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Abstract

The goal of this article is to provide an useful criterion of positivity and well-posedness for a wide range of infinite
dimensional semilinear abstract Cauchy problems. This criterion is based on some weak assumptions on the non-linear part
of the semilinear problem and on the existence of a strongly continuous semigroup generated by the differential operator. To
illustrate a large variety of applications, we exhibit the feasibility of this criterion through three examples in mathematical
biology: epidemiology, predator-prey interactions and oncology.
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1. Introduction

In a wide range of mathematical modelling of natural phenomena, the quantities that are described through the math-
ematical system have to satisfy some positivity properties to ensure physical reality. For instance, when considering the
evolution of matter quantities, such as in biology (or also physics [1], chemistry [2],...), the positivity of the solutions of
the underlying dynamical system is a crucial prerequisite to achieve the well-posedness of the problem and to guarantee its
physical relevance.

A significant proportion of dynamical systems that describe the evolution over time of matter quantities are non-linear,
but it oftenly appears that the non-linear effects can be seen as perturbations of linear dynamics, leading to such a differential
formulation: y′(t) =

linear dynamics︷ ︸︸ ︷
Ay(t) +

perturbations︷ ︸︸ ︷
f(y(t), t) , t ≥ 0,

y(0) = y0,

(1)

where y(t) denotes the modeled matter quantity at time t, that mathematically lies in a Banach Lattice. When imposing
a non-negative initial condition y0, the question of positivity is then crucial to study. In the case of a finite dimensional
operator A, this question has been extensively studied (see [3] and references therein for general results). However, to
our knowledge, we don’t know any general criterion of positivity in the case where A is a differential operator, i.e. when
the first equality in (1) rewrites as partial differential equations (PDEs), while such differential operators are extensively
used in mathematical biology, or also in many other applied mathematical sciences. For instance, in the specific case of
biology, let us mention the use of structured population dynamics models, where the operator is of transport type, or
the use of diffusive processes, where models incorporate a Laplacian operator (see [4] for a review of positivity results in
reaction-diffusion systems).

The goal of this article is to provide an useful criterion of well-posedness and positivity for the semilinear problem (1)
for wide ranges of linear differential operators A and non-linear functions f , and then to illustrate the feasibility of this
criterion through three examples of models arising from mathematical biology: epidemiology, predation and oncology.

This article is structured as follows: Section 2 is dedicated to the introduction of three concrete biological models,
described by semilinear PDEs, for which the positivity of solutions must necessarilly be satisfied. Then we tackle in Section
3 the formulation and the proof of the criterion of positivity and well-posedness. This criterion is based on the formulation
of an abstract semilinear Cauchy Problem, studied using a semigroup approach. Finally, in Section 4, we apply the criterion
to the biological models of Section 2 to prove the well-posedness and the positivity of their solution.

2. Three biological examples

In this section, we introduce three examples of semilinear evolutionary problems in mathematical biology for which the
positivity and well-posedness have to be proved for biological purpose. The matter quantities that are modelled in those
three examples, i.e. populations, predator/prey or cell densities, evolve with respect to the time t ≥ 0. The epidemiological
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and predator-prey models deal with transport process, with a non-constant velocity in the epidemiological case and a non-
local boundary condition in the predator-prey case, while the model in oncology deals with diffusive PDEs.
One can note that through those specific examples, a large spectrum of biological models are involved: PDE structured
population models (see [5] and references therein) and reaction-diffusion models.

Epidemiology. The first example on which we focus deals with epidemiology. When modeling the transmission of disease
between individuals, a common way is to split the population densities into two sub-classes that are the susceptible class (S)
and the infected class (I). From such a splitting results the classical epidemiological model of SI type [6]. Furthermore, lots
of diseases (influenza, HIV, prion pathologies...) have a varying intensity during their evolution that may be important to
take into account in the modeling process. This phenomena was recently described in [7, 8], where the disease intensity was
incorporated into the infected class, leading to the formulation of the following infection load-structured epidemiological
model of transport type:

S′(t) = γ − (µ0 + α)S(t)− S(t)T (βI)(t), t ≥ 0,

∂tI(t, i) = −∂i(νiI(t, i))− µ(i)I(t, i) + φ(i)S(t)T (βI)(t), t ≥ 0, i ∈ J,
νi−I(t, i−) = αS(t), t ≥ 0,

S(0) = S0, I(0, ·) = I0(·),

(2)

where the infection load is i ∈ J = (i−,+∞) ⊂ R+, T is the integral operator defined for some integrable fonction h on J
by

T : h→
∫
J

h(i)di

and the epidemiological parameters satisfy the following assumptions:

- β, µ0, ν, α > 0 and γ ≥ 0;

- φ ∈ C∞(J) is a non-negative function such that lim
i→+∞

φ(i) = 0 and
∫
J
φ(i)di = 1, µ ∈ L∞(J) is such that µ(i) ≥ µ0

for almost every i ∈ J .

For a biological relevance, it is clear that for each positive initial condition (S0, I0(·)), the densities S(t) and I(t, ·) in
Problem (2) have to remain positive whenever they exist.

Predator-prey interactions. When considering predator-prey interactions, the age of the prey is a key factor of selection for
the predator. It is therefore natural to add a structuration of the prey densities according to their age. In doing so, the
classical Lotka-Volterra model, that was initially an ODE model [9], turns into the following PDE model, that is developed
in [10]: 

∂tx(t, a) + ∂ax(t, a) = −µ(a)x(t, a)− y(t)γ(a)x(t, a), t ≥ 0, a ≥ 0,

y′(t) = αy(t)
∫∞

0
γ(a)x(t, a)da− δy(t), t ≥ 0, a ≥ 0,

x(t, 0) =
∫∞

0
β(a)x(t, a)da, t ≥ 0

x(0, ·) = x0(·), y(0) = y0,

(3)

where x and y denote the density of preys and predators, respectively. The assumptions on the parameters are the following:

- α ∈]0, 1[, δ > 0 are constant parameters that respectively denote the assimilation coefficient of ingested preys and the
basic mortality rate of the predators;

- µ, γ, β ∈ L∞+ (R+) are age-dependent functions that represent, respectively, the basic mortality rate of the preys, the
predation rate and the birth rate.

To ensure a certain realism, we want that the densities of preys x and predators y remain positive given a positive initial
data (x0, y0).

Oncology. The third application is a model that describes the growth of a brain tumour published in [11]. The model aims
at studying a treatment method of tumor cells through a problem of controllability. The tumor and normal cells are in
competition for the resources and are subject to a drug treatment whose role is to decrease the cell densities. Even if some
normal cells are destroyed, the key point here is that the drug affects more the tumor ones.
To make explicit the model, let us consider Ω a bounded domain of RN , N ∈ N∗, with boundary ∂Ω of class C2 and for a
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fixed T > 0, let QT = Ω × (0, T ) and ΣT = ∂Ω × (0, T ). The evolution problem is then written using the following three
semilinear heat equations, where the variables (t, x) are delibarately avoided for a better reading:

∂ty1 = d1∆y1 + a1g1(y1)y1 − (α1,2y2 + κ1,3y3)y1,

∂ty2 = d2∆y2 + a2g2(y2)y2 − (α2,1y1 + κ2,3y3)y2,

∂ty3 = d3∆y3 − a3y3 + u,

∂nyi(t) = ∇yi(t) · ~n = 0, t ≥ 0, i ∈ {1, ..., 3},
y(x, 0) = y0(x), x ∈ Ω,

(4)

where ~n denotes the external normalized normal to the boundary ∂Ω. Here y1(t, x) stands for the density of tumor cells,
y2(t, x) the density of normal tissue and y3(t, x) the drug concentration at any vector position x and time t. In the latter
problem, the growth rates of cells are defined by the functions gi according to the following logistic shape:

gi(yi) = 1− yi/ki.

The assumptions on the parameters are the following:

- di > 0 are the coefficients for the space diffusive effect;

- ai > 0, where a1, resp. a2, denotes the tumor cell intrinsic growth rate, resp. the normal tissue intrinsic growth rate
and a3 is the drug reabsorption coefficient;

- ki > 0 denote the carraying capacity of the medium;

- αi,j > 0 are coefficients that translate the interspecific competition between tumor and normal cells;

- κ1,3 � κ2,3 > 0 are the degradation rates due to the treatment;

- u(x, t) ≥ 0 represents the flux of injected drug over time at position x.

Similarly to the previous biological examples, we aim at proving well-posedness and positivity of the solution.

3. A criterion of positivity and well-posedness

In all this section, let us consider (W,+, ‖ · ‖W ,≥) a Banach Lattice (see [12]), i.e. an ordered Banach space for which
any given elements x, y of W have a supremum sup(x, y) and for all y1, y2, y3 ∈ W and α ≥ 0,{

y1 ≤ y2 ⇒ (y1 + y3 ≤ y2 + y3 and αy1 ≤ αy2),
|y1|W ≤ |y2|W ⇒ ‖y1‖W ≤ ‖y2‖W ,

(5)

with, for all y ∈ W, |y|W = sup(y, −y). We will denote by W+ = {y ∈ W : 0 ≤ y} the non-negative cone and for every
m > 0 by Bm the ball of W of radius m.

We consider in this work the system{
y′(t) = Ay(t) + f(y(t), t), t ≥ 0 in W,

y(0) = y0 in W,
(6)

where A : D(A) ⊂ W →W is an infinitesimal generator of a positive C0 semigroup (TA(t))t≥0 (i.e. TA(t)W+ ⊂ W+ for all
t ≥ 0), y′(t) is an element of W and f :W ×R+ →W is continuous in t and locally Lipschitz continuous in y uniformly in
t in the following sense: for every m > 0 there exists a constant km > 0 such that for every z1, z2 ∈ Bm,

‖f(z1, t)− f(z2, t)‖W ≤ km‖z1 − z2‖W , ∀t ∈ R+.

Finally, let us briefly remind that for a fixed T ∈]0,∞], a mild solution of Problem (6) on [0, T [ is a function y ∈
C([0, T [;W) that satifies the integral equation

y(t) = TA(t)y0 +

∫ t

0

TA(t− s)f(y(s), s)ds.

Remark 3.1. Since W+ is closed (see [12]), we deduce that for all T > 0, the order ≥ is compatible with the integration in
time, more precisely, for all x, y ∈ C([0, T ];W),

(x(t) ≥ y(t) ∀ t ∈ [0, T ])⇒
∫ T

0

x(s)ds ≥
∫ T

0

y(s)ds. (7)
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The following theorem, that states well-posedness and positivity property for the solution of Problem (6), is the main
result of the present article:

Theorem 3.1. Let y0 ∈ W+. We suppose that

(i) A is generator of a positive C0 semigroup on W,

(ii) for all m > 0, there exists λm ∈ R such that, for all z ∈ C(R+;W+ ∩B(0,m)),

f(z(t), t) + λmz(t) ≥ 0, ∀t ≥ 0. (8)

Then there exists tmax ∈]0,∞] such that system (6) has an unique positive mild solution y ∈ C([0, tmax[;W). Moreover, if
tmax <∞,

lim
t→tmax

‖y(t)‖W =∞.

The main idea of the proof is to perform a vectorial translation to the range values of the non-linear part f so that they
remain in W+. This translation is then compensated by the substraction of a linear term to the differential operator, that
does not affect its spectral and positivity properties. Consequently, we shall study the following system in the proof of the
theorem: {

y′(t) = (A− λI)y(t) + f(y(t), t) + λy(t), t > 0 in W,

y(0) = y0 in W.
(9)

Lemma 3.1. Let A be an infinitesimal generator of a positive C0 semigroup. Then, for every λ ∈ R, A−λI is an infinitesimal
generator of a positive C0 semigroup.

Proof. As a bounded perturbation of A, A−λI is an infinitesimal generator of a C0 semigroup (TA−λI(t))t≥0 onW (see [13,
p. 76]). A C0 semigroup on a Banach Lattice is positive if and only if the resolvent (µI −L)−1 of its generator L is positive
for all sufficiently large µ (see [14, p. 207]). Thus there exists µ∗ such that, for all x ∈ W and all µ > µ∗, (µI −A)−1x ≥ 0.
Consequently, for all x ∈ W and all µ > µ∗ − λ, we have (µI −A+ λI)−1x ≥ 0. Then A− λI is an infinitesimal generator
of a positive C0 semigroup.

Proof of Theorem 1.1. Since A is generator of a positive C0 semigroup (TA(t))t≥0, there exists ω,M ≥ 1 such that, for all
t ∈ R+,

‖TA(t)‖W ≤Meωt.

Lemma 3.1 then implies that for evey λ ∈ R, A− λI is also generator of a positive C0 semigroup (TA−λI(t))t≥0. Moreover,
it is easy to check that for all t ∈ R+,

‖TA−λI(t)‖W ≤Meωt, ∀λ ∈ R. (10)

Let t0 ∈ (0, 1), m = 2M eω‖y0‖W and λm that satisfies (8). Consider the set Γm = {y ∈ C([0, t0];W) : y(0) = y0, y(t) ≥
0, ‖y(t)‖W ≤ m,∀t ∈ [0, t0]}. The continuity properties of the lattice operations (see [12]) imply that Γm is a non-empty
closed subset of C([0, t0];W).

Consider now the mapping ψ, defined on Γm by

ψ(y)(t) = TA−λmI(t)y0 +

∫ t

0

TA−λI(t− s) [f(y(s), s) + λmy(s)] ds, t ∈ [0, t0].

We aim at proving that ψ has a unique fixed point in Γm.
Let us start by proving that ψ preserves Γm. The positivity of (TA−λmI(t))t≥0 and the positivity assumption (8) clearly
imply that ψ(y) ∈ C([0, t0];W+). Furthermore, from the inequality (10), one deduces that

‖ψ(y)(t)‖W ≤Meωt‖y0‖W +Meωt
∫ t0

0

(‖f(y(s), s)− f(0, s)‖W + ‖f(0, s)‖W + λm‖y(s)‖W)ds.

The time continuity property on f induces the existence of γ > 0 (independent of t0 < 1) such that for every y ∈ Γm and
every t ∈ (0, t0),

‖ψ(y)(t)‖W ≤Meω(‖y0‖W + t0(mkm + γ +mλm)).

Thus, for t0 = min{1, ‖y0‖W × (mkm + γ +mλm)−1} we have ‖ψ(y)(t)‖W ≤ 2Meω‖y0‖W = m and so ψ(y) ∈ Γm.
We now prove that ψ is contractant in the following sense: for every y, z ∈ Γm, every n ∈ N∗ and every t ∈ [0, t0],

‖ψn(y)(t)− ψn(z)(t)‖W ≤
[Meωt(km + λm)]n

n!
sup

t∈[0,t0]

‖y(t)− z(t)‖W . (11)
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Let us prove (11) by induction. Clearly the Lipschitz assumption on f implies that

‖ψ(y)(t)− ψ(z)(t)‖W ≤Meω (km + λm) t sup
θ∈[0,t0]

‖y(θ)− z(θ)‖W ,

and equality (11) holds for n = 1. Suppose now that (11) holds for a k ∈ N∗. Then for all t ∈ [0, t0],

‖ψk+1(y)(t)− ψk+1(z)(t)‖W ≤ (Meω(km + λm))

∫ t

0

‖ψk(y)(s)− ψk(z)(s)‖Wds,

≤ [Meω(km + λm)]k+1

k!
sup

θ∈[0,t0]

‖y(θ)− z(θ)‖W
∫ t

0

skds,

and (11) is true for k + 1 and consequently for every n ∈ N∗ by induction. Finally, we can apply the Banach’s fixed point
theorem to conclude that ψ has a unique fixed point ȳ in Γm. Systems (6) and (9) being equivalent, ȳ is a mild solution
of (6). Then some standard time extending properties of the solution induce that the solution ȳ is defined on a maximal
interval [0, tmax[. To finish, we prove the uniqueness of the solution on the whole space C([0, tmax(ȳ)[,W+). If z̄ is another
mild solution defined on [0, t1[ with t1 < tmax(ȳ), then, denoting R = max

θ∈[0,t1]
{‖ȳ(θ)‖W , ‖z̄(θ)‖W}, we obtain for all t ∈ [0, t1],

‖ȳ(t)− z̄(t)‖W ≤Meωt1kR

∫ t

0

‖ȳ(s)− z̄(s)‖Wds.

Then ‖ȳ(t) − z̄(t)‖W = 0 by a standard Gronwall argument and ȳ = z̄ in [0, t1] ×W. Furthermore, if tmax(ȳ) < ∞, since
‖z̄(t)‖W = ‖ȳ(t)‖W for all t < min{tmax(ȳ), tmax(z̄)} and lim

t→tmax(ȳ)
‖ȳ(t)‖W =∞, we deduce that the maximal intervals of

existence of ȳ and z̄ are equal.

4. Illustrations of the criterion in mathematical biology

In this section, we exhibit the application of well-posedness and positivity criterion on the three biological examples of
Section 2.

Epidemiology. Consider the Banach LatticeX = R×L1(J), X+ the non-negative cone ofX and y0 = (S0, I0) ∈ X+. Then it
is clear that Problem (2) can rewrite as (6), where the function f : X → X and the differential operator A : D(A) ⊂ X → X
are given by

f(u, v) =

(
f1(u, v)
f2(u, v)

)
=

(
γ − uT (βv)
φuT (βv)

)
, A =

(
−µ0 − α 0

0 − d
di (νi·)− µ

)
,

with D(A) = {(x, ϕ) ∈ X, (iϕ) ∈W 1
1 (J) and ϕ(i−) = αx}. In [7], the authors prove that the differential operator (A,D(A))

is an infinitesimal generator of a positive C0 semigroup (TA(t))t≥0 on X and that function f is locally Lipschitz continuous
on X. Moreover, for every m > 0 and every (S̄, Ī) ∈ C(R+;X+ ∩B(0,m)), one gets, denoting λm = mβ,{

f1(S̄(t), Ī(t)) + λmS̄(t) ≥ γ + S̄(t)(λm − βT (Ī(t))) ≥ 0,
f2(S̄(t), Ī(t)) + λmĪ(t) = φS̄(t)T (βĪ(t)) + λmĪ(t) ≥ 0.

Thus, condition (8) of Theorem 3.1 is satisfied and there exists tmax ∈]0,∞] such that Problem (2) has an unique mild
solution (S, I) in C([0, tmax[, X+).

Predator-prey interactions. Let X = L2(R+)×R, X+ the non-negative cone and (x0, y0) ∈ X+. Considering the operator
A : D(A) ⊂ X → X and the functional f : X → X given by

f(φ, z) =

(
f1(φ, z)
f2(φ, z)

)
=

(
−αzγφ

α̃
∫∞

0
γ(a)φ(a)da

)
, A =

(
L 0
0 −δ

)
,

with D(A) = {(φ, z) ∈ X, (φ, z) ∈ W 1
1 (R+) and ϕ(0) =

∫∞
0
β(a)φ(a)da} and Lφ = −φ′ − µφ. The map f is clearly locally

Lipschitz continuous on X. Furthermore, under the assumption that there exists µ0 > 0 such that µ(a) ≥ µ0 f.a.e. a ∈ R,
it is proved in [10] that the operator A is the infinitesimal generator of a positive C0 semigroup (TA(t))t≥0 on X. Then, for
all m > 0, denoting λm = αmγ, we obtain for every (x̄, ȳ) ∈ C(R+;X+ ∩B(0,m)){

f1(x̄(t), ȳ(t)) + λmx̄(t) ≥ x̄(t)(λm − αmγ) ≥ 0,
f2(x̄(t), ȳ(t)) + λmȳ(t) ≥ 0.

Again, condition (8) of Theorem 3.1 holds and the existence of tmax ∈]0,∞] such that system (3) has an unique mild
solution (x, y) in C([0, tmax[, X+) is ensured.
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Oncology. Let X = L2(Ω;R3), X+ the corresponding non-negative cone, y0 ∈ X+ and u ∈ L2(QT )+. Then system (4) can
be reformulated as (6) where 

f(y) = (g + h)(y) + (0, 0, u)∗,

g(y) = diag(a1g1(y1)y1, a2g2(y2)y2, a3g3(y3)y3),

h(y) = diag(−(α1,2y2 + κ1,3y3)y1,−(α2,1y1 + κ2,3y3)y2, 0),

A = diag(d1∆, d2∆, d3∆).

The existence of the semigroup (TA(t))t≥0 is a consequence of the Lumer-Phillips Theorem (see [13, p. 14]) for maximal
dissipative operators. Indeed, in the present case, A is clearly maximal dissipative since it is defined with Laplacian
operators. Using the maximum principle of the heat equation, the semigroup is positive.

Consequently, when taking λm = max{m(a1/k1 − α1,2 − κ1,3),m(a2/k2 − α2,1 − κ2,3), a3} for m > 0, we obtain the
following estimations for all ȳ = (ȳ1, ȳ2, ȳ3) ∈ C(R+;X+ ∩B(0,m))

f1(ȳ) + λmȳ1 = a1g1(ȳ1)ȳ1 − (α1,2ȳ2 + κ1,3ȳ3)ȳ1 + λmȳ1 ≥ ȳ1[λm −m(a1/k1 − α1,2 − κ1,3)] ≥ 0,

f2(ȳ) + λmȳ2 = a2g2(ȳ2)ȳ2 − (α2,1ȳ1 + κ2,3ȳ3)ȳ2 + λmȳ2 ≥ ȳ2[λm −m(a2/k2 − α2,1 − κ2,3)] ≥ 0,

f3(ȳ) + λmȳ3 = −a3ȳ3 + u+ λmȳ3 ≥ ȳ3(λm − a3) ≥ 0.

Thus condition (8) is satisfied and, using Theorem 3.1, there exists tmax ∈]0,∞] such that problem (4) has an unique mild
solution (x, y) in C([0, tmax[, X+).
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