been shown
to improve land cover classification in complex forested envi-
ronment (Lu et al. 2014). For instance, the Fourier Transform
Textural Ordination (Couteron et al. 2005) has been shown to
retrieve accurate forest biomass estimates, even in a high bio-
mass context (Proisy et al. 2007; Ploton et al. 2012; Bastin
et al. 2014). However, a major limitation of such an approach,
which should be overcome before any large-scale mapping, is
the systematic biases generated by the varying acquisition an-
gles and by the atmospheric pollution (Barbier et al. 2011).
Ongoing work is likely to solve these issues.

The very high spectral resolution of optical imagery can be
also of great interest for forest survey approaches. Classical
high spatial resolution satellite sensors have usually less than
ten bands covering broad spectral ranges (multispectral imag-
ery) while hyperspectral sensors, often mounted on aerial sys-
tems, deal with a larger number of narrow spectral bands (up
to 200, or more, contiguous spectral bands). Hence,
hyperspectral images have a much higher number of spectral
bands than needed to reproduce colors and thus convey im-
portant information, unseen by eyes, about forest function.
Such data may constitute a powerful diagnostic tool for for-
esters (Jusoff 2009). Theoretically, a hyperspectral imager
captures the unique spectra, or spectral signature of an object,
which can then be used to identify and quantify useful prop-
erties of the object. For instance, imaging spectroscopy may
convey important information about variation in chemical
composition of the canopy (Asner and Martin 2008; Baccini
and Asner 2013) and thus provide direct information about
ecosystem functioning. It may also have a great potential to
identify the taxonomic and functional composition of canopy
trees in a systematic way (Martin et al. 1998; Féret and Asner
2013; Asner et al. 2015) and may be successfully associated
with airborne LiDAR technology to map tree species compo-
sition and forest structure at ecosystem level (Colgan et al.
2012). However, with the advances in hyperspectral technol-
ogies, practical issues related to increased sensor or imager
costs, data volumes, and data-processing costs and times
would need to be considered especially for operational
modes. Govender et al. (2007) review the methods applicable
to natural resource monitoring using hyperspectral remote
sensing data.

3 How can existing or soon-to-come technologies be
integrated to improve forest monitoring?

As shown above, existing and emerging technologies may
considerably improve the assessment of a number of forest
estimates, such as forestland area, volume, carbon stock or
dynamics, and composition. Their integration within existing
national forest monitoring systems will probably be gradual
and will contribute to enhance data collection, sampling strat-
egies, uncertainty estimation, methodological replicability,
change assessment, and verification. Reinforcing national
technical and human capacities is fundamental for ensuring
their adoption and adaptation.

Many of the above-mentioned technologies may be
used to improve the forest ground sampling designs,
minimizing transport costs and maximizing the sampling
representativeness through a pre-stratification of the area
of interest. For example, such stratification maybe con-
siderably enhanced by airborne LiDAR technology or by
hyperspectral imagery from which high-resolution maps
of forest structure or composition can be made prior to
the field campaign.

Regarding forest carbon assessment, LiDAR, radar,
textural-based analyses, and stereo-photogrammetry have
made significant advances. As an example, the high resolution
of LiDAR technology (from terrestrial to airborne approaches)
allows the measurement of many variables of interest - such as
tree diameter, tree height and crown size - in a much shorter
time span than more traditional field sampling campaigns.
Such local or landscape scale estimates can then be extrapo-
lated at larger spatial scales through an optical satellite-based
stratification (Wulder et al. 2012) or a direct calibration of
coarser resolution satellite products (Baccini and Asner
2013; Réjou-Méchain et al. 2014).

Belowground forest components are often overlooked in
forest resource assessments while they constitute a significant
source of uncertainty in the global carbon stock (Mokany et al.
2006). Belowground biomass is indeed one of the most diffi-
cult field variables to measure, particularly for destructive
measurements (Picard et al. 2012). As we discussed above,
ground-penetrating radar can be of great interest to assess
belowground biomass without a significant associated cost.
With the development of such technology, we may signifi-
cantly improve our understanding of the variability of below-
ground carbon stocks, especially across biomes and along
environmental gradients.

Last, but not least, a significant part of the uncertainties
associated with biomass or volume estimation is due to their
calculation from allometric equations (Molto et al. 2013;
Chave et al. 2014). Here, we show that some new technolo-
gies, such as terrestrial LiDAR or stereo-photogrammetry may
be a promising way to improve significantly tree volume or
biomass estimation without any destructive measurement. For
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instance, large trees that contribute a large fraction of the over-
all forest biomass (Chave et al. 2003) are difficult to measure
through destructive sampling (Picard et al. 2012), and terres-
trial LiDAR could make the volume measurement easier
(Calders et al. 2014).

The majority of the technical approaches presented above
are still considered in a research and development phase. In
the last decade, significant advances have been achieved re-
garding these technologies, and subsequent progresses are ex-
pected in the next few years. If remote sensing approaches
have the potential to significantly increase the robustness of
forest monitoring estimates, it should be borne in mind that
they cannot substitute ground field measurements. For in-
stance, litter- or soil-related variables, species composition,
and tree regeneration dynamics cannot be yet fully measured
remotely. Further, despite recent technological improvements,
assessment of forest degradation, which is one of the main
source of emissions in the forestry sector in many tropical
countries (Asner et al. 2005; Henry et al. 2011), remains poor-
ly quantified through remote sensing (Pearson et al. 2014). At
last, wall to wall remote sensing products at the national scale
are often a challenge for several reasons including data acces-
sibility and cloud coverage.

4 Conclusions

Technology development, adaptation to country circum-
stances, and its adoption by existing systems, as appropri-
ate, have the potential to improve accuracy of field mea-
surements, to decrease the time and the costs associated
with field sampling campaigns, and to improve the extrap-
olation of forest-based estimates over large spatial scales,
including remote and/or conflict areas. New technologies
may thus be a conducive way for supporting the implemen-
tation of transparent national forest monitoring systems.
However, the adoption, adaptation, and feasibility of these
technologies by national and subnational entities, private
companies, research and academic organizations, NGOs,
and civil society face many constraints. Among them, the
limited technical skills in using those new technologies are
probably the most important; hence, training and capacity
building is critical and should be anticipated. Financial
capacity may be also another limit, and efforts should be
made to enable the acquisition of equipment and the nec-
essary data. Certain non-human-dependent factors such as
cloud cover, plant seasonality, and landscape should be
anticipated in order to ensure the feasibility of new tech-
nologies. To conclude, we believe that much effort should
be devoted to exchange technical knowledge about the use
of new technologies and that financial support for devel-
oping countries would be needed to improve in- and cross-
countries consistencies in monitoring their forests.
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